LM25183NGUR [TI]

具有 65V、2.5A 集成式 MOSFET 的 42V 输入电压非光电反激式转换器 | NGU | 8 | -40 to 150;
LM25183NGUR
型号: LM25183NGUR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 65V、2.5A 集成式 MOSFET 的 42V 输入电压非光电反激式转换器 | NGU | 8 | -40 to 150

光电 转换器
文件: 总40页 (文件大小:2629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM25183  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
65V2.5A MOSFET LM25183 42VIN PSR 反激式直流/直流转换器  
隔离式现场发送器现场传动器  
• 隔离式偏置电源轨  
1 特性  
提供功能安全  
3 说明  
可帮助进行功能安全系统设计的文档  
• 专为可靠耐用的应用而设计  
4.5V 42 V 的宽输入电压范围启动后的工作  
电压低3.5V  
LM25183 是一款初级侧调节 (PSR) 反激式转换器在  
4.5V 42V 的宽输入电压范围内具有高效率可通过  
初级侧反激式电压对隔离输出电压采样。高集成度可实  
现简单可靠的高密度设计其中只有一个元件穿过隔离  
层。通过采用边界导电模式 (BCM) 开关可实现紧凑  
的磁解决方案以及优于 ±1.5% 的负载和线路调节性  
能。集成的 65V 功率 MOSFET 能够提供高达 10W 的  
输出功率并提高应对线路瞬变的余量。  
– 稳定可靠的解决方案只有一个元件穿过隔离层  
±1.5% 的总输出稳压精度  
– 可VOUT 温度补偿  
– 输UVLO 和热关断保护  
– 断续模式过流故障保护  
– 具40°C +150°C 的结温范围  
• 通过集成技术减小解决方案尺寸降低成本  
LM25183 简化了隔离式直流/直流电源的实现且可通  
过可选功能优化目标终端设备的性能。该器件通过一个  
电阻器来设置输出电压同时使用可选的电阻器通过抵  
消反激式二极管的压降热系数来提高输出电压精度。其  
他功能包括内部固定或外部可编程软启动、用于可调节  
线路 UVLO 的精密使能输入带迟滞功能、间断模  
式过载保护和带自动恢复功能的热关断保护。  
– 集65V0.11ΩMOSFET  
– 无需光耦合器或变压器辅助绕组即可进VOUT  
稳压  
– 内部环路补偿  
• 高效PSR 反激运行  
MOSFET BCM 模式下实现准谐振关断  
– 具有用于提升效率的外部偏置选项  
– 具有单输出和多输出实施手段  
LM25183 反激式转换器采用 8 引脚 4mm × 4mm 散热  
增强WSON 封装引脚间距0.8mm。  
器件信息  
封装(1)  
• 超低EMI 传导和辐射信号  
封装尺寸标称值)  
器件型号  
– 软开关可避免二极管反向恢复  
– 针CISPR 32 EMI 要求进行了优化  
• 使WEBENCH® Power Designer 创建定制反激式  
稳压器设计方案  
LM25183  
WSON (8)  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
电机驱动器IGBT SiC 栅极驱动器电源  
95  
90  
85  
80  
75  
VIN = 4.5 V...42 V  
VOUT = 12 V  
DFLY  
T1  
DZ  
COUT  
47 F  
1 : 1  
CIN  
DF  
VIN  
EN/UVLO  
10 F  
SW  
FB  
RFB  
LM25183  
124 kW  
GND  
70  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
RSET  
TC  
RSET  
65  
SS/BIAS  
12.1 kW  
60  
0
200  
400  
Load Current (mA)  
600 800  
D101  
典型应用  
典型效(VOUT = 12V)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBJ3  
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
Table of Contents  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Applications.................................................. 18  
9 Power Supply Recommendations................................32  
10 Layout...........................................................................33  
10.1 Layout Guidelines................................................... 33  
10.2 Layout Examples.................................................... 34  
11 Device and Documentation Support..........................35  
11.1 Device Support........................................................35  
11.2 Documentation Support.......................................... 36  
11.3 接收文档更新通知................................................... 36  
11.4 支持资源..................................................................36  
11.5 Trademarks............................................................. 37  
11.6 静电放电警告...........................................................37  
11.7 术语表..................................................................... 37  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................17  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2020) to Revision A (September 2020)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM25183  
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
5 Pin Configuration and Functions  
8
7
6
5
GND  
SW  
FB  
1
2
3
4
RSET  
TC  
VIN  
EN/UVLO  
SS/BIAS  
5-1. 8-Pin WSON NGU Package With Wettable Flanks (Top View)  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Switch node that is internally connected to the drain of the N-channel power MOSFET. Connect to  
the primary-side switching terminal of the flyback transformer.  
1
SW  
FB  
P
I
Primary-side feedback pin. Connect a resistor from FB to SW. The ratio of the FB resistor to the  
resistor at the RSET pin sets the output voltage.  
2
3
Input supply connection. Source for internal bias regulators and input voltage sensing pin.  
Connect directly to the input supply of the converter with short, low impedance paths.  
VIN  
P/I  
Enable input and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is below  
1 V, the converter is in shutdown mode with all functions disabled. If the EN/UVLO voltage is  
greater than 1 V and below 1.5 V, the converter is in standby mode with the internal regulator  
operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up sequence  
begins.  
4
EN/UVLO  
I
Soft start or bias input. Connect a capacitor from SS/BIAS to GND to adjust the output start-up  
time and input inrush current. If SS/BIAS is left open, the internal 6-ms soft-start timer is activated.  
Connect an external supply to SS/BIAS to supply bias to the internal voltage regulator and enable  
internal soft start.  
5
6
SS/BIAS  
TC  
I
I
Temperature compensation pin. Tie a resistor from TC to RSET to compensate for the  
temperature coefficient of the forward voltage drop of the secondary diode, thus improving  
regulation at the secondary-side output.  
Reference resistor tied to GND to set the reference current for FB. Connect a 12.1-kresistor  
7
8
RSET  
GND  
I
from RSET to GND.  
G
Analog and power ground. Ground connection of internal control circuits and power MOSFET.  
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1.5  
3  
MAX  
UNIT  
VIN to GND  
45  
EN/UVLO to GND  
TC to GND  
45  
6
Input voltage  
SS/BIAS to GND  
FB to GND  
14  
V
45.3  
0.3  
3
FB to VIN  
RSET to GND  
SW to GND  
70  
Output voltage  
V
SW to GND (20-ns transient)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, HBM ESD Classification Level 2(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, CDM ESD Classification Level C4B(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Input voltage  
4.5  
42  
V
V
VSW  
SW voltage  
65  
VEN/UVLO  
VSS/BIAS  
TJ  
EN/UVLO voltage  
SS/BIAS voltage  
Operating junction temperature  
42  
V
13  
V
150  
°C  
40  
6.4 Thermal Information  
LM25183  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
40.9  
UNIT  
RΘJA  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
36.9  
17.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
17.7  
ΨJB  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
LM25183  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
UNIT  
RΘJC(bot)  
Junction-to-case (bottom) thermal resistance  
2.7  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM25183  
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits aaply over the full 40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 12 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
ISHUTDOWN  
IACTIVE  
VIN shutdown current  
VEN/UVLO = 0 V  
1.8  
260  
25  
µA  
µA  
µA  
VIN active current  
VEN/UVLO = 2.5 V, VRSET = 1.8 V  
VSS/BIAS = 5 V  
375  
50  
IACTIVE-BIAS  
VIN current with BIAS connected  
ENABLE AND INPUT UVLO  
VSD-FALLING  
VSD-RISING  
VUV-RISING  
VUV-HYST  
IUV-HYST  
Shutdown threshold  
VEN/UVLO falling  
VEN/UVLO rising  
VEN/UVLO rising  
VEN/UVLO falling  
VEN/UVLO = 1.6 V  
0.3  
V
V
Standby threshold  
0.8  
1.5  
0.05  
5
1
Enable threshold  
1.45  
0.04  
4.2  
1.53  
V
Enable voltage hysteresis  
Enable current hysteresis  
V
5.5  
µA  
FEEDBACK  
IRSET  
RSET current  
100  
µA  
V
RRSET = 12.1 kΩ  
RRSET = 12.1 kΩ  
IFB = 80 µA  
VRSET  
RSET regulation voltage  
FB to VIN voltage  
FB to VIN voltage  
1.194  
1.21  
1.22  
50  
VFB-VIN1  
mV  
mV  
50  
VFB-VIN2  
IFB = 120 µA  
SWITCHING FREQUENCY  
FSW-MIN  
FSW-MAX  
tON-MIN  
Minimum switching frequency  
12  
350  
140  
kHz  
kHz  
ns  
Maximum switching frequency  
Minimum switch on-time  
DIODE THERMAL COMPENSATION  
VTC TC voltage  
POWER SWITCHES  
ITC = ±10 µA, TJ = 25°C  
ISW = 100 mA, TJ = 25°C  
1.2  
1.27  
V
RDS(on)  
MOSFET on-state resistance  
0.11  
0.135  
Ω
SOFT-START AND BIAS  
ISS  
tSS  
SS ext capacitor charging current  
5
6
µA  
ms  
Internal SS time  
VBIAS-UVLO-  
BIAS enable voltage  
VSS/BIAS rising  
VSS/BIAS falling  
4.25  
130  
4.45  
2.65  
V
RISE  
VBIAS-UVLO-  
BIAS UVLO hysteresis  
mV  
HYST  
CURRENT LIMIT  
ISW-PEAK  
Peak current limit threshold  
2.2  
2.5  
A
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
10  
°C  
°C  
TSD-HYS  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
6.6 Typical Characteristics  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
95  
90  
85  
80  
75  
12.6  
12.4  
12.2  
12  
11.8  
11.6  
11.4  
70  
VIN = 6 V  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
65  
60  
0
200  
400 600  
Load Current (mA)  
800  
1000  
0
200  
400  
Load Current (mA)  
600 800  
D103  
D101  
See 8-1  
See 8-1  
6-2. Output Voltage versus Load  
6-1. Efficiency versus Load  
VSW 10 V/div  
VSW 10 V/div  
1 ms/div  
1 ms/div  
VIN = 13.5 V, IOUT = 0.6 A  
See 8-1  
VIN = 36 V, IOUT = 0.3 A  
See 8-1  
6-3. Switching Waveform in BCM  
6-4. Switching Waveform in DCM  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 0.2 A/div  
IOUT 0.2 A/div  
VEN/UVLO 2 V/div  
VIN 10 V/div  
4 ms/div  
4 ms/div  
See 8-1  
See 8-1  
6-5. Start-up Characteristic  
6-6. ENABLE ON/OFF Characteristic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM25183  
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
102  
101  
100  
99  
104  
102  
100  
98  
98  
96  
0
6
12  
18 24  
Input Voltage (V)  
30  
36  
42  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D004  
D005  
6-7. RSET Current versus Input Voltage  
6-8. RSET Current versus Temperature  
1.8  
1.54  
1.52  
1.5  
1.6  
1.4  
1.2  
1
1.48  
1.46  
1.44  
1.42  
VEN/UVLO Rising  
VEN/UVLO Falling  
1.4  
-50  
0.8  
-50  
-25  
0
25  
50  
75  
100 125 150  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D007  
D006  
6-10. EN/UVLO Threshold Voltages versus  
6-9. TC Voltage versus Temperature  
Temperature  
5.3  
5.2  
5.1  
5
160  
155  
150  
145  
140  
135  
130  
4.9  
4.8  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D011  
6-11. EN/UVLO Hysteresis Current versus  
6-12. Minimum Switch On-Time versus  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
13  
380  
370  
360  
350  
340  
330  
320  
12.5  
12  
11.5  
11  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D012  
D013  
6-13. Minimum Switching Frequency versus  
6-14. Maximum Switching Frequency versus  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
7 Detailed Description  
7.1 Overview  
The LM25183 primary-side regulated (PSR) flyback converter is a high-density, cost-effective solution for  
industrial systems requiring less than 10 W of isolated DC/DC power. This compact, easy-to-use flyback  
converter with low IQ can be applied over a wide input voltage range from 4.5 V to 42 V, with operation down to  
3.5 V after start-up. Innovative frequency and current amplitude modulation enables high conversion efficiency  
across the entire load and line range. Primary-side regulation of the isolated output voltage using sampled  
values of the primary winding voltage eliminates the need for an opto-coupler or an auxiliary transformer winding  
for feedback. Regulation performance that rivals that of traditional opto-coupler solutions is achieved without the  
associated cost, solution size, and reliability concerns. The LM25183 converter services a wide range of  
applications including IGBT-based motor drives, factory automation, and medical equipment.  
7.2 Functional Block Diagram  
VOUT  
VIN  
DFLY  
NP : NS  
DZ  
COUT  
5 mA  
LM25183  
SS/BIAS  
BIAS  
REGULATOR  
CIN  
EN/UVLO  
Standby  
1.5 V  
1.45 V  
VDD  
VIN  
DF  
VDD UVLO  
Shutdown  
VIN  
FB  
SAMPLED  
FEEDBACK  
THERMAL  
SHUTDOWN  
1.1 V  
65-V Power  
MOSFET  
SW  
RSET  
COMP  
VDD  
gm  
VREF  
TRIMMED  
REFERENCE  
CONTROL  
LOGIC  
RTC  
RSET  
FB  
ILIM  
TC  
2.5 A  
TC  
REGULATION  
VDD  
RFB  
SS/BIAS  
GND  
Internal SS  
CSS  
7.3 Feature Description  
7.3.1 Integrated Power MOSFET  
The LM25183 is a flyback dc/dc converter with integrated 65-V, 2.5-A N-channel power MOSFET. During the  
MOSFET on-time, the transformer primary current increases from zero with a slope of VIN / LMAG (where LMAG is  
the transformer primary-referred magnetizing inductance) while the output capacitor supplies the load current.  
When the high-side MOSFET is turned off by the control logic, the switch (SW) voltage VSW swings up to  
approximately VIN + (NPS × VOUT), where NPS = NP/NS is the primary-to-secondary turns ratio of the transformer.  
The magnetizing current flows in the secondary side through the flyback diode, charging the output capacitor  
and supplying current to the load. Duty cycle D is defined as tON / tSW, where tON is the MOSFET conduction  
time and tSW is the switching period.  
7-1 shows a typical schematic of the LM25183 PSR flyback circuit. Components denoted in red are optional  
depending on the application requirements.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM25183  
GND  
FB  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
7-1. LM25183 Flyback Converter Schematic (Optional Components in Red)  
7.3.2 PSR Flyback Modes of Operation  
The LM25183 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three possible  
modes of operation as illustrated in 7-2.  
Frequency  
foldback mode  
(FFM)  
Discontinuous conduction mode (DCM)  
Boundary conduction mode (BCM)  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
% Total Rated Output Power  
7-2. Three Modes of Operation Illustrated by Variation of Switching Frequency With Load  
The LM25183 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on  
when the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary  
current reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the  
frequency increases to maintain BCM operation. 方程1 gives the duty cycle of the flyback converter in BCM.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
V
+ VD N  
(
)
OUT  
PS  
D =  
V
+ V  
+ VD N  
(
)
IN  
OUT  
PS  
(1)  
where  
VD is the forward voltage drop of the flyback diode as its current approaches zero  
方程式 2 gives the output power in BCM, where the applicable switching frequency and peak primary current are  
specified by 方程3 and 方程4, respectively.  
2
LMAG IPRI-PK(BCM)  
POUT(BCM)  
=
FSW(BCM)  
2
(2)  
1
FSW(BCM)  
=
LMAG  
LMAG  
NPS V  
IPRI-PK(BCM)  
+
÷
÷
V
+ VD  
OUT  
(
)
IN  
«
(3)  
(4)  
2V  
(
+ VD I  
OUT  
)
OUT  
IPRI-PK(BCM)  
=
V D  
IN  
As the load decreases, the LM25183 clamps the maximum switching frequency to 350 kHz, and the converter  
enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is proportional to the  
peak primary current squared as given by 方程式 5 and 方程式 6. Thus, as the load decreases, the peak current  
reduces to maintain regulation at 350-kHz switching frequency.  
2
LMAG IPRI-PK(DCM)  
POUT(DCM)  
=
FSW(DCM)  
2
(5)  
2IOUT V  
+ VD  
(
)
OUT  
IPRI-PK(DCM)  
=
LMAG FSW(DCM)  
(6)  
(7)  
LMAG IPRI-PK(DCM) FSW(DCM)  
DDCM  
=
V
IN  
At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum  
level of 0.5 A, or 20% of its 2.5-A peak value, and the MOSFET off-time extends to maintain the output load  
requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases  
as the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM25183 is  
12 kHz, which sets a minimum load requirement of approximately 0.5% full load.  
7.3.3 Setting the Output Voltage  
To minimize output voltage regulation error, the LM25183 senses the reflected secondary voltage when the  
secondary current reaches zero. The feedback (FB) resistor, which is connected between SW and FB is  
determined using 方程8, where RSET is nominally 12.1 kΩ.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
RSET  
VREF  
RFB = V  
+ VD N  
(
)
OUT  
PS  
(8)  
7.3.3.1 Diode Thermal Compensation  
The LM25183 employs a unique thermal compensation circuit that adjusts the feedback setpoint based on the  
thermal coefficient of the forward voltage drop of the flyback diode. Even though the output voltage is measured  
when the secondary current is effectively zero, there is still a non-zero forward voltage drop associated with the  
flyback diode. Select the thermal compensation resistor using 方程9.  
RFB kW  
»
ÿ
3
RTC kW =  
»
ÿ
NPS  
TCDiode mV èC  
» ÿ  
(9)  
The temperature coefficient of the diode voltage drop may not be explicitly provided in the diode data sheet, so  
the effective value can be estimated based on the measured output voltage shift over temperature when the TC  
resistor is not installed.  
7.3.4 Control Loop Error Amplifier  
The inputs of the error amplifier include a level-shifted version of the FB voltage and an internal 1.21-V reference  
set by the resistor at RSET. A type-2 internal compensation network stabilizes the converter. In BCM operation  
when the output voltage is in regulation, an on-time interval is initiated when the secondary current reaches zero.  
The power MOSFET is subsequently turned off when an amplified version of the peak primary current exceeds  
the error amplifier output.  
7.3.5 Precision Enable  
The precision EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis for  
application-specific power-up and power-down requirements. EN/UVLO connects to a comparator with a 1.5-V  
reference voltage and 50-mV hysteresis. An external logic signal can be used to drive the EN/UVLO input to  
toggle the output on and off for system sequencing or protection. The simplest way to enable the LM25183 is to  
connect EN/UVLO directly to VIN. This allows the LM25183 to start up when VIN is within its valid operating  
range. However, many applications benefit from using resistor divider RUV1 and RUV2 as shown in 7-3 to  
establish a precision UVLO level.  
LM25183  
VCC  
VIN  
5 A  
RUV1  
EN/UVLO  
+
RUV2  
UVLO  
Comparator  
1.5 V  
1.45 V  
7-3. Programmable Input Voltage UVLO With Hysteresis  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
Use 方程10 and 方程11 to calculate the input UVLO voltages turnon and turnoff voltages, respectively.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
÷
RUV1  
RUV2  
V
= VUV-RISING 1+  
IN(on)  
«
(10)  
(11)  
÷
RUV1  
RUV2  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1  
IN(off)  
«
where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds  
IUV-HYST is the hysteresis current  
The LM25183 also provides a low-IQ shutdown mode when the EN/UVLO voltage is pulled below a base-emitter  
voltage drop (approximately 0.6 V at room temperature). If the EN/UVLO voltage is below this hard shutdown  
threshold, the internal LDO regulator powers off, and the internal bias-supply rail collapses, shutting down the  
bias currents of the LM25183. The LM25183 operates in standby mode when the EN/UVLO voltage is between  
the hard shutdown and precision-enable thresholds.  
7.3.6 Configurable Soft Start  
The LM25183 has a flexible and easy-to-use soft-start control pin, SS/BIAS. The soft-start feature prevents  
inrush current impacting the LM25183 and the input supply when power is first applied. This is achieved by  
controlling the voltage at the output of the internal error amplifier. Soft start is achieved by slowly ramping up the  
target regulation voltage when the device is first enabled or powered up. Selectable and adjustable start-up  
timing options include a 6-ms internally-fixed soft start and an externally-programmable soft start.  
The simplest way to use the LM25183 is to leave SS/BIAS open. The LM25183 employs an internal soft-start  
control ramp and starts up to the regulated output voltage in 6 ms.  
However, in applications with a large amount of output capacitance, higher VOUT, or other special requirements,  
the soft-start time can be extended by connecting an external capacitor CSS from SS/BIAS to GND. A longer  
soft-start time further reduces the supply current needed to charge the output capacitors while sourcing the  
required load current. When the EN/UVLO voltage exceeds the UVLO rising threshold and a delay of 20 µs  
expires, an internal current source ISS of 5 µA charges CSS and generates a ramp to control the primary current  
amplitude. Calculate the soft-start capacitance for a desired soft-start time, tSS, using 方程12.  
CSS nF = 5 t  
ms  
»
»
ÿ
ÿ
SS  
(12)  
CSS is discharged by an internal FET when switching is disabled by EN/UVLO or thermal shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
7.3.7 External Bias Supply  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM25183  
GND  
FB  
DBIAS1  
RSET  
SS/BIAS  
DBIAS2  
12 V  
CBIAS  
22 nF  
RSET  
TC  
NP : NAUX  
7-4. External Bias Supply Using Transformer Auxiliary Winding  
The LM25183 has an external bias supply feature that reduces input quiescent current and increases efficiency.  
When the voltage at SS/BIAS exceeds a rising threshold of 4.25 V, bias power for the internal LDO regulator can  
be derived from an external voltage source or from a transformer auxiliary winding as shown in 7-4. With a  
bias supply connected, the LM25183 then uses its internal soft-start ramp to control the primary current during  
start-up.  
When using a transformer auxiliary winding for bias power, the total leakage current related to diodes DBIAS1 and  
DBIAS2 in 7-4 must be less than 1 µA across the full operating temperature range.  
7.3.8 Minimum On-Time and Off-Time  
When the internal power MOSFET is turned off, the leakage inductance of the transformer resonates with the  
SW node parasitic capacitance. The resultant ringing behavior can be excessive with large transformer leakage  
inductance and can corrupt the secondary zero-current detection. To prevent such a situation, a minimum switch  
off-time, designated as tOFF-MIN, of a maximum of 375 ns is set internally to ensure proper functionality. This sets  
a lower limit for the transformer magnetizing inductance as discussed in 8.2.1.2.  
Furthermore, noise effects as a result of power MOSFET turnon can impact the internal current sense circuit  
measurement. To mitigate this effect, the LM25183 provides a blanking time after the MOSFET turns on. This  
blanking time forces a minimum on-time, tON-MIN, of 140 ns.  
7.3.9 Overcurrent Protection  
In case of an overcurrent condition on the isolated output or outputs, the output voltage drops lower than the  
regulation level since the maximum power delivered is limited by the peak current capability on the primary side.  
The peak primary current is maintained at 2.5 A (plus an amount related to the 100-ns propagation delay of the  
current limit comparator) until the output decreases to the secondary diode voltage drop to impact the reflected  
signal on the primary side. At this point, the LM25183 assumes the output cannot be recovered and re-calibrates  
its switching frequency to 9 kHz until the overload condition is removed. The LM25183 responds with similar  
behavior to an output short circuit condition.  
For a given input voltage, 方程式 13 gives the maximum output current prior to the engagement of overcurrent  
protection. The typical threshold value for ISW-PEAK from 6.5 is 2.5 A.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM25183  
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
ISW-PEAK  
h
2
IOUT(max)  
=
«
÷
VOUT  
1
+
V
NPS  
IN  
(13)  
7.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 175°C to prevent  
further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
LM25183 restarts when the junction temperature falls to 165°C.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
EN/UVLO facilitates ON and OFF control for the LM25183. When VEN/UVLO is below approximately 0.6 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 3 μA at VIN = 24 V. The LM25183 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below its UV threshold, the converter remains off.  
7.4.2 Standby Mode  
The internal bias rail LDO regulator has a lower enable threshold than the converter itself. When VEN/UVLO is  
above 0.6 V and below the precision-enable threshold (1.5 V typically), the internal LDO is on and regulating.  
The precision enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action  
and voltage regulation are not enabled until VEN/UVLO rises above the precision enable threshold.  
7.4.3 Active Mode  
The LM25183 is in active mode when VEN/UVLO is above the precision-enable threshold and the internal bias rail  
is above its UV threshold. The LM25183 operates in one of three modes depending on the load current  
requirement:  
1. Boundary conduction mode (BCM) at heavy loads  
2. Discontinuous conduction mode (DCM) at medium loads  
3. Frequency foldback mode (FFM) at light loads  
Refer to 7.3.2 for more detail.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM25183  
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LM25183 requires only a few external components to convert from a wide range of supply voltages to one or  
more isolated output rails. To expedite and streamline the process of designing of a LM25183-based converter, a  
comprehensive LM25183 quick-start calculator is available for download to assist the designer with component  
selection for a given application. WEBENCH® online software is also available to generate complete designs,  
leveraging iterative design procedures and access to comprehensive component databases. The following  
sections discuss the design procedure for both single- and dual-output implementations using specific circuit  
design examples.  
As mentioned previously, the LM25183 also integrates several optional features to meet system design  
requirements, including precision enable, input UVLO, programmable soft start, output voltage thermal  
compensation, and external bias supply connection. Each application incorporates these features as needed for  
a more comprehensive design.  
The application circuits detailed in 8.2 show LM25183 configuration options suitable for several application  
use cases. Refer to the LM25184EVM-S12 EVM user's guide for more detail.  
8.2 Typical Applications  
For step-by-step design procedures, circuit schematics, bill of materials, PCB files, simulation and test results of LM25183-powered  
implementations, refer to the TI Reference Design library.  
8.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 12 V, 0.6 A  
The schematic diagram of a 12-V, 0.6-A PSR flyback converter is given in 8-1.  
DFLY  
VIN = 6 V...42 V  
T1  
VOUT = 12 V  
IOUT = 0.6 A  
DCLAMP  
20 V  
COUT  
DOUT  
13 V  
RUV1  
3 x  
261 kW  
22 F  
1 : 1  
CIN  
DF  
VIN  
EN/UVLO  
12.5 mH  
10 F  
SW  
FB  
RUV2  
RFB  
LM25183  
97.1 kW  
121 kW  
GND  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
261 kW  
12.1 kW  
47 nF  
8-1. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 12 V, IOUT = 0.6 A  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8.2.1.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 8-1.  
8-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
6 V to 36 V  
5.5 V on, 4 V off  
12 V  
Input voltage range  
Input UVLO thresholds  
Output voltage  
0.6 A  
Rated load current, VIN 13.5 V  
Output voltage regulation  
Output voltage ripple  
±1.5%  
< 120 mV pk-pk  
The target full-load efficiency is 89% based on a nominal input voltage of 24 V and an isolated output voltage of  
12 V. The LM25183 is chosen to deliver a fixed 12-V output voltage set by resistor RFB connected between the  
SW and FB pins. The input voltage turnon and turnoff thresholds are established by RUV1 and RUV2. The  
required components are listed in 8-2. Transformers for other single-output designs are listed in 8-3.  
8-2. List of Components for Design 1  
REF DES QTY SPECIFICATION  
VENDOR  
PART NUMBER  
CIN  
1
10 µF, 50 V, X7R, 1210, ceramic  
TDK  
C3225X7R1H106M250AC  
TDK  
C3225X7R1E226M250AB  
COUT1  
3
22 µF, 25 V, X7R, 1210, ceramic  
Taiyo Yuden  
Würth Electronik  
Kemet  
TMK325B7226MM-PR  
885012209074  
COUT2  
CSS  
0
1
1
2
1
1
1
1
1
1
1
1
100 µF, 16 V, ±20%, electrolytic  
47 nF, 16 V, X7R, 0402  
T598D107M016ATE050  
Std  
Std  
DCLAMP  
DF, DFLY  
DOUT  
RFB  
Zener, 20 V, 3 W, SMA  
3SMAJ5932B  
FSV360FP  
BZX585-B13  
Std  
Micro Commercial  
Schottky diode, 60 V, 3 A, SOD-123FL  
Zener, 13 V, 2%, SOD-523  
121 kΩ, 1%, 0402  
OnSemi  
Nexperia  
Std  
RSET  
RTC  
Std  
Std  
12.1 kΩ, 1%, 0402  
Std  
Std  
261 kΩ, 1%, 0402  
RUV1  
RUV2  
T1  
Std  
Std  
261 kΩ, 1%, 0603  
Std  
Std  
97.6 kΩ, 1%, 0402  
Coilcraft  
Texas Instruments  
ZB1053-AE  
LM25183NGUR  
12.5 μH, 3 A, 1 : 1, 13 mm × 11 mm × 10 mm  
LM25183 PSR flyback converter, VSON-8  
U1  
8-3. Magnetic Components for Single-Output Designs  
OUTPUT VOLTAGE RANGE  
Up to 5 V  
TURNS RATIO  
LMAG, ISAT  
DIMENSIONS  
VENDOR  
PART NUMBER  
ZB1051-AE  
ZB1052-AE  
ZB1053-AE  
ZB1054-AE  
ZB1055-AE  
3 : 1  
2 : 1  
1 : 1  
1 : 2  
1 : 3  
14 μH, 3 A  
14 μH, 3 A  
12.5 μH, 3 A  
12.5 μH, 3 A  
14 μH, 3 A  
5 V to 8 V  
8 V to 15 V  
13 × 11 × 10 mm  
Coilcraft  
15 V to 28 V  
28 V to 50 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM25183 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Custom Design With Excel Quickstart Tool  
Use the LM25183 quick-start calculator to select components based on the converter specifications.  
8.2.1.2.3 Flyback Transformer T1  
Choose a turns ratio of 1 : 1 based on an approximate 70% max duty cycle at minimum input voltage using 方程  
14, rounding up or down as needed. While the maximum duty cycle can approach 80% if a particularly wide  
input voltage application is needed, it increases the peak current stress of the secondary-side components.  
V
DMAX  
0.7  
5V  
IN(min)  
NPS  
=
=
= 0.95  
1-DMAX VOUT + VD 1- 0.7 12V + 0.3V  
(14)  
Select a magnetizing inductance based on the minimum off-time constraint using 方程式 15. Choose a value of  
12.5 µH to allow some margin for this application. Specify a saturation current of 3 A, above the maximum switch  
current specification of the LM25183.  
V
+ VD NPS tOFF-MIN  
)
ISW-PEAK(FFM)  
12V + 0.3V 1375ns  
(
(
)
0.5A  
OUT  
LMAG  
í
=
= 9.2H  
(15)  
Note that a higher magnetizing inductance provides a larger operating range for BCM and FFM, but the leakage  
inductance can increase based on a higher number of primary turns, NP. 方程式 16 and 方程式 17 give the  
primary and secondary winding RMS currents, respectively.  
D
IPRI-RMS  
=
IPRI-PK  
3
(16)  
2IOUT IPRI-PK NPS  
ISEC-RMS  
=
3
(17)  
Find the maximum output current for a given turns ratio using 方程式 18, where η is the efficiency and the  
typical value for ISW-PEAK is the 2.5-A switch peak current threshold. Iterate by increasing the turns ratio if the  
output current capability is too low at minimum input voltage, checking that the SW voltage rating of 65 V is not  
exceeded at maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
0.56A at V = 12V  
À
IN  
ISW-PEAK  
h
2
0.92  
2
2.5A  
Œ
IOUT(max)  
=
=
=
Ã
«
÷
«
÷
VOUT  
1
12V  
1
1
0.77A at V = 24V  
Œ
Õ
IN  
+
+
V
NPS  
V
IN  
IN  
(18)  
8.2.1.2.4 Flyback Diode DFLY  
The flyback diode reverse voltage is given by 方程19.  
V
42V  
1
IN(max)  
VD-REV  
í
+ VOUT  
=
+12V = 54V  
NPS  
(19)  
Select a 60-V, 3-A Schottky diode for this application to account for inevitable diode voltage overshoot and  
ringing related to the resonance of transformer leakage inductance and diode parasitic capacitance. Connect an  
appropriate RC snubber circuit (for example, 100 Ωand 22 pF) across the flyback diode if needed, particularly if  
the transformer leakage inductance is high. Also, choose a flyback diode with current rating that aligns with the  
maximum peak secondary winding current of NPS × ISW-PEAK  
.
8.2.1.2.5 Leakgae Inductance Clamp Circuit DF, DCLAMP  
Connect a diode-Zener clamp circuit across the primary winding to limit the peak switch voltage after MOSFET  
turnoff below the maximum level of 65 V, as given by 方程20.  
VDZ(clamp) < VSW(max) - V  
IN(max)  
(20)  
Choose a 20-V zener diode for DCLAMP to give a clamp voltage of approximately 1.5 times the reflected output  
voltage, as specified by 方程式 21. This provides a balance between the maximum switch voltage excursion and  
the leakage inductance demagnetization time. Select a Zener diode with low package parasitic inductance to  
manage the high slew-rate current during the switch turnoff transition.  
VDZ(clamp) = 1.5 NPS V  
+ VD = 1.5 112V + 0.4V = 18.6V  
(
)
(
)
OUT  
(21)  
Choose an ultra-fast switching diode or Schottky diode for DF with reverse voltage rating greater than the  
maximum input voltage and forward current rating of 2 A or higher.  
8.2.1.2.6 Output Capacitor COUT  
The output capacitor determines the voltage ripple at the converter output, limits the voltage excursion during a  
load transient, and sets the dominant pole of the small-signal response of the converter. Select an output  
capacitance using 方程式 22 to limit the ripple voltage amplitude to less than 1% of the output voltage at  
minimum input voltage and maximum load.  
2
2
2
2
12.5H2.5A  
LMAG ISW-PEAK  
(
)
1+ D  
2
1+ 0.7  
COUT  
í
=
= 20F  
«
÷
«
÷
2∂ DVOUT VOUT  
2120mV 12V  
2
(22)  
Mindful of the voltage coefficient of ceramic capacitors, select three 22-µF, 25-V capacitors in 1210 case size  
with X7S or better dielectric. Assuming operation in BCM, calculate the capacitive ripple voltage at the output  
using 方程23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM25183  
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
»
ÿ2  
Ÿ
2
2
2
2V  
+ VD  
(
)
LMAG IOUT  
LMAG IOUT  
1+ D  
1-D  
1
OUT  
DVOUT  
=
=
+
«
÷
2
2∂ DVOUT VOUT  
N
V
IN  
2COUT VOUT NPS  
Ÿ
PS  
(23)  
方程24 gives an expression for the output capacitor RMS ripple current.  
2NPS IPRI-PK  
ICOUT-RMS = IOUT  
-1  
3 IOUT  
(24)  
8.2.1.2.7 Input Capacitor CIN  
Select an input capacitance using 方程式 25 to limit the ripple voltage amplitude to less than 5% of the input  
voltage when operating at nominal input voltage.  
2
D
IPRI-PK D1-  
÷
2
«
CIN  
í
2FSW ∂ DV  
IN  
(25)  
Substituting the input current at full load, switching frequency, peak primary current, and peak-to-peak ripple  
specification gives CIN greater than 5 μF. Considering the voltage coefficient of ceramic capacitors, select a 10-  
µF, 50-V, X7R ceramic capacitor in 1210 case size. 方程26 gives the input capacitor RMS ripple current.  
D IPRI-PK  
4
ICIN-RMS  
=
-1  
2
3 D  
(26)  
8.2.1.2.8 Feedback Resistor RFB  
Select a feedback resistor, designated RFB, of 121 kΩbased on the secondary winding voltage at the end of the  
flyback conduction interval (the sum of the 12-V output voltage and the Schottky diode forward voltage drop as  
its current approaches zero) reflected by the transformer turns ratio of 1 : 1.  
V
+ VD N  
12V + 0.2V 1  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 122 kW  
0.1mA  
(27)  
8.2.1.2.9 Thermal Compensation Resistor RTC  
Select a resistor for output voltage thermal compensation, designated RTC, based on 方程28.  
RFB kW  
»
ÿ
3
121kW 3  
11.4  
RTC kW =  
=
= 261kW  
»
ÿ
NPS  
TCDiode mV èC  
» ÿ  
(28)  
8.2.1.2.10 UVLO Resistors RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turnon and turnoff thresholds of 5.5 V and 4 V, respectively, select  
the upper and lower UVLO resistors using the following expressions:  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
5.5 V ∂  
- 4 V  
IN(on)  
RUV1  
=
=
= 263kW  
(29)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
VUV-RISING  
1.5 V  
RUV2 = RUV1  
= 263kW ∂  
= 98.6kW  
V
- VUV-RISING  
5.5 V -1.5 V  
IN(on)  
(30)  
The nearest standard E96 resistor values for RUV1 and RUV2 are 261 kΩ and 97.6 kΩ, respectively. Calculate  
the actual input voltage turnon and turnoff thresholds as follows:  
÷
RUV1  
RUV2  
÷
261kW  
97.6kW  
V
= VUV-RISING 1+  
= 1.5V 1+  
= 5.51V  
IN(on)  
«
«
(31)  
(32)  
RUV1  
RUV2  
÷
261kW  
97.6kW  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1 = 1.45V 1+  
- 5A 261kW = 4.02V  
÷
IN(off)  
«
«
8.2.1.2.11 Soft-Start Capacitor CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 方程12 to achieve a soft-start time of 9 ms.  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's Power Management  
technical articles.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8.2.2 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 6 V  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
0
200  
400  
Load Current (mA)  
600  
800  
1
10  
100  
1000  
Load Current (mA)  
D101  
D102  
8-2. Efficiency (Linear Scale)  
8-3. Efficiency (Log Scale)  
12.6  
12.4  
12.2  
12  
12.6  
12.4  
12.2  
12  
11.8  
11.6  
11.4  
11.8  
11.6  
11.4  
VIN = 6 V  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
1
10  
100  
1000  
0
200  
400 600  
Load Current (mA)  
800  
1000  
Load Current (mA)  
D104  
D103  
8-5. Load Regulation (Log Scale)  
8-4. Load Regulation (Linear Scale)  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 0.2 A/div  
IOUT 0.2 A/div  
VEN/UVLO 2 V/div  
VIN 10 V/div  
4 ms/div  
4 ms/div  
VIN stepped to 24 V  
VIN = 24 V  
20-ΩLoad  
12-ΩLoad  
8-6. Start-up Characteristic  
8-7. Enable ON and OFF Characteristic  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
VSW 10 V/div  
VSW 10 V/div  
1 ms/div  
1 ms/div  
VIN = 13.5 V  
IOUT = 0.6 A  
VIN = 24 V  
IOUT = 0.6 A  
8-8. Switch Node Voltage  
8-9. Switch Node Voltage  
VSW 10 V/div  
VOUT 0.2 V/div  
IOUT 0.2 A/div  
1 ms/div  
200 ms/div  
VIN = 36 V  
IOUT = 0.6 A  
VIN = 24 V  
8-10. Switch Node Voltage  
8-11. Load Transient, 0.1 A to 0.6 A, 0.1 A/µs  
VOUT 0.2 V/div  
VOUT 0.2 V/div  
IOUT 0.2 A/div  
IOUT 0.2 A/div  
200 ms/div  
200 ms/div  
VIN = 13.5 V  
VIN = 6 V  
8-12. Load Transient, 0.1 A to 0.6 A, 0.1 A/µs  
8-13. Load Transient, 0.1 A to 0.3 A, 0.1 A/µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
Average detector  
Peak detector  
Peak detector  
Average detector  
Start 150 kHz  
Stop 30 MHz  
Start 30 MHz  
Stop 108 MHz  
VIN = 24 V  
150 kHz to 30 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
VIN = 24 V  
IOUT = 0.6 A  
30 MHz to 108 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
IOUT = 0.6 A  
8-14. CISPR 25 Class 5 Conducted EMI Plot  
8-15. CISPR 25 Class 5 Conducted EMI Plot  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM25183  
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8.2.3 Design 2: PSR Flyback Converter With Dual Outputs of 15 V and 15 V at 0.3 A  
The schematic diagram of a dual-output flyback converter intended for isolated IGBT and SiC MOSFET gate  
drive power supply applications is given in 8-16.  
DFLY1  
VIN = 4.5 V...42 V  
T1  
VOUT1 = 15 V  
IOUT1 = 0.3 A  
DCLAMP  
DOUT1  
18 V  
COUT1  
20 V  
2 x  
22 F  
1 : 1.5 : 1.5  
CIN  
DF  
VIN  
EN/UVLO  
9 mH  
10 F  
SW  
FB  
COUT2  
DOUT2  
18 V  
RFB  
2 x  
LM25183  
102 kW  
22 F  
VOUT2 = œ15 V  
IOUT2 = œ0.3 A  
GND  
DFLY2  
RSET  
TC  
RTC  
RSET  
12.1 kW  
SS/BIAS  
221 kW  
8-16. Schematic for Design 2 With VIN(nom) = 24 V, VOUT1 = 15 V, VOUT2 = 15 V, IOUT = 0.3 A  
8.2.3.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 8-4.  
8-4. Design Parameters  
DESIGN PARAMETER  
Input voltage range (steady state)  
Output 1 voltage and current (at VIN 24 V)  
Output 2 voltage and current (at VIN 24 V)  
Input UVLO thresholds  
VALUE  
4.5 V to 42 V  
15 V, 0.3 A  
15 V, 0.3 A  
4.5 V on, 4 V off  
±2%  
Output voltage regulation  
The target full-load efficiency of this LM25183 design is 90% based on a nominal input voltage of 24 V and  
isolated output voltages of 15 V and 15 V sharing a common return. The selected flyback converter  
components are cited in 8-5, including the following:  
A multi-winding flyback transformer  
Input and output capacitors  
Flyback rectifying diodes  
A flyback converter IC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM25183  
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8-5. List of Components for Design 2  
REF DES  
QTY SPECIFICATION  
VENDOR  
PART NUMBER  
TDK  
C3225X7R1H106M250AC  
UMK325AB7106KM-T  
C3225X7R1E226M250AB  
TMK325B7226MM-PR  
Micro Commercial  
OnSemi  
CIN  
1
4
10 µF, 50 V, X7R, 1210, ceramic  
Taiyo Yuden  
TDK  
COUT1, COUT2  
22 µF, 25 V, X7R, 1210, ceramic  
Taiyo Yuden  
3SMAJ5932B  
FSV360FP  
DFLS1100-7  
BZX585-C18  
Std  
DCLAMP  
1
1
2
2
1
1
1
1
1
Zener, 20 V, 3 W, SMA  
DF  
Schottky diode, 60 V, 3 A, SOD-123FL  
Schottky diode, 100 V, 1 A, POWERDI123  
Zener, 18 V, 5%, SOD-523  
DFLY1, DFLY2  
Diodes Inc.  
DOUT1, DOUT2  
Nexperia  
RFB  
RSET  
RTC  
T1  
Std  
102 kΩ, 1%, 0402  
Std  
Std  
12.1 kΩ, 1%, 0402  
Std  
Std  
221 kΩ, 1%, 0402  
9 µH, 3 A, 1 : 1.5 : 1.5, 13 mm × 11 mm × 10 mm  
LM25183 PSR flyback converter, VSON-8  
Coilcraft  
ZB1056-AE  
U1  
Texas Instruments  
LM25183NGUR  
8.2.3.2 Detailed Design Procedure  
Use the LM25183 quick-start calculator to select components based on the flyback converter specifications.  
8.2.3.2.1 Flyback Transformer T1  
Choose a primary-secondary turns ratio for a 15-V output based on an approximate 70% max duty cycle at  
minimum input voltage using 方程式 33. The transformer turns ratio when considering both outputs is thus  
specified as 1 : 1.5 : 1.5.  
V
DMAX  
0.7  
4.5V  
IN(min)  
NPS  
=
=
= 0.69  
1-DMAX VOUT + VD 1- 0.7 15V + 0.3V  
(33)  
Select a magnetizing inductance based on the minimum off-time constraint using 方程34. Choose a value of 9  
µH and a saturation current of 3 A for this application.  
V
+ VD NPS tOFF-MIN  
)
ISW-PEAK(FFM)  
15V + 0.3V 11.5375ns  
(
(
)
0.5A  
OUT  
LMAG  
í
=
= 7.7H  
(34)  
Find the maximum output current for a given turns ratio, assuming the outputs are symmetrically loaded, using  
方程35.  
0.21A at V = 12V  
À
IN  
ISW-PEAK  
h
2
0.92  
2
2.5A  
30V  
Œ
IOUT(max)  
=
=
=
Ã
«
÷
VOUT  
1
0.27A at V = 24V  
1
Œ
Õ
IN  
+
+
÷
÷
V
NPS  
V
1 3  
(
)
IN  
IN  
«
(35)  
8.2.3.2.2 Flyback Diodes DFLY1 and DFLY2  
The flyback diode reverse voltages for the positive and negative outputs are given respectively by 方程36 and  
方程37.  
V
42V  
11.5  
IN(max)  
VD1-REV  
í
+ VOUT1  
=
+15V = 79V  
NPS1  
(
)
(36)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
V
42V  
11.5  
IN(max)  
VD2-REV  
í
+ VOUT2  
=
+15V = 79V  
NPS2  
(
)
(37)  
Choose a 100-V, 2-A Schottky diode for each output to allow some margin for inevitable voltage overshoot and  
ringing related to leakage inductance and diode capacitance. Use an RC snubber circuit across each diode, for  
example, 100 Ω and 22 pF, to mitigate such overshoot and ringing, particularly if the transformer leakage  
inductance is high.  
8.2.3.2.3 Input Capacitor CIN  
The input capacitor filters the primary-winding current waveform. To prevent large ripple voltage, use a low-ESR  
ceramic input capacitor sized according to 方程式 25 for the RMS ripple current given by 方程式 26. In this  
design example, choose a 10-µF, 50-V ceramic capacitor with X7R dielectric and 1210 footprint.  
8.2.3.2.4 Output Capacitors COUT1, COUT2  
The output capacitors determine the voltage ripple at the converter outputs, limit the voltage excursion during a  
load transient, and set the dominant pole of the small-signal response of the converter.  
Mindful of the voltage coefficient of ceramic capacitors, select two 22-µF, 25-V, X7R capacitors in 1210 case size  
for each output.  
8.2.3.2.5 Feedback Resistor RFB  
Install a 102-kΩ resistor from SW to FB based on an output voltage setpoint of 15 V (plus a flyback diode  
voltage drop) reflected to the primary side by a transformer turns ratio of 1 : 1.5.  
V
OUT1 + VD1 N  
15V + 0.3V 11.5  
(
)
(
) (  
)
= 102 kW  
PS1  
RFB  
=
=
0.1mA  
0.1mA  
(38)  
(39)  
(40)  
8.2.3.2.6 Thermal Compensation Resistor RTC  
Select a resistor value for output voltage thermal compensation based on 方程39.  
RFB kW  
»
ÿ
3
102 kW 3  
11/ 5 2  
RTC kW =  
=
= 230 kW  
»
ÿ
NPS  
TCDiode mV èC  
» ÿ  
(
)
8.2.3.2.7 Output Voltage Clamp Zeners DOUT1 and DOUT2  
Calculate the power delivered to the output at no load based on 方程40.  
2
2
LMAG ISW-PEAK(FFM)  
9H0.5A  
(
)
POUT(min)  
=
FSW(min)  
=
12kHz = 14mW  
2
2
Select Zener clamp diodes to limit the voltages to a range of 110% to 120% of the nominal output voltage  
setpoints during no-load operation. Connect an 18-V Zener diode with ±2% tolerance and SOD-523 package  
across each output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
8.2.3.3 Application Curves  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
0
50  
100  
150  
Load Current (mA)  
200  
250  
300  
1
10  
Load Current (mA)  
100  
300  
D105  
D106  
8-17. Efficiency (Linear Scale)  
8-18. Efficiency (Log Scale)  
30.8  
31  
30.6  
30.4  
30.2  
30  
30.8  
30.6  
30.4  
30.2  
30  
29.8  
29.6  
29.4  
29.2  
29.8  
29.6  
29.4  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
0
50  
100  
150 200  
Load Current (mA)  
250  
300  
350  
1
10  
Load Current (mA)  
100  
500  
D107  
D108  
Outputs equally loaded  
Outputs equally loaded  
8-19. Load Regulation (Linear Scale)  
8-20. Load Regulation (Log Scale)  
VOUT1 5 V/div  
VOUT1 5 V/div  
IOUT1 0.1 A/div  
IOUT1 0.1 A/div  
VIN 10 V/div  
VOUT2 5 V/div  
VOUT2 5 V/div  
VEN/UVLO 2 V/div  
2 ms/div  
4 ms/div  
VIN stepped to 24 V  
VIN = 24 V  
75-ΩLoads  
75-ΩLoads  
8-21. Start-Up Characteristic  
8-22. ENABLE ON/OFF Characteristic  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
VSW 10 V/div  
VSW 10 V/div  
20 ms/div  
1 ms/div  
VIN = 24 V  
IOUT1 = IOUT2 = 0.1 A  
VIN = 24 V  
IOUT1 = IOUT2 = 0 A  
8-24. Switch Voltage, Medium Load  
8-23. Switch Voltage, No Load  
VSW 10 V/div  
VSW 10 V/div  
1 ms/div  
1 ms/div  
VIN = 42 V  
IOUT1 = IOUT2 = 0.3 A  
VIN = 24 V  
IOUT1 = IOUT2 = 0.3 A  
8-26. Switch Voltage, Full Load  
8-25. Switch Voltage, Full Load  
VOUT2 0.2 V/div  
VOUT2 0.2 V/div  
VOUT1 0.2 V/div  
VOUT1 0.2 V/div  
IOUT1 0.1 A/div  
IOUT1 0.1 A/div  
200 ms/div  
200 ms/div  
VIN = 13.5 V  
IOUT2 = 0.2 A  
VIN = 24 V  
IOUT2 = 0.2 A  
8-27. Positive Output Load Transient, 0.1 A to  
8-28. Positive Output Load Transient, 0.1 A to  
0.2 A  
0.2 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM25183  
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
9 Power Supply Recommendations  
The LM25183 flyback converter operates over a wide input voltage range from 4.5 V to 42 V. The characteristics  
of the input supply must be compatible with 6.1 and 6.3. In addition, the input supply must be capable of  
delivering the required input current to the fully-loaded regulator. Estimate the average input current with 方程式  
41.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
(41)  
where  
ηis the efficiency  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, special  
care is required to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse effect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitors helps damp the input resonant circuit and reduce any voltage  
overshoots. A capacitance in the range of 22 µF to 100 µF is usually sufficient to provide input damping and  
helps to hold the input voltage steady during large load transients. A typical ESR of 200 mΩ provides enough  
damping for most input circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters provides helpful suggestions when designing an input filter for any switching regulator.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
10 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI. 10-1 and 10-2 provide  
layout examples for single-output and dual-output designs, respectively.  
10.1 Layout Guidelines  
PCB layout is critical for good power supply design. There are several paths that conduct high slew-rate currents  
or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate noise and  
EMI or degrade the performance of the power supply.  
1. Bypass VIN to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place CIN as  
close as possible to the LM25183 VIN and GND pins. Ground return paths for the input capacitor or  
capacitors must consist of localized top-side planes that connect to the GND pin and exposed PAD.  
2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.  
3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
e-field or capacitive coupling.  
4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding  
terminals of the transformer.  
5. Minimize the loop area formed by the flyback rectifying diode, output capacitor, and the secondary winding  
terminals of the transformer.  
6. Tie the GND pin directly to the DAP under the device and to a heat-sinking PCB ground plane.  
7. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
8. Have a single-point ground connection to the plane. Route the return connections for the reference resistor,  
soft start, and enable components directly to the GND pin. This prevents any switched or load currents from  
flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation  
or erratic output voltage ripple behavior.  
9. Make VIN+, VOUT+, and ground bus connections short and wide. This reduces any voltage drops on the input  
or output paths of the converter and maximizes efficiency.  
10. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.  
11. Locate components RSET, RTC, and CSS as close as possible to their respective pins. Route with minimal  
trace lengths.  
12. Place a capacitor between input and output return connections to route common-mode noise currents  
directly back to their source.  
13. Provide adequate heatsinking for the LM25183 to keep the junction temperature below 150°C. For operation  
at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-  
sinking vias to connect the DAP to the PCB ground plane. If the PCB has multiple copper layers, connect  
these thermal vias to inner-layer ground planes. The connection to VOUT+ provides heatsinking for the  
flyback diode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM25183  
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
10.2 Layout Examples  
Keep the DZ clamp and RC snubber  
components close to the primary winding  
pins and use heatsinking for the Zener  
Place the input capacitor close  
to the VIN pin and connect to  
the GND plane under the IC  
Locate the RC snubber  
components close to  
the flyback diode  
Use adequate heatsinking  
copper connected to the  
cathode of the flyback  
diode (VOUT)  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Keep the secondary  
winding, flyback diode  
and output capacitor  
loop as tight as possible  
Locate the RSET, TC and FB resistors and  
the SS capacitor close to their respective pins  
Place the Y-cap close to the transformer so that common-mode  
currents from the secondary to the primary side return in a tight loop  
10-1. Single-Output PCB Layout Example  
Use heatsinking for the clamp  
Zener, especially if the transformer  
leakage inductance is high  
Place the ceramic input  
capacitor close to the IC to  
minimize the switching loop area  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Minimize the area of the  
secondary winding,  
flyback diode and output  
capacitor switching loops  
Maintain the appropriate primary-  
to-secondary clearance distance  
Place the RSET, TC, FB and SS small-signal  
components near their respective pins  
10-2. Dual-Output PCB Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
With input voltage range and current capability as specified in 11-1, the PSR flyback DC/DC converter family  
of parts from TI provides flexibility, scalability and optimized solution size for a range of applications. Using an 8-  
pin WSON package with 4-mm × 4-mm footprint and 0.8-mm pin pitch, these converters enable isolated DC/DC  
solutions with high density and low component count.  
11-1. PSR Flyback DC/DC Converter Family  
MAXIMUM LOAD CURRENT, VOUT = 12 V, NPS = 1  
PSR FLYBACK  
DC/DC CONVERTER  
INPUT VOLTAGE  
RANGE  
PEAK SWITCH CURRENT  
VIN = 4.5 V  
90 mA  
VIN = 13.5 V  
180 mA  
360 mA  
360 mA  
600 mA  
1 A  
LM5181  
LM5180  
LM25180  
LM25183  
LM25184  
4.5 V to 65 V  
4.5 V to 65 V  
4.5 V to 42 V  
4.5 V to 42 V  
4.5 V to 42 V  
0.75 A  
1.5 A  
1.5 A  
2.5 A  
4.1 A  
180 mA  
180 mA  
300 mA  
500 mA  
For development support, see the following:  
LM25183 Quick-start Calculator  
LM25183 Simulation Models  
For TI's reference design library, visit TI Designs  
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center  
To view a related device of this product, see the LM25184 product page  
TI Designs:  
Isolated IGBT Gate-Drive Power Supply Reference Design With Integrated Switch PSR Flyback Controller  
Compact, Efficient, 24-V Input Auxiliary Power Supply Reference Design for Servo Drives  
Reference Design for Power-Isolated Ultra-Compact Analog Output Module  
HEV/EV Traction Inverter Power Stage with 3 Types of IGBT/SiC Bias-Supply Solutions Reference Design  
4.5-V to 65-V Input, Compact Bias Supply With Power Stage Reference Design for IGBT/SiC Gate Drivers  
Channel-to-Channel Isolated Analog Input Module Reference Design  
SiC/IGBT Isolated Gate Driver Reference Design With Thermal Diode and Sensing FET  
>95% Efficiency, 1-kW Analog Control AC/DC Reference Design for 5G Telecom Rectifier  
3.5-W Automotive Dual-output PSR Flyback Regulator Reference Design  
TI Technical Articles:  
Flyback Converters: Two Outputs are Better Than One  
Common Challenges When Choosing the Auxiliary Power Supply for Your Server PSU  
Maximizing PoE PD Efficiency on a Budget  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM25183 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
LM25184 Single-Output EVM User's Guide (SNVU680)  
LM5180 Single-Output EVM User's Guide (SNVU592)  
LM5180 Dual-Output EVM User's Guide (SNVU609)  
How an Auxless PSR Flyback Converter can Increase PLC Reliability and Density (SLYT779)  
Why Use PSR-Flyback Isolated Converters in Dual-Battery mHEV Systems (SLYT791)  
IC Package Features Lead to Higher Reliability in Demanding Automotive and Communications Equipment  
Systems (SNVA804)  
PSR Flyback DC/DC Converter Transformer Design for mHEV Applications (SNVA805)  
Flyback Transformer Design Considerations for Efficiency and EMI (SLUP338)  
Under the Hood of Flyback SMPS Designs (SLUP261)  
White Papers:  
Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications  
(SLYY104)  
An Overview of Conducted EMI Specifications for Power Supplies (SLYY136)  
An Overview of Radiated EMI Specifications for Power Supplies (SLYY142)  
Using New Thermal Metrics Application Report (SBVA025)  
Semiconductor and IC Package Thermal Metrics Application Report (SPRA953)  
AN-2162: Simple Success with Conducted EMI from DC-DC Converters (SNVA489)  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM25183  
 
 
 
LM25183  
www.ti.com.cn  
ZHCSL44A APRIL 2020 REVISED SEPTEMBER 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages have mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LM25183  
 
MECHANICAL DATA  
NGU0008B  
SDC08B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM25183QNGURQ1

具有 65V、2.5A 集成式 MOSFET 的汽车类 42V 输入电压非光电反激式转换器 | NGU | 8 | -40 to 150
TI

LM25184

具有 65V、4.1A 集成式 MOSFET 的 42V 输入电压非光电反激式转换器
TI

LM25184-Q1

具有 65V、4.1A 集成式 MOSFET 的汽车类 42V 输入电压非光电反激式转换器
TI

LM25184NGUR

具有 65V、4.1A 集成式 MOSFET 的 42V 输入电压非光电反激式转换器 | NGU | 8 | -40 to 150
TI

LM25184QNGURQ1

具有 65V、4.1A 集成式 MOSFET 的汽车类 42V 输入电压非光电反激式转换器 | NGU | 8 | -40 to 150
TI

LM2524

Regulating Pulse Width Modulator
NSC

LM2524D

Regulating Pulse Width Modulator
NSC

LM2524DMDC

暂无描述
NSC

LM2524DMWC

暂无描述
NSC

LM2524DN

Regulating Pulse Width Modulator
NSC

LM2524J

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,DIP,16PIN,CERAMIC
TI

LM2524J/A+

Voltage-Mode SMPS Controller
ETC