ISO5851QDWQ1 [TI]

具有有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125;
ISO5851QDWQ1
型号: ISO5851QDWQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

栅极驱动 双极性晶体管 光电二极管 接口集成电路 驱动器
文件: 总40页 (文件大小:1133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
ISO5851-Q1 具有有源安全特性的高 CMTI 2.5A/5A 隔离式 IGBT、  
MOSFET 栅极  
驱动器  
1 特性  
2 应用  
1
适用于汽车电子 标准  
隔离式绝缘栅双极型晶体管 (IGBT) 和金属氧化物  
半导体场效应晶体管 (MOSFET) 驱动器:  
具有符合 AEC-Q100 标准的下列结果:  
混合动力汽车 (HEV) 和电动车 (EV) 电源模块  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
工业电机控制驱动  
工业电源  
器件人体模型 (HBM) 分类等级 3A  
器件充电器件模型 (CDM) 分类等级 C6  
太阳能逆变器  
感应加热  
VCM = 1500V 时,共模瞬态抗扰度 (CMTI) 的最  
小值为 100kV/μs  
3 说明  
2.5A 峰值拉电流和 5A 峰值灌电流  
短暂传播延迟:76ns(典型值),  
110ns(最大值)  
ISO5851-Q1 是一款用于 IGBT MOSFET 5.7  
kVRMS 增强型隔离栅极驱动器,具有 2.5A 的拉电流能  
力和 5A 的灌电流能力。输入端由 3V 5.5V 的单电  
源供电运行。输出端允许的电源范围为 15V 30V。  
两个互补 CMOS 输入控制栅极驱动器的输出状态。  
76ns 的短暂传播时间保证了对于输出级的精确控制。  
2A 有源米勒钳位  
输出短路钳位  
在检测到去饱和故障时通过 FLT 发出故障报警,并  
通过 RST 复位  
具有就绪 (RDY) 引脚指示的输入和输出欠压锁定  
(UVLO)  
内置的去饱和 (DESAT) 故障检测功能可识别 IGBT 何  
时处于过载状态。当检测到 DESAT 时,栅极驱动器输  
出会被拉低为 VEE2 电势,从而将 IGBT 立即关断。  
有源输出下拉特性,在低电源或输入悬空的情况下  
默认输出低电平  
3V 5.5V 输入电源电压  
当发生去饱和故障时,器件会通过隔离隔栅发送故障信  
号,以将输入端的 FLT 输出拉为低电平并阻断隔离器  
的输入。FLT 的输出状态将被锁存,可通过 RST 输入  
上的低电平有效脉冲复位。  
15V 30V 输出驱动器电源电压  
互补金属氧化物半导体 (CMOS) 兼容输入  
抑制短于 20ns 的输入脉冲和瞬态噪声  
可承受的浪涌隔离电压达 12800VPK  
器件信息(1)  
安全及管理认证:  
器件型号  
封装  
封装尺寸(标称值)  
符合 DIN V VDE V 0884-10 (VDE V 0884-  
10):2006-12 标准的 8000 VPK VIOTM 2121  
VPK IORM 增强型隔离  
ISO5851-Q1  
SOIC (16)  
10.30mm x 7.50mm  
V
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
符合 UL 1577 标准且长达 1 分钟的 5700 VRMS  
隔离  
功能方框图  
VCC1  
VCC2  
CSA 组件验收通知 5AIEC 60950-1 IEC  
60601-1 终端设备标准  
VCC1  
UVLO1  
UVLO2  
500 µA  
DESAT  
GND2  
INœ  
符合 EN 61010-1 EN 60950-1 标准的 TUV  
认证  
Mute  
9 V  
IN+  
GB4943.1-2011 CQC 认证  
VCC1  
VCC2  
RDY  
已通过 ULVDECQCTUV 认证并规划进  
CSA 认证  
Gate Drive  
and  
Encoder  
Logic  
Ready  
OUT  
VCC1  
FLT  
Decoder  
Q
Q
S
2 V  
Fault  
CLAMP  
VCC1  
R
RST  
GND1  
VEE2  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEQ1  
 
 
 
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Detailed Description ............................................ 19  
9.1 Overview ................................................................. 19  
9.2 Functional Block Diagram ....................................... 19  
9.3 Feature Description................................................. 20  
9.4 Device Functional Modes........................................ 21  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史................................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Function........................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Power Rating............................................................. 6  
7.6 Insulation Characteristics.......................................... 6  
7.7 Safety Limiting Values .............................................. 7  
7.8 Safety-Related Certifications..................................... 7  
7.9 Electrical Characteristics........................................... 8  
7.10 Switching Characteristics........................................ 9  
7.11 Safety and Insulation Characteristics Curves ....... 10  
7.12 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 17  
10 Application and Implementation........................ 22  
10.1 Application Information.......................................... 22  
10.2 Typical Applications .............................................. 22  
11 Power Supply Recommendations ..................... 31  
12 Layout................................................................... 31  
12.1 Layout Guidelines ................................................. 31  
12.2 PCB Material......................................................... 31  
12.3 Layout Example .................................................... 31  
13 器件和文档支持 ..................................................... 32  
13.1 文档支持................................................................ 32  
13.2 接收文档更新通知 ................................................. 32  
13.3 社区资源................................................................ 32  
13.4 ....................................................................... 32  
13.5 静电放电警告......................................................... 32  
13.6 Glossary................................................................ 32  
14 机械、封装和可订购信息....................................... 33  
8
4 修订历史  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 9 月  
*
最初发布版本  
2
版权 © 2016, Texas Instruments Incorporated  
 
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
5 说明 (续)  
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么  
可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态条件下发生动  
态导通。  
当发生去饱和故障时,器件会通过隔离隔栅发送故障信号,以将输入端的 FLT 输出拉为低电平并阻断隔离器的输  
入。FLT 的输出状态将被锁存,可通过 RST 输入上的低电平有效脉冲复位。  
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么  
可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态条件下发生动  
态导通。  
栅极驱动器是否准备就绪待运行由两个欠压锁定电路控制,这两个电路会监视输入端和输出端的电源。如果任意一  
端电源不足,RDY 输出会变为低电平;否则,该输出为高电平。  
ISO5851-Q1 采用 16 引脚小外形尺寸集成电路 (SOIC) 封装。此器件的额定工作环境温度范围为 -40°C 125°  
C。  
Copyright © 2016, Texas Instruments Incorporated  
3
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
6 Pin Configuration and Function  
DW Package  
16-Pin SOIC  
Top View  
VEE2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VCC1  
DESAT  
GND2  
NC  
RST  
FLT  
RDY  
IN-  
VCC2  
OUT  
CLAMP  
VEE2  
IN+  
GND1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VEE2  
DESAT  
GND2  
NC  
NO.  
1, 8  
2
-
I
Output negative supply. Connect to GND2 for Unipolar supply application.  
Desaturation voltage input  
3
-
Gate drive common. Connect to IGBT emitter.  
Not connected  
4
-
VCC2  
OUT  
CLAMP  
GND1  
IN+  
5
-
Most positive output supply potential.  
Gate drive voltage output  
6
O
O
-
7
Miller clamp output  
9, 16  
10  
11  
12  
13  
14  
15  
Input ground  
I
Non-inverting gate drive voltage control input  
Inverting gate drive voltage control input  
Power-good output, active high when both supplies are good.  
Fault output, low-active during DESAT condition  
Reset input, apply a low pulse to reset fault latch.  
Positive input supply (3 V to 5.5 V)  
IN-  
I
RDY  
FLT  
O
O
I
RST  
VCC1  
-
4
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
GND1 - 0.3  
–0.3  
MAX  
UNIT  
V
VCC1  
Supply voltage input side  
6
35  
VCC2  
Positive supply voltage output side  
Negative supply voltage output side  
Total supply output voltage  
(VCC2 – GND2)  
(VEE2 – GND2)  
V
VEE2  
–17.5  
0.3  
V
V(SUP2)  
VOUT  
I(OUTH)  
(VCC2 - VEE2  
)
–0.3  
35  
V
Gate driver output voltage  
VEE2 - 0.3  
VCC2 + 0.3  
2.7  
V
Gate driver high output current  
Gate driver high output current  
(max pulse width = 10 μs, max duty  
cycle = 0.2%)  
A
I(OUTL)  
Gate driver low output current  
5.5  
A
V(LIP)  
I(LOP)  
Voltage at IN+, IN-,FLT, RDY, RST  
Output current of FLT, RDY  
GND1 - 0.3  
VCC1 + 0.3  
10  
V
mA  
V
V(DESAT) Voltage at DESAT  
V(CLAMP) Clamp voltage  
GND2 - 0.3  
VEE2 - 0.3  
–40  
VCC2 + 0.3  
VCC2 + 0.3  
150  
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
TSTG  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VCC1  
VCC2  
VEE2  
V(SUP2)  
VIH  
Supply voltage input side  
3
5.5  
V
V
Positive supply voltage output side (VCC2 – GND2)  
Negative supply voltage output side (VEE2 – GND2)  
15  
30  
–15  
0
30  
V
Total supply voltage output side (VCC2 – VEE2  
High-level input voltage (IN+, IN-, RST)  
Low-level input voltage (IN+, IN-, RST)  
)
15  
V
0.7 x VCC1  
VCC1  
V
VIL  
0
40  
0.3 x VCC1  
V
tUI  
Pulse width at IN+, IN- for full output (CLOAD = 1nF)  
Pulse width at RST for resetting fault latch  
Ambient temperature  
ns  
ns  
°C  
tRST  
TA  
800  
-40  
25  
125  
7.4 Thermal Information  
DW (SOIC)  
16 PINS  
99.6  
THERMAL METRIC(1)  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
θJCtop  
θJB  
48.5  
Junction-to-board thermal resistance  
56.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.2  
ψJB  
56.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
 
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
7.5 Power Rating  
VALUE  
1255  
175  
UNIT  
PD  
Maximum power dissipation(1)  
PID  
POD  
Maximum input power dissipation  
Maximum output power dissipation  
mW  
1080  
(1) Full chip power dissipation is de-rated 10.04 mW/°C beyond 25°C ambient temperature. At 125°C ambient temperature, a maximum of  
251 mW total power dissipation is allowed. Power dissipation can be optimized depending on ambient temperature and board design,  
while ensuring that Junction temperature does not exceed 150°C.  
7.6 Insulation Characteristics  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
8
mm  
Shortest terminal-to-terminal distance across the package  
surface  
External creepage(1)  
8
mm  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
21  
>600  
I
μm  
V
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-IV  
I-III  
Overvoltage category per IEC 60664-1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
VIORM  
Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
2121  
1500  
2121  
8000  
VPK  
VRMS  
VDC  
AC voltage. Time dependent dielectric breakdown (TDDB)  
Test, see Figure 1  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM, t = 60 sec (qualification), t = 1 sec (100%  
production)  
VIOTM  
VIOSM  
Maximum Transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 60065, 1.2/50 μs waveform,  
VTEST = 1.6 x VIOSM = 12800 VPK (qualification)  
8000  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM = 2545 VPK  
,
tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
5  
5  
qpd  
Apparent charge(4)  
Vpd(m) = 1.6 × VIORM = 3394 VPK  
,
pC  
tm = 10 s  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.875× VIORM = 3977 VPK  
,
tm = 10 s  
> 109  
>1012  
>1011  
1
VIO = 500 V at TS  
RIO  
CIO  
Isolation resistance, input to output(5)  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 0.4 x sin (2πft), f = 1 MHz  
Barrier capacitance, input to output(5)  
Pollution degree  
pF  
2
UL 1577  
VTEST = VISO, t = 60 sec (qualification),  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 sec (100%  
production)  
VISO  
Withstanding Isolation voltage  
5700  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
6
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
7.7 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
349  
UNIT  
θJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
θJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C  
θJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C  
228  
Safety input, output or supply  
current  
IS  
mA  
84  
42  
PS  
TS  
Safety input, output, or total power θJA = 99.6°C/W, TJ = 150°C, TA = 25°C  
1255(1)  
Maximum ambient safety  
temperature  
150  
°C  
(1) Input, output, or the sum of input and output power should not exceed this value  
7.8 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
Certified according to GB  
TUV  
Plan to certify under CSA  
Component Acceptance  
Notice 5A, IEC 60950-1, and  
IEC 60601-1  
Certified according to UL  
1577 Component Recognition 4943.1-2011  
Program  
Certified according to  
EN 61010-1:2010 (3rd Ed)  
and  
Certified according to  
DIN V VDE V 0884-10 (VDE  
V 0884-10):2006-12 and DIN  
EN 60950-1 (VDE 0805 Teil  
1):2011-01  
EN 60950-  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Isolation Rating of 5700 VRMS  
;
5700 VRMS Reinforced  
insulation per  
EN 61010-1:2010 (3rd Ed) up  
to working voltage of 600  
VRMS  
5700 VRMS Reinforced  
insulation per  
EN 60950-  
Reinforced insulation per CSA  
60950-1- 07+A1+A2 and IEC  
60950-1 (2nd Ed.), 800 VRMS  
max working voltage (pollution  
degree 2, material group I) ;  
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed.  
3.1, 250 VRMS (354 VPK) max  
working voltage  
Reinforced Insulation  
Maximum Transient isolation  
Reinforced Insulation, Altitude  
Single Protection, 5700 VRMS 5000m, Tropical climate,  
voltage, 8000 VPK  
Maximum surge isolation  
voltage, 8000 VPK  
;
(1)  
400 VRMS maximum working  
voltage  
,
Maximum repetitive peak  
isolation voltage, 2121 VPK  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013 up to  
working voltage of 800 VRMS  
Certification completed  
Certificate number: 40040142 Certification planned  
Certification completed  
File number: E181974  
Certification completed  
Certificate number:  
CQC16001141761  
Certification completed  
Client ID number: 77311  
(1) Production tested 6840 VRMS for 1 second in accordance with UL 1577.  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed in the High-K Test Board for Leaded Surface-Mount  
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is  
then the ambient temperature plus the power times the junction-to-air thermal resistance.  
Copyright © 2016, Texas Instruments Incorporated  
7
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
7.9 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted. All typical values are at TA = 25°C, VCC1 = 5 V,  
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE SUPPLY  
Positive-going UVLO1 threshold voltage  
input side (VCC1 – GND1)  
VIT+(UVLO1)  
VIT-(UVLO1)  
VHYS(UVLO1)  
VIT+(UVLO2)  
VIT-(UVLO2)  
VHYS(UVLO2)  
2.25  
V
V
V
V
V
V
Negative-going UVLO1 threshold voltage  
input side (VCC1 – GND1)  
1.7  
UVLO1 Hysteresis voltage (VIT+ – VIT–  
input side  
)
0.24  
12  
11  
1
Positive-going UVLO2 threshold voltage  
output side (VCC2 – GND2)  
13  
Negative-going UVLO2 threshold voltage  
output side (VCC2 – GND2)  
9.5  
UVLO2 Hysteresis voltage (VIT+ – VIT–  
output side  
)
IQ1  
Input supply quiescent current  
Output supply quiescent current  
2.8  
3.6  
4.5  
6
mA  
mA  
IQ2  
LOGIC I/O  
Positive-going input threshold voltage (IN+,  
IN-, RST)  
VIT+(IN,RST)  
VIT-(IN,RST)  
0.7 x VCC1  
V
V
Negative-going input threshold voltage  
(IN+, IN-, RST)  
0.3 x VCC1  
VHYS(IN,RST)  
Input hysteresis voltage (IN+, IN-, RST)  
High-level input leakage at (IN+)  
Low-level input leakage at (IN-, RST)  
Pull-up current of FLT, RDY  
0.15 x VCC1  
100  
V
IIH  
IN+ = VCC1  
µA  
µA  
µA  
V
IIL  
IN- = GND1, RST = GND1  
V(RDY) = GND1, V(FLT) = GND1  
I(FLT) = 5 mA  
-100  
IPU  
VOL  
100  
Low-level output voltage at FLT, RDY  
0.2  
2
GATE DRIVER STAGE  
V(OUTPD)  
V(OUTH)  
V(OUTL)  
Active output pull-down voltage  
IOUT = 200 mA, VCC2 = open  
IOUT = –20 mA  
V
V
High-level output voltage  
Low-level output voltage  
VCC2 - 0.5  
VCC2 - 0.24  
VEE2 + 13  
IOUT = 20 mA  
VEE2 + 50  
mV  
IN+ = high, IN- = low,  
VOUT = VCC2 - 15 V  
I(OUTH)  
I(OUTL)  
High-level output peak current  
Low-level output peak current  
1.5  
3.4  
2.5  
5
A
A
IN+ = low, IN- = high,  
VOUT = VEE2 + 15 V  
ACTIVE MILLER CLAMP  
V(CLP) Low-level clamp voltage  
I(CLP)  
I(CLP) = 20 mA  
VEE2 + 0.015  
VEE2 + 0.08  
2.5  
V
A
V
Low-level clamp current  
Clamp threshold voltage  
V(CLAMP) = VEE2 + 2.5 V  
1.6  
1.6  
2.5  
2.1  
V(CLTH)  
SHORT CIRCUIT CLAMPING  
Clamping voltage  
V(CLP_OUT)  
IN+ = high, IN- = low, tCLP = 10 µs,  
I(OUTH) = 500 mA  
0.8  
1.3  
V
(VOUT - VCC2  
)
Clamping voltage  
(VCLP - VCC2  
IN+ = high, IN- = low, tCLP = 10 µs,  
I(CLP) = 500 mA  
V(CLP_CLAMP)  
1.3  
0.7  
V
V
)
V(CLP_CLAMP)  
Clamping voltage at CLAMP  
IN+ = High, IN- = Low, I(CLP) = 20 mA  
1.1  
DESAT PROTECTION  
I(CHG)  
Blanking capacitor charge current  
V(DESAT) - GND2 = 2 V  
V(DESAT) - GND2 = 6 V  
0.42  
9
0.5  
14  
0.58  
mA  
mA  
I(DCHG)  
Blanking capacitor discharge current  
DESAT threshold voltage with respect to  
GND2  
V(DSTH)  
V(DSL)  
8.3  
0.4  
9
9.5  
1
V
V
DESAT voltage with respect to GND2,  
when OUT is driven low  
8
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
7.10 Switching Characteristics  
Over recommended operating conditions unless otherwise noted. All typical values are at TA = 25°C, VCC1 = 5 V,  
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V  
PARAMETER  
Output signal rise time  
Output signal fall time  
Propagation Delay  
TEST CONDITIONS  
MIN  
12  
TYP  
20  
MAX UNIT  
tr  
35  
37  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
12  
20  
tPLH, tPHL  
tsk-p  
76  
110  
20  
CLOAD = 1 nF, see Figure 38,  
Figure 39, and Figure 40  
Pulse Skew |tPHL – tPLH  
|
tsk-pp  
Part-to-part skew  
30(1)  
tGF  
Glitch filter on IN+, IN-, RST  
DESAT sense to 10% OUT delay  
DESAT glitch filter delay  
20  
30  
415  
40  
tDESAT (10%)  
tDESAT (GF)  
tDESAT (FLT)  
tLEB  
300  
500  
330  
DESAT sense to FLT-low delay  
Leading edge blanking time  
Glitch filter on RST for resetting FLT  
see Figure 40  
2000  
400  
2420  
500  
see Figure 38 and Figure 39  
330  
300  
tGF(RSTFLT)  
800  
VI = VCC1 /2 + 0.4 x sin (2πft), f = 1  
MHz, VCC1 = 5 V  
CI  
Input capacitance(2)  
2
pF  
CMTI  
Common-mode transient immunity  
VCM = 1500 V, see Figure 41  
100  
120  
kV/μs  
(1) Measured at same supply voltage and temperature condition  
(2) Measured from input pin to ground.  
Copyright © 2016, Texas Instruments Incorporated  
9
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
7.11 Safety and Insulation Characteristics Curves  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
87.5%  
20%  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA upto 150°C  
Stress-voltage frequency = 60 Hz  
Figure 1. Reinforced High-Voltage Capacitor Life Time Projection  
400  
350  
300  
250  
200  
150  
100  
50  
1400  
VCC1 = 3.6 V  
VCC1 = 5.5 V  
VCC2 = 15 V  
VCC2 = 30 V  
Power  
1200  
1000  
800  
600  
400  
200  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
Figure 2. Thermal Derating Curve for Safety Limiting  
Current per VDE  
Figure 3. Thermal Derating Curve for Safety Limiting Power  
per VDE  
10  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
7.12 Typical Characteristics  
0.5  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VCC2 - VOUT = 2.5 V  
VCC2 - VOUT = 5 V  
VCC2 - VOUT = 10 V  
VCC2 - VOUT = 15 V  
VCC2 - VOUT = 20 V  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
VOUT - VEE2 = 2.5 V  
VOUT - VEE2 = 5 V  
VOUT - VEE2 = 10 V  
VOUT - VEE2 = 15 V  
VOUT - VEE2 = 20 V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D001  
D002  
VCC2 = 30 V  
VCC2 = 30 V  
Figure 4. Output High Drive Current vs Temperature  
Figure 5. Output Low Drive Current vs Temperature  
7
6
5
4
3
2
1
0
0.0  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
TA = -40èC  
TA = 25èC  
TA = 125èC  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
(VCC2 - VOUT) Voltage (V)  
(VOUT - VEE2) Voltage (V)  
D003  
D004  
Figure 6. Output High Drive Current vs Output Voltage  
Figure 7. Output Low Drive Current vs Output Voltage  
9.5  
9.4  
9.3  
9.2  
9.1  
9
15 V Unipolar  
30 V Unipolar  
8.9  
8.8  
8.7  
8.6  
8.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
D005  
Unipolar: VCC2 - VEE2 = VCC2 - GND2  
Figure 8. DESAT Threshold Voltage vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Time - 50 ns/div  
Time - 50 ns/div  
CL = 1 nF  
RG = 10 Ω  
CL = 1 nF  
RG = 0 Ω  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
Figure 10. OUT Transient Waveform  
Figure 9. OUT Transient Waveform  
Time - 500 ns/div  
Time - 500 ns/div  
CL = 10 nF  
RG = 0 Ω  
CL = 10 nF  
RG = 10 Ω  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
Figure 11. OUT Transient Waveform  
Figure 12. OUT Transient Waveform  
Time - 2 ms/div  
Time - 1 ms/div  
CL = 100 nF  
RG = 10 Ω  
CL = 100 nF  
RG = 0 Ω  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
Figure 14. OUT Transient Waveform  
Figure 13. OUT Transient Waveform  
12  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
Typical Characteristics (continued)  
3.5  
3
CH1: OUT  
2.5  
2
CH2: DESAT  
CH3: FLT  
1.5  
1
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
VCC1 = 5.5 V  
0.5  
0
Time - 1 ms/div  
CL = 100 nF  
RG = 10 Ω  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
Ambient Temperature (èC)  
D006  
IN+ = High  
IN- = Low  
Figure 15. OUT Transient Waveform DESAT and FLT  
Figure 16. ICC1 Supply Current vs Temperature  
2
1.8  
1.6  
1.4  
1.2  
1
5
4.5  
4
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
VCC1 = 5.5 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 30 V  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D007  
D008  
IN+ = Low  
IN- = Low  
Input Frequency = 1 kHz  
Figure 17. ICC1 Supply Current vs Temperature  
Figure 18. ICC2 Supply Current vs Temperature  
3
2.5  
2
5
4.5  
4
VCC1 = 3 V  
VCC1 = 5.5 V  
3.5  
3
1.5  
1
2.5  
2
1.5  
1
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 30 V  
0.5  
0
0.5  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Input Frequency (kHz)  
Input Frequency (kHz)  
D009  
D010  
no CL  
Figure 19. ICC1 Supply Current vs. Input Frequency  
Figure 20. ICC2 Supply Current vs Input Frequency  
Copyright © 2016, Texas Instruments Incorporated  
13  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
VCC2 = 15 V  
VCC2 = 30 V  
60  
50  
40  
30  
20  
10  
0
tpLH at VCC2 = 15 V  
tpHL at VCC2 = 15 V  
tpLH at VCC2 = 30 V  
tpHL at VCC2 = 30 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Load Capacitance (nF)  
Ambient Temperature (èC)  
D025  
D012  
RG = 10 Ω, 20kHz  
CL = 1nF  
RG = 0 Ω  
VCC1 = 5 V  
Figure 21. ICC2 Supply Current vs Load Capacitance  
Figure 22. VCC1 Propagation Delay vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1200  
1000  
800  
600  
400  
200  
0
tpLH at VCC2 = 15 V  
tpLH at VCC2 = 30 V  
tpHL at VCC2 = 15 V  
tpHL at VCC2 = 30 V  
tpLH at VCC1 = 3.3 V  
tpHL at VCC1 = 3.3 V  
tpLH at VCC1 = 5 V  
tpHL at VCC1 = 5 V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Ambient Temperature (èC)  
Load Capacitance (nF)  
D013  
D024  
CL = 1nF  
RG = 0 Ω  
VCC2 = 15 V  
RG = 10 Ω  
VCC1 = 5 V  
Figure 23. VCC2 Propagation Delay vs Temperature  
Figure 24. Propagation Delay vs Load Capacitance  
800  
700  
600  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VCC2 = 15 V  
VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load Capacitance (nF)  
Load Capacitance (nF)  
D022  
D026  
RG = 0 Ω  
VCC1 = 5 V  
RG = 0 Ω  
VCC1 = 5 V  
Figure 25. tr Rise Time vs Load Capacitance  
Figure 26. tf Fall Time v. Load Capacitance  
14  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
Typical Characteristics (continued)  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
VCC2 = 15 V  
VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load Capacitance (nF)  
Load Capacitance (nF)  
D023  
D027  
RG = 10 Ω  
VCC1 = 5 V  
RG = 10 Ω  
VCC1 = 5 V  
Figure 27. tr Rise Time vs Load Capacitance  
Figure 28. tf Fall Time vs Load Capacitance  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
450  
445  
440  
435  
430  
425  
420  
415  
410  
405  
400  
VCC2 = 15 V  
VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D015  
D014  
CL = 10 nF  
Figure 30. DESAT Sense to VOUT 10% Delay vs Temperature  
Figure 29. Leading Edge Blanking Time With Temperature  
120  
2.1  
VCC2 = 15 V  
VCC2 = 30 V  
100  
80  
2.05  
2
1.95  
1.9  
60  
40  
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
1.85  
20  
VCC1 = 5.5 V  
1.8  
-40  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D016  
D017  
CL = 1 nF  
Figure 31. DESAT Sense to FLT Low Delay vs Temperature  
Figure 32. Reset to Fault Delay Across Temperature  
Copyright © 2016, Texas Instruments Incorporated  
15  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
5
2
1.8  
1.6  
1.4  
1.2  
1
V(CLAMP) = 2 V  
V(CLAMP) = 4 V  
V(CLAMP) = 6 V  
4.5  
4
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
IOUT = 100 mA  
IOUT = 200 mA  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D018  
D019  
Figure 33. Miller Clamp Current vs Temperature  
Figure 34. Active Pull Down Voltage vs Temperature  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.0  
1200  
1000  
800  
600  
400  
200  
0
20mA at VCC2 = 15V  
20mA at VCC2 = 30V  
250mA at VCC2 = 15V  
250mA at VCC2 = 30V  
500mA at VCC2 = 15V  
500mA at VCC2 = 30V  
20mA at VCC2 = 15V  
20mA at VCC2 = 30V  
250mA at VCC2 = 15V  
250mA at VCC2 = 30V  
500mA at VCC2 = 15V  
500mA at VCC2 = 30V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (Cè)  
Ambient Temperature (Cè)  
D020  
D021  
Figure 36. VCLP_CLAMP - Short Circuit Clamp Voltage on OUT  
Across Temperature  
Figure 35. VCLP_CLAMP - Short Circuit Clamp Voltage on  
Clamp Across Temperature  
-400  
-420  
-440  
-460  
-480  
-500  
-520  
-540  
-560  
-580  
-600  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
D011  
VCC2 = 15 V  
DESAT = 6 V  
Figure 37. Blanking Capacitor Charging Current vs Temperature  
16  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
8 Parameter Measurement Information  
IN-  
0V  
V
CC1  
50 %  
50 %  
IN+  
0V  
t
t
f
r
90%  
50%  
10%  
OUT  
tPLH  
t
PHL  
DESAT  
t
LEB  
Figure 38. OUT Propagation Delay, Non-Inverting Configuration  
V
IN-  
CC1  
0V  
50 %  
50 %  
V
IN+  
CC1  
t
t
f
r
90%  
50%  
10%  
OUT  
t
t
PLH  
PHL  
DESAT  
t
LEB  
Figure 39. OUT Propagation Delay, Inverting Configuration  
Copyright © 2016, Texas Instruments Incorporated  
17  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
tDESAT (10%)  
tDESAT (FLT)  
9V  
tRST  
VDESAT  
OUT  
10%  
FLT  
50 %  
RST  
Figure 40. DESAT, OUT, FLT, RST Delay  
ISO 5851 œ Q1  
15  
5
VCC2  
VCC1  
15 V  
1 µF  
0. 1 µF  
3 V - 5.5 V  
9, 16  
3
GND 1  
GND 2  
VEE2  
1, 8  
6
14  
10  
RST  
IN +  
+
-
+
OUT  
S1  
:
Pass - Fail Criterion  
OUT must remain stable  
11  
13  
CL  
1 nF  
IN -  
2
-
FLT  
DESAT  
12  
7
4
CLAMP  
NC  
RDY  
-
+
VCM  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. Common-Mode Transient Immunity Test Circuit  
18  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
9 Detailed Description  
9.1 Overview  
The ISO5851-Q1 is an isolated gate driver for IGBTs and MOSFETs. Input CMOS logic and output power stage  
are separated by a capacitive, silicon dioxide (SiO2), isolation barrier.  
The IO circuitry on the input side interfaces with a micro controller and consists of gate drive control and RESET  
(RST) inputs, READY (RDY) and FAULT (FLT) alarm outputs. The power stage consists of power transistors to  
supply 2.5-A pull-up and 5-A pull-down currents to drive the capacitive load of the external power transistors, as  
well as DESAT detection circuitry to monitor IGBT collector-emitter overvoltage under short circuit events. The  
capacitive isolation core consists of transmit circuitry to couple signals across the capacitive isolation barrier, and  
receive circuitry to convert the resulting low-swing signals into CMOS levels. The ISO5851-Q1 also contains  
under voltage lockout circuitry to prevent insufficient gate drive to the external IGBT, and active output pull-down  
feature which ensures that the gate-driver output is held low, if the output supply voltage is absent. TheISO5851-  
Q1 also has an active Miller clamp function which can be used to prevent parasitic turn-on of the external power  
transistor, due to Miller effect, for unipolar supply operation.  
9.2 Functional Block Diagram  
VCC2  
VCC1  
VCC1  
UVLO1  
UVLO2  
500 µA  
DESAT  
GND2  
INœ  
Mute  
9 V  
IN+  
VCC1  
VCC2  
RDY  
Gate Drive  
and  
Encoder  
Logic  
Ready  
OUT  
VCC1  
FLT  
Decoder  
Q
Q
S
2 V  
Fault  
CLAMP  
VCC1  
R
RST  
GND1  
VEE2  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
19  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Supply and active Miller clamp  
The ISO5851-Q1 supports both bipolar and unipolar power supply with active Miller clamp.  
For operation with bipolar supplies, the IGBT is turned off with a negative voltage on its gate with respect to its  
emitter. This prevents the IGBT from unintentionally turning on because of current induced from its collector to its  
gate due to Miller effect. In this condition it is not necessary to connect CLAMP output of the gate driver to the  
IGBT gate, but connecting CLAMP output of the gate driver to the IGBT gate is also not an issue. Typical values  
of VCC2 and VEE2 for bipolar operation are 15-V and -8-V with respect to GND2.  
For operation with unipolar supply, typically, VCC2 is connected to 15-V with respect to GND2, and VEE2 is  
connected to GND2. In this use case, the IGBT can turn-on due to additional charge from IGBT Miller  
capacitance caused by a high voltage slew rate transition on the IGBT collector. To prevent IGBT to turn on, the  
CLAMP pin is connected to IGBT gate and Miller current is sinked through a low impedance CLAMP transistor.  
Miller CLAMP is designed for Miller current up to 2-A. When the IGBT is turned-off and the gate voltage  
transitions below 2-V the CLAMP current output is activated.  
9.3.2 Active Output Pull-down  
The Active output pull-down feature ensures that the IGBT gate OUT is clamped to VEE2 to ensure safe IGBT off-  
state when the output side is not connected to the power supply.  
9.3.3 Undervoltage Lockout (UVLO) with Ready (RDY) Pin Indication Output  
Undervoltage Lockout (UVLO) ensures correct switching of IGBT. The IGBT is turned-off, if the supply VCC1  
drops below VIT-(UVLO1), irrespective of IN+, IN- and RST input till VCC1 goes above VIT+(UVLO1)  
.
In similar manner, the IGBT is turned-off, if the supply VCC2 drops below VIT-(UVLO2), irrespective of IN+, IN- and  
RST input till VCC2 goes above VIT+(UVLO2)  
.
Ready (RDY) pin indicates status of input and output side Under Voltage Lock-Out (UVLO) internal protection  
feature. If either side of device have insufficient supply (VCC1 or VCC2), the RDY pin output goes low; otherwise,  
RDY pin output is high. RDY pin also serves as an indication to the micro-controller that the device is ready for  
operation.  
9.3.4 Fault (FLT) and Reset (RST)  
During IGBT overload condition, to report desaturation error FLT goes low. If RST is held low for the specified  
duration, FLT is cleared at rising edge of RST. RST has an internal filter to reject noise and glitches. By asserting  
RST for at-least the specified minimum duration, device input logic can be enabled or disabled.  
9.3.5 Short Circuit Clamp  
Under short circuit events it is possible that currents are induced back into the gate-driver OUT and CLAMP pins  
due to parasitic Miller capacitance between the IGBT collector and gate terminals. Internal protection diodes on  
OUT and CLAMP help to sink these currents while clamping the voltages on these pins to values slightly higher  
than the output side supply.  
20  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
9.4 Device Functional Modes  
Table 1 lists the functional modes for the ISO5851-Q1 device.  
InISO5851-Q1 OUT to follow IN+ in normal functional mode, FLT needs to be in high state.  
Table 1. Function Table(1)  
VCC1  
PU  
PD  
PU  
PU  
PU  
PU  
PU  
VCC2  
PD  
IN+  
X
IN-  
X
RST  
X
RDY  
Low  
Low  
High  
Low  
High  
High  
High  
OUT  
Low  
Low  
Low  
Low  
Low  
Low  
High  
PU  
X
X
X
PU  
X
X
Low  
X
Open  
PU  
X
X
Low  
X
X
X
PU  
High  
Low  
X
PU  
High  
High  
(1) PU: Power Up (VCC1 2.25-V, VCC2 13-V), PD: Power Down (VCC1 1.7-V, VCC2 9.5-V), X: Irrelevant  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ISO5851-Q1 is an isolated gate driver for power semiconductor devices such as IGBTs and MOSFETs. It is  
intended for use in applications such as motor control, industrial inverters and switched mode power supplies. In  
these applications, sophisticated PWM control signals are required to turn the power devices on and off, which at  
the system level eventually may determine, for example, the speed, position, and torque of the motor or the  
output voltage, frequency and phase of the inverter. These control signals are usually the outputs of a micro  
controller, and are at low voltage levels such as 3.3-V or 5-V. The gate controls required by the MOSFETs and  
IGBTs, on the other hand, are in the range of 30-V (using Unipolar Output Supply) to 15-V (using Bipolar Output  
Supply), and need high current capability to be able to drive the large capacitive loads offered by those power  
transistors. Not only that, the gate drive needs to be applied with reference to the Emitter of the IGBT (Source for  
MOSFET), and by construction, the Emitter node in a gate drive system may swing between 0 to the DC bus  
voltage, that can be several 100s of volts in magnitude.  
The ISO5851-Q1 is thus used to level shift the incoming 3.3-V and 5-V control signals from the microcontroller to  
the 30-V (using Unipolar Output Supply) to 15-V (using Bipolar Output Supply) drive required by the power  
transistors while ensuring high-voltage isolation between the driver side and the microcontroller side.  
10.2 Typical Applications  
Figure 42 shows the typical application of a three-phase inverter using six ISO5851-Q1 isolated gate drivers.  
Three-phase inverters are used for variable-frequency drives to control the operating speed and torque of AC  
motors and for high power applications such as High-Voltage DC (HVDC) power transmission.  
The basic three-phase inverter consists of six power switches, and each switch is driven by one ISO5851-Q1.  
The switches are driven on and off at high switching frequency with specific patterns that to converter dc bus  
voltage to three-phase AC voltages.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Typical Motor Drive Application  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
Typical Applications (continued)  
10.2.1 Design Requirements  
Unlike optocoupler based gate drivers which need external current drivers and biasing circuitry to provide the  
input control signals, the input control to the ISO5851-Q1 is CMOS and can be directly driven by the  
microcontroller. Other design requirements include decoupling capacitors on the input and output supplies, a  
pullup resistor on the common drain FLT output signal and RST input signal, and a high-voltage protection diode  
between the IGBT collector and the DESAT input. Further details are explained in the subsequent sections.  
Table 2 shows the allowed range for Input and Output supply voltage, and the typical current output available  
from the gate-driver.  
Table 2. Design Parameters  
PARAMETER  
Input supply voltage  
VALUE  
3-V to 5.5-V  
15-V to 30-V  
15-V to 30-V  
0-V to 15-V  
2.5-A  
Unipolar output supply voltage (VCC2 - GND2 = VCC2 - VEE2  
)
Bipolar output supply voltage (VCC2 - VEE2  
)
Bipolar output supply voltage (GND2 - VEE2  
Output current  
)
10.2.2 Detailed Design Procedure  
10.2.2.1 Recommended ISO5851-Q1 Application Circuit  
The ISO5851-Q1 has both, inverting and non-inverting gate control inputs, an active low reset input, and an open  
drain fault output suitable for wired-OR applications. The recommended application circuit in Figure 43 illustrates  
a typical gate driver implementation with Unipolar Output Supply and Figure 44 illustrates a typical gate driver  
implementation with Bipolar Output Supply using the ISO5851-Q1.  
A 0.1-μF bypass capacitor, recommended at input supply pin VCC1 and 1-μF bypass capacitor, recommended at  
output supply pin VCC2, provide the large transient currents necessary during a switching transition to ensure  
reliable operation. The 220 pF blanking capacitor disables DESAT detection during the off-to-on transition of the  
power device. The DESAT diode (DDST) and its 1-kseries resistor are external protection components. The RG  
gate resistor limits the gate charge current and indirectly controls the IGBT collector voltage rise and fall times.  
The open-drain FLT output and RDY output has a passive 10-kpull-up resistor. In this application, the IGBT  
gate driver is disabled when a fault is detected and will not resume switching until the micro-controller applies a  
reset signal.  
10 R  
10  
R
15  
9, 16  
10  
5
5
15  
9, 16  
10  
VCC1  
VCC1  
VCC2  
GND 2  
VEE2  
ISO 5851 œ Q1  
VCC2  
GND 2  
VEE2  
ISO 5851 œ Q1  
1 µF  
1 µF  
3
V - 5.5 V  
0.1 µF  
0.1 µF  
3 V - 5.5 V  
15 V  
15 V  
15 V  
3
3
GND 1  
IN +  
GND 1  
IN +  
1 µF  
1
,
8
,
1
8
DDST  
DDST  
1 kΩ  
1 kΩ  
10 k  
10 k  
10 k  
10 k  
11  
12  
13  
14  
2
7
6
4
2
7
6
4
11  
12  
13  
14  
IN -  
DESAT  
CLAMP  
OUT  
IN -  
DESAT  
CLAMP  
OUT  
RDY  
FLT  
RST  
RDY  
RG  
RG  
FLT  
NC  
NC  
RST  
220  
pf  
220  
pf  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 43. Unipolar Output Supply  
Figure 44. Bipolar Output Supply  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
 
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.2 FLT and RDY Pin Circuitry  
There is 50k pull-up resistor internally on FLT and RDY pins. The FLT and RDY pin is an open-drain output. A  
10-kΩ pull-up resistor can be used to make it faster rise and to provide logic high when FLT and RDY is inactive,  
as shown in Figure 45  
Fast common mode transients can inject noise and glitches on FLT and RDY pins due to parasitic coupling. This  
is dependent on board layout. If required, additional capacitance (100 pF to 300 pF) can be included on the FLT  
and RDY pins.  
ISO 5851 œ Q1  
10 R  
15  
VCC1  
0. 1 µF  
3V œ 5 V  
9, 16  
GND 1  
10 k  
10 k  
12  
13  
RDY  
FLT  
µC  
14  
10  
RST  
IN +  
11  
IN -  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. FLT and RDY Pin Circuitry for High CMTI  
10.2.2.3 Driving the Control Inputs  
The amount of common-mode transient immunity (CMTI) can be curtailed by the capacitive coupling from the  
high-voltage output circuit to the low-voltage input side of the ISO5851-Q1. For maximum CMTI performance, the  
digital control inputs, IN+ and IN-, must be actively driven by standard CMOS, push-pull drive circuits. This type  
of low-impedance signal source provides active drive signals that prevent unwanted switching of the ISO5851-Q1  
output under extreme common-mode transient conditions. Passive drive circuits, such as open-drain  
configurations using pull-up resistors, must be avoided. There is a 20 ns glitch filter which can filter a glitch up to  
20 ns on IN+ or IN-.  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
10.2.2.4 Local Shutdown and Reset  
In applications with local shutdown and reset, the FLT output of each gate driver is polled separately, and the  
individual reset lines are asserted low independently to reset the motor controller after a fault condition.  
10 R  
ISO 5851 œ Q1  
15  
ISO 5851 œ Q1  
10 R  
VCC1  
15  
VCC1  
0.1 µF  
3 V - 5 V  
0. 1 µF  
3 V œ 5 V  
9, 16  
9, 16  
GND 1  
GND 1  
10 k  
10 k  
10 k  
10 k  
12  
13  
12  
13  
RDY  
FLT  
RDY  
FLT  
µC  
µC  
14  
10  
14  
10  
RST  
IN +  
RST  
IN +  
11  
IN -  
11  
IN -  
Copyright © 2016, Texas Instruments Incorporated  
Figure 46. Local Shutdown and Reset for Noninverting (left) and Inverting Input Configuration (right)  
10.2.2.5 Global-Shutdown and Reset  
When configured for inverting operation, the ISO5851-Q1 can be configured to shutdown automatically in the  
event of a fault condition by tying the FLT output to IN+. For high reliability drives, the open drain FLT outputs of  
multiple ISO5851-Q1 devices can be wired together forming a single, common fault bus for interfacing directly to  
the micro-controller. When any of the six gate drivers of a three-phase inverter detects a fault, the active low FLT  
output disables all six gate drivers simultaneously.  
10 R  
ISO 5851 - Q1  
15  
VCC1  
0. 1 µF  
3V œ 5V  
9, 16  
GND 1  
10 k  
10 k  
12  
13  
RDY  
FLT  
µC  
14  
10  
RST  
IN +  
11  
IN -  
to other  
RSTs  
to other  
FLTs  
Copyright © 2016, Texas Instruments Incorporated  
Figure 47. Global Shutdown with Inverting Input Configuration  
Copyright © 2016, Texas Instruments Incorporated  
25  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.6 Auto-Reset  
In this case, the gate control signal at IN+ is also applied to the RST input to reset the fault latch every switching  
cycle. Incorrect RST makes output go low. A fault condition, however, the gate driver remains in the latched fault  
state until the gate control signal changes to the 'gate low' state and resets the fault latch.  
If the gate control signal is a continuous PWM signal, the fault latch will always be reset before IN+ goes high  
again. This configuration protects the IGBT on a cycle by cycle basis and automatically resets before the next  
'on' cycle.  
ISO 5851 œ Q1  
ISO 5851 œ Q1  
10 R  
10 R  
15  
15  
VCC1  
VCC1  
0. 1 µF  
3 V - 5 V  
0.1 µF  
3 V - 5 V  
9, 16  
9, 16  
GND 1  
GND 1  
10 k  
10 k  
10 k  
10 k  
12  
13  
12  
13  
RDY  
FLT  
RDY  
FLT  
µC  
µC  
14  
10  
14  
10  
RST  
IN +  
RST  
IN +  
11  
11  
IN -  
IN -  
Copyright © 2016, Texas Instruments Incorporated  
Figure 48. Auto Reset for Non-inverting and Inverting Input Configuration  
26  
Copyright © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
10.2.2.7 DESAT Pin Protection  
Switching inductive loads causes large instantaneous forward voltage transients across the freewheeling diodes  
of IGBTs. These transients result in large negative voltage spikes on the DESAT pin which draw substantial  
current out of the device. To limit this current below damaging levels, a 100-to 1-kresistor is connected in  
series with the DESAT diode.  
Further protection is possible through an optional Schottky diode, whose low forward voltage assures clamping of  
the DESAT input to GND2 potential at low voltage levels.  
ISO 5851 -Q1  
5
VCC2  
1 µF  
15 V  
3
GND 2  
1 µF  
15 V  
1, 8  
VEE2  
DDST  
RS  
2
DESAT  
7
CLAMP  
RG  
6
OUT  
NC  
VFW-Inst  
4
220 pF  
VFW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 49. DESAT Pin Protection with Series Resistor and Schottky Diode  
Copyright © 2016, Texas Instruments Incorporated  
27  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.8 DESAT Diode and DESAT Threshold  
The DESAT diode’s function is to conduct forward current, allowing sensing of the IGBT’s saturated collector-to-  
emitter voltage, V(CESAT), (when the IGBT is "on") and to block high voltages (when the IGBT is "off"). During the  
short transition time when the IGBT is switching, there is commonly a high dVCE/dt voltage ramp rate across the  
IGBT. This results in a charging current I(CHARGE) = C(D-DESAT) x dVCE/dt, charging the blanking capacitor. C(D-DESAT)  
is the diode capacitance at DESAT.  
To minimize this current and avoid false DESAT triggering, fast switching diodes with low capacitance are  
recommended. As the diode capacitance builds a voltage divider with the blanking capacitor, large collector  
voltage transients appear at DESAT attenuated by the ratio of 1+ C(BLANK) / C(D-DESAT)  
.
Because the sum of the DESAT diode forward-voltage and the IGBT collector-emitter voltage make up the  
voltage at the DESAT-pin, VF + VCE = V(DESAT), the VCE level, which triggers a fault condition, can be modified by  
adding multiple DESAT diodes in series: VCE-FAULT(TH) = 9 V – n x VF (where n is the number of DESAT diodes).  
When using two diodes instead of one, diodes with half the required maximum reverse-voltage rating may be  
chosen.  
10.2.2.9 Determining the Maximum Available, Dynamic Output Power, POD-max  
The ISO5851-Q1 maximum allowed total power consumption of PD = 251 mW consists of the total input power,  
PID, the total output power, POD, and the output power under load, POL  
:
PD = PID + POD + POL  
(1)  
(2)  
(3)  
(4)  
With:  
PID = VCC1-max × ICC1-max = 5.5 V × 4.5 mA = 24.75 mW  
and:  
POD = (VCC2 – VEE2) x ICC2-max = (15 V – ( –8 V )) × 6 mA = 138 mW  
then:  
POL = PD – PID – POD = 251 mW – 24.75 mW – 138 mW = 88.25 mW  
In comparison to POL, the actual dynamic output power under worst case condition, POL-WC, depends on a variety  
of parameters:  
æ
ç
è
ö
÷
ø
ron-max  
roff-max  
POL-WC = 0.5 ´ f  
´ QG  
´
V
- VEE2  
´
+
(
)
INP  
CC2  
ron-max + RG  
roff-max + RG  
where  
fINP = signal frequency at the control input IN+  
QG = power device gate charge  
VCC2 = positive output supply with respect to GND2  
VEE2 = negative output supply with respect to GND2  
ron-max = worst case output resistance in the on-state: 4  
roff-max = worst case output resistance in the off-state: 2.5Ω  
RG = gate resistor  
(5)  
Once RG is determined, Equation 5 is to be used to verify whether POL-WC < POL. Figure 50 shows a simplified  
output stage model for calculating POL-WC  
.
28  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
ISO 5851 œ Q1  
VCC2  
15 V  
ron-max  
RG  
OUT  
QG  
roff-max  
8 V  
VEE2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 50. Simplified Output Model for Calculating POL-WC  
10.2.2.10 Example  
This examples considers an IGBT drive with the following parameters:  
ION-PK = 2 A, QG = 650 nC, fINP = 20 kHz, VCC2 = 15V, VEE2 = –8 V  
(6)  
Applying the value of the gate resistor RG = 10 Ω.  
Then, calculating the worst-case output power consumption as a function of RG, using Equation 5 ron-max = worst  
case output resistance in the on-state: 4 Ω, roff-max = worst case output resistance in the off-state: 2.5 Ω, RG  
=
gate resistor yields  
4 Ω  
2.5 Ω  
æ
ö
POL-WC = 0.5´20 kHz´650 nC´ 15 V -( -8 V) ´  
+
4 Ω + 10 Ω 2.5 Ω + 10 Ω  
= 72.61 mW  
(
)
ç
è
÷
ø
(7)  
Because POL-WC = 72.61 mW is below the calculated maximum of POL = 88.25 mW, the resistor value of RG = 10  
is suitable for this application.  
Copyright © 2016, Texas Instruments Incorporated  
29  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.11 Higher Output Current Using an External Current Buffer  
To increase the IGBT gate drive current, a non-inverting current buffer (such as the npn/pnp buffer shown in  
Figure 51) may be used. Inverting types are not compatible with the desaturation fault protection circuitry and  
must be avoided. The MJD44H11/MJD45H11 pair is appropriate for currents up to 8 A, the D44VH10/ D45VH10  
pair for up to 15 A maximum.  
ISO 5851 - Q1  
5
VCC2  
1 µF  
15 V  
3
GND 2  
1 µF  
15 V  
1, 8  
VEE2  
DDST  
1 kΩ  
10 Ω  
2
7
6
4
DESAT  
CLAMP  
OUT  
rG  
NC  
220  
pf  
Copyright © 2016, Texas Instruments Incorporated  
Figure 51. Current Buffer for Increased Drive Current  
10.2.3 Application Curve  
CL = 1 nF  
RG = 10 Ω  
CL = 1 nF  
RG = 10 Ω  
GND2 - VEE2 = 8 V  
VCC2 - VEE2 = VCC2 - GND2 = 20 V  
VCC2 - GND2 = 15 V  
(VCC2 - VEE2 = 23 V)  
Figure 53. Normal Operation - Unipolar Supply  
Figure 52. Normal Operation - Bipolar Supply  
30  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
11 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at  
input supply pin VCC1 and 1-μF bypass capacitor is recommended at output supply pin VCC2. The capacitors  
should be placed as close to the supply pins as possible. Recommended placement of capacitors needs to be  
2-mm maximum from input and output power supply pin (VCC1 and VCC2).  
12 Layout  
12.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 54). Layer stacking should  
be in the following order (top-to-bottom): high-current or sensitive signal layer, ground plane, power plane and  
low-frequency signal layer.  
Routing the high-current or sensitive traces on the top layer avoids the use of vias (and the introduction of  
their inductances) and allows for clean interconnects between the gate driver and the microcontroller and  
power transistors. Gate driver control input, Gate driver output OUT and DESAT should be routed in the top  
layer.  
Placing a solid ground plane next to the sensitive signal layer provides an excellent low-inductance path for  
the return current flow. On the driver side, use GND2 as the ground plane.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2. On the gate-driver VEE2 and VCC2 can be used as power planes. They can share  
the same layer on the PCB as long as they are not connected together.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
For more detailed layout recommendations, including placement of capacitors, impact of vias, reference planes,  
routing etc. see Application Note SLLA284, Digital Isolator Design Guide.  
12.2 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
12.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 54. Recommended Layer Stack  
版权 © 2016, Texas Instruments Incorporated  
31  
 
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档如下:  
ISO5851 评估模块 (EVM) 用户指南》SLLU218  
《数字隔离器设计指南》SLLA284  
《隔离相关术语》SLLA353  
13.2 接收文档更新通知  
要接收文档更新通知,请访问 www.ti.com.cn 您器件对应的产品文件夹。点击右上角的提醒我 (Alert me) 注册后,  
即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
33  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.38  
0.25  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MO-013, variation AA.  
www.ti.com  
34  
版权 © 2016, Texas Instruments Incorporated  
ISO5851-Q1  
www.ti.com.cn  
ZHCSFJ4 SEPTEMBER 2016  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
9
9
8
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/A 08/2013  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2016, Texas Instruments Incorporated  
35  
ISO5851-Q1  
ZHCSFJ4 SEPTEMBER 2016  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (0.6)  
16X (2)  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/A 08/2013  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
36  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO5851QDWQ1  
ISO5851QDWRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ISO5851Q  
ISO5851Q  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO5851QDWRQ1

具有有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125
TI

ISO5852S

High-CMTI 2.5-A / 5-A Isolated IGBT, MOSFET Gate Driver with Split Outputs and Active Safety Features
TI

ISO5852S-EP

具有分离输出和有源保护功能的 5.7kVrms、2.5A/5A 增强型单通道隔离式栅极驱动器
TI

ISO5852S-Q1

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器
TI

ISO5852SDW

High-CMTI 2.5-A / 5-A Isolated IGBT, MOSFET Gate Driver with Split Outputs and Active Safety Features
TI

ISO5852SDWR

High-CMTI 2.5-A / 5-A Isolated IGBT, MOSFET Gate Driver with Split Outputs and Active Safety Features
TI

ISO5852SMDWREP

具有分离输出和有源保护功能的 5.7kVrms、2.5A/5A 增强型单通道隔离式栅极驱动器 | DW | 16 | -55 to 125
TI

ISO5852SQDWQ1

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125
TI

ISO5852SQDWRQ1

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125
TI

ISO5852S_15

High-CMTI 2.5-A / 5-A Isolated IGBT, MOSFET Gate Driver with Split Outputs and Active Safety Features
TI

ISO6720

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720-Q1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI