LM2775QDSGTQ1 [TI]

汽车级、2.7V 至 5.5V 输入电压、200mA 输出电流、5V 固定输出电压加倍器 | DSG | 8 | -40 to 125;
LM2775QDSGTQ1
型号: LM2775QDSGTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、2.7V 至 5.5V 输入电压、200mA 输出电流、5V 固定输出电压加倍器 | DSG | 8 | -40 to 125

文件: 总30页 (文件大小:2842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
LM2775-Q1 开关电容5V 升压转换器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
LM2775-Q1 是一款稳压开关电容器加倍器具有低噪  
声输出电压。LM2775-Q1 可在 3.1V 5.5V 输入电压  
范围内提供高达 200mA 的输出电流并且在输入电压  
低至 2.7V 时提供高达 125mA 的输出电流。通过对  
3.3V 的稳压系统轨进行升压LM2775-Q1 可提供成本  
优化的 5V200mA 电源来为 CAN 收发器和其他负载  
供电。该器件可用于对那些不使用宽输入电压进行预升  
压或冷启动的汽车系统进行后升压。在低输出电流下,  
LM2775-Q1 可以通过在脉冲频率调(PFM) 模式下运  
行来降低自身的静态电流。可通过将 PFM 引脚驱动为  
高电平或低电平的方式来启用或禁用 PFM 模式。此  
当该器件关断时用户可通过将 OUTDIS 引脚设  
置为高电平或低电平选择将输出电压拉至 GND 或保  
持在高阻抗状态。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
2.7V 5.5V 的输入电压范围  
• 固5V 输出  
200mA 输出电流  
• 无电感器解决方案3 个小型陶瓷电容器  
• 关断期间VIN 断开负载  
• 电流限制和过热保护  
2MHz 开关频率  
• 轻负载电流条件下支PFM 操作PFM 引脚连接  
高电平)  
2 应用  
LM2775-Q1 使用了 TI 8 引脚 WSON 封装该封装  
具有出色的热属性可以在几乎任何额定运行条件下防  
止器件过热。  
CAN 收发器供电  
毫米波雷达  
ADAS 摄像头电源  
器件信息(1)  
封装尺寸标称值)  
器件型号  
LM2775-Q1  
封装  
WSON (8)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
5.04  
5.02  
5
LM2775-Q1  
5 V @ up to 200 mA  
VIN  
EN  
VOUT  
2.7 V to 5.5 V  
2.2 mF  
2.2 mF  
C1+  
C1-  
1 mF  
4.98  
4.96  
PFM  
OUTDIS  
GND  
Copyright © 2017, Texas Instruments Incorporated  
4.94  
TJ=-40èC  
典型应用电路  
TJ=+25èC  
4.92  
TJ=+85èC  
TJ=+125èC  
4.9  
1E-5  
0.0001  
0.001  
IOUT (A)  
0.01  
0.05  
0.2 0.5  
Fig3  
负载调节  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAH6  
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 12  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 18  
11 Device and Documentation Support..........................19  
11.1 接收文档更新通知................................................... 19  
11.2 支持资源..................................................................19  
11.3 Trademarks............................................................. 19  
11.4 Electrostatic Discharge Caution..............................19  
11.5 Glossary..................................................................19  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Typical Characteristics................................................6  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (November 2019) to Revision C (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
• 更正了应用..........................................................................................................................................................1  
Changes from Revision A (September 2018) to Revision B (November 2019)  
Page  
• 更改了负载稳压图...............................................................................................................................................1  
Changed Abs Max Ratings TJ-MAX 'Max' temp from 125 to 150......................................................................... 4  
Added IOUT spec to 6.3 table..........................................................................................................................4  
Changed maximum ambient temp range from 85 to 125°C in the 'Condition statement of 6.5 table............ 5  
Added Thermal shutdown spec to Electrical Characteristics table ....................................................................5  
Changed TA to TJ= 25°C in Conditions statement of 6.7 section...................................................................6  
Updated Typical Characteristics graphs ............................................................................................................ 6  
Updated Application Curve 8-4 ................................................................................................................... 16  
Changes from Revision * (June 2018) to Revision A (September 2018)  
Page  
• 删除了“预告信息”标题。数据表内为量产数据。.............................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
5-1. 8-Pin WSON with Thermal Pad DSG Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
PFM  
C1–  
C1+  
I
PFM mode enable. Allow or disallow PFM operation. 1 = PFM enabled, 0 = PFM disabled  
2
P
P
Flying capacitor pin  
Flying capacitor pin  
3
Output disconnect option. 1 = Active output discharge during shutdown, 0 = High impedance  
output without pull-down during shutdown.  
4
OUTDIS  
I
5
EN  
VOUT  
VIN  
I
O
Chip enable. 1 = Enabled, 0 = Disabled  
Charge pump output  
Input voltage  
6
7
P
8
GND  
GND  
G
Ground  
Thermal Pad  
GND  
Connect to GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM2775-Q1  
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
UNIT  
V
VIN, VOUT  
6
EN, OUTDIS, PFM  
VIN + 0.3 with 6 V Max  
V
Continuous power dissipation  
Internally Limited  
°C  
°C  
°C  
(2)  
Junction temperature (TJ-MAX  
Storage temperature, Tstg  
)
150  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) High junction temperature degrade operating lifetimes. Operating lifetime is de-rated for juction temperatures greater than 125°C  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
5.5  
UNIT  
VIN  
V
Junction temperature (TJ )  
IOUT  
125  
°C  
40  
200(1)  
mA  
(1) Maximum output current is specified when TJ<TTSD  
.
6.4 Thermal Information  
LM2775-Q1  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
71.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
95.0  
41.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.2  
ψJT  
41.8  
ψJB  
RθJC(bot)  
12.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
 
 
 
 
 
 
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
Typical limits tested at TJ = 25°C. Minimum and maximum limits apply over the full operating ambient temperature range  
(40°C TJ +125°C). VIN = 3.6 V, CIN = COUT = 2.2 µF, C1 = 1 µF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5
MAX  
5.2  
UNIT  
V
VOUT  
IQ  
Output voltage regulation  
IOUT = 180 mA  
4.8  
75  
150  
µA  
mA  
µA  
µA  
mA  
V
IOUT = 0 mA, PFM = 1’  
IOUT = 0 mA, PFM = 0’  
EN = '0'  
Quiescent current  
5
ISD  
Shutdown current  
0.7  
500  
600  
3
IOUTDIS  
ICL  
Output discharge current  
Input current limit  
OUTDIS = '1'  
VIL  
Input logic low: EN, OUTDIS, PFM  
Input logic high: EN, OUTDIS, PFM  
0
0.4  
VIN  
VIH  
1.2  
V
VIN falling  
2.4  
2.6  
150  
20  
UVLO  
TTSD  
Undervoltage lockout  
V
VIN rising  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
°C  
°C  
TJ falling below TTSD  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switching frequency  
1.7  
2
2.3  
MHz  
ƒSW  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM2775-Q1  
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
TJ = 25°C, VIN = 3.6 V, CIN = COUT = 10 µF (10-V 0402 case), C1 = 1 µF (10-V 0402 case), VEN = VIN  
.
5.2  
5.1  
5
5.2  
5.1  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
TJ = -40èC  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VIN (V)  
VIN (V)  
Fig1  
Fig2  
ILOAD = 200 mA  
PFM = '0'  
ILOAD = 200 mA  
PFM = '1'  
6-1. PWM Output Regulation  
6-2. PFM Output Regulation  
5.04  
5.02  
5
5.15  
5.1  
5.05  
5
4.98  
4.96  
4.94  
4.92  
4.9  
TJ=-40èC  
TJ=+25èC  
TJ=+85èC  
TJ=+125èC  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
4.95  
4.9  
1E-5  
0.0001  
0.001  
IOUT (A)  
0.01  
0.05  
0.2 0.5  
1E-5  
0.0001  
0.001  
IOUT (A)  
0.01  
0.05  
0.2 0.5  
Fig3  
Fig4  
VIN = 3.3 V  
PFM = '0'  
VIN = 3.3 V  
PFM = '1'  
6-3. Load Regulation  
6-4. Load Regulation  
3.5E-6  
3.25E-6  
3E-6  
5.2  
5
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
2.75E-6  
2.5E-6  
2.25E-6  
2E-6  
4.8  
4.6  
4.4  
1.75E-6  
1.5E-6  
1.25E-6  
1E-6  
TJ = -40èC  
7.5E-7  
5E-7  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
2.5E-7  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
4.2  
0.0001  
VIN (V)  
0.001  
0.01 0.02 0.05 0.1 0.2  
0.5  
Fig6  
IOUT (A)  
Fig5  
EN = '0'  
VIN = 2.7 V  
PFM = '0'  
6-6. Shutdown Current  
6-5. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
1.75E-6  
1.5E-6  
1.25E-6  
1E-6  
0.01  
0.007  
0.005  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
0.003  
0.002  
0.001  
0.0007  
0.0005  
7.5E-7  
5E-7  
0.0003  
0.0002  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
2.5E-7  
0.0001  
7E-5  
5E-5  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VIN (V)  
VIN (V)  
Fig7  
Fig8  
EN = '0'  
OUTDIS = '0'  
ILOAD = 0 mA  
PFM = '1'  
6-7. Output Leakage Current  
6-8. PFM Quiescent Current  
0.015  
0.014  
0.013  
0.012  
0.011  
0.01  
2.16  
2.14  
2.12  
2.1  
TJ = -40èC  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
TJ = +125èC  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
2.08  
2.06  
2.04  
2.02  
2
2.7  
2.7  
3.1  
3.5  
3.9  
VIN (V)  
4.3  
4.7  
5.1  
5.5  
3.1  
3.5  
3.9  
VIN (V)  
4.3  
4.7  
5.1  
5.5  
Fig9  
Fig1  
ILOAD = 0 mA  
PFM = '0'  
6-10. Switching Frequency  
6-9. PWM Quiescent Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
60  
40  
20  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
0
2E-5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
VIN (V)  
IOUT (A)  
Fig1  
Fig1  
ILOAD = 100 mA  
PFM = '0'  
VIN = 3.3 V  
PFM = '0'  
6-11. Efficiency vs Input Voltage  
6-12. Efficiency vs Load Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM2775-Q1  
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
80  
60  
40  
20  
0
VOUT (100 mV/DIV)  
+5 V Offset  
ILOAD (100 mA/DIV)  
TJ = -40èC  
TJ = +25èC  
TJ = +85èC  
TJ = +125èC  
Time (200 ms / DIV)  
2E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
IOUT (A)  
Fig1  
VIN = 3.6 V  
ILOAD = 1 mA to 100 mA  
PFM = '1'  
VIN = 3.3 V  
PFM = '1'  
6-14. PFM Load Step  
6-13. Efficiency vs Load Current  
VOUT (2 V/DIV)  
VOUT (100 mV/DIV)  
+5 V Offset  
EN  
ILOAD (100 mA/DIV)  
Time (200 ms / DIV)  
Time (10 ms / DIV)  
VIN = 3.6 V  
ILOAD = 1 mA to 100 mA  
PFM = '0'  
VIN = 3.6 V  
OUTDIS = '0'  
6-15. PWM Load Step  
6-16. Output Discharge Disabled  
VIN (2 V/DIV)  
EN  
EN  
VOUT (2 V/DIV)  
VOUT (2 V/DIV)  
IIN (1 A/DIV)  
IOUT (100 mA/DIV)  
Time (20 ms / DIV)  
Time (200 ms / DIV)  
VIN = 3.6 V  
OUTDIS = '1'  
VIN = 3.6 V  
ILOAD = 100 mA  
6-17. Output Discharge Enabled  
6-18. Start-Up into a Load  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM2775-Q1 is a regulated switched capacitor doubler that, by combining the principles of switched-  
capacitor voltage boost and linear regulation, generates a regulated output from an extended Li-Ion input voltage  
range. A two-phase non-overlapping clock generated internally controls the operation of the doubler. During the  
charge phase (φ1), the flying capacitor (C1) is connected between the input and ground through internal pass  
transistor switches and is charged to the input voltage. In the pump phase that follows (φ2), the flying capacitor  
is connected between the input and output through similar switches. Stacked atop the input, the charge of the  
flying capacitor boosts the output voltage and supplies the load current.  
A traditional switched capacitor doubler operating in this manner uses switches with very low on-resistance to  
generate an output voltage that is 2× the input voltage. Regulation is achieved by modulating the current of the  
two switches connected to the VIN pin (one switch in each phase).  
7.2 Functional Block Diagram  
C1-  
C1+  
LM2775-Q1  
S1  
S3  
S2  
S4  
f1  
f2  
f1  
f2  
VOUT  
OCL =  
Current Limit  
VIN  
OCL  
OUTDIS  
GND  
PFM  
EN  
PFM EN  
1.2-V  
Ref.  
2-MHz  
Osc.  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Pre-Regulation  
The very low input current ripple of the LM2775-Q1, resulting from internal pre-regulation, adds minimal noise to  
the input line. The core of the device is very similar to that of a basic switched capacitor doubler: it is composed  
of four switches and a flying capacitor (external). Regulation is achieved by controlling the current through the  
two switches connected to the VIN pin (one switch in each phase). The regulation is done before the voltage  
doubling, giving rise to the term "pre-regulation". It is pre-regulation that eliminates most of the input current  
ripple that is a typical and undesirable characteristic of a many switched capacitor converters.  
7.3.2 Input Current Limit  
The LM2775-Q1 contains current limit circuitry that protects the device in the event of excessive input current  
and/or output shorts to ground. The input current is limited to 600 mA (typical) when the output is shorted directly  
to ground. When the device is current limiting, power dissipation in the device is likely to be quite high. In this  
event, thermal cycling should be expected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM2775-Q1  
 
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
7.3.3 PFM Mode  
To minimize quiescent current during light load operation, the LM2775-Q1 provides a PFM operation option  
(selectable via the PFM pin. '1' = PFM allowed, '0' = Fixed frequency). By allowing the charge pump to only  
switch when the VOUT voltage decays to a typical 5.05 V, the quiescent current drawn from the power source is  
minimized. The frequency of pulsed operation is not limited and can drop into the sub-1-kHz range when  
unloaded. As the load increases, the frequency of pulsing increases.  
When PFM mode is disabled, the device operates in a constant frequency mode. In this mode, the quiescent  
current remains at normal levels even when the load current is decreased. The main advantages of fixed  
frequency operation include a lower output voltage ripple level due to the constant switching and a predictable  
switching frequency that stays at 2 MHz which can be important in noise sensitive applications.  
7.3.4 Output Discharge  
The LM2775-Q1 provides two different output discharge modes upon entering a shutdown state (EN pin = '0')  
after running in the on state (EN = '1'). The first mode is high impendance mode (OUTDIS = '0'). In this mode,  
the output remains high even when the EN pin is driven low. This enables use in applications where the  
LM2775-Q1 output might be tied to a system rail that has another power source connected (USBOTG). When  
OUTDIS = 0, the output of the device draws a minimal current from the output supply (1.6 µA typical).  
In Discharge Mode (OUTDIS pin = '1'), the LM2775-Q1 actively pulls down on the output of the device until the  
output voltage reaches GND. In this mode, the current drawn from the output is approximately 450 µA.  
7.3.5 Thermal Shutdown  
The LM2775-Q1 implements a thermal shutdown mechanism to protect the device from damage due to  
overheating. When the junction temperature rises to 150°C (typical), the part switches into shutdown mode. The  
device releases thermal shutdown when the junction temperature of the part is reduced to 130°C (typical).  
Thermal shutdown is most often triggered by self-heating, which occurs when there is excessive power  
dissipation in the device and/or insufficient thermal dissipation. LM2775-Q1 power dissipation increases with  
increased output current and input voltage. When self-heating brings on thermal shutdown, thermal cycling is the  
typical result. Thermal cycling is the repeating process where the part self-heats, enters thermal shutdown  
(where internal power dissipation is practically zero), cools, turns on, and then heats up again to the thermal  
shutdown threshold. Thermal cycling is recognized by a pulsing output voltage and can be stopped be reducing  
the internal power dissipation (reduce input voltage and/or output current) or the ambient temperature. If thermal  
cycling occurs under desired operating conditions, thermal dissipation performance must be improved to  
accommodate the power dissipation of the LM2775-Q1. The WSON package is designed to have excellent  
thermal properties that, when soldered to a PCB designed to aid thermal dissipation, allows the device to  
operate under very demanding power dissipation conditions.  
7.3.6 Undervoltage Lockout  
The LM2775-Q1 has an internal comparator that monitors the voltage at VIN and forces the device into  
shutdown if the input voltage drops to 2.4 V. If the input voltage rises above 2.6 V, the LM2775-Q1 resumes  
normal operation  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown  
The LM2775-Q1 enters Shutdown Mode if one of the two conditions are met.  
If VIN is removed or allowed to sag to ground, the device enters shutdown.  
If the EN pin is driven low when VIN is within the normal operating range.  
In Shutdown, the LM2775-Q1 typically draws less than 1 µA from the supply. Depending on the state of the  
OUTDIS pin, the output is pulled low when entering shutdown (OUTDIS = '1'), or it remains near the final output  
voltage with the output in a low leakage state (OUTDIS = '0').  
7.4.2 Boost Mode  
The LM2775-Q1 is in Boost Mode if VIN is within the normal operating range, and the EN pin is driven high.  
Depending on the state of the PFM pin, the device either regulates the output via a PFM burst mode (PFM = '1')  
or via a constant switching mode (PFM = '0').  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM2775-Q1  
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LM2775-Q1 can create a 5-V system rail capable of delivering up to 200 mA of output current to the load.  
The 2-MHz switched capacitor boost allows for the use of small value discrete external components.  
8.2 Typical Application  
LM2775-Q1  
5V @ 200mA  
VIN  
VOUT  
System  
Battery  
10 mF  
10 mF  
C1+  
PFM  
1 mF  
C1-  
OUTDIS  
GND  
Controller  
EN  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Typical LM2775-Q1 Configuration  
8.2.1 Design Requirements  
DESIGN PARAMETER  
Input voltage range  
Output current range  
EXAMPLE VALUE  
2.7 V to 5.5 V  
0 mA to 200 mA (Max. current will depend on VIN)  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Current Capability  
The LM2775-Q1 provides 200 mA of output current when the input voltage is within 3.1 V to 5.5 V.  
Note  
Understanding relevant application issues is recommended and a thorough analysis of the application  
circuit should be performed when using the part outside operating ratings and/or specifications to  
ensure satisfactory circuit performance in the application. Special care should be paid to power  
dissipation and thermal effects. These parameters can have a dramatic impact on high-current  
applications, especially when the input voltage is high. (see the 8.2.2.3 section).  
The schematic of 8-2 is a simplified model of the LM2775-Q1 that is useful for evaluating output current  
capability. The model shows a linear pre-regulation block (Reg), a voltage doubler (2×), and an output resistance  
(ROUT). Output resistance models the output voltage droop that is inherent to switched capacitor converters. The  
output resistance of the device is 3.5 (typical) and is approximately equal to twice the resistance of the four  
LM2775-Q1 switches. When the output voltage is in regulation, the regulator in the model controls the voltage V'  
to keep the output voltage equal to 5 V ± 4%. With increased output current, the voltage drop across ROUT  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
increases. To prevent droop in output voltage, the voltage drop across the regulator is reduced, V' increases,  
and VOUT remains at 5 V. When the output current increases to the point that there is zero voltage drop across  
the regulator, V' equals the input voltage, and the output voltage is near the edge of regulation. Additional output  
current causes the output voltage to fall out of regulation, and the LM2775-Q1 operation is similar to a basic  
open-loop doubler. As in a voltage doubler, increase in output current results in output voltage drop proportional  
to the output resistance of the doubler. The out-of-regulation LM2775-Q1 output voltage can be approximated  
by:  
VOUT = 2 × VIN IOUT × ROUT  
(1)  
Again, 方程1 only applies at low input voltage and high output current where the LM2775-Q1 is not regulating.  
See Output Current vs. Output Voltage curves in the 6.7 section for more details.  
LM2775-Q1  
VIN  
VOUT  
V '  
2×V '  
ROUT  
Reg  
2×  
Output Resistance Model  
8-2. LM2775-Q1 Output Resistance Model  
A more complete calculation of output resistance takes into account the effects of switching frequency, flying  
capacitance, and capacitor equivalent series resistance (ESR) (see 方程2).  
1
+ ESR  
COUT  
R
= 2 R  
+
+ 4 ESR  
C1  
OUT  
SW  
F
ì C  
1
SW  
(2)  
Switch resistance component (3 typical) dominates the output resistance equation of the LM2775-Q1. With a  
2-MHz typical switching frequency, the 1/(F×C) component of the output resistance contributes only 0.5 to the  
total output resistance. Increasing the flying capacitance only provides minimal improvement to the total output  
current capability of the LM2775-Q1. In some applications it may be desirable to reduce the value of the flying  
capacitor below 1 µF to reduce solution size and/or cost, but this should be done with care so that output  
resistance does not increase to the point that undesired output voltage droop results. If ceramic capacitors are  
used, ESR will be a negligible factor in the total output resistance, as the ESR of quality ceramic capacitors is  
typically much less than 100 mΩ.  
8.2.2.2 Efficiency  
Charge-pump efficiency is derived in 方程式 3 and 方程式 4 (supply current and other losses are neglected for  
simplicity):  
IIN = G × IOUT E = (VOUT × IOUT) ÷ (VIN × IIN) = VOUT ÷ (G × VIN)  
(3)  
If one includes the quiescent current drawn by the LM2775-Q1 to operate, the following can be derived :  
P
V
ìI  
OUT  
OUT OUT  
E =  
=
P
V
ì (2 I  
+ I )  
OUT Q  
IN  
IN  
(4)  
In 方程3, G represents the charge pump gain. Efficiency is at its highest as G × VIN approaches VOUT. For the  
LM2775-Q1 device, G = 2.  
8.2.2.3 Power Dissipation  
LM2775-Q1 power dissipation (PD) is calculated simply by subtracting output power from input power:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM2775-Q1  
 
 
 
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
PD = PIN POUT = [VIN × (2 × IOUT + IQ)] [VOUT × IOUT  
]
(5)  
Power dissipation increases with increased input voltage and output current, up to 1.35 W at the ends of the  
operating ratings (VIN = 5.5 V, IOUT = 200 mA). Internal power dissipation self-heats the device. Dissipating this  
amount power/heat so the LM2775-Q1 does not overheat is a demanding thermal requirement for a small  
surface-mount package. When soldered to a PCB with layout conducive to power dissipation, the excellent  
thermal properties of the WSON package enable this power to be dissipated from the LM2775-Q1 with little or no  
derating, even when the circuit is placed in elevated ambient temperatures.  
LM2775-Q1  
Ideal  
Switched-  
Capacitor  
Doubler  
VIN  
V ' @ 2 × VIN  
VOUT = 5 V  
IOUT  
Linear  
Regulator  
(IQ = 0)  
I ' = IOUT  
IIN = (2 × IOUT) + IQ  
IQ  
Power Model  
Copyright © 2017, Texas Instruments Incorporated  
8-3. Power Model  
8.2.2.4 Recommended Capacitor Types  
The LM2775-Q1 requires 3 external capacitors for proper operation. Surface-mount multi-layer ceramic  
capacitors are recommended. These capacitors are small, inexpensive, and have very low ESR (15 mΩ  
typical). Tantalum capacitors, OS-CON capacitors, and aluminum electrolytic capacitors generally are not  
recommended for use with the device due to their high ESR compared to ceramic capacitors.  
For most applications, ceramic capacitors with an X7R or X5R temperature characteristic are preferred for use  
with the LM2775-Q1. These capacitors have tight capacitance tolerance (as good as ±10%) and hold their value  
over temperature (X7R: ±15% over 55°C to 125°C; X5R: ±15% over 55°C to 85°C).  
Capacitors with a Y5V or Z5U temperature characteristic are generally not recommended for use with the  
LM2775-Q1. These types of capacitors typically have wide capacitance tolerance (80% to 20%) and vary  
significantly over temperature (Y5V: 22%, 82% over 30°C to 85°C range; Z5U: 22%, 56% over 10°C to  
85°C range). Under some conditions, a 1-µF-rated Y5V or Z5U capacitor could have a capacitance as low as 0.1  
µF. Such detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum  
capacitance requirements of the LM2775-Q1.  
Net capacitance of a ceramic capacitor decreases with increased DC bias. This degradation can result in lower  
capacitance than expected on the input and/or output, resulting in higher ripple voltages and currents. Using  
capacitors at DC-bias voltages significantly below the capacitor voltage rating usually minimizes DC-bias effects.  
Consult capacitor manufacturers for information on capacitor DC-bias characteristics.  
Capacitance characteristics can vary quite dramatically with different application conditions, capacitor types, and  
capacitor manufacturers. It is strongly recommended that the LM2775-Q1 circuit be thoroughly evaluated early in  
the design-in process with the mass-production capacitors of choice. This helps ensure that any such variability  
in capacitance does not negatively impact circuit performance.  
The voltage rating of the output capacitor should be 10 V or more. All other capacitors should have a voltage  
rating at or above the maximum input voltage of the application.  
8.2.2.5 Output Capacitor and Output Voltage Ripple  
The output capacitor in the LM2775-Q1 circuit (COUT) directly impacts the magnitude of output voltage ripple.  
Other prominent factors also affecting output voltage ripple include input voltage, output current, and flying  
capacitance. One important generalization can be made: increasing (decreasing) the output capacitance results  
in a proportional decrease (increase) in output voltage ripple. A simple approximation of output ripple is  
determined by calculating the amount of voltage droop that occurs when the output of the LM2775-Q1 is not  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
being driven. This occurs during the charge phase (φ1). During this time, the load is driven solely by the charge  
on the output capacitor. The magnitude of the ripple thus follows the basic discharge equation for a capacitor (I =  
C × dV/dt), where discharge time is one-half the switching period, or 0.5/FSW (see 方程6).  
I
0.5  
OUT  
RIPPLE  
=
ì
Peak -Peak  
C
F
SW  
OUT  
(6)  
A more thorough and accurate examination of factors that affect ripple requires including effects of phase non-  
overlap times and output capacitor ESR. In order for the LM2775-Q1 to operate properly, the two phases of  
operation must never coincide. (If this were to happen all switches would be closed simultaneously, shorting  
input, output, and ground). Thus, non-overlap time is built into the clocks that control the phases. Because the  
output is not being driven during the non-overlap time, this time should be accounted for in calculating ripple.  
Actual output capacitor discharge time is approximately 60% of a switching period, or 0.6/FSW (see 方程7).  
«
÷
÷
I
0.6  
OUT  
RIPPLE  
=
ì
+ (2 ìI  
ì ESR  
)
Peak-Peak  
OUT  
COUT  
C
F
SW  
OUT  
(7)  
Note  
In typical high-current applications, a 10-µF, 10-V low-ESR ceramic output capacitor is recommended.  
Different output capacitance values can be used to reduce ripple, shrink the solution size, and/or cut  
the cost of the solution. But changing the output capacitor may also require changing the flying  
capacitor and/or input capacitor to maintain good overall circuit performance. If a small output  
capacitor is used and PFM mode is enabled, the output ripple can become large during the transition  
between PFM mode and constant switching. To prevent toggling, a 2-µF capacitance is  
recommended. For example, a 10-µF, 10-V output capacitor in a 0402 case size will typically only  
have 2-µF capacitance when biased to 5 V.  
High ESR in the output capacitor increases output voltage ripple. If a ceramic capacitor is used at the output, this  
is usually not a concern because the ESR of a ceramic capacitor is typically very low and has only a minimal  
impact on ripple magnitudes. If a different capacitor type with higher ESR is used (tantalum, for example), the  
ESR could result in high ripple. To eliminate this effect, the net output ESR can be significantly reduced by  
placing a low-ESR ceramic capacitor in parallel with the primary output capacitor. The low ESR of the ceramic  
capacitor is in parallel with the higher ESR, resulting in a low net ESR based on the principles of parallel  
resistance reduction.  
8.2.2.6 Input Capacitor and Input Voltage Ripple  
The input capacitor (CIN) is a reservoir of charge that aids a quick transfer of charge from the supply to the flying  
capacitor during the charge phase of operation. The input capacitor helps to keep the input voltage from  
drooping at the start of the charge phase when the flying capacitor is connected to the input. It also filters noise  
on the input pin, keeping this noise out of sensitive internal analog circuitry that is biased off the input line.  
Much like the relationship between the output capacitance and output voltage ripple, input capacitance has a  
dominant and first-order effect on input ripple magnitude. Increasing (decreasing) the input capacitance results in  
a proportional decrease (increase) in input voltage ripple. Input voltage, output current, and flying capacitance  
also affect input ripple levels to some degree.  
In typical high-current applications, a 10-µF low-ESR ceramic capacitor is recommended on the input. Different  
input capacitance values can be used to reduce ripple, shrink the solution size, and/or cut the cost of the  
solution. But changing the input capacitor may also require changing the flying capacitor and/or output capacitor  
to maintain good overall circuit performance.  
8.2.2.7 Flying Capacitor  
The flying capacitor (C1) transfers charge from the input to the output. Flying capacitance can impact both output  
current capability and ripple magnitudes. If flying capacitance is too small, the LM2775-Q1 may not be able to  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM2775-Q1  
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
regulate the output voltage when load currents are high. On the other hand, if the flying capacitance is too large,  
the flying capacitor might overwhelm the input and output capacitors, resulting in increased input and output  
ripple.  
In typical high-current applications, 1-µF low-ESR ceramic capacitors are recommended for the flying capacitor.  
Polarized capacitors (tantalum, aluminum electrolytic, etc.) must not be used for the flying capacitor, as they  
could become reverse-biased during LM2775-Q1 operation.  
8.2.3 Application Curve  
5.04  
5.02  
5
4.98  
4.96  
4.94  
TJ=-40èC  
TJ=+25èC  
4.92  
TJ=+85èC  
TJ=+125èC  
4.9  
1E-5  
0.0001  
0.001  
IOUT (A)  
0.01  
0.05  
0.2 0.5  
Fig3  
VIN = 3.3 V  
PFM = '0'  
8-4. Load Regulation  
8.2.4 USB OTG / Mobile HDMI Power Supply  
V
BAT  
(System Voltage)  
LM2775-Q1  
(Host Mode  
VBUS Power)  
PFM  
EN  
OUTDIS  
USB Connector  
V
OUT  
/ V  
(5 V)  
BUS  
V
BUS  
Dual Role  
Application  
Processor  
ID  
D+  
D-  
USB OTG  
Transceiver  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-5. USB OTG Configuration  
8.2.4.1 Design Requirements  
DESIGN PARAMETER  
Input voltage range  
Output current range  
EXAMPLE VALUE  
2.7 V to 5.5 V  
0 mA to 200 mA (Max. current will depend on VIN)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
8.2.4.2 Detailed Design Procedure  
The 5-V output mode is normally used for the USB OTG / Mobile HDMI application. Therefore, the LM2775-Q1  
can be enabled/disabled by applying a logic signal on only the EN pin while grounding the OUTDIS pin.  
Depending on the USB/HDMI mode of the application, the LM2775-Q1 can be enabled to drive the power bus  
line (Host), or disabled to put its output in high impedance allowing an external supply to drive the bus line  
(Slave). In addition to the high impedance-backdrive protection, the output current limit protection is 250 mA  
(typical), well within the USB OTG and HDMI requirements.  
8.2.4.3 Application Curve  
1.75E-6  
1.5E-6  
1.25E-6  
1E-6  
7.5E-7  
5E-7  
TJ = -40èC  
TJ = +25èC  
2.5E-7  
TJ = +85èC  
TJ = +125èC  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VIN (V)  
Fig7  
EN = '0'  
OUTDIS = '0'  
8-6. Output Leakage Current High Z  
9 Power Supply Recommendations  
The LM2775-Q1 is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the device additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM2775-Q1  
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Proper board layout helps to ensure optimal performance of the LM2775-Q1 circuit. The following guidelines are  
recommended:  
Place capacitors as close as possible to the LM2775-Q1, preferably on the same side of the board as the  
device.  
Use short, wide traces to connect the external capacitors to the device to minimize trace resistance and  
inductance.  
Use a low resistance connection between ground and the GND pin of the LM2775-Q1. Using wide traces  
and/or multiple vias to connect GND to a ground plane on the board is most advantageous.  
10.2 Layout Example  
CONNECT TO GND PLANE  
LM2775-Q1  
PFM  
C1-  
GND  
VIN  
C1+  
VOUT  
EN  
OUTDIS  
CONNECT TO GND PLANE  
10-1. Example LM2775-Q1 Layout  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM2775-Q1  
 
 
 
 
 
 
LM2775-Q1  
ZHCSIR1C JUNE 2018 REVISED MAY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM2775-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM2775QDSGRQ1  
LM2775QDSGTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1R1H  
1R1H  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2021  
OTHER QUALIFIED VERSIONS OF LM2775-Q1 :  
Catalog : LM2775  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2775QDSGRQ1  
LM2775QDSGTQ1  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2775QDSGRQ1  
LM2775QDSGTQ1  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM2775_15

LM2775 Switched Capacitor 5-V Boost Converter
TI

LM2776

LM2776 Switched Capacitor Inverter
TI

LM27761

具有集成 LDO 的低噪声稳压逆变器
TI

LM27761DSGR

具有集成 LDO 的低噪声稳压逆变器 | DSG | 8 | -40 to 85
TI

LM27761DSGT

具有集成 LDO 的低噪声稳压逆变器 | DSG | 8 | -40 to 85
TI

LM27762

具有集成 LDO 的低噪声正负输出电荷泵
TI

LM27762DSSR

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85
TI

LM27762DSST

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85
TI

LM2776DBVR

开关电容器逆变器 | DBV | 6 | -40 to 85
TI

LM2776DBVT

暂无描述
TI

LM2780

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC

LM2780TP

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC