ISO224BDWVR [TI]

±12V 输入、精密电压检测增强型隔离式放大器 | DWV | 8 | -55 to 125;
ISO224BDWVR
型号: ISO224BDWVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±12V 输入、精密电压检测增强型隔离式放大器 | DWV | 8 | -55 to 125

放大器 PC 分离技术 隔离技术 光电二极管
文件: 总37页 (文件大小:1711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
具有 ±12V 单端输入和 ±4V 差分输出的  
ISO224 增强型隔离放大器  
3 说明  
1 特性  
1
提供高级 (ISO224B) 与低级 (ISO224A) 两个版本  
ISO224 是一款精密的隔离放大器,此放大器的输出与  
输入电路由抗电磁干扰性能极强的隔离栅隔开。该隔离  
栅经认证,可提供高达 5kVRMS 的增强型电隔离,使用  
寿命极长,功率耗散较低。与隔离式电源结合使用时,  
该器件可将以不同共模电压电平运行的系统的各器件隔  
开,并防止较低电压器件损坏。  
±12V 输入电压范围针对工业应用中的隔离式电压  
测量进行了 优化  
9kV 静电放电 (ESD) 过压输入钳位  
±4V 差分输出电压范围,共模电压为 VDD2/2  
低直流误差运行 (ISO224B):  
输入失调电压:25°C 时为 ±5mV±15µV/°C  
(最大值)  
ISO224 的输入专门针对精确检测 ±10V 信号进行了优  
化,该信号在工业应用当中十分 普遍。该器件由高侧  
单电源供电运行。此独有的特性可简化隔离式电源的设  
计,降低系统成本。集成的高侧电源电压检测功能可简  
化系统级诊断。ISO224 ±4V 输出可支持使用更低  
成本的模数转换器 (ADC)。输出的差分结构具有更强  
的抗噪性能。  
增益误差:25°C 时为 ±0.3%±35ppm/°C(最  
大值)  
非线性度:±0.01%(最大值),±0.1ppm/°C  
(典型值)  
4.5V 18V 高侧单电源  
4.5V 5.5V 低侧运行  
安全相关认证:  
ISO224 可在 –55°C +125°C 的扩展工业温度范围  
内正常运行,并采用宽体 8 引脚 SOIC (DWV) 封装。  
7071 VPEAK 增强型隔离,符合 DIN VDE V  
0884-11: 2017-01 标准  
器件信息(1)  
5000 VRMS 隔离,符合 UL1577 标准且持续时  
长为 1 分钟  
器件名称  
ISO224  
封装  
SOIC (8)  
封装尺寸  
5.85mm × 7.5mm  
CMTI (ISO224B)80kV/µs(典型值)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
在以下领域进行隔离模拟信号采集:  
电网自动化  
保护继电器  
工厂自动化与控制  
铁路运输  
电机驱动器  
功率分析仪  
简化原理图  
ISO224  
OUTP  
OUTN  
optional  
IN  
ADS7945  
14-Bit ADC  
Up to ±12 V  
Clamp  
optional  
Isolated  
4.5 V to 18 V  
VDD1  
GND1  
VCAP  
VDD2  
GND2  
4.5 V to 5.5 V  
GND1  
GND2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS738  
 
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application .................................................. 22  
9.3 What to Do and What Not to Do ............................. 24  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Power Ratings........................................................... 5  
7.6 Insulation Specifications............................................ 6  
7.7 Safety-Related Certifications..................................... 7  
7.8 Safety Limiting Values .............................................. 7  
7.9 Electrical Characteristics........................................... 7  
7.10 Switching Characteristics........................................ 9  
7.11 Insulation Characteristics Curves ......................... 10  
7.12 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 17  
9
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 26  
11.1 Layout Guidelines ................................................. 26  
11.2 Layout Example .................................................... 26  
12 器件和文档支持 ..................................................... 27  
12.1 文档支持................................................................ 27  
12.2 接收文档更新通知 ................................................. 27  
12.3 社区资源................................................................ 27  
12.4 ....................................................................... 27  
12.5 静电放电警告......................................................... 27  
12.6 术语表 ................................................................... 27  
13 机械、封装和可订购信息....................................... 28  
8
4 修订历史记录  
Changes from Original (June 2018) to Revision A  
Page  
已更改 将文档状态从预告信息更改成了生产数据” .............................................................................................................. 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
5 器件比较表  
参数  
ISO224B  
ISO224A  
输入失调电压,VOS  
输入失调电压温漂,TCVOS  
输入参考噪声  
±5mV(最大值)  
±15µV/°C(最大值)  
3µV/Hz(典型值)  
±0.3%(最大值)  
±50mV(最大值)  
±60µV/°C(最大值)  
4µV/Hz(典型值)  
±1%(最大值)  
增益误差,EG  
增益误差漂移,TCEG  
非线性度  
±35ppm/°C(最大值)  
±0.01%(最大值)  
275kHz(典型值)  
80kV/µs(典型值)  
2.2µs(典型值)  
±60ppm/°C(最大值)  
±0.02%(最大值)  
185kHz(典型值)  
30kV/µs(典型值)  
2.8µs(典型值)  
输出带宽,BW  
共模瞬态抗扰度,CMTI  
输入到输出,OUTN 信号延迟 (50% – 50%)  
6 Pin Configuration and Functions  
DWV Package  
8-Pin SOIC  
Top View  
VCAP  
IN  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
VDD1  
GND1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
VCAP  
IN  
Supply decoupling capacitor.  
1
I
Connect a 0.22-µF capacitor between this pin and the high-side analog ground.  
2
3
Analog input  
High-side power supply, 4.5 V to 18 V.  
See the Power Supply Recommendations section for decoupling recommendations.  
VDD1  
4
5
6
7
GND1  
GND2  
OUTN  
OUTP  
O
High-side analog ground  
Low-side analog ground  
Inverting analog output  
Noninverting analog output  
O
Low-side power supply, 4.5 V to 5.5 V.  
See the Power Supply Recommendations section for decoupling recommendations.  
8
VDD2  
Copyright © 2018, Texas Instruments Incorporated  
3
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.3  
MAX  
26  
UNIT  
VDD1 to GND1  
Power-supply voltage  
V
VDD2 to GND2  
–0.3  
6.5  
15  
Input voltage  
Input current  
Output voltage  
IN to GND1(2)  
Continuous, at IN pin(3)  
OUTP, OUTN  
Junction, TJ  
–15  
V
–10  
10  
mA  
GND2 – 0.3  
VDD2 + 0.3  
150  
V
Temperature  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Exposure to absolute-maximum-rated condition for extended periods may increase input leakage current.  
(3) Limit the input current at IN pin to prevent permanent damage to the device. The IN pin is internally protected by a voltage clamp. See  
42 for a typical current versus voltage characteristic curve of the input clamp.  
7.2 ESD Ratings  
VALUE  
±9000  
±3000  
±1000  
UNIT  
IN pin only  
Human-body model (HBM),  
per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
All pins except IN  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
High-side power supply  
Low-side power supply  
ANALOG INPUT  
VClipping Input voltage before clipping output(1)  
VFSR  
Specified linear input full-scale voltage(1)  
TEMPERATURE RANGE  
VDD1 to GND1  
VDD2 to GND2  
4.5  
4.5  
5
5
18  
V
V
5.5  
IN to GND1  
IN to GND1  
±13.8  
25  
V
V
–12  
–55  
12  
TA  
Specified ambient temperature  
125  
°C  
(1) See the Analog Input section for more details.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
7.4 Thermal Information  
ISO224x  
(1)  
THERMAL METRIC  
DWV (SOIC)  
8 PINS  
96.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
36.9  
Junction-to-board thermal resistance  
60.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
16.9  
ψJB  
58.2  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings(1)  
PARAMETER  
TEST CONDITIONS  
VDD1 = 18 V, VDD2 = 5.5 V  
VDD1 = VDD2 = 5.5 V  
VDD1 = 18 V  
VALUE  
194.9  
97.4  
UNIT  
PD  
Maximum power dissipation (both sides)  
mW  
140.4  
42.9  
PD1  
PD2  
Maximum power dissipation (high-side supply)  
Maximum power dissipation (low-side supply)  
mW  
mW  
VDD1 = 5.5 V  
VDD2 = 5.5 V  
54.5  
(1) See the Electrical Characteristics table for maximum supply current specifications.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
DTI  
External clearance(1)  
External creepage(1)  
Distance through insulation  
Comparative tracking index  
Material group  
Shortest pin-to-pin distance through air  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double insulation  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
8.5  
8.5  
0.021  
600  
I
mm  
mm  
mm  
V
CTI  
Rated mains voltage 600 VRMS  
I-IV  
Overvoltage category per  
IEC 60664-1  
Rated mains voltage 1000 VRMS  
I-III  
DIN VDE V 0884-11 (VDE V 0884-11): 2017-01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
At AC voltage (bipolar or unipolar)  
2121  
1500  
VPK  
At AC voltage (sine wave); time dependent dielectric breakdown (TDDB) test;  
see 4  
VRMS  
VDC  
Maximum-rated  
isolation working voltage  
VIOWM  
At DC voltage  
2121  
7071  
8485  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
isolation voltage  
VIOTM  
VIOSM  
VPK  
VPK  
Maximum surge  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
5  
5  
5  
~1  
isolation voltage(3)  
Method A, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s  
Method A, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method B1, at routine test (100% production) and preconditioning (type test),  
Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM = 3977 VPK, tm = 1 s  
Barrier capacitance,  
input to output(5)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
pF  
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(5)  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5000 VRMS or 7071 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed  
circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as  
inserting grooves and ribs on the PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
6
Copyright © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
7.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11): 2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08,  
Recognized under 1577 component recognition and  
CSA component acceptance NO 5 programs  
and DIN EN 60065 (VDE 0860): 2005-11  
Reinforced insulation  
Single protection  
File number: 40040142  
File number: E181974  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R
θJA = 96.3°C/W, TJ = 150°C, TA = 25°C,  
55  
mA  
236  
VDD1 = 18 V, VDD2 = 5.5 V, see 2  
θJA = 96.3°C/W, TJ = 150°C, TA = 25°C,  
VDD1 = VDD2 = 5.5 V, see 2  
θJA = 96.3°C/W, TJ = 150°C, TA = 25°C,  
see 3  
Safety input, output, or supply  
current  
IS  
R
R
Safety input, output, or total  
power  
PS  
1298(1)  
150  
mW  
°C  
TS Maximum safety temperature  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDD1max + IS × VDD2max, where VDD1max is the maximum high-side supply voltage and VDD2max is the maximum low-side  
supply voltage.  
7.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = –55°C to +125°C, VDD1 = 4.5 V to 18 V, VDD2 = 4.5 V to 5.5 V, VIN  
=
–12 V to 12 V, and RLOAD = 10 kΩ; typical specifications are at TA = 25°C, and VDD1 = VDD2 = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Initial, at TA = 25°C, IN = GND1, ISO224B  
–5  
–50  
–15  
–60  
±1  
±1  
5
VOS  
Input offset voltage(1)  
mV  
50  
Initial, at TA = 25°C, IN = GND1, ISO224A  
ISO224B  
±3  
15  
TCVOS  
Input offset voltage drift(1)  
µV/°C  
60  
ISO224A  
±12  
2
CIN  
RIN  
IIB  
Input capacitance  
Input resistance  
IN to GND1  
IN to GND1  
IN = GND1  
IN = GND1  
ISO224B  
pF  
MΩ  
1
1.25  
±15  
±30  
3
Input bias current  
Input bias current drift  
nA  
TCIIB  
pA/°C  
Input-referred noise  
density  
en  
µV/Hz  
ISO224A  
4
(1) The typical value includes one sigma statistical variation.  
Copyright © 2018, Texas Instruments Incorporated  
7
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –55°C to +125°C, VDD1 = 4.5 V to 18 V, VDD2 = 4.5 V to 5.5 V, VIN  
=
–12 V to 12 V, and RLOAD = 10 kΩ; typical specifications are at TA = 25°C, and VDD1 = VDD2 = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG OUTPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Nominal gain  
Gain error(1)  
(VOUTP – VOUTN) / VIN  
1/3  
±0.05%  
0.4%  
±10  
V/V  
0.3%  
Initial, at TA = 25°C, ISO224B  
Initial, at TA = 25°C, ISO224A  
ISO224B  
–0.3%  
–1%  
EG  
1%  
–35  
35  
TCEG  
Gain error drift(1)  
ppm/°C  
60  
ISO224A  
–60  
±20  
ISO224B  
–0.01%  
–0.02%  
±0.003%  
±0.003%  
±0.1  
0.01%  
0.02%  
ppm/°C  
dB  
Nonlinearity  
ISO224A  
Nonlinearity drift  
THD  
Total harmonic distortion fIN = 10 kHz  
–84  
IN = GND1, fIN = 0 Hz, BW = 10 kHz  
300  
Output noise  
µVRMS  
IN = GND1, fIN = 0 Hz, BW = 100 kHz  
vs VDD1, at DC  
360  
–107  
–101  
–71  
vs VDD1, 100-mV and 10-kHz ripple  
vs VDD2, at DC  
Power-supply rejection  
ratio(2)  
PSRR  
dB  
vs VDD2, 100-mV and 10-kHz ripple  
OUTP or OUTN to GND2  
–56  
VOUT  
Output voltage  
GND2 + 0.2  
0.48 × VDD2  
VDD2 – 0.2  
V
V
Common-mode output  
voltage  
VCMout  
(VOUTP + VOUTN) / 2  
VDD2 / 2 0.52 × VDD2  
GND2 + 0.1  
VDD1 missing, OUTP and OUTN forced to  
GND2  
VFAILSAFE Failsafe output voltage  
V
Output short-circuit  
current  
ISC  
On OUTP or OUTN to GND2  
±18  
mA  
Overload recovery time  
5
< 0.5  
100  
50  
µs  
ROUT  
CLOAD  
RLOAD  
BW  
Output resistance  
Capacitive load drive(3)  
Resistive load  
On OUTP or OUTN to GND2  
On OUTP or OUTN to GND2  
OUTP to OUTN  
Ω
pF  
kΩ  
On OUTP or OUTN  
10  
ISO224B  
220  
150  
55  
275  
185  
80  
Small signal output  
bandwidth  
kHz  
ISO224A  
|GND1 – GND2| = 1 kV, ISO224B  
|GND1 – GND2| = 1 kV, ISO224A  
Common-mode transient  
immunity  
CMTI  
kV/µs  
15  
30  
POWER SUPPLY  
IDD1 High-side supply current  
IDD2 Low-side supply current  
(2) This parameter is output referred.  
(3) Use series resistor to decouple higher capacilive load.  
6.1  
7.8  
7.8  
9.9  
mA  
mA  
8
Copyright © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
7.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.5  
2
MAX UNIT  
ISO224B on OUTP, OUTN  
µs  
µs  
tr, tf  
Rise time, fall time  
ISO224A on OUTP, OUTN  
ISO224B, unfiltered output, see 1  
ISO224A, unfiltered output, see 1  
ISO224B, unfiltered output, see 1  
ISO224A, unfiltered output, see 1  
ISO224B, unfiltered output, see 1  
ISO224A, unfiltered output, see 1  
1.5  
1.9  
2.2  
2.8  
3
2
µs  
IN to OUTP, OUTN signal delay  
(50% – 10%)  
2.9  
2.7  
µs  
IN to OUTP, OUTN signal delay  
(50% – 50%)  
3.8  
3.5  
µs  
IN to OUTP, OUTN signal delay  
(50% – 90%)  
3.8  
4.8  
VDD1 step to 4.5 V with VDD2 4.5 V,  
to OUTP, OUTN valid, 0.1% settling  
tAS  
Analog startup time  
250  
µs  
12 V  
50%  
0 V  
IN  
-12 V  
50% - 90%  
50% - 50%  
50% - 10%  
OUTN  
90%  
50%  
VCMout  
10%  
OUTP  
tr  
tf  
1. Delay Time Test Waveforms  
版权 © 2018, Texas Instruments Incorporated  
9
 
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.11 Insulation Characteristics Curves  
250  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD1 = VDD2 = 5.5 V  
VDD1 = 18 V, VDD2 = 5.5 V  
225  
200  
175  
150  
125  
100  
75  
50  
25  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
TA (°C)  
TA (°C)  
D001  
D002  
2. Thermal Derating Curve for Safety-Limiting Current per  
3. Thermal Derating Curve for Safety-Limiting  
VDE  
Power per VDE  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
87.5%  
20%  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz,  
isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
4. Reinforced Isolation Capacitor Lifetime Projection  
10  
版权 © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
7.12 Typical Characteristics  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
4.5  
6
7.5  
9
10.5  
VDD1 (V)  
12  
13.5  
15  
16.5  
18  
D003  
VOS (mV)  
D004  
ISO224B  
5. Input Offset Voltage Histogram  
6. Input Offset Voltage vs High-Side Supply Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
-2  
-3  
-4  
-5  
-2  
-3  
-4  
-5  
Device 1  
Device 2  
Device 3  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD2 (V)  
D005  
D006  
ISO224B  
8. Input Offset Voltage vs Temperature  
7. Input Offset Voltage vs Low-Side Supply Voltage  
60  
-13  
-13.5  
-14  
50  
40  
30  
20  
10  
0
-14.5  
-15  
-15.5  
-16  
-16.5  
-17  
4.5  
6
7.5  
9
10.5  
12  
13.5  
15  
16.5  
18  
VDD1 (V)  
D007  
D008  
TCVOS (mV/èC)  
ISO224B  
10. Input Bias Current vs High-Side Supply Voltage  
9. Input Offset Drift Histogram  
版权 © 2018, Texas Instruments Incorporated  
11  
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
1000  
100  
10  
-13  
-13.5  
-14  
-14.5  
-15  
-15.5  
-16  
1
-16.5  
-17  
0.1  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
D009  
D010  
ISO224B  
11. Input Bias Current vs Temperature  
12. Input-Referred Noise Density vs Frequency  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
D011  
D012  
EG (%)  
EG (%)  
ISO224B  
ISO224A  
13. Gain Error Histogram  
14. Gain Error Histogram  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
ISO224A  
ISO224B  
ISO224A  
ISO224B  
4.5  
6
7.5  
9
10.5  
12  
13.5  
15  
16.5  
18  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VDD1 (V)  
VDD2 (V)  
D013  
D014  
15. Gain Error vs High-Side Supply Voltage  
16. Gain Error vs Low-Side Supply Voltage  
12  
版权 © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D016  
TCEG (ppm/èC)  
D015  
ISO224B  
ISO224B  
17. Gain Error vs Temperature  
18. Gain Error Drift Histogram  
5
0
0°  
-45°  
-90°  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
ISO224A  
ISO224B  
ISO224A  
ISO224B  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
fIN (kHz)  
fIN (kHz)  
D017  
D018  
19. Normalized Gain vs Input Frequency  
20. Output Phase vs Input Frequency  
0.01  
0.008  
0.006  
0.004  
0.002  
0
7
6
5
4
3
2
1
0
VOUTP  
VOUTN  
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
VIN (V)  
VIN (V)  
D019  
D020  
21. Output Voltage vs Input Voltage  
22. Nonlinearity vs Input Voltage  
版权 © 2018, Texas Instruments Incorporated  
13  
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
0.02  
0.015  
0.01  
0.02  
0.015  
0.01  
0.005  
0
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.005  
-0.01  
-0.015  
-0.02  
4.5  
6
7.5  
9
10.5 12 13.5 15 16.5 18  
VDD1 (V)  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VDD2 (V)  
D021  
D022  
23. Nonlinearity vs High-Side Supply Voltage  
24. Nonlinearity vs Low-Side Supply Voltage  
0.02  
0.015  
0.01  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
Device 1  
Device 2  
Device 3  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
4.5  
6
7.5  
9
10.5 12  
VDD1 (V)  
13.5  
15  
16.5  
18  
D023  
D024  
25. Nonlinearity vs Temperature  
26. Total Harmonic Distortion  
vs High-Side Supply Voltage  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
Device 1  
Device 2  
Device 3  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD2 (V)  
D025  
D026  
27. Total Harmonic Distortion  
28. Total Harmonic Distortion vs Temperature  
vs Low-Side Supply Voltage  
14  
版权 © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
0
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
-20  
-40  
-60  
-80  
-100  
vs VDD2  
vs VDD1  
-120  
0.1  
1
10  
100  
1000  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
Ripple Frequency (kHz)  
VDD2 (V)  
D027  
D028  
29. Power-Supply Rejection Ratio  
30. Output Common-Mode Voltage  
vs Ripple Frequency  
vs Low-Side Supply Voltage  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
8
7.5  
7
6.5  
6
5.5  
5
4.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
4.5  
6
7.5  
9
10.5 12  
VDD1 (V)  
13.5  
15 16.5  
18  
D029  
D030  
31. Output Common-Mode Voltage vs Temperature  
32. High-Side Supply Current  
vs High-Side Supply Voltage  
10  
10  
9.5  
9
IDD2  
IDD1  
9.5  
9
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5.5  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD2 (V)  
D031  
D032  
33. Low-Side Supply Current  
34. Supply Current vs Temperature  
vs Low-Side Supply Voltage  
版权 © 2018, Texas Instruments Incorporated  
15  
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD1 = VDD2 = 5 V, and VINP = –12 V to 12 V, unless otherwise noted.  
2.1  
2.1  
2
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
ISO224A  
ISO224B  
ISO224A  
ISO224B  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD2 (V)  
D033  
D034  
35. Output Rise and Fall Time  
36. Output Rise and Fall Time vs Temperature  
vs Low-Side Supply Voltage  
3.5  
3
5
4.5  
4
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
50% - 90%  
50% - 50%  
50% - 10%  
50% - 90%  
50% - 50%  
50% - 10%  
0.5  
0.5  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VDD2 (V)  
VDD2 (V)  
D035  
D036  
ISO224B  
ISO224A  
37. VIN to VOUT Signal Delay  
38. VIN to VOUT Signal Delay  
vs Low-Side Supply Voltage  
vs Low-Side Supply Voltage  
3.5  
3
5
4.5  
4
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
50% - 90%  
50% - 50%  
50% - 10%  
50% - 90%  
50% - 50%  
50% - 10%  
0.5  
0.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D037  
D038  
ISO224B  
39. VIN to VOUT Signal Delay vs Temperature  
ISO224A  
40. VIN to VOUT Signal Delay vs Temperature  
16  
版权 © 2018, Texas Instruments Incorporated  
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
8 Detailed Description  
8.1 Overview  
The ISO224 is a precision, isolated amplifier with a high input impedance and wide input voltage range suitable  
for wide range of industrial applications. The input stage of the device drives a delta-sigma (ΔΣ) modulator. The  
modulator uses the internal voltage reference and clock generator to convert the analog input signal to a digital  
bitstream. The drivers (called TX in the Functional Block Diagram section) transfer the output of the modulator  
across the isolation barrier that separates the high-side and low-side voltage domains. The received bitstream  
and clock are synchronized and processed by a digital-to-analog conversion stage on the low-side and presented  
as a differential analog output.  
The SiO2-based, double-capacitive isolation barrier supports a high level of magnetic field immunity, as described  
in ISO72x Digital Isolator Magnetic-Field Immunity. The digital modulation used in the ISO224 and the isolation  
barrier characteristics result in high reliability and high common-mode transient immunity.  
8.2 Functional Block Diagram  
VDD1  
VDD2  
Reinforced  
Isolation  
Barrier  
Voltage Regulator  
(LDO)  
VDD1  
Detection  
Bandgap  
Reference  
VCAP  
IN  
OUTP  
OUTN  
Data  
CLK  
û  
Modulator  
Clamp  
TX  
RX  
RX  
TX  
Bandgap  
Reference  
Oscillator  
GND2  
ISO224  
GND1  
版权 © 2018, Texas Instruments Incorporated  
17  
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Input  
The input stage of the ISO224 feeds a switched capacitor, feed-forward ΔΣ modulator. The modulator converts  
the analog signal into a bitstream that is transferred over the isolation barrier, as described in the Isolation  
Channel Signal Transmission section. The high-impedance and low bias-current input of the ISO224 makes the  
device suitable for isolated voltage sensing applications.  
41 visualizes the difference in the transfer function of the ISO224 depending on the input signal VIN, as  
specified in the Recommended Operating Conditions table. With the input voltage within the specified full-scale  
range VFSR, the output of the device changes in a linear way with small error as specified by the nonlinearity  
parameter in the Electrical Characteristics table. If the input signal exceeds the VFSR range, the nonlinearity of  
the output signals increases and the amplitude clips at VIN = VCLIPPING  
.
6
VOUTP  
VOUTN  
5
VCLIPPING  
VFSR  
4
3
VCMout  
2
1
0
-15  
-10  
-5  
0
5
10  
15  
VIN (V)  
41. Transfer Function of the ISO224  
There are two restrictions on the analog input signal at the IN pin. First, if the input voltage VIN exceeds the  
range of –15 V to 15 V, the current must be limited to 10 mA to prevent damage to the input clamp, see the Input  
Clamp Protection Circuit section for further information. In addition, the linearity and noise performance of the  
ISO224 are ensured only when the analog input voltage remains within the specified linear full-scale range  
(VFSR).  
18  
版权 © 2018, Texas Instruments Incorporated  
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
8.3.2 Input Clamp Protection Circuit  
As illustrated in the Functional Block Diagram, the ISO224 features an internal clamp protection circuit on the  
analog input IN. Using external protection circuits is recommended as a secondary protection scheme to protect  
the device against surges, ESD events, and electrical fast transient (EFT) conditions.  
42 shows a typical current versus voltage characteristic curve for the input clamp. Limit either the voltage VIN  
at the input pin IN to the voltage range as defined in the Recommended Operating Conditions table or the input  
current to the limits as defined in the Absolute Maximum Ratings table.  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Input Voltage (V)  
D007  
42. I-V Curve of the Input Clamp Protection Circuit  
43 shows a simple method to limit the input current with an external series resistor that is also used as part of  
the input low-pass filter.  
ISO224  
RFLT  
IN  
Clamp  
CFLT  
Input  
Signal  
GND1  
GND1  
43. Series Resistor-Based Input Current Limitation on the Analog Inputs of ISO224  
The input overvoltage protection clamp on the ISO224 is intended to control transient excursions on the input  
pins. Leaving the device in a state such that the clamp circuit is activated for extended periods of time in normal  
or power-down mode is not recommended because this fault condition can degrade device performance and  
reliability.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3 Isolation Channel Signal Transmission  
The ISO224 uses an on-off keying (OOK) modulation scheme to transmit the modulator output bitstream across  
the SiO2-based isolation barrier. As shown in 44, the transmitter modulates the bitstream at TX IN with an  
internally-generated, high-frequency carrier across the isolation barrier to represent a digital one and does not  
send a signal to represent the digital zero. The nominal frequency of the carrier used inside the ISO224 is  
480 MHz.  
The receiver demodulates the signal after advanced signal conditioning and produces the output. The ISO224  
also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions caused by the high-frequency carrier and IO buffer switching.  
Transmitter  
Receiver  
OOK  
Modulation  
SiO2-Based  
Capacitive  
Reinforced  
Isolation  
TX IN  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
RX OUT  
Barrier  
Oscillator  
44. Block Diagram of an Isolation Channel  
45 shows the concept of the OOK scheme.  
TX IN  
Carrier Signal Across  
the Isolation Barrier  
RX OUT  
45. OOK-Based Modulation Scheme  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
8.3.4 Fail-Safe Output  
The ISO224 offers a fail-safe output that simplifies diagnostics on system level. The fail-safe output is active  
when the high-side power supply VDD1 of the device is missing, independent of the input signal at the IN pin. 图  
46 shows that in that case both outputs, OUTP and OUTN, of the device are actively driven close to GND2 (see  
the VFAILSAFE specification in the Electrical Characteristics table for details). For easy visualization, an example  
with the input signal VIN = 0 V is shown for the valid VDD1 range of 4.5 V to 5.5 V.  
3.5  
3
2.5  
2
Outputs are not specified  
in this VDD1 range  
1.5  
1
0.5  
VFAILSAFEmax  
0
0
0.5  
1
1.5  
2
3
3.5  
4
4.5  
5
5.5  
2.5  
VDD1 (V)  
46. ISO224 Failsafe Output Behavior With VIN = 0 V  
The ISO224 Fail-Safe Output Feature application report describes an example of a comparator-based circuit that  
detects the missing high-side supply in a system.  
8.4 Device Functional Modes  
The ISO224 is operational when the power supplies VDD1 and VDD2 are applied, as specified in the  
Recommended Operating Conditions table.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO224 enables high-precision measurement of ±10-V signals that are used in a harsh environment in a  
wide range of industrial applications. The high input resistance of the device simplifies the connection of its input  
to different sensors or other signal sources. The very low nonlinearity, AC and DC errors, and temperature drift  
make the ISO224 a robust, high-performance, isolated amplifier for applications where high voltage isolation is  
required. The differential output with a full-scale voltage of 4 V offers high immunity to noise and allows  
connection to a wide range of analog-to-digital converters (ADCs) powered on a 5-V nominal supply.  
9.2 Typical Application  
Isolated amplifiers are often used for data acquisition in industrial applications to safely separate the low-voltage  
portion of the system from the high common-mode voltage input of the system. The input structure of the ISO224  
is optimized for isolated voltage sensing in this kind of application.  
47 shows a typical operation of the device for voltage sensing as used in power line monitoring systems. The  
phase voltage amplitude is reduced with a resistive divider to match the input voltage range of the ISO224. The  
high input voltage range and the high common-mode transient immunity of the device ensure reliable and  
accurate operation even in high-noise environments.  
5 V  
5 V  
ISO224  
VDD1  
VDD2  
RFLTout  
R1  
R2  
RFLTin  
AC  
Voltage  
Source  
VAC  
IAC  
CFLTout  
ADC  
CFLTin  
RFLTout  
VIN  
GND1  
GND2  
GND2  
GND1  
47. Using the ISO224 for AC Voltage Sensing  
9.2.1 Design Requirements  
1 summarizes the typical design requirements for an AC power line voltage sensing application.  
1. Design Requirements  
PARAMETER  
AC voltage range, VAC  
VALUE  
50 V to 750 V  
Bandwidth  
600 Hz (minimum)  
1 mA (maximum)  
Current through the resistive divider, IAC  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
9.2.2 Detailed Design Procedure  
The high-side power supply (VDD1) for the device is generated with a suitable isolated power source. An  
example of such a circuit is provided in the Power Supply Recommendations section.  
The floating ground reference (GND1) is derived from one of the ends of the shunt resistor that is connected to  
the negative input of the device (VINN). If a four-pin shunt is used, the inputs of the device are connected to the  
inner leads and GND1 is connected to one of the outer shunt leads.  
Use Ohm's Law to calculate the minimum total resistance of the resistive divider to limit the cross current IAC to  
the desired value: R1 + R2 = VAC / IAC. The input voltage at the ISO224 results from the resistance ratio of R1 and  
R2 and the actual AC voltage: VIN = VAC x R2 / (R1 + R2).  
Consider the following two restrictions to choose the proper value of the R1 and R2 resistors:  
The voltage drop on R2 caused by the nominal AC voltage range of the system must not exceed the  
recommended input voltage range VIN of the ISO224  
The voltage drop on R2 caused by the maximum allowed system overvoltage must not exceed the input  
voltage that causes a clipping output: VIN VClipping  
2 lists examples of nominal E96-series (1% accuracy) resistor values for AC systems using 120 V, 240 V, and  
400 V as nominal voltages.  
2. Resistor Value Examples  
PARAMETER  
Resistive divider resistor R1  
120-VAC SYSTEM  
115 kΩ  
240-VAC SYSTEM  
237 kΩ  
400-VAC SYSTEM  
392 kΩ  
Resistive divider resistor R2  
12.7 kΩ  
12.4 kΩ  
12.1 kΩ  
Resulting current through resistive divider IAC  
Resulting input voltage VIN  
0.93 mA  
0.93 mA  
0.98 mA  
±11.934 V  
±11.933 V  
±11.977 V  
For systems using single-ended input ADCs with a 5-V supply, 48 shows an example of a TLV6001-based  
signal conversion and filter circuit. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system and use NP0-type capacitors for best performance.  
ISO224  
VCMADC  
VDD1  
VIN  
VDD2  
TLV6001  
VOUTP  
+
To ADC  
VCAP  
GND1  
VOUTN  
GND2  
œ
GND2  
48. Connecting the ISO224 Output to a Single-Ended Input 5-V ADC  
For systems using single-ended, ±10-V input ADCs, the ISO224EVM offers a signal path based on an OPA277  
that converts the differential output of the ISO224 and limits the signal bandwidth to 50 kHz.  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, consult  
the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power TI Precision Designs, available for download at  
www.ti.com.  
版权 © 2018, Texas Instruments Incorporated  
23  
 
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9.2.3 Application Curves  
In some applications the system must be protected in case of an overvoltage condition. To allow for fast  
powering off of the system, a low delay caused by the isolated amplifier is required. 49 shows the typical full-  
scale step response of the device. Consider the delay of the required window comparator and the MCU to  
calculate the overall response time of the system.  
VIN  
VOUTN  
VOUTP  
49. Step Response of the ISO224  
50 shows the typical AC response of the device with a full-scale sine wave with a frequency of 20 kHz applied  
at the input.  
VIN  
VOUTP  
VOUTN  
50. AC Response of the ISO224 at fIN = 20 kHz  
9.3 What to Do and What Not to Do  
Do not leave the input of the ISO224 unconnected (floating) when the device is powered up. If the device input is  
left floating, both outputs are at the common-mode output voltage level VCMout as specified in the Switching  
Characteristics table. See the ISO224 Fail-Safe Output Feature application report for more details.  
24  
版权 © 2018, Texas Instruments Incorporated  
 
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
10 Power Supply Recommendations  
In a typical application, the high-side power supply (VDD1) for the ISO224 is generated from the low-side supply  
(VDD2) of the device by an isolated DC/DC converter circuit. A low-cost solution is based on the push-pull driver  
SN6501 and a transformer that supports the desired isolation voltage ratings. TI recommends using a low-ESR  
decoupling capacitor of 0.1 µF and an additional capacitor of a minimum 1 µF for both supplies of the ISO224. 图  
51 shows the recommended placement of these decoupling capacitors as close as possible to the ISO224  
power-supply pins to minimize supply current loops and electromagnetic emissions.  
To decouple the output of the integrated LDO, use a 0.22-µF capacitor placed as close to the VCAP pin of the  
ISO224 as possible.  
The ISO224 does not require any specific power up sequencing. Consider the analog settling time tAS as  
specified in the Switching Characteristics table after ramp up of the VDD1 high-side supply.  
ISO224  
VDD1  
Detection  
OUTP  
IN  
VDD1  
OUTN  
VDD2  
VDD1  
VCAP  
1 F  
0.1 F  
VDD2  
GND2  
0.1 F  
1 F  
0.22 µF  
GND1  
GND1  
GND2  
VDD2  
TLV70450  
OUT  
VDD2  
SN6501  
IN  
D1  
VCC  
20 V  
20 V  
0.1 F 10 F  
10 F  
0.1 F  
GND  
GND2  
D2  
GND1  
10 F  
GND2  
GND1  
GND2  
51. SN6501-Based, High-Side Power Supply  
版权 © 2018, Texas Instruments Incorporated  
25  
 
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best performance, place the 0.22-µF capacitor (C7, as shown in 52) required for decoupling of the internal  
LDO output as close as possible to the ISO224 VCAP pin. The 0.1-µF ceramic decoupling capacitors for both  
power supplies (C8 and C9) are located as close as possible to the corresponding VDDx pins followed by the  
additional 1-µF ceramic capacitors for lower-frequency decoupling (C3 and C12). The resistor and capacitor used  
for the analog input (R1 and C2) are placed next to the decoupling capacitors. For best performance, use 0603-  
size or 1206-size, SMD-type, ceramic capacitors with low ESR. Connect the supply voltage sources in a way that  
allows the supply current to flow through the pads of the decoupling capacitors before powering the device.  
52 shows this approach as implemented on the ISO224EVM. Capacitors C3 and C8 decouple the high-side  
supply VDD1 and capacitors C9 and C12 are used to support the low-side supply VDD2 of the ISO224.  
11.2 Layout Example  
Clearance area,  
to be kept free of any  
conductive materials  
To VDD2 Power  
Supply Source  
To Input  
Signal  
Source  
To Filter  
or ADC  
ISO224  
To Isolated  
VDD1 Power  
Supply Source  
LEGEND  
Top-Layer Traces  
Bottom-Layer (or Inner-Layer) GND1 and GND2 Copper Pour  
Clearance Area to be kept free of conductive materials on all layers  
52. Recommended Layout of the ISO224  
26  
版权 © 2018, Texas Instruments Incorporated  
 
ISO224  
www.ti.com.cn  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《隔离相关术语》应用报告  
德州仪器 (TI)ADS794x 14 位、2MSPS、双通道、差分/单端、超低功耗模数转换器》数据表  
德州仪器 (TI)《半导体和 IC 封装热指标》应用报告  
德州仪器 (TI)ISO72x 数字隔离器磁场抗扰度》应用报告  
德州仪器 (TI)ISO224 失效防护输出功能》应用报告  
德州仪器 (TI)《适用于成本敏感型系统的 TLV600x 低功耗、轨至轨输入/输出、1MHz 运算放大器》数据表  
德州仪器 (TI)OPAx277 高精度运算放大器》数据表  
德州仪器 (TI)《经优化可实现最低失真和噪声的 18 位、1MSPS 数据采集块 (DAQ)TI 设计  
德州仪器 (TI)《经优化可实现最低功耗的 18 位数据采集块 (DAQ)TI 设计  
德州仪器 (TI)SN6501 用于隔离式电源的变压器驱动器》数据表  
德州仪器 (TI)TLV704 24V 输入电压、150mA 超低 IQ 低压降稳压器》数据表  
德州仪器 (TI)ISO224EVM 评估模块》用户指南  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
27  
ISO224  
ZHCSIE0A JUNE 2018REVISED OCTOBER 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO224ADWV  
ISO224ADWVR  
ISO224BDWV  
ISO224BDWVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
DWV  
8
8
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO224A  
1000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ISO224A  
ISO224B  
ISO224B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO224ADWVR  
ISO224BDWVR  
SOIC  
SOIC  
DWV  
DWV  
8
8
1000  
1000  
330.0  
330.0  
16.4  
16.4  
12.05 6.15  
12.05 6.15  
3.3  
3.3  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO224ADWVR  
ISO224BDWVR  
SOIC  
SOIC  
DWV  
DWV  
8
8
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO224ADWV  
ISO224BDWV  
DWV  
DWV  
SOIC  
SOIC  
8
8
64  
64  
505.46  
505.46  
13.94  
13.94  
4826  
4826  
6.6  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO253

Precision, Powered, Three-Port Isolated BUFFER AMPLIFIER
BB

ISO253P

Precision, Powered, Three-Port Isolated BUFFER AMPLIFIER
BB

ISO254

Precision, Powered, Three-Port Isolated PROGRAMMABLE GAIN AMPLIFIER
BB

ISO254P

Precision, Powered, Three-Port Isolated PROGRAMMABLE GAIN AMPLIFIER
BB

ISO255

Precision, Powered, Three-Port Isolated INSTRUMENTATION AMPLIFIER
BB

ISO255P

Precision, Powered, Three-Port Isolated INSTRUMENTATION AMPLIFIER
BB

ISO256

Precision, Powered, Three-Port Isolated OPERATIONAL AMPLIFIER
BB

ISO256P

Precision, Powered, Three-Port Isolated OPERATIONAL AMPLIFIER
BB

ISO2H823V2.5

Galvanic Isolated 8 Channel High-Side Switch
INFINEON

ISO2H823V25

Galvanic Isolated 8 Channel High-Side Switch
INFINEON

ISO3

ASIC
ETC

ISO3080

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI