ISO7021 [TI]

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器;
ISO7021
型号: ISO7021
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器

文件: 总34页 (文件大小:1566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7021  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
ISO7021 超低功耗双通道数字隔离器  
工厂自动化和过程控制  
低功GPIOUART 隔离  
1 特性  
• 超低功耗  
3 说明  
– 每通道静态电流4.8μA (3.3V)  
ISO7021 器件是一种可用于隔离 CMOS LVCMOS  
数字 I/O 的超低功耗多通道 数字隔离器。每条隔离通  
道的逻辑输入和输出缓冲器均由双电容二氧化(SiO2)  
绝缘栅相隔离。基于边缘的创新架构与开关键控调制方  
案相结合使这些隔离器具有非常低的功耗同时符合  
UL1577 规定的 3000VRMS 隔离额定值。该器件的每通  
道动态电流消耗低于 120μA/Mbps 并且 3.3V 时每  
通道静态电流消耗为 4.8μA 从而允许在功耗和热性  
能受限的系统设计中使ISO7021。  
100kbps 时的每通道电流15μA (3.3V)  
1Mbps 时的每通道电流120μA (3.3V)  
• 稳健可靠的隔离栅  
– 预计寿命超100 年  
– 隔离额定值3000VRMS  
CMTI 典型值±100kV/μs  
• 宽电源电压范围1.71V 1.89V 2.25V 5.5V  
• 宽温度范围55°C +125°C  
• 小8-SOIC (8-D)  
• 信令速率4Mbps  
• 默认输出高电(ISO7021) 低电(ISO7021F)  
选项  
该器件可在低至 1.71V 和高达 5.5V 的电压下工作并  
可在隔离栅的每一侧采用不同电源电压的情况下实现完  
整功能。双通道隔离器采用窄8-SOIC 封装具有一  
个正向通道和一个反向通道。该器件具有默认输出高电  
平和低电平选项。如果输入功率或信号出现损失不具  
F 后缀的 ISO7021 器件 默认输出高电平具有 F  
后缀的 ISO7021F 器件默认输出低电平。请参阅器件  
功能模部分以了解详情。  
• 优异的电磁兼容(EMC)  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
– 超低干(EMI)  
• 安全相关认证计划):  
器件信息  
DIN V VDE 0884-11:2017-01  
UL 1577 组件认证计划  
器件型号(1)  
ISO7021  
封装尺寸标称值)  
封装  
SOIC (8-D)  
4.90mm × 3.91mm  
IEC 60950-1IEC 62368-1IEC 61010-1、  
IEC60601-1 GB 4943.1-2011 认证  
IECExIEC 60079-0 IEC 60079-11和  
ATEXEN IEC60079-0 EN 60079-11)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
4mA 20mA 环路供电式现场变送器  
400  
100  
VCC2  
VCC1  
VCC1  
VCC2  
VDD  
ISO7021  
MCU  
ADC  
DGND  
GND2  
GND1  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
10  
2
简化版应用原理图  
1
10  
100  
Data Rate (kbps)  
1000  
4000  
SLLS  
电压3.3V 时的数据速率与功耗间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFA0  
 
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
Table of Contents  
6.17 Switching Characteristics .......................................13  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................17  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 Typical Application.................................................... 20  
10 Power Supply Recommendations..............................23  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Documentation Support.......................................... 25  
12.2 Receiving Notification of Documentation Updates..25  
12.3 支持资源..................................................................25  
12.4 Trademarks.............................................................25  
12.5 静电放电警告.......................................................... 25  
12.6 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Power Ratings ............................................................6  
6.6 Insulation Specifications ............................................ 7  
6.7 Safety-Related Certifications ..................................... 8  
6.8 Safety Limiting Values ................................................8  
6.9 Electrical Characteristics 5V Supply .......................... 9  
6.10 Supply Current Characteristics 5V Supply ...............9  
6.11 Electrical Characteristics 3.3V Supply ................... 10  
6.12 Supply Current Characteristics 3.3V Supply ..........10  
6.13 Electrical Characteristics 2.5V Supply ................... 11  
6.14 Supply Current Characteristics 2.5V Supply ..........11  
6.15 Electrical Characteristics 1.8V Supply ................... 12  
6.16 Supply Current Characteristics 1.8V Supply ..........12  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2019) to Revision A (October 2019)  
Page  
RTM 发布............................................................................................................................................................1  
Changes from Revision A (October 2019) to Revision B (August 2020)  
Page  
• 通过重命名认证、添加“计划”并包括已完成的 ATEX 认证更新了首页。............................................. 1  
Added IECEx and ATEX to Safety-Related Certifications...................................................................................8  
Added 9.1.2 section..................................................................................................................................... 20  
Updated pin numbers to reflect 8D package ................................................................................................... 21  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
2
Submit Document Feedback  
Product Folder Links: ISO7021  
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
Device Comparison Table  
5-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
ISO7021  
CHANNEL DIRECTION  
PACKAGE  
SOIC-8  
RATED ISOLATION  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
1 Forward,  
1 Reverse  
4 Mbps  
4 Mbps  
High  
1 Forward,  
1 Reverse  
ISO7021 with F suffix  
Low  
SOIC-8  
5 Pin Configuration and Functions  
Pin Functions  
VCC1  
OUTA  
INB  
1
2
3
4
8
7
6
5
VCC2  
INA  
OUTB  
GND2  
GND1  
Not to scale  
5-1. D Package 8-Pin SOIC Top View  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
NO.  
4
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
I
5
7
INB  
3
I
Input, channel B  
OUTA  
OUTB  
VCC1  
2
O
O
Output, channel A  
6
Output, channel B  
1
Power supply, side 1  
Power supply, side 2  
VCC2  
8
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
VCC1 to GND1  
Supply Voltage  
6
6
V
VCC2 to GND2  
INx to GNDx  
VCCX + 0.5  
VCCX + 0.5  
15  
Input/Output  
Voltage  
V
OUTx to GNDx  
Output Current  
Temperature  
Io  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
(1) (2)  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
4
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
 
 
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
1.89  
UNIT  
V
(1)  
VCC1  
VCC1  
VCC2  
VCC2  
VIH  
Supply Voltage Side 1  
Supply Voltage Side 1  
Supply Voltage Side 2  
Supply Voltage Side 2  
High level Input voltage  
Low level Input voltage  
VCCO (2)= 1.8 V  
1.71  
(1)  
(1)  
(1)  
VCCO = 2.5 V to 5 V  
VCCO = 1.8 V  
2.25  
5.5  
V
1.71  
1.89  
V
VCCO = 2.5 V to 5 V  
2.25  
5.5  
V
0.7 x VCCI  
VCCI  
V
VIL  
0
-4  
-2  
-1  
-1  
0.3 x VCCI  
V
VCCO = 5 V  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
VCCO = 5 V  
IOH  
High level output current  
Low level output current  
4
2
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
IOL  
1
1
DR  
TA  
Data Rate  
0
4
Ambient temperature  
-55  
125  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
ISO7021  
www.ti.com.cn  
UNIT  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.4 Thermal Information  
ISO7021  
D (SOIC)  
8 PINS  
94.3  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
28.6  
43.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.3  
ψJT  
42.9  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8.4  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 2-MHz 50% duty cycle square  
wave  
PD1  
PD2  
4.2  
4.2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
6
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.6 Insulation Specifications  
SPECIFIC  
ATIONS  
PARAMETER  
TEST CONDITIONS  
UNIT  
8-D  
IEC 60664-1  
CLR  
CPG  
DTI  
External clearance(1)  
Side 1 to side 2 distance through air  
Side 1 to side 2 distance across package surface  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
4
4
mm  
mm  
µm  
V
External creepage(1)  
Distance through the insulation  
Comparative tracking index  
Material Group  
>17  
>600  
I
CTI  
According to IEC 60664-1  
I-IV  
I-III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Overvoltage category  
DIN V VDE V 0884-11:2017-01  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
566  
400  
566  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent dielectric  
breakdown (TDDB) test;  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
1.2 × VIOTM, t = 1 s (100% production)  
=
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(2)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = TBD VPK  
(qualification)  
VIOSM  
4000  
5  
5  
5  
VPK  
Method a: After I/O safety test subgroup 2/3, Vini  
= VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10  
s
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
qpd  
Apparent charge(3)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(4)  
Insulation resistance, input to output(4)  
1
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
55/125/  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST = 1.2  
× VISO , t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(4) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
IECEx / ATEX  
Plan to certify  
Plan to certify  
according to DIN V  
VDE V 0884-11:2017-  
01  
Plan to certify  
according to UL 1577  
Component  
Certified for use in  
intrinsic safety (IS) to  
IS applications under  
ATEX and IECEx.  
Certified according to  
IEC 60950-1 and IEC  
62368-1  
Plan to certify  
according to  
GB4943.1-2011  
according to EN  
61010-1:2010 (3rd  
Ed) and EN 60950-  
1:2006/A2:2013  
Recognition Program  
3000 VRMS insulation  
per CSA  
ATEX: EN  
IEC60079-0:2018 and  
EN 60079-11:2012  
IECEx:IEC  
60079-0:2017 (7th  
Ed) and  
IEC60079-11:2011  
(6th Ed)  
Markings: II 1G Ex ia  
IIC Ga  
Maximum transient  
isolation voltage,  
60950-1-07+A1+A2,  
IEC 60950-1 2nd  
Ed.+A1+A2, CSA  
62368-1- 14 and IEC  
62368-1:2014 370  
VRMS (DBQ-16)  
maximum working  
voltage (pollution  
degree 2, material  
group I)  
3000 VRMS insulation  
per EN 61010-1:2010  
(3rd Ed) up to working  
voltage of 300 VRMS  
3000 VRMS insulation  
per EN 60950-  
1:2006/A2:2013 up to  
working voltage of  
370 VRMS  
Basic insulation,  
Altitude 5000 m,  
Tropical Climate,  
250 VRMS maximum  
working voltage  
4242 VPK  
;
Maximum repetitive  
peak isolation  
Single protection,  
3000 VRMS  
voltage, 566 VPK  
Maximum surge  
;
isolation voltage,  
4000 VPK  
See the 9.1.2  
IECEx certificate:  
IECEx CSA 20.012U  
ATEX certificate:  
CSANe  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
20ATEX2090U  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D-8 PACKAGE  
R
θJA = 94.3°C/W, VI = 5.5 V, TJ = 150°C,  
241  
368  
482  
701  
mA  
TA = 25°C  
θJA = 94.3°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
θJA = 94.3°C/W, VI = 2.75 V, TJ =  
150°C, TA = 25°C  
θJA = 94.3°C/W, VI = 1.89 V, TJ =  
150°C, TA = 25°C  
θJA = 94.3°C/W, TJ = 150°C, TA = 25°C  
R
IS  
Safety input, output, or supply current  
mA  
R
R
mA  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1325  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
8
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.9 Electrical Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
0.3 x VCCI  
VCCO - 0.4  
IOH = -4 mA  
IOL = 4 mA  
V
VOL  
0.4  
1
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
0.1 x VCCI  
V
VIH = VCCI (1) at INx  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-1  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 5 V  
Ci  
Input Capacitance (2)  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7021  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
5.9  
5.9  
11.8  
11.8  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
Supply current - DC  
signal  
6.5  
11.9  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
6.5  
11.9  
7.2  
12.2  
12.2  
27.7  
27.7  
175.0  
175.0  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
7.2  
15.9  
15.9  
129.0  
129.0  
Supply current - AC  
signal  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.9  
6.5  
11.4  
11.8  
µA  
µA  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
Total Supply Current  
Per Channel  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
7.2  
15.9  
12.2  
27.8  
µA  
µA  
µA  
129.0  
175.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.11 Electrical Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.3  
IOH = -2mA  
VOL  
IOL = 2mA  
0.3  
1
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 3.3 V  
Input Capacitance(2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.12 Supply Current Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7021  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
4.8  
4.8  
7.8  
7.8  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
Supply current - DC  
signal  
5.2  
8.4  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
5.2  
8.4  
5.7  
8.8  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.7  
8.8  
15.0  
15.0  
120.0  
120.0  
23.0  
23.0  
153.0  
155.0  
Supply current - AC  
signal  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
4.8  
5.2  
7.8  
8.4  
µA  
µA  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
Total Supply Current  
Per Channel  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.7  
15.0  
8.8  
23.0  
µA  
µA  
µA  
120.0  
153.0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
10  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.13 Electrical Characteristics 2.5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.2  
IOH = -1mA  
VOL  
IOL = 1mA  
0.2  
1
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 2.5 V  
Input Capacitance(2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.14 Supply Current Characteristics 2.5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7021  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
4.4  
4.3  
6.9  
6.9  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
Supply current - DC  
signal  
4.8  
7.4  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
4.8  
7.4  
5.0  
7.8  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.0  
7.8  
12.4  
12.4  
112.0  
113.0  
21.2  
21.2  
144.0  
144.0  
Supply current - AC  
signal  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
4.4  
4.8  
6.9  
7.4  
µA  
µA  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
Total Supply Current  
Per Channel  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.0  
12.4  
7.8  
21.2  
µA  
µA  
µA  
113.0  
144.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.15 Electrical Characteristics 1.8V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
0.3 x VCCI  
VCCO - 0.2  
IOH = -1mA  
IOL = 1mA  
V
VOL  
0.2  
1
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
0.1 x VCCI  
V
VIH = VCCI (1) at INx  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-1  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 1.8 V  
Ci  
Input Capacitance(2)  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.16 Supply Current Characteristics 1.8V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7021  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
3.4  
3.4  
5.7  
5.7  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
Supply current - DC  
signal  
3.8  
6.2  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
3.8  
6.2  
4.1  
6.7  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
4.1  
6.7  
9.9  
19.3  
19.3  
134.0  
134.0  
Supply current - AC  
signal  
9.9  
90.0  
90.0  
VI = VCC1 (ISO7021); VI = 0 V (ISO7021  
with F suffix)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
3.4  
3.8  
5.7  
6.2  
µA  
µA  
VI = 0 V (ISO7021); VI = VCC1 (ISO7021  
with F suffix)  
Total Supply Current  
Per Channel  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
3.9  
9.9  
6.7  
19.3  
µA  
µA  
µA  
90.0  
134.0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
12  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
6.17 Switching Characteristics  
VCC1, VCC2 = 1.71 V to 1.89 V or 2.25 V to 5.5 V (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
140  
15  
MAX  
UNIT  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
165  
ns  
See 7-1  
ps/℃  
ns  
tUI  
250  
See 7-1  
PWD  
tsk(o)  
Pulse width distortion  
10  
10  
70  
8
ns  
Channel to channel output skew time  
Part to part skew time  
ns  
tsk(p-p)  
ns  
ns  
VCC = 1.71 V to 1.9 V, See 7-1  
VCC = 2.25 V to 5.5 V, See 7-1  
VCC = 1.71 V to 1.9 V, See 7-1  
VCC = 2.25 V to 5.5 V, See 7-1  
tr  
Output signal rise time  
Output signal fall time  
5
ns  
8
ns  
tf  
5
ns  
Default output delay time from input  
power loss  
tDO  
400  
10  
750  
5
us  
See 7-2  
tPU  
FR  
Time from UVLO to valid output data  
Refresh rate  
1
5
ms  
kbps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
V
CC  
V
CC  
V
I
1.7 V  
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
14  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
8 Detailed Description  
8.1 Overview  
The ISO7021 device uses edge encoding of data with an ON-OFF keying (OOK) modulation scheme to transmit  
the digital data across a silicon dioxide isolation barrier. The transmitter uses a high frequency carrier signal to  
pass data across the barrier representing a signal edge transition. Using this method achieves very low power  
consumption and high immunity. The receiver demodulates the carrier signal after advanced signal conditioning  
and produces the output through a buffer stage. For low data rates, a refresh logic option is available to make  
sure the output state matches the input state. Advanced circuit techniques are used to maximize the CMTI  
performance and minimize the radiated emissions due to the high frequency carrier and IO buffer switching. The  
conceptual block diagram of a digital capacitive isolator, 8-2, shows a functional block diagram of a typical  
channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
TX IN  
Edge  
Encoding  
Capacitive  
Isolation  
Barrier  
Refresh  
Logic  
Watch Dog  
Timer  
Oscillator  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
Transmitter  
Receiver  
OOK  
Modulation  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
TX IN  
Edge  
Encoding  
Capacitive  
Isolation  
Barrier  
Refresh  
Logic  
Watch Dog  
Timer  
Oscillator  
8-2. Conceptual Block Diagram of a Digital Capacitive Isolator  
8.3 Feature Description  
8.3.1 Refresh  
The ISO7021 uses an edge based encoding scheme to transfer an input signal change across the isolation  
barrier versus sending across the DC state. The built in refresh function consistently validates that the DC output  
state of each isolator channel matches the DC input state. An internal watchdog timer monitors for activity on the  
individual inputs and transmits the logic state when there is no input signal transition for more than 100 µs. This  
ensures that the input and output state of the isolator always match.  
8.3.2 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO70xx  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
The device has no issue being able to meet either CISPR 22 Class A and CISPR22 Class B standards in an  
unshielded environment.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
16  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
8.4 Device Functional Modes  
8-1 shows the functional modes for the device.  
8-1. Function Table  
INPUT  
(INx)3  
OUTPUT  
(OUTx)  
VCCI  
1
VCCO  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
X
Default  
The channel output assumes the selected default option.  
When VCCI is unpowered, a channel output assumes the logic state based on  
the selected default option. Default is High for the device without the F suffix  
and Low for device with the F suffix.  
PD  
X
PU  
PD  
X
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined and tri state2.  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the selected default option.  
Undetermined  
1. VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 1.54 V); PD = Powered down  
(VCC 1.54); X = Irrelevant; H = High level; L = Low level ; Z = High Impedance.  
2. The outputs are in undetermined state when 1.54 V < VCCI, VCCO < 1.54 V.  
3. A strongly driven input signal can weakly power the floating VCC through an internal protection diode and  
cause undetermined output.  
8.4.1 Device I/O Schematics  
Output  
Input  
V
CCO  
V
V
V
CCI  
CCI  
CCI  
~20  
985 ꢀ  
OUTx  
INx  
8-3. Device I/O Schematics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO7021 device is an ultra-low power digital isolator. The device uses single-ended CMOS-logic switching  
technology. The voltage range is from 1.71 V to 1.89 V and 2.25 V to 5.5 V for both supplies, VCC1 and VCC2  
,
and can be set irrespective of one another. When designing with digital isolators, keep in mind that because of  
the single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type  
or standard. See Isolated power and data interface for low-power applications reference design TI Design for  
detailed information on designing the ISO70xx in low-power applications.  
9.1.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; see 9-1 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm) and a minimum insulation lifetime of 20 years. VDE standard also requires additional safety margin of  
20% for working voltage and 87.5% for insulation lifetime which translates into minimum required life time of 37.5  
years.  
9-2 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of these devices is 400 VRMS with a lifetime of >100 years.  
Other factors, such as package size, pollution degree, material group, and so forth can further limit the working  
voltage of the component. The working voltage of the DBQ-16 package specified up to 400 VRMS. At the lower  
working voltages, the corresponding insulation barrier life time is much longer.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND  
1
GND 2  
V
S
Oven at 150 °C  
9-1. Test Setup for Insulation Lifetime Measurement  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9-2. Insulation Lifetime Projection Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9.1.2 Intrinsic Safety  
The ISO7021 supports Intrinsically Safe (IS) to IS applications and carry IECEx and ATEX certifications. These  
devices do not currently support IS to non-IS galvanic isolation applications due to the minimum insulation  
thickness requirements of IEC 60079-11.  
9.1.2.1 Schedule of Limitations  
These components are certified to comply with IEC 60079-0, Edition 7, IEC 60079-11, Edition 6, EN  
IEC60079-0:2018 and EN 60070-11:2012. When one of these components is used in an equipment, the  
component is to be soldered on a PCB inside a suitable enclosure and re-evaluated as an equipment. The  
operating temperature range of these components is -55°C to +85°C. The creepage and clearance distances  
across the isolating component have been evaluated, but the distance to other circuitry remain the responsibility  
of the user of the final equipment.  
This assembly is an isolating component between separate intrinsically safe circuits. The assembly must be  
connected to suitably certified intrinsically safe circuits considering the entity parameters and temperature ratings  
in the application scenario shown in 9-1  
9-1. Entity Parameters and Temperature Ratings  
ENTITY PARAMETERS  
SIDE 1  
ENTITY PARAMETERS  
SIDE 2  
AMBIENT TEMPERATURE  
RANGE  
MAXIMUM COMPONENT  
TEMPERATURE  
APPLICATION  
Ui = 50 V  
Ii = 300 mA  
Pi = 1.3 W  
Li = 0 H  
Ui = 50 V  
Ii = 300 mA  
Pi = 1.3 W  
Li = 0 H  
IS to IS: Case 1  
-55°C to +85°C  
183°C  
Ci = 4 pF  
Ci = 4 pF  
9.2 Typical Application  
9-3 shows the isolated UART.  
Isolation Barrier  
VCC1  
VCC2  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
1 MΩ  
1 kΩ  
1 kΩ  
10 nF  
100 nF  
10 nF  
VCC1  
VCC2  
DVDD AVDD  
ADS122U04  
AVCC  
DVCC  
AIN0  
AIN1  
AIN2  
AIN3  
Tx  
Rx  
OUTA  
INA  
UCA0RXD  
MSP430FR2355  
Thermocouple  
ISO7021  
INB  
OUTB  
UCA0TXD  
DVSS  
1 MΩ  
DGND  
AVSS  
AVSS  
GND1  
GND2  
9-3. Isolated UART for a Temperature Field Transmitter  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
20  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in 9-2.  
9-2. Design Parameters  
PARAMETER  
VALUE  
Supply voltage, VCC1 and VCC2  
1.71 V to 1.89 V or 2.25 V to 5.5 V  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the device only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC2  
2 mm maximum  
from VCC1  
VCC2  
VCC1  
GND1  
GND2  
1
8
0.1 µF  
0.1 µF  
2
3
7
6
INA  
OUTA  
INB  
OUTB  
GND2  
GND1  
5
4
9-4. Typical ISO7021 Circuit Hook-up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9.2.3 Application Curves  
The following typical eye diagrams of the device indicates wide open eye at the maximum data rate of 4 Mbps.  
9-5. Eye Diagram at 4 Mbps PRBS 216 1, 1.8 V and 25°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
22  
Submit Document Feedback  
Product Folder Links: ISO7021  
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
9-6. Eye Diagram at 4 Mbps PRBS 216 1, 5 V and 25°C  
10 Power Supply Recommendations  
Put a 0.1-μF bypass capacitor at the input and output supply pins (VCC1 and VCC2) to make sure that operation  
is reliable at data rates and supply voltage. Put the capacitors as near to the supply pins as possible. If only one  
primary-side power supply is available in an application, use a transformer driver to help generate the isolated  
power for the secondary-side. Texas Instruments recommends the SN6501 device or SN6505A device. Refer to  
the SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505 Low-Noise 1-A Transformer  
Drivers for Isolated Power Supplies data sheet for detailed power supply design and transformer selection  
recommendations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
Refer to the Digital Isolator Design Guide for detailed layout recommendations,.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
11-1. Recommended Layer Stack  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA0  
24  
Submit Document Feedback  
Product Folder Links: ISO7021  
 
 
 
 
ISO7021  
www.ti.com.cn  
ZHCSK04B JULY 2019 REVISED AUGUST 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, ADS1220 4-Channel, 2-kSPS, Low-Power, 24-Bit ADC with Integrated PGA and  
Reference data sheet  
Texas Instruments, ADS122U04 24-Bit, 4-Channel, 2-kSPS, Delta-Sigma ADC With UART Interface data  
sheet  
Texas Instruments, ADS124S0x Low-Power, Low-Noise, Highly Integrated, 6- and 12-Channel, 4-kSPS, 24-  
Bit, Delta-Sigma ADC with PGA and Voltage Reference data sheet  
Texas Instruments, Uniquely Efficient Isolated DC/DC Converter for Ultra-Low Power and Low-Power  
Applications TI Design  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN6505A Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet  
Texas Instruments, Isolated power and data interface for low-power applications reference design TI Design  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7021  
English Data Sheet: SLLSFA0  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7021D  
ISO7021DR  
ISO7021FD  
ISO7021FDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
7021  
7021  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
7021F  
7021F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7021DR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
ISO7021FDR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7021DR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
350.0  
367.0  
350.0  
367.0  
43.0  
38.0  
ISO7021FDR  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-May-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7021D  
D
D
SOIC  
SOIC  
8
8
75  
75  
505.46  
505.46  
6.76  
6.76  
3810  
3810  
4
4
ISO7021FD  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ISO7021D

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器 | D | 8 | -55 to 125
TI

ISO7021DR

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器 | D | 8 | -55 to 125
TI

ISO7021FD

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器 | D | 8 | -55 to 125
TI

ISO7021FDR

经 ATEX/IECEx 认证的超低功耗两通道数字隔离器 | D | 8 | -55 to 125
TI

ISO7041

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器
TI

ISO7041-Q1

汽车类 120µA 超低功耗四通道数字隔离器
TI

ISO7041DBQ

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7041DBQR

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7041FDBQ

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7041FDBQR

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7041FQDBQRQ1

汽车类 120µA 超低功耗四通道数字隔离器 | DBQ | 16 | -40 to 125
TI

ISO7041QDBQRQ1

汽车类 120µA 超低功耗四通道数字隔离器 | DBQ | 16 | -40 to 125
TI