LM36273 [TI]

三通道 LCD 背光和偏置电源;
LM36273
型号: LM36273
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

三通道 LCD 背光和偏置电源

CD
文件: 总76页 (文件大小:4184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
具有集成偏置电源的 LM36273 三通道 LCD 背光驱动器  
1 特性  
3 说明  
1
可驱动多达三个并联的白色发光二极管 (LED) 串  
VOUT 最大值为 29V)  
LM36273 是一款集成式三通道 WLED 驱动器及 LCD  
偏置电源。LM36273 拥有超紧凑外形、高效率、高集  
成度和可编程性等特性,因此适用于各种 应用, 而且  
无需更换硬件,同时还能够最大限度地减小整体解决方  
案尺寸。  
11 位指数和线性调光控制  
脉宽调制 (PWM) I2C 亮度控制  
采用 4.7µH 15µH 电感的背光操作  
背光和液晶显示屏 (LCD) 偏置效率高达 92%  
背光升压转换器可提供电源以偏置三个并联 LED 串,  
总输出电压最高可达 29V11 LED 电流可通过 I2C  
总线进行编程,并且/或者可通过介于 60µA 30mA  
之间的逻辑电平 PWM 输入进行控制。每个 LED 串均  
可单独使能或禁用,从而实现区域调光功能。采用  
4.7µH 15µH 的电感即可高效操作背光升压转换器,  
从而优化效率和解决方案尺寸。  
可编程 LCD 偏置电压(±4V ±6.5V,分辨率为  
50mV),每个输出的电流高达 80mA  
60µA 30mA 范围内的 LED 电流匹配度为 0.2%  
60µA 30mA 范围内的 LED 电流精度为 1%  
输入电压范围:2.7V 5V  
2 应用  
LED 数最多可达 24 个的 LCD 面板  
LCD 偏置升压转换器为正低压降稳压器 (LDO) 和反向  
电荷泵供电。正负偏置电源均提供了可编程的输出电压  
±4V ±6.5V,步长为 50mV)以及高达 ±80mA 的  
电流能力。自动排序功能可通过编程设定从正到负偏置  
激活的延迟,并且具有附加的可编程电压转换率控制。  
凭借两种唤醒模式,两个偏置输出可通过单一外部信号  
进行控制,并且能够以超低的静态电流消耗保持工作状  
态。  
智能手机  
平板电脑和游戏平板电脑  
家庭自动化面板  
空白  
空白  
简化原理图  
DSCH  
LBL  
器件信息(1)  
CBL_OUT  
器件型号  
LM36273  
封装  
封装尺寸(最大值)  
BL_OUT  
LED1  
DSBGA (24)  
2.44mm × 1.67mm  
IN  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
LLCM  
VBATT  
LCM_SW  
背光效率,3P7S  
LED2  
SCL  
95  
90  
85  
80  
75  
70  
65  
LED3  
SDA  
Up to 8 LEDs / String  
LM36273  
C+  
C-  
PWM  
CFLY  
HWEN  
LCM_EN1  
LCM_EN2  
LCM_OUT  
CLCM  
VPOS  
VNEG  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
CVPOS  
55  
50  
CVNEG  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
D052  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAJ8  
 
 
 
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 33  
7.6 Register Maps......................................................... 37  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 47  
Power Supply Recommendations...................... 69  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information ................................................. 5  
6.5 Electrical Characteristics .......................................... 6  
6.6 I2C Timing Requirements (Fast Mode) .................... 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7.3 Features Description............................................... 16  
7.4 Device Functional Modes........................................ 32  
8
9
10 Layout................................................................... 69  
10.1 Layout Guidelines ................................................ 69  
10.2 Layout Example ................................................... 70  
11 器件和文档支持 ..................................................... 71  
11.1 器件支持................................................................ 71  
11.2 文档支持................................................................ 71  
11.3 接收文档更新通知 ................................................. 71  
11.4 社区资源................................................................ 71  
11.5 ....................................................................... 71  
11.6 静电放电警告......................................................... 71  
11.7 Glossary................................................................ 71  
12 机械、封装和可订购信息....................................... 71  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (June 2017) to Revision D  
Page  
已添加 added silicon rev A1 to revision register. ................................................................................................................. 37  
Changes from Revision B (March 2017) to Revision C  
Page  
已更改 将完整的数据表首次公开发布到网站 ......................................................................................................................... 1  
Changes from Revision A (January 2017) to Revision B  
Page  
Changed row(s) in Abs Max table: BL_SW from 30 V to 35 V, BL_OUT and current sink inputs (LEDX) remain at 30 V ... 5  
Changes from Original (February 2016) to Revision A  
Page  
已更改 POA 上的可订购器件后缀从“YFRR”更改为“YFFR” .................................................................................................. 1  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
5 Pin Configuration and Functions  
YFF Package  
24-Pin DSBGA  
Top View  
1
2
3
4
VNEG  
C-  
CP_GND  
C+  
A
LCM_  
EN2  
LCM_  
EN1  
IN  
VPOS  
B
LCM_  
OUT  
NC  
SCL  
SDA  
C
LED3  
PWM  
HWEN  
LCM_SW  
BL_GND  
D
LCM_  
GND  
LED2  
AGND  
E
LED1  
BL_OUT  
BL_SW  
BL_SW  
F
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
Inverting charge pump output. Bypass VNEG with a 10-µF ceramic capacitor to  
CP_GND.  
A1  
VNEG  
O
A2  
A3  
A4  
B1  
C-  
CP_GND  
C+  
O
O
I
Inverting charge-pump flying capacitor negative connection  
Charge pump GND. Connect the CNEG capacitor negative terminal to this pin.  
Inverting charge-pump flying capacitor positive connection  
IN  
Input voltage connection. Bypass IN with a 10-µF ceramic capacitor to GND.  
Enable for LCD bias negative output; 300-kΩ internal pulldown resistor between  
LCM_EN2 and GND.  
B2  
B3  
LCM_EN2  
LCM_EN1  
I
I
Enable for LCD bias positive output; 300-kΩ internal pulldown resistor between  
LCM_EN1 and GND.  
B4  
C1  
C2  
C3  
VPOS  
NC  
O
I
Positive LCD bias output. Bypass VPOS with a 10-µF ceramic capacitor to GND.  
No connect; leave this pin disconnected  
Serial clock connection for I2C-compatible interface  
Serial clock connection for I2C-compatible interface  
SCL  
SDA  
I/O  
LCD bias boost output voltage. Bypass LCM_OUT with a 10-µF ceramic capacitor to  
LCM_GND.  
C4  
D1  
D2  
LCM_OUT  
LED3  
O
I
Current sink 3 input. Connect the cathode of LED string 3 to this pin. Leave this pin  
disconnected if not used.  
PWM input for duty cycle current control; 300-kΩ internal pulldown resistor between  
PWM and GND.  
PWM  
I
D3  
D4  
HWEN  
I
Active high chip enable; 300-kΩ internal pulldown resistor between HWEN and GND.  
LCM_SW  
O
LCD bias boost inductor connection  
Current sink 2 input. Connect the cathode of LED string 2 to this pin. Leave this pin  
disconnected if not used.  
E1  
LED2  
I
Copyright © 2016–2018, Texas Instruments Incorporated  
3
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
E2  
AGND  
I
Analog ground connection. Connect AGND directly to GND on the PCB.  
LCD bias boost GND connection. Connect LCM_GND to the negative terminal of the  
LCD bias output capacitor.  
E3  
E4  
F1  
LCM_GND  
BL_GND  
LED1  
Backlight boost output capacitor GND connection  
Current sink 1 input. Connect the cathode of LED string 1 to this pin. Leave this pin  
disconnected if not used.  
Backlight boost output voltage sense connection. Connect to the positive terminal of  
backlight boost output capacitor.  
F2  
BL_OUT  
O
F3  
F4  
BL_SW  
BL_SW  
O
O
Backlight boost inductor connection  
Backlight boost inductor connection  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–7  
MAX  
6
UNIT  
Voltage on IN, HWEN, LCM_EN1, LCM_EN2, SCL, SDA, PWM  
Voltage on LCM_SW, LCM_OUT, VPOS, C+  
Voltage on VNEG, C–  
V
V
V
V
V
9
0.3  
35  
30  
Voltage on BL_SW  
–0.3  
–0.3  
Voltage on BL_OUT, LED1, LED2, LED3  
Continuous power dissipation  
Internally limited  
Maximum junction temperature, TJ(MAX)  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–45  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the AGND pin.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
.
MIN  
2.7  
MAX  
5
UNIT  
V
Input voltage, VIN  
(3)  
Operating ambient temperature, TA  
–40  
85  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the AGND pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
6.4 Thermal Information  
LM36273  
THERMAL METRIC(1)  
DSBGA (YFF)  
(24 PINS)  
63.1  
UNIT  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.4  
11.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.6  
ΨJB  
11.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
Unless otherwise specified, typical limits apply at 25°C, minimum and maximum limits apply over the full operating ambient  
temperature range (40°C TA 85°C), and VIN = 3.6 V.  
PARAMETER  
CURRENT CONSUMPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISD  
Shutdown current  
HWEN = 0  
0.2  
1
2.8  
7
µA  
µA  
Quiescent current, device not  
switching  
IQ  
HWEN = VIN, LCM boost disabled  
VPOS, VNEG enabled with no load,  
ILCM_EN  
Bias power no load supply current backlight boost disabled, typical  
application circuit (not ATE tested)  
0.5  
30  
10  
µA  
BACKLIGHT LED CURRENT SINKS (LED1, LED2, LED3, LED4)  
Maximum output current (per  
string)  
2.7 V VIN 5 V, linear or  
exponential mode  
ILED_MAX  
ILED  
mA  
2.7 V VIN 5 V, 60 µA < ILED < 30  
mA, linear or exponential mode  
LED current accuracy(1)  
–3%  
–2%  
3%  
2%  
2.7 V VIN 5 V, 60 µA ILED 30  
mA, linear or exponential mode  
IMATCH  
ILED current matching(2)  
0.2%  
ILED_MIN  
Minimum LED current (per string)  
Linear or exponential mode  
Exponential mode(3)  
Linear mode  
60  
0.3%  
14.63  
µA  
µA  
LED current step size (code to  
code)  
ISTEP  
BACKLIGHT BOOST  
011 to 111  
28.5  
24.5  
20.5  
16.3  
29  
25  
21  
17  
0.5  
29.5  
25.5  
21.5  
17.7  
010  
001  
000  
ON threshold, 2.7 V  
VIN 5 V  
OVP threshold  
V
V
OVP hysteresis  
OFF threshold  
VIN = 3.6 V, IBLED = 5 mA/string,  
(POUT/PIN), Typical Application Circuit  
(not ATE tested)  
Efficiency  
VHR  
Boost efficiency  
90%  
ILED = 30 mA  
ILED = 5 mA  
310  
120  
mV  
mV  
Regulated current-sink headroom  
voltage (boost feedback voltage)  
Current-sink minimum headroom  
voltage  
VHR_MIN  
RDSON  
ILED = 95% of nominal, ILED = 5 mA  
30  
50  
mV  
NMOS switch on resistance  
ISW = 250 mA  
0.2  
900  
Ω
00  
792  
1056  
1320  
1584  
450  
1008  
1344  
1680  
2016  
550  
mA  
mA  
mA  
mA  
01  
2.7 V VIN 5 V  
10  
1200  
1500  
1800  
500  
ICL  
NMOS switch current limit  
11  
500-kHz mode  
2.7 V VIN 5 V  
ƒBL_SW  
DMAX  
Switching frequency  
Maximum duty cycle  
kHz  
1-MHz mode  
900  
1000  
94%  
1100  
VIN = 2.7 V, ƒLED_SW = 1 MHz  
93%  
DEVICE PROTECTION  
TSD Thermal shutdown  
Not ATE tested  
140  
°C  
(1) Output current accuracy is the difference between the actual value of the output current and programmed value of this current.  
(2) LED current matching is the maximum difference between any string current and the average string current, divided by the average  
string current. This is calculated as (ILEDX – ILED_AVE) / ILED_AVE × 100.  
(3) LED current step size from code to code in exponential mode is typically 0.304%, given as (1 – (ILED(CODE+1) / ILED(CODE)).  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Electrical Characteristics (continued)  
Unless otherwise specified, typical limits apply at 25°C, minimum and maximum limits apply over the full operating ambient  
temperature range (40°C TA 85°C), and VIN = 3.6 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DISPLAY BIAS (LCM BOOST)  
LCM bias boost overvoltage  
protection  
VOVP_LCM  
ƒLCM_SW  
On threshold, 2.7 V VIN 5 V  
7.8  
V
2.7 V VIN 5 V (continuous  
conduction mode)  
Switching frequency(4)  
LCM boost output voltage range  
2500  
kHz  
V
4
7.15  
VIN = 3.6 V, VLCM_OUT = 5.9 V, 6 mA  
< ILCM_OUT < 160mA, Typical  
VLCM_OUT  
Efficiency  
92%  
Application Circuit (not ATE tested)  
Output voltage step size  
Valley current limit  
50  
1000  
170  
mV  
mA  
ILCM_BOOST_CL  
RDSON_LCM  
High-side MOSFET on resistance  
VIN = VGS = 3.6 V  
mΩ  
Low-side MOSFET on Resistance VIN = VGS = 3.6 V  
290  
VLCM_OUT_  
RIPPLE  
ILOAD_LCM_BOOST = 5 mA and 50 mA,  
CBST = 20 µF  
Peak-to-peak ripple voltage(4)  
50  
mVpp  
VIN + 500 mVp-p AC square wave, Tr  
= 100 mV/µs, 200 Hz, 12.5% DS at  
5 mA, ILOAD = 5 mA, CIN = 10 µF  
VLCM_OUT_LINE_  
TRANSIENT  
LCM_OUT line transient  
response(4)  
–50  
±25  
50  
mV  
0 mA to 150 mA, tRISE/FALL = 100  
mA/µs,  
CIN = 10 µF  
VLCM_OUT_LOAD_ LCM_OUT load transient  
TRANSIENT  
–150  
150  
mV  
µs  
response(4)  
Start-up time (LCM_OUT),  
tLCM_OUT_ST  
CLCM_OUT = 20 µF  
1000  
VLCM_OUT = 10% to 90%(4)  
DISPLAY BIAS POSITIVE OUTPUT (VPOS)  
Programmable output voltage  
range  
4
6.5  
V
VVPOS  
Output voltage step size  
50  
mV  
Output voltage accuracy  
Output voltage = 5.4 V  
–1.5%  
80  
1.5%  
IVPOS_MAX  
IVPOS_CL  
Maximum output current  
Output current limit  
mA  
mA  
180  
VLCM_OUT = 6.3 V, VPOS = 5.8 V,  
CVPOS = 10 µF (nominal)  
IRUSH_PK_VPOS  
Peak start-up inrush current(4)  
250  
50  
mA  
VIN + 500 mVp-p AC square wave, Tr  
= 100 mV/µs, 200 Hz at 25 mA, CIN  
10 µF (nominal)  
VVPOS_  
LINE_TRANSIENT  
LDO_VPOS line transient  
response(4)  
=
–50  
–50  
mV  
VVPOS_LOAD_TRA LDO_VPOS load transient  
NSIENT  
Load current step 0 mA to 50 mA,  
CVPOS = 10 µF (nominal)  
50  
20  
mV  
mV  
mV  
response(4)  
DC load regulation(4)  
VVPOS_DC_REG  
VDO_VPOS  
0 mA ILOAD_VPOS ILOAD_VPOS_MAX  
ILOAD_VPOS = ILOAD_VPOS_MAX  
VVPOS = 5.7 V  
VPOS dropout voltage(5)  
160  
ƒ = 10 Hz to 500 kHz at IMAX/2  
VLCM_OUT – VVPOS 300 mV  
Power supply rejection ratio  
(LDO_VPOS)(4)  
Start-up time (LDO_VPOS)(6)  
VVPOS = 10% to 90%(4)  
PSSRVPOS  
25  
30  
dB  
tST_VPOS  
CVPOS = 10 µF v  
800  
80  
µs  
RPD_VPOS  
Output pulldown resistor (VPOS)  
VPOS pulldown in shutdown  
270  
Ω
Pulldown  
resistance on  
LCM_EN1  
Not ATE tested  
300  
kΩ  
(4) Limits set by characterization and/or simulation only.  
(5) VIN_VPOS – VVPOS when VVPOS has dropped 100 mV below target.  
(6) Typical value only for information.  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise specified, typical limits apply at 25°C, minimum and maximum limits apply over the full operating ambient  
temperature range (40°C TA 85°C), and VIN = 3.6 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DISPLAY BIAS NEGATIVE OUTPUT (VNEG)  
VNEG_SHORT  
VNEG to CP_GND, VNEG rises to %  
of target  
NEG output short circuit protection  
84%  
92%  
VLCM_OUT = 5.7 V, VNEG = –5.4 V,  
INEG > –5 mA  
Efficiency(6)  
Programmable output voltage  
–6.5  
–4  
V
VVNEG  
range  
Output voltage step size  
Output accuracy  
50  
mV  
Output voltage = –5.4 V  
–1.5%  
80  
1.5%  
ILOAD_VNEG_MAX Maximum output current  
VLCM_OUT = 5.9 V, VNEG = –5.4 V  
mA  
mA  
IVNEG_CL  
Output current limit  
135  
350  
240  
240  
Q1  
Q2  
Q3  
RDSON_VNEG  
CP FET ON resistance  
mΩ  
INEG = –5 mA and –50 mA,  
CVNEG = 10 µF (nominal)  
VVNEG_RIPPLE  
Peak-to-peak ripple voltage(4)  
VNEG line transient response(4)  
VVNEG load transient response(4)  
60  
50  
mVpp  
mV  
VIN + 500 mVp-p AC square wave,  
100 mV/µs 200 Hz,  
12.5% duty at 5 mA  
VVNEG_LINE_TRAN  
SIENT  
–50  
±25  
VVNEG_LOAD_TRA  
NSIENT  
0 to –50 mA step, tRISE/FALL = 1 µs,  
CVNEG = 10 µF (nominal)  
100  
1
mV  
ms  
VVNEG start-up time, VVNEG = 10% VVNEG = –6.5 V, CVNEG = 10 µF  
tSU_VNEG  
RVNEG  
to 90%(4)  
(nominal)  
Output pullup resistor (VNEG to  
CP_GND)(4)  
VNEG pullup in shutdown  
Not ATE tested  
6
20  
Ω
Pulldown  
300  
kΩ  
resistance on  
LCM_EN2  
PWM INPUT  
ƒPWM_INPUT  
PWM input frequency(6)  
2.7 V VIN 5 V  
50  
183.3  
1100  
4400  
183.3  
1100  
4400  
50000  
Hz  
ns  
24-MHz sample rate  
4-MHz sample rate  
1-MHz sample rate  
24-MHz sample rate  
4-MHz sample rate  
1-MHz sample rate  
tMIN_ON  
Minimum pulse ON time(4)  
tMIN_OFF  
Minimum pulse OFF timet(4)  
ns  
Turnon delay from PWM = 0 to  
PWM = 50% duty cycle  
tSTART-UP  
PWMRES  
4-MHz sample rate  
3.5  
ms  
PWM input resolution  
50 Hz < ƒPWM < 11 kHz  
Filter = 00  
11  
0
bits  
Filter = 01  
100  
150  
200  
tGLITCH  
PWM input glitch rejection  
ns  
Filter = 10  
Filter = 11  
LOGIC INPUTS (PWM, HWEN, EN_POS, EN_NEG, SCL, SDA, EN_BL)  
VIL  
VIH  
Input logic low  
Input logic high  
2.7 V VIN 5 V  
2.7 V VIN 5 V  
0
0.4  
VIN  
V
V
1.2  
LOGIC OUTPUTS (SDA)  
VOL Output logic low  
2.7 V VIN 5 V, IOL = 3 mA  
0.4  
V
8
Copyright © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
6.6 I2C Timing Requirements (Fast Mode)  
Over operating free-air temperature range; limits apply over 2.5 V VIN 5 V (unless otherwise noted). See 1.  
MIN  
0.5  
0.26  
1
MAX  
UNIT  
µs  
tLOW_SCL  
tHIGH_SCL  
ƒSCL  
SCL low clock period  
SCL high clock period  
µs  
SCL clock frequency  
MHz  
ns  
tSU_DAT  
tV_DAT  
tHD_DAT  
tSTART  
Data in setup time to SCL high  
Data valid time  
50  
0.45  
µs  
Data out stable after SCL low  
SDA low setup time to SCL low (start)  
SDA high hold time after SCL high (stop)  
0
260  
260  
ns  
ns  
tSTOP  
VPULLUP = 1.8 V, RPULLUP = 1 kΩ,  
CBUS = 100 pF  
tRISE  
tFALL  
SDA/SCL rise time  
SDA/SCL fall time  
120  
120  
ns  
ns  
VPULLUP = 1.8 V, RPULLUP = 1 kΩ,  
CBUS = 100 pF  
tFALL  
tSU_DAT  
tRISE  
70%  
70%  
70%  
70%  
70%  
SDA  
30%  
30%  
30%  
30%  
30%  
tSTOP  
tFALL  
tRISE  
tHIGH  
70%  
tHD_DAT  
tV_DAT  
70%  
70%  
SCL  
30%  
30%  
30%  
30%  
tLOW  
9th Clock  
Pulse  
tSTART  
1/fSCL  
Stop  
Start  
Start  
1. I2C Timing Parameters  
版权 © 2016–2018, Texas Instruments Incorporated  
9
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
30  
30  
25  
20  
15  
10  
5
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
25  
20  
15  
10  
5
0
0
0
0
0
256  
512  
768 1024 1280 1536 1792 2048  
0
0
0
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D001  
D002  
2. Backlight LED Current, Linear Control  
3. Backlight LED Current, Exponential Control  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
5
10  
15  
ILED (mA)  
20  
25  
30  
5
10  
15  
20  
25  
30  
ILED (mA)  
D003  
D004  
4. Backlight LED Current Matching  
5. Backlight LED Current Matching  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
256  
512  
768 1024 1280 1536 1792 2048  
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D005  
D006  
6. Backlight LED Current-Step Ratio  
7. Backlight LED Current-Step Ratio  
10  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Typical Characteristics (接下页)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
3.0  
3.0  
2.0  
1.0  
0.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
256  
512  
768 1024 1280 1536 1792 2048  
0
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D007  
D008  
8. Backlight LED Current Accuracy  
9. Backlight LED Current Accuracy  
1100  
1080  
1060  
1040  
1020  
1000  
980  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
960  
940  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
920  
900  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
VIN (V)  
VIN (V)  
D009  
D010  
ƒ = 1 MHz  
10. Backlight Boost Frequency  
ƒ = 500 kHz  
11. Backlight Boost Frequency  
275  
270  
265  
260  
255  
250  
245  
240  
235  
230  
225  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
5
10  
15  
ILED (mA)  
20  
25  
30  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
VIN (V)  
D027  
D011  
ƒ = 250 kHz  
12. Backlight Boost Frequency  
13. Backlight Regulated Headroom Voltage  
版权 © 2016–2018, Texas Instruments Incorporated  
11  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
4.875  
4.850  
4.825  
4.800  
4.775  
4.750  
4.725  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
ILED (mA)  
20  
25  
30  
Load (mA)  
D012  
D014  
D016  
D028  
VLCM_OUT = 4.8 V  
15. VLCM_OUT Load Regulation  
14. Backlight Regulated Headroom Voltage  
5.900  
5.875  
5.850  
5.825  
5.800  
5.775  
5.750  
5.725  
5.700  
5.900  
5.875  
5.850  
5.825  
5.800  
5.775  
5.750  
5.725  
5.700  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Load (mA)  
Load (mA)  
D013  
VLCM_OUT = 5.8 V  
VLCM_OUT = 5.8 V  
16. VLCM_OUT Load Regulation  
17. VLCM_OUT Load Regulation  
6.900  
6.875  
6.850  
6.825  
6.800  
6.775  
6.750  
6.725  
6.700  
4.06  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D015  
VLCM_OUT = 6.8 V  
18. VLCM_OUT Load Regulation  
VVPOS = 4 V  
VLCM_OUT = 4.3 V  
19. VVPOS Load Regulation  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Typical Characteristics (接下页)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
5.58  
5.56  
5.54  
5.52  
5.50  
5.48  
5.46  
5.44  
5.42  
5.58  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
5.56  
5.54  
5.52  
5.50  
5.48  
5.46  
5.44  
5.42  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D017  
D018  
VVPOS = 5.5 V  
VLCM_OUT = 5.8 V  
20. VVPOS Load Regulation  
VVPOS = 5.5 V  
VLCM_OUT = 5.8 V  
21. VVPOS Load Regulation  
6.60  
-3.94  
6.58  
6.56  
6.54  
6.52  
6.50  
6.48  
6.46  
6.44  
6.42  
6.40  
-3.96  
-3.98  
-4.00  
-4.02  
-4.04  
-4.06  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D019  
D020  
VVPOS = 6.5 V  
VLCM_OUT = 6.8 V  
22. VVPOS Load Regulation  
VVNEG = –4 V  
VLCM_OUT = 4.3 V  
23. VVNEG Load Regulation  
-5.42  
-5.42  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
-5.44  
-5.46  
-5.48  
-5.50  
-5.52  
-5.54  
-5.56  
-5.58  
-5.44  
-5.46  
-5.48  
-5.50  
-5.52  
-5.54  
-5.56  
-5.58  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D021  
D022  
VVNEG = –5.5 V  
VLCM_OUT = 5.8 V  
24. VVNEG Load Regulation  
VVNEG = –5.5 V  
VLCM_OUT = 5.8 V  
25. VVNEG Load Regulation  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
-6.40  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-6.42  
-6.44  
-6.46  
-6.48  
-6.50  
-6.52  
-6.54  
-6.56  
TA = -40èC  
TA = 25èC  
-6.58  
TA = 85èC  
-6.60  
0
10  
20  
30  
40  
50  
60  
70  
80  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
Load (mA)  
VIN (V)  
D023  
D024  
VVNEG = –6.5 V  
VLCM_OUT = 6.8 V  
26. VVNEG Load Regulation  
VHWEN = 0 V  
I2C = 0 V  
27. Iq Shutdown  
2.4  
10  
9
8
7
6
5
4
3
2
1
0
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
VIN (V)  
VIN (V)  
D025  
D026  
VHWEN = VIN  
I2C = VIN  
VHWEN = 1.8 V  
I2C = 1.8 V  
28. IQ Standby  
29. IQ Standby  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7 Detailed Description  
7.1 Overview  
The LM36273 is a single-chip, complete backlight and LCM power solution. The device operates over the 2.7-V  
to 5-V input voltage range.  
The backlight block consists of an inductive boost plus three current sink white-LED drivers designed to power  
from one to three LED strings with up to eight LEDs each (up to 28 V typical), with a maximum of 30 mA per  
string. A higher number of LEDs per string can be supported if the total output power requirement for the boost  
does not exceed 2.5 Watts. The power for the LED strings comes from an integrated asynchronous backlight  
boost converter with three selectable switching frequencies to optimize performance or solution area. LED  
current is regulated by the low-headroom current sinks. The inductive backlight boost automatically adjusts its  
output voltage to keep the active current sinks in regulation, while minimizing current sink headroom voltage. The  
11-bit LED current is set via an I2C interface, via a logic level PWM input, or a combination of both.  
The LCM bias power portion of the LM36273 consists of a synchronous LCM bias boost converter, inverting  
charge pump, and an integrated LDO. The LCM positive bias voltage VPOS (up to 6.5 V) is post-regulated from  
the LCM bias boost converter output voltage. The LCM negative bias voltage VNEG (down to –6.5 V) is  
generated from the LCM bias boost converter output using a regulated inverting charge pump.  
The LM36273 flexible control interface consists of an HWEN active low reset input, LCM_EN1 and LCM_EN2  
inputs for VPOS and VNEG enable control, PWM input for content adaptive backlight control (CABC), and an  
I2C-compatible interface.  
Additionally, there is a flag register with flag and status bits. The user can read back this register and determine if  
a fault or warning message has been generated.  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
BL_SW  
BL_SW  
BL_OUT  
Reference and  
Thermal Shutdown  
Programmable  
Overvoltage Protection  
(17 V, 21 V, 25 V, 29 V)  
IN  
POR  
(1.8V)  
Programmable  
500 kHz/1 MHz  
Oscillator  
Backlight Boost Converter  
BL_GND  
Global Active-low  
Reset  
HWEN  
PWM  
LED1  
LED2  
LED3  
Overcurrent  
Protection  
V
HR  
Feedback  
Backlight LED Control  
PWM Sampler  
1. 11-bit Brightness  
Adjustment  
2. Exponential/Linear  
Dimming  
3. LED Current  
Ramping  
4. Auto Frequency  
Mode  
SDA  
SCL  
I2C Compatible  
Interface  
BL LED Drivers  
VPOS  
(LCM Postive Bias)  
VPOS  
LCM_EN1  
LCM_EN2  
LCM Bias  
Output Control  
LCM Boost Converter  
C+  
VNEG  
(LCM Negative Bias)  
VNEG  
Internal Logic  
AGND  
C-  
LCM_SW  
LCM_GND LCM_OUT  
CP_GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Features Description  
7.3.1 Enabling the LM36273  
The LM36273 has a logic level input HWEN which serves as the master enable/disable for the device. When  
HWEN is low the device is disabled, the registers are reset to their default state, the I2C bus is inactive, and the  
device is placed in a low-power shutdown mode. When HWEN is forced high the device is enabled, and I2C  
writes are allowed to the device.  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Features Description (接下页)  
7.3.2 Backlight  
The high voltage required by the LED strings is generated with an asynchronous backlight boost converter. An  
adaptive voltage control loop automatically adjusts the output voltage based on the voltage over the LED drivers  
LED1, LED2 and LED3. The LM36273 has three switching frequency modes, 1 MHz, 500 kHz, and 250 kHz.  
These are set via the BL_FREQ Select bit, register 0x03 bit[7] and by utilizing the auto-frequency feature (refer  
to Auto Switching Frequency). Operation in low-frequency mode results in better efficiency at lighter load  
currents due to the decreased switching losses. Operation in high-frequency mode gives better efficiency at  
higher load currents due to the reduced inductor current ripple and the resulting lower conduction losses in the  
MOSFET and inductor.  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Features Description (接下页)  
BL_SW BL_SW  
BL_GND  
Overvoltage  
Protection  
17 V  
BL_OUT  
21 V  
25 V  
29 V  
OVP  
0.2  
Boost Control  
Fault Detection  
OCP  
Overvoltage  
Current Limit  
Thermal Shutdown  
Boost Switching  
Frequency  
1 MHz  
TSD  
500 kHz  
250 kHz  
Thermal  
Shutdown  
140oC  
Auto Frequency  
Mode  
SDA  
Boost Current Limit  
900 mA  
I2C Interface  
1200 mA  
1500 mA  
1800 mA  
Min Headroom  
Select  
SCL  
Adaptive  
Headroom  
Current Sinks  
LED1  
LED2  
LED3  
PWM Sample Rate  
11-Bit  
Brightness  
Code  
1 MHz  
4 MHz  
24 MHz  
LED Current  
Mapping  
Exponential  
Linear  
LED Current  
LED String  
Enables  
Ramping  
16 - Levels  
0 to 8 s  
PWM  
PWM Sampler  
Copyright © 2017, Texas Instruments Incorporated  
30. Backlight Block Diagram  
7.3.2.1 Current Sink Enable  
Each current sink in the device has a separate enable input. This allows for a one-string, two-string or three-  
string application. Once the correct LED string configuration is programmed and a non-zero code is written to the  
brightness registers, the device can be enabled by writing the backlight enable bit high (register 0x08 bit[4]).  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Features Description (接下页)  
The default settings for the device are backlight enable bit set to 0, all backlight strings disabled, PWM input  
disabled, linear mapped mode, and the brightness level set to 30 mA per string.  
When PWM is enabled, the LM36273 actively monitors the PWM input. After a non-zero PWM duty cycle is  
detected, the LM36273 multiplies the duty cycle with the programmed I2C brightness code to give an 11-bit  
brightness value between 60 µA and 30 mA. 31 and 32 describe the start-up timing for operation with I2C  
controlled current and with PWM controlled current.  
VIN  
HWEN  
I2C Registers In  
Reset  
I2C LED  
Strings Enable  
I2C Brightness  
Data Sent  
I2C Data Valid  
I2C  
ILED  
tBRT_DAC  
tHWEN_I2C  
(< 50 µs)  
tDAC_LED  
(< 800 µs)  
(< 30 µs)  
31. Enabling the LM36273 via I2C  
VIN  
HWEN  
I2C Registers In  
I2C LED  
Strings Enable  
I2C PWM Pin  
Enable  
I2C Data Valid  
I2C  
Reset  
PWM  
ILED  
tPWM_DAC  
tHWEN_I2C  
(< 50 µs)  
tDAC_LED  
(< 30 µs) (< 800 µs)  
tDD_LED  
tPWM_STBY  
32. Enabling the LM36273 via PWM  
The LM36273 backlight can be enabled or disabled in various ways. When disabled, the device is considered  
shut down, and the quiescent current drops to ISHDN. When the device is in standby, it returns to the ISTANDBY  
current level retaining all programmed register values. 1 describes the different backlight operating states for  
the LM36273.  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
 
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Features Description (接下页)  
1. Backlight Operating Modes  
I2C  
CURRENT  
SINK  
ENABLES  
0x08[2:0]  
FEEDBACK  
DISABLES  
0x10[5:3]  
BL_EN  
0x08[4]  
PWM EN PWM RAMP  
MAPPING MODE  
0x02[3]  
BRIGHTNESS  
0x05[7:0]  
0x04[2:0]  
HWEN  
PWM INPUT  
ACTION  
0x02[0]  
0x02[1]  
0
1
1
X
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Shutdown  
Standby(1)  
Standby(1)  
0x000  
000  
-Backlight boost enabled  
-Selected current sink(s) enabled  
-I2C control only  
0 = Exponential Mode  
1 = Linear Mode  
1
1
1
1
X
0x001  
001  
001  
0
1
X
X
<111  
<111  
Duty cycle = 0  
X
X
Standby(1)  
-Backlight boost enabled  
-Selected current sink(s) enabled  
0 = Exponential Mode  
1 = Linear Mode  
-I2C × PWM (after ramper)  
-No ramp between PWM duty-  
cycle change  
1
1
Duty cycle > 0  
0x001  
001  
1
0
<111  
-Backlight boost enabled  
-Selected current sink(s) enabled  
-I2C × PWM (before ramper)  
0 = Exponential Mode  
1 = Linear Mode  
1
1
1
1
1
1
Duty cycle > 0  
Duty cycle > 0  
Duty cycle > 0  
0x001  
0x001  
0x001  
001  
001  
001  
1
1
1
1
0
1
<111  
111  
-Backlight boost disabled  
-Selected current sink(s) enabled  
-I2C × PWM (after ramper)  
0 = Exponential Mode  
1 = Linear Mode  
-Backlight boost disabled  
-Selected current sink(s) enabled  
-I2C × PWM (before ramper)  
0 = Exponential Mode  
1 = Linear Mode  
111  
(1) Standby implies the backlight boost and current sinks are shut down. Register writes are still possible. Shutdown implies that the device  
is in reset and no I2C communication is possible.  
7.3.2.2 Brightness Mapping  
There are two different ways to map the brightness code (or PWM duty cycle) to the LED current: linear and  
exponential mapping.  
7.3.2.2.1 Linear Mapping  
For linear mapped mode the LED current increases proportionally to the 11-bit brightness code and follows the  
relationship:  
ILED = 45.37 µA + 14.63 µA × Code  
(1)  
This is valid from codes 1 to 2047. Code 0 programs 0 current. Code is an 11-bit code that can be the I2C  
brightness code or the product of the I2C brightness code and the PWM duty cycle.  
7.3.2.2.2 Exponential Mapping  
In exponential mapped mode the LED current follows the relationship:  
ILED = 60 µA × 1.003040572Code  
(2)  
This results in an LED current step size of approximately 0.304% per code. This is valid for codes from 1 to  
2047. Code 0 programs 0 current. Code is an 11-bit code that can be the I2C brightness code or the product of  
the I2C brightness code and the PWM duty cycle. 33 details the LED current exponential response.  
The 11-bit (0.304%) per code step is small enough such that the transition from one code to the next in terms of  
LED brightness is not distinguishable to the eye. This, therefore, gives a perfectly smooth brightness increase  
between adjacent codes.  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
100  
10  
1
0.1  
0.01  
0
256  
512  
768 1024 1280 1536 1792 2048  
11-Bit Brightness Code  
33. LED Current vs Brightness Code (Exponential Mapping)  
7.3.2.3 Backlight Brightness Control Modes  
The LM36273 has 2 brightness control modes:  
1. I2C only brightness control  
2. I2C × PWM brightness control  
7.3.2.3.1 I2C Brightness Control (PWM Pin Disabled)  
If the PWM pin is disabled the I2C brightness registers are in control of the LED current, and the PWM input is  
disabled. The brightness data (BRT) is the concatenation of the two brightness registers (3 LSBs) and (8 MSBs)  
(registers 0x04 and 0x05, respectively). The LED current only changes when the MSBs are written, meaning that  
to do a full 11-bit current change via I2C, first the 3 LSBs are written and then the 8 MSBs are written. In this  
mode the ramper only controls the time from one I2C brightness set-point to the next 34.  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
RAMP_RATE Bits  
ILED3  
ILED1  
ILED2  
Driver_1  
BRT Code = I2C  
Code  
DACi  
Driver_2  
Driver_3  
Ramper  
Mapper  
DAC  
I2C Brightness Reg  
MAP_MODE  
34. I2C Only Brightness Control  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3.2.3.2 I2C × PWM Brightness Control (PWM Pin Enabled)  
If the PWM pin is enabled both the I2C brightness code and the PWM duty-cycle control the LED current.  
With linear mapping the PWM duty cycle-to-current response is approximated by 公式 3:  
ILED = 45.37 µA + 14.63 µA × I2C BRGT CODE × PWM D/C  
(3)  
(4)  
With exponential mapping the PWM duty cycle-to-current response is approximated by 公式 4:  
ILED = 60 µA × 1.003040572I2C BRGT CODE × PWM D/C  
7.3.2.3.2.1 PWM Ramper  
The PWM ramp option (register 0x02 bit[1]) determines whether the ramper is active or inactive during a change  
in PWM duty cycle.  
The ramper smooths the transition from one brightness value to another. Ramp time can be adjusted from 0 ms  
to 8000 ms with LED Current Ramp [3:0] bits (register 0x03 bits [6:3]). Ramp time is used for sloping both up and  
down. Ramp time always remains the same regardless of the amount of change in brightness.  
In PWM mode the behavior of the ramper depends on the state of the PWM Ramp bit (register 0x02, bit [1]). If  
the PWM Ramp bit is set to 0, there is no LED current ramping between PWM duty cycle changes. The PWM  
duty cycle is multiplied with the I2C brightness code at the output of the ramper (see 35). If this bit is set to 1,  
ramping is achieved between I2C × PWM currents (see 36).  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
RAMP_RATE Bits  
ILED3  
ILED1  
ILED2  
Driver_1  
BRT Code =  
I2C × Duty Cycle  
DACi  
Driver_2  
Driver_3  
I2C Brightness Reg  
Ramper  
Mapper  
DAC  
MAP_MODE  
PWM Input  
PWM Detector  
35. (I2C + PWM) Brightness Control, PWM Ramper Disabled  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
ILED3  
ILED1  
ILED2  
RAMP_RATE Bits  
Driver_1  
Driver_2  
Driver_3  
BRT Code =  
I2C × Duty Cycle  
DACi  
DAC  
I2C Brightness Reg  
Ramper  
Mapper  
MAP_MODE  
PWM  
Detector  
PWM Input  
36. (I2C + PWM) Brightness Control, PWM Ramper Enabled  
7.3.2.4 Boost Switching Frequency  
The LM36273 has two programmable switching frequencies: 500 kHz and 1 MHz. These are set via the Backlight  
Configuration 2 register (register 0x03 bit [7]). Operation at 1 MHz is primarily beneficial when efficiency at high  
load current is more important. For maximum efficiency across the entire load current range the device  
incorporates an automatic frequency shift mode (see Auto Switching Frequency).  
7.3.2.4.1 Minimum Inductor Select  
The LM36273 can use inductors in the range of 4.7 µH to 15 µH. In order to optimize the converter response to  
changes in VIN and load, the Backlight Boost L Select bits (register 0x11 bits [7:6]) must be selected depending  
on the nominal value of inductance chosen.  
7.3.2.5 Boost Feedback Gain Select  
The Boost Integral and Proportional Feedback Gain Select bits in Option 2 register (bits [3:2] and bits[5:4] in  
register 0x11) contain adjustment parameters for the LM36273 internal loop gain. The optimized settings using a  
1-uF capacitor at BL_OUT are the default settings of 01 and 11 for Integral and Proportional, respectively.  
7.3.2.6 Auto Switching Frequency  
To take advantage of frequency vs load dependent losses, the LM36273 can automatically change the boost  
switching frequency based on the programmed brightness code. In addition to the register programmable  
switching frequencies of 500 kHz and 1 MHz, the auto-frequency mode also incorporates a low-frequency  
selection of 250 kHz. It is important to note that the 250-kHz frequency is only accessible in auto-frequency  
mode and has a maximum boost duty cycle (DMAX) of 50%.  
Auto-frequency mode operates by using two programmable registers (Backlight Auto Frequency Low Threshold  
(register 0x06) and Backlight Auto Frequency High Threshold (register 0x07)). The high threshold determines the  
switchover from 1 MHz to 500 kHz. The low threshold determines the switchover from 500 kHz to 250 kHz. Both  
the High and Low Threshold registers take an 8-bit code which is compared against the 8 MSB of the brightness  
register (register 0x05). 2 details the boundaries for this mode.  
2. Auto Switching Frequency Operation  
BRIGHTNESS CODE MSBs (Register 0x05 bits[7:0])  
BOOST SWITCHING FREQUENCY  
< Auto Frequency Low Threshold (register 06 Bits[7:0])  
250 kHz (DMAX = 50%)  
> Auto Frequency Low Threshold (Register 06 Bits[7:0]) and < Auto  
Frequency High Threshold (Register 07 Bits[7:0])  
500 kHz  
版权 © 2016–2018, Texas Instruments Incorporated  
23  
 
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
2. Auto Switching Frequency Operation (接下页)  
BRIGHTNESS CODE MSBs (Register 0x05 bits[7:0])  
BOOST SWITCHING FREQUENCY  
Auto Frequency High Threshold (register 07 Bits[7:0])  
1 MHz  
Automatic-frequency mode is enabled whenever there is a non-zero code in either the Auto-Frequency High or  
Auto-Frequency Low registers. To disable the auto-frequency shift mode, set both registers to 0x00. When  
automatic-frequency select mode is disabled, the switching frequency operates at the programmed frequency  
(Register 0x03 bit[7]) across the entire LED current range. 3 provides a guideline for selecting the auto  
frequency threshold settings at VIN = 3.7 V. The actual setting must be verified in the application and optimized  
for the desired input voltage range.  
3. Auto Frequency Threshold Settings Examples, VIN = 3.7 V  
CONDITION  
(Vf = 3.35 V at ILED  
30 mA)  
INDUCTOR  
(µH)  
RECOMMENDED AUTO FREQUENCY  
HIGH THRESHOLD  
RECOMMENDED AUTO FREQUENCY  
LOW THRESHOLD  
=
2 × 4 LEDs  
2 × 5 LEDs  
2 × 6 LEDs  
2 × 7 LEDs  
2 × 8 LEDs  
3 × 4 LEDs  
3 × 5 LEDs  
3 × 6 LEDs  
3 × 7 LEDs  
3 × 8 LEDs  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0x65 (12 mA)  
0x5C (11 mA)  
0x54 (10 mA)  
0x4F (9.4 mA)  
0x65 (12 mA)  
0x4C (9 mA)  
0x43 (8mA)  
0x43 (8 mA)  
0x42 (7.9 mA)  
0x3F (7.5 mA)  
0x36 (6.5 mA)  
0x3F (7.5 mA)  
0x2A (5.1 mA)  
0x28 (4.8 mA)  
0x27 (4.7 mA)  
0x26 (4.6 mA)  
0x25 (4.5 mA)  
0x3B (7 mA)  
0x35 (6.4 mA)  
0x43 (8 mA)  
7.3.2.7 PWM Input  
The PWM input is a sampled input which converts the input duty cycle information into an 11-bit brightness code.  
The use of a sampled input eliminates any noise and current ripple that traditional PWM controlled LED drivers  
are susceptible to. It also allows the PWM duty cycle to LED current response to have the same high accuracy  
and matching that is offered in the I2C brightness control.  
The PWM input uses logic level thresholds with VIH_MIN = 1.25 V and VIL_MAX = 0.4 V. Because this is a sampled  
input, there are limits on the maximum PWM input frequency as well as the resolution that can be achieved.  
7.3.2.7.1 PWM Sample Frequency  
There are three selectable sample rates for the PWM input. The choice of sample rate depends on three factors:  
1. Required PWM resolution (input duty cycle to brightness code, with 11 bits maximum)  
2. PWM input frequency  
3. Efficiency  
7.3.2.7.1.1 PWM Resolution and Input Frequency Range  
The PWM input frequency range is 50 Hz to 50 kHz. To achieve the full 11-bit maximum resolution of PWM duty  
cycle to the LED brightness code (BRT), the input PWM duty cycle must be 11 bits, and the PWM sample  
period (1/ƒSAMPLE) must be smaller than the minimum PWM input pulse width. 37 shows the possible  
brightness code resolutions based on the input PWM frequency. The minimum PWM frequency for each PWM  
sample rate is described in PWM Timeout.  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
12  
11  
10  
9
8
7
6
Sample Freq = 1 MHz  
Sample Freq = 4 MHz  
Sample Freq = 24 MHz  
5
4
100  
1000  
10000  
100000  
PWM Frequency (Hz)  
37. PWM Sample Rate, Resolution, and PWM Input Frequency  
7.3.2.7.1.2 PWM Sample Rate and Efficiency  
Efficiency is maximized when the lowest ƒSAMPLE is chosen because this lowers the quiescent operating current  
of the device. 4 describes the typical efficiency tradeoffs for the different sample clock settings.  
4. PWM Sample Rate Trade-Offs  
TYPICAL INPUT CURRENT, DEVICE ENABLED  
PWM SAMPLE RATE (ƒSAMPLE  
)
TYPICAL EFFICIENCY  
ILED = 10 mA/string, 3 × 6 LEDs  
0x03 Bit[2]  
0x12 Bit[0]  
ƒSW = 1 MHz  
VIN = 3.7 V  
87.7%  
0
1
0
0
1
1.685 mA  
1.756 mA  
87.66%  
87.2%  
X
2.479 mA  
7.3.2.7.1.2.1 PWM Sample Rate Example  
The number of bits of resolution on the PWM input varies according to the PWM sample rate and PWM input  
frequency (see 5).  
5. PWM Resolution vs PWM Sample Rate  
PWM  
FREQUENCY  
(kHz)  
RESOLUTION  
(PWM SAMPLE RATE = 1 MHz)  
RESOLUTION  
(PWM SAMPLE RATE = 4 MHz)  
RESOLUTION  
(PWM SAMPLE RATE = 24 MHz)  
0.4  
2
11  
9
11  
11  
11  
11  
11  
12  
6.4  
8.4  
7.3.2.7.2 PWM Hysteresis  
To prevent jitter at the input PWM signal from feeding through the PWM path and causing oscillations in the LED  
current, the LM36273 offers 4 selectable hysteresis settings. The hysteresis options for the 1-MHz and 4-MHz  
PWM sample rate settings are 1, 2, 4, and 6 bits and for the 24-MHz PWM sample rate setting 0, 1, 2, and 3 bits.  
The hysteresis works by forcing a specific number of 11-bit LSB code transitions to occur in the input duty cycle  
before the LED current changes. 6 describes the hysteresis. The hysteresis only applies during the change in  
direction of brightness currents. Once a change in the direction of the LED current has taken place, the PWM  
input must over come the required LSB(s) of the hysteresis setting before the brightness change takes effect.  
Once the initial hysteresis has been overcome and the direction in brightness change remains the same, the  
PWM to current response changes with no hysteresis.  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
 
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
6. PWM Input Hysteresis  
MIN CHANGE IN PWM  
PULSE WIDTH (Δt)  
MIN CHANGE IN PWM  
DUTY CYCLE (ΔD)  
MIN (ΔILED), INCREASE FOR INITIAL CODE  
CHANGE  
HYSTERESIS SETTING REQUIRED TO CHANGE REQUIRED TO CHANGE  
(0x03 Bits[1:0])  
LED CURRENT, AFTER  
DIRECTION CHANGE  
(for ƒPWM < 11.7 kHz)  
LED CURRENT AFTER  
DIRECTION CHANGE  
EXPONENTIAL MODE  
LINEAR MODE  
0 LSB (24 MHz sample  
rate only)  
1/(ƒPWM × 2047)  
0.05%  
0.30%  
0.05%  
1 LSB  
1/(ƒPWM × 1023)  
1/(ƒPWM × 511)  
1/(ƒPWM × 255)  
0.10%  
0.20%  
0.39%  
0.61%  
1.21%  
2.40%  
0.10%  
0.20%  
0.39%  
2 LSBs  
3 LSBs (24-MHz sample  
rate only)  
4 LSBs (1-MHz and 4-  
MHz sample rate only)  
1/(ƒPWM × 127)  
1/(ƒPWM × 31)  
0.78%  
3.12%  
4.74%  
0.78%  
3.12%  
6 LSBs (1-MHz and 4-  
MHz sample rate only )  
17.66%  
tJITTER  
tJITTER  
D/fPWM  
1/fPWM  
ñ
ñ
ñ
D is tJITTER x fPWM or equal to #LSB‘s = ∆D x 2048 codes.  
For 11-bit resolution, #LSBs is equal to a hysteresis setting of LN(#LSB‘s)/LN(2).  
For example, with a tJITTER of 1 µs and a fPWM of 5 kHz, the hysteresis setting should be:  
LN(1 µ s x 5 kHz x 2048)/LN(2) = 3.35 (4 LSBs).  
38. PWM Hysteresis Example  
7.3.2.7.3 PWM Step Response  
The LED current response due to a step change in the PWM input is approximately 2 ms to go from minimum  
LED current to maximum LED current.  
7.3.2.7.4 PWM Timeout  
The LM36273 PWM timeout feature turns off the boost output when the PWM is enabled and there is no PWM  
pulse detected. The timeout duration changes based on the PWM sample rate selected which results in a  
minimum supported PWM input frequency. The sample rate, timeout, and minimum supported PWM frequency  
are summarized in 7.  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7. PWM Timeout and Minimum Supported PWM Frequency vs PWM Sample Rate  
SAMPLE RATE  
TIMEOUT  
25 msec  
3 msec  
MINIMUM SUPPORTED PWM FREQUENCY  
1 MHz  
4 MHz  
24 MHz  
48 Hz  
400 Hz  
2000 Hz  
0.6 msec  
7.3.2.7.5 PWM-to-Digital Code Readback  
In PWM mode, registers 0x12 and 0x13 contain the PWM duty cycle to the 11-bit code conversion information.  
Register 0x12 contains the 8 LSBs of the brightness code and register 0x13 the 3 MSBs. To translate this  
reading to the actual LED current setting of the LM36273, convert it to the corresponding duty cycle and multiply  
it by the brightness level setting in the brightness registers (0x04 and 0x05). For example, if the 11-bit brightness  
code is set to 0x554 (decimal 1364) and the PWM-to-digital code readback is 0x3FF (decimal 1023) in linear  
mode, the expected LED current is approximately: ILED = 45.37 µA + ( ( 1023 / 2047 ) × 14.63 × 1364 ) µA =  
10.018 mA (approximately 50% duty cycle).  
7.3.2.8 Regulated Headroom Voltage  
In order to optimize efficiency, current accuracy, and string-to-string matching the LED current sink regulated  
headroom voltage (VHR) varies with the target LED current. 39 details the typical variation of VHR with LED  
current. This allows for increased solution efficiency as the dropout voltage of the LED driver changes.  
Furthermore, in order to ensure that all current sinks remain in regulation whenever there is a mismatch in string  
voltages, the minimum headroom voltage between VLED1, VLED2, VLED3 becomes the regulation point for the  
boost converter. For example, if the LEDs connected to LED1 require 12 V, the LEDs connected to LED2 require  
12.5 V and the LEDs connected to LED3 require 13 V at the programmed current, then the voltage at LED1 is  
VHR + 1 V, the voltage at LED2 is VHR + 0.5 V and the voltage at LED3 is regulated at VHR. In other words, the  
boost makes the cathode of the highest voltage LED string the regulation point.  
0.32  
0.3  
0.28  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.1  
1
10  
50  
LED Current (mA)  
39. LM36273 Typical Exponential Regulated Headroom Voltage vs Programmed LED Current  
7.3.2.9 Backlight Fault Protection and Faults  
7.3.2.9.1 Backlight Overvoltage Protection (OVP)  
The LM36273 provides an OVP that monitors the LED boost output voltage (VBL_OUT) and protects BL_OUT and  
BL_SW from exceeding safe operating voltages. The OVP threshold can be set to 17 V, 21 V, 25 V, or 29 V with  
register 0x02 bits[7:5]. Once an OVP event has been detected, the BL_OVP flag is set in the Flags Register, and  
the subsequent behavior depends on the state of bit OVP_Mode in the Backlight Configuration 1 Register: If  
OVP_Mode is set to 0, as soon as VBL_OUT falls below the backlight OVP threshold, the LM36273 begins  
switching again. If OVP_Mode is set to 1 and the device detects three occurrences of VBL_OUT > VOVP_BL while  
any of the enabled current sink headroom voltages drops below 40 mV, the Backlight Boost OVP flag is set, the  
Backlight Enable bit is cleared, and the LM36273 enters standby mode. When the device is shut down due to a  
Backlight Boost OVP fault, the Flags register must be read back before the device can be reenabled.  
版权 © 2016–2018, Texas Instruments Incorporated  
27  
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3.2.9.2 Backlight Overcurrent Protection (OCP)  
The LM36273 has 4 selectable OCP thresholds (900 mA, 1200 mA, 1500 mA, and 1800 mA). These are  
programmable in register 0x11 bits[1:0]. The OCP threshold is a cycle-by-cycle current limit and is detected in  
the internal low-side NFET. Once the threshold is hit the NFET turns off for the remainder of the switching period.  
If enough overcurrent threshold events occur, the BL_OCP Flag (register 0x0F, bit[0]) is set. To avoid transient  
conditions from inadvertently setting the BL_OCP Flag, a pulse density counter monitors OCP threshold events  
over a 128-µs period. If 8 consecutive 128-µs periods occur where the pulse density count has found 2 or more  
OCP events, then the BL_OCP Flag is set.  
During device start-up and during brightness code changes, there is a 4-ms blank time where BL OCP events  
are ignored. As a result, if the device starts up in an overcurrent condition there is an approximate 5-ms delay  
before the BL_OCP Flag is set.  
7.3.3 LCM Bias  
7.3.3.1 Display Bias Boost Converter (VVPOS, VVNEG  
)
A single high-efficiency boost converter provides a positive voltage rail, VLCM_OUT, which serves as the power rail  
for the LCM VPOS and VNEG outputs.  
The VVPOS output LDO has a programmable range from 4 V up to 6.5 V with 50-mV steps and can supply up  
to 80 mA.  
The VVNEG output is generated from a regulated, inverting charge pump and has an adjustable range of  
–6.5 V up to –4 V with 50-mV steps and a maximum load of 80 mA.  
Boost voltage also has a programmable range from 4 V up to 7.15 V with 50-mV steps. Refer to 22, 23 and  
24 for VLCM_OUT, VVPOS and VVNEG voltage settings. When selecting a suitable boost-output voltage, the  
following estimation can be used: VLCM_OUT = max(VVPOS, |VVNEG|) + VHR, where VHR 200 mV for lower currents  
and VHR 300 mV for higher currents. When the device input voltage (VIN) is greater than the programmed LCM  
boost output voltage, the boost voltage is regulated to VIN + 100 mV. VVPOS and VVNEG voltage settings cannot be  
changed while they are enabled. VVPOS and VVNEG register setting targets take effect only after the outputs are  
disabled and re-enabled. However, the VLCM_OUT target changes immediately upon a register write.  
28  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
VPOS  
4 V to 6.5 V  
50 mV steps  
LDO  
VPOS  
(VPOS)  
ENP  
SCL  
SDA  
Auto Sequence  
ENP  
ENN  
Bias Registers  
Slew Rate  
Control  
LCM_EN1  
LCM_EN2  
VNEG  
-4 V to -6.5 V  
-50 mV steps  
VBST  
4 V to 7.15 V  
50 mV steps  
Current Limit  
1 A  
2.5 MHz  
LCM Boost  
control  
Inverting  
Charge Pump  
(VNEG)  
VNEG  
ENN  
0.29  
0.17 ꢀ  
C-  
C+  
40. LCM Boost Block Diagram  
The LCM Bias outputs can be controlled either by pins LCM_EN1 and LCM_EN2 or register bits VPOS_EN and  
VNEG_EN, register 0x09 bits[2:1]. Setting bit EXT_EN, register 0x09 bit[0], to 1 allows pins LCM_EN1 and  
LCM_EN2 to control VPOS and VNEG, respectively, while setting this bit to 0 yields control to bits VPOS_EN  
and VNEG_EN. Refer to 8 for LCM bias control information.  
版权 © 2016–2018, Texas Instruments Incorporated  
29  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
8. LCM Operating Modes  
LCM_EN2  
INPUT  
LCM_EN1  
INPUT  
LCM_EN MODE  
0x09[7:5]  
VPOS_EN  
0x09[2]  
VNEG_EN  
0x09[1]  
EXT_EN  
0x09[0]  
HWEN  
ACTION  
Device shutdown  
0
1
1
1
1
X
0
X
0
1
X
0
X
1
0
XXX  
000  
100  
100  
100  
X
X
0
X
X
0
X
1
0
1
1
Standby(1)  
Standby(1)  
X
X
X
X
VPOS enabled via external input  
VNEG enabled via external input  
VPOS and VNEG enabled via external  
input  
1
1
1
100  
X
X
1
VPOS enabled via I2C  
1
1
1
X
X
X
X
X
X
100  
100  
100  
1
0
1
0
1
1
0
0
0
VNEG enabled via I2C  
VPOS and VNEG enabled via I2C  
VPOS and VNEG enabled via I2C with  
auto-sequencing  
1
1
X
1
X
X
101  
101  
1
1
0
1
VPOS and VNEG enabled via LCM_EN2  
with auto-sequencing  
X
X
WAKE1  
1
1
1
1
1
1
X
X
X
110  
110  
110  
1
0
1
0
1
1
X
X
X
VVPOS = VIN  
VVNEG = GND  
WAKE1  
VVPOS = GND  
VVNEG = –VIN  
WAKE1  
VVPOS = VIN  
VVNEG = –VIN  
WAKE1  
1
1
0
1
X
X
110  
110  
1
0
1
0
X
X
Standby(1)  
WAKE1  
Standby(1)  
WAKE2  
1
1
1
1
1
1
X
X
X
111  
111  
111  
1
0
1
0
1
1
X
X
X
VVPOS = programmed target  
VVNEG = disabled  
WAKE2  
VVPOS = disabled  
VVNEG = programmed target  
WAKE2  
VVPOS = programmed target  
VVNEG = programmed target  
WAKE2  
1
1
1
0
X
X
111  
111  
0
1
0
1
X
X
Standby(1)  
WAKE2  
Standby(1)  
(1) Standby implies that VPOS and VNEG are either high impedance or being internally pulled low via the active pulldown, and that the  
LCM boost is off. Shutdown implies that the device is in reset and no I2C communication is possible.  
7.3.3.2 Auto Sequence Mode  
If this mode is selected the LM36273 controls the turnon and turnoff of VPOS and VNEG as shown in 41.  
VPOS  
VNEG  
VPOS  
VNEG  
TR = 256 µs  
to  
TF = 512 µs  
to  
1 ms  
1 ms  
1024 µs  
8192 µs  
41. Auto Sequence Timing  
30  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.3.3.3 Wake-up Mode  
If wake-up mode is selected the LM36273 allows on/off control of both VPOS and VNEG with only one external  
pin (LCM_EN2). Any combination of VPOS or VNEG can be turned on based on the state of bits VPOS_EN and  
VNEG_EN in register 0x09. In these modes the internal shutdown timing of the VPOS and VNEG blocks is  
modified to allow for lower quiescent current in standby mode, therefore reducing the average current  
consumption during a sequence of on/off events.  
There are two wake-up modes available on the LM36273: wake1 and wake2.  
7.3.3.3.1 Wake1 Mode  
In wake1 mode the LM36273 passes VIN through to the LCM boost output and the enabled VPOS, VNEG  
outputs. Due to the impedance of the LCM boost, the VPOS LDO and the VNEG charge pump, the respective  
outputs are regulated close to VIN only at very light load current and droop below VIN as the load increases.  
7.3.3.3.2 Wake2 Mode  
In wake2 mode the LM36273 regulates the LCM boost output as well as the enabled VPOS and VNEG outputs  
to their programmed voltage.  
7.3.3.4 Active Discharge  
An optional active discharge is available for the VPOS and VNEG output rails. An internal switch resistance for  
this discharge function is implemented on each output rail. The VPOS active discharge function is enabled with  
register 0x09 bit[4] and the VNEG active discharge with register 0x09 bit[3].  
7.3.3.5 LCM Bias Protection and Faults  
The LCM bias block of the LM36273 provides three protection mechanisms in order to prevent damage to the  
device. Note that none of these have any effect on backlight operation.  
7.3.3.5.1 LCM Overvoltage (OVP) Protection  
The LM36273 provides OVP that monitors the LCM bias boost output voltage (VLCM_OUT) and protects LCM_OUT  
and LCM_SW from exceeding safe operating voltages. The OVP threshold is set to 7.8 V (typical). If an LCM  
bias overvoltage condition is detected, the LCM_OVP flag, register 0x0F bit[5], is set. Once the OVP condition is  
removed, the flag can be cleared with an I2C read back of the register. An LCM OVP condition does not cause  
the LCM bias to shut down; it is a report-only flag.  
7.3.3.5.2 VPOS Short-Circuit Protection  
If the current at VPOS exceeds 180 mA (typical), the LM36273 sets the VPOS_SHORT flag, register 0x0F bit[3].  
A readback of register 0x0F is required to clear the flag. The outcome of a VPOS_SHORT detection depends on  
the configuration of the bias short-circuit mode option, register 0x0A bits[7:6]. The options are report-only flag,  
shutdown VPOS/VNEG, and shutdown VPOS/VNEG and backlight. To prevent narrow spikes from falsely  
triggering a VPOS short-circuit condition, the LM36273 provides four programmable VPOS short-circuit filter  
options: 100 µs, 500 µs, 1 ms, and 2 ms. These are selected in register 0x0B bits[3:2].  
7.3.3.5.3 VNEG Short-Circuit Protection  
If the voltage at VNEG rises (towards GND) to above 84% of its programmed value (typical), the LM36273 sets  
the VNEG_SHORT flag, register 0x0F bit[2]. A readback of register 0x0F is required to clear the flag. The  
outcome of a VNEG_SHORT detection depends on the configuration of the bias short-circuit mode option,  
register 0x0A bits[7:6]. The options are report-only flag, shut down VPOS/VNEG, and shut down VPOS/VNEG  
and backlight. To prevent narrow spikes from falsely triggering a VNEG short circuit condition, the LM36273  
provides four programmable VNEG short circuit filter options: 100 µs, 500 µs, 1 ms, and 2 ms. These are  
selected in register 0x0B bits[1:0].  
版权 © 2016–2018, Texas Instruments Incorporated  
31  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3.4 Software Reset  
Bit[7] (SWR_RESET) of the Enable Register (0x08) is a software reset bit. Writing a 1 to this bit resets all I2C  
register values to their default values. Once the LM36273 has finished resetting all registers, it auto-clears the  
SWR_RESET bit.  
7.3.5 HWEN Input  
The HWEN pin is a global hardware enable for the LM36273. This pin must be pulled to logic HIGH to enable the  
device and the I2C-compatible interface. There is a 300-kΩ internal resistor between HWEN and GND. When this  
pin is at logic LOW, the LM36273 is placed in shutdown, the I2C-compatible interface is disabled, and the internal  
registers are reset to their default state. TI recommends that VIN has risen above 2.7 V before setting HWEN  
HIGH.  
7.3.6 Thermal Shutdown (TSD)  
The LM36273 has TSD protection which shuts down the backlight boost, all backlight current sinks, LCM bias  
boost, inverting charge pump, and the LDO when the die temperature reaches or exceeds 140°C (typical). The  
I2C interface remains active during a TSD event. If a TSD fault occurs the TSD fault is set (register 0x0F bit[6]).  
The fault is cleared by an I2C read of register 0x0F or by toggling the HWEN pin.  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
Shutdown: The LM36273 is in shutdown when the HWEN pin is low.  
Standby:  
After the HWEN pin is set high the LM36273 goes into standby mode. In standby mode, I2C writes  
are allowed but references, bias currents, the oscillator, LCM powers, and backlight are all disabled  
to keep the quiescent supply current low (2 µA typical).  
Normal mode: Both main blocks of the LM36273 are independently controlled. For enabling each of the blocks  
in all available modes, see 1 and 8.  
32  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.5 Programming  
7.5.1 I2C-Compatible Serial Bus Interface  
7.5.1.1 Interface Bus Overview  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL).  
These lines must be connected to a positive supply via a pullup resistor and remain HIGH even when the bus is  
idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave, depending  
whether it generates or receives the serial clock (SCL).  
7.5.1.2 Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the SCL.  
Consequently, throughout the clock’s high period, the data remains stable. Any changes on the SDA line during  
the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data is sent  
during the low SCL state. This protocol permits a single data line to transfer both command/control information  
and data using the synchronous serial clock.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
42. Data Validity  
Each data transaction is composed of a start condition, a number of byte transfers (set by the software), and a  
stop condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an acknowledge signal must follow. The following  
sections provide further details of this process.  
Transmitter Stays off the  
Bus During the Acknowledge Clock  
Acknowledge Signal from Receiver  
3...6  
7
9
1
8
2
S
Start  
Condition  
43. Acknowledge Signal  
版权 © 2016–2018, Texas Instruments Incorporated  
33  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Programming (接下页)  
The Master device on the bus always generates the start and stop conditions (control codes). After a Start  
Condition is generated, the bus is considered busy, and it retains this status until a certain time after a stop  
condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
start condition. A low-to-high transition of the SDA line while the SCL is high indicates a stop condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
44. Start and Stop Conditions  
In addition to the first start condition, a repeated start condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
7.5.1.3 Acknowledge Cycle  
The acknowledge cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device.  
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter  
releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver  
must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the  
high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to  
receive the next byte.  
7.5.1.4 Acknowledge After Every Byte Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
7.5.1.5 Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LM36273 operates as a slave device with the 7-bit  
address. If an 8-bit address is used for programming, the 8th bit is 1 for read and 0 for write. The 7-bit address  
for the device is 0x11.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
sends an acknowledge signal on the SDA line, once it recognizes its address. The slave address is the first  
seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave  
address — the eighth bit.  
When the slave address is sent, each device in the system compares this slave address with its own. If there is a  
match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the  
R/W bit (1: read, 0: write), the device acts as a transmitter or a receiver.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
Bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
I2C SLAVE address (chip address)  
45. I2C Device Address  
34  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
Programming (接下页)  
Control Register Write Cycle  
Master device generates start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master sends data byte to be written to the addressed register.  
Slave sends acknowledge signal.  
If master sends further data bytes the control register address is incremented by one after acknowledge  
signal.  
Write cycle ends when the master creates stop condition.  
Control Register Read Cycle  
Master device generates a start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal  
Master device generates repeated start condition.  
Master sends the slave address (7 bits) and the data direction bit (r/w = 1).  
Slave sends acknowledge signal if the slave address is correct.  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the control register address is incremented by one. Slave  
device sends data byte from addressed register.  
Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop  
condition.  
9. I2C Data Read/Write(1)  
ADDRESS MODE  
<Start Condition>  
<Slave Address><r/w =0>[Ack]  
<Register Addr>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = 1>[Ack]  
Data Read  
[Register Data]<Ack or NAck>  
...additional reads from subsequent register address possible  
<Stop Condition>  
<Start Condition>  
<Slave Address><r/w = 0>[Ack]  
<Register Addr>[Ack]  
<Register Data>[Ack]  
Data Write  
...additional writes to subsequent register address possible  
<Stop Condition>  
(1) < > = Data from master, [ ] = Data from slave  
版权 © 2016–2018, Texas Instruments Incorporated  
35  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack  
msb Register Addr lsb  
ack  
msb  
Data  
lsb  
ack stop  
SCL  
SDA  
start  
id = 001 0001b  
w
ack  
address = 02h  
ack  
address 02h data  
ack stop  
46. Register Write Format  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as show in  
the Read Cycle waveform.  
ack from slave  
ack from slave repeated start  
ack from slavedata from slave nack from master  
start msb Chip Address lsb  
w
msb Register Add lsb  
rs  
msb Chip Address lsb  
r
msb Data lsb  
stop  
SCL  
SDA  
start  
id = 001 0001b  
w
ack  
address = 00h  
ack rs  
id = 001 0001b  
r ack address 00h data nack stop  
47. Register Read Format  
w = write (SDA = 0), r = read (SDA = 1), ack = acknowledge (SDA pulled down by either  
master or slave), rs = repeated start id = 7-bit chip address  
7.5.1.6 Register Programming  
For glitch-free operation, the following bits and/or registers must only be programmed while the LED Enable bits  
are 0 (Register 0x08, Bit [2:0] = 0) and/or Backlight Enable bit is 0 (Register 0x08, Bit[4] = 0):  
1. Register 0x02 Bit[0] (PWM Enable)  
2. Register 0x02 Bits[1] (PWM Ramp)  
3. Register 0x02 Bit[2] (PWM Config)  
4. Register 0x02 Bits[3] (LED Current Mapping)  
5. Register 0x03 Bit[1:0] (PWM Hysteresis)  
6. Register 0x03 Bit[2] (PWM Sample)  
7. Register 0x03 Bit[6:3] (LED Current Ramp)  
8. Register 0x10 Bit[0] (PWM HF Sample)  
9. Register 0x10 Bit[1] (PWM Glitch Filter)  
10. Register 0x10 Bit [5:3] (LED Feedback Enable)  
11. Register 0x06 (auto frequency high threshold)  
12. Register 0x07 (auto frequency low threshold)  
36  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.6 Register Maps  
10. Register Default Values  
I2C ADDRESS  
REGISTER NAME  
READ/WRITE  
R
POWER ON/RESET VALUE  
SECTION  
Go  
0x01  
Revision Register  
0x01  
0x28  
0x8D  
0x07  
0xFF  
0x00  
0x00  
0x00  
0x18  
0x11  
0x00  
0x28  
0x1E  
0x1C  
0x00  
0x06  
0x35  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
Backlight Configuration1 Register  
Backlight Configuration 2 Register  
Backlight Brightness LSB Register  
Backlight Brightness MSB Register  
Backlight Auto-Frequency Low Register  
Backlight Auto-Frequency High Register  
Backlight Enable Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Display Bias Configuration 1 Register  
Display Bias Configuration 2 Register  
Display Bias Configuration 3 Register  
LCM Boost Bias Register  
Go  
Go  
Go  
Go  
VPOS Bias Register  
Go  
VNEG Bias Register  
Go  
Flags Register  
Go  
Backlight Option 1 Register  
R/W  
R/W  
Go  
Backlight Option 2 Register  
Go  
PWM-to-Digital Code Readback LSB  
Register  
0x12  
0x13  
R
R
0x00  
0x00  
Go  
Go  
PWM-to-Digital Code Readback MSB  
Register  
7.6.1 Revision Register (Address = 0x01)[Reset = 0x01]  
48. Revision Register  
7
6
5
4
3
2
1
0
DEV_REV[6]  
R-0  
DEV_REV[5]  
R-0  
DEV_REV[4]  
R-0  
DEV_REV[3]  
R-0  
DEV_REV[1]  
R-0  
DEV_REV[0]  
R-0  
DEV_REV[1]  
R-0  
DEV_REV[0]  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. Revision Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
DEVICE REVISION  
R
000000 or DEV_REVISION,  
000001  
01  
A0 = 000000  
A1 = 000001  
1-0  
VENDOR  
R
VENDOR, Texas Instruments = 01  
版权 © 2016–2018, Texas Instruments Incorporated  
37  
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.6.2 Backlight Configuration1 Register (Address = 0x02)[Reset = 0x28]  
49. Backlight Configuration 1 Register  
7
6
5
4
3
2
1
0
BL_OVP[2]  
R/W-0  
BL_OVP[1]  
R/W-0  
BL_OVP[0]  
R/W-1  
OVP_MODE  
R/W-0  
BLED_MAP  
R/W-1  
PWM_CONFIG  
R/W-0  
PWM_RAMP  
R/W-0  
PWM_ENABLE  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. Backlight Configuration 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BL_OVP  
R/W  
001  
Backlight OVP  
000: 17 V  
001: 21 V  
010: 25 V  
011: 29 V  
100 to 111 = 29 V  
4
3
2
1
0
OVP_MODE  
BLED_MAP  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
0
0
0
0: OVP is report only  
1: OVP causes shutdown  
0: Exponential  
1: Linear  
PWM_CONFIG  
PWM_RAMP  
PWM_ENABLE  
0: Active high  
1: Active low  
0: No PWM ramp  
1: LED current ramps with changes in duty cycle  
0: PWM disabled  
1: PWM enabled  
7.6.3 Backlight Configuration 2 Register (Address = 0x03)[Reset = 0x8D]  
50. Backlight Configuration 2 Register  
7
6
5
4
3
2
1
0
BL BOOST  
FREQUENCY  
LED CURRENT  
RAMP[3]  
LED CURRENT  
RAMP[2]  
LED CURRENT  
RAMP[1]  
LED CURRENT  
RAMP[0]  
PWM SAMPLE(1)  
PWM HYST[1]  
PWM HYST[0]  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) (Note: register 0x10 bit[0] = 1 enables 24-MHz sample mode.)  
38  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
13. Backlight Configuration 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BL BOOST FREQUENCY  
1
Sets the backlight boost switch frequency  
0: 500 kHz  
1: 1 MHz (Default)  
6-3  
LED CURRENT RAMP  
R/W  
0001  
Controls backlight LED ramping time. The transient time is a  
constant time that the backlight takes to transition from an  
existing programmed code to a new programmed code.  
0000: 0 µs  
0001: 500 µs  
0010: 750 µs  
0011: 1 ms  
0100: 2 ms  
0101: 5 ms  
0110: 10 ms  
0111: 20 ms  
1000: 50 ms  
1001: 100 ms  
1010: 250 ms  
1011: 800 ms  
1100: 1 s  
1101: 2 s  
1110: 4 s  
1111: 8 s  
2
PWM SAMPLE  
PWM HYST  
R/W  
R/W  
1
Sets PWM sampling frequency  
0: 1 MHz  
1: 4 MHz (Default0 Note: register 0x10 bit[0] = 1 enables 24-  
MHz sample mode  
1-0  
01  
Sets the minimum change in PWM input duty cycle that results  
in a change of backlight LED brightness level  
PWM Sample Frequency = 1 MHz or 4 MHz:  
00: 1 bit  
01: 2 bits  
10: 4 bits  
11: 6 bits  
PWM Sample Frequency = 24 MHz:  
00: 0  
01: 1 bit  
10: 2 bits  
11: 3 bits  
版权 © 2016–2018, Texas Instruments Incorporated  
39  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.6.4 Backlight Brightness LSB Register (Address = 0x04)[Reset = 0x07]  
51. Backlight Brightness LSB Register  
7
6
5
4
3
2
1
0
NOT USED  
BRT[2]  
R/W-1  
BRT[1]  
R/W-1  
BRT[0]  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. Backlight Brightness LSB Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
Reset  
Description  
NOT USED  
BRT  
R/W  
111  
11-bit brightness code LSBs  
7.6.5 Backlight Brightness MSB Register (Address = 0x05)[Reset = 0xFF]  
52. Backlight Brightness MSB Register  
7
6
5
4
3
2
1
0
BRT[10]  
R/W-1  
BRT[9]  
R/W-1  
BRT[8]  
R/W-1  
BRT[7]  
R/W-1  
BRT[6]  
R/W-1  
BRT[5]  
R/W-1  
BRT[4]  
R/W-1  
BRT[3]  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. Backlight Brightness MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BRT  
R/W  
11111111 11-bit brightness code MSBs  
7.6.6 Backlight Auto-Frequency Low Threshold Register (Address = 0x06)[Reset = 0x00]  
53. Backlight Auto-Frequency Low Threshold Register  
7
6
5
4
3
2
1
0
AFLT[7]  
R/W-0  
AFLT[6]  
R/W-0  
AFLT[5]  
R/W-0  
AFLT[4]  
R/W-0  
AFLT[3]  
R/W-0  
AFLT[2]  
R/W-0  
AFLT[1]  
R/W-0  
AFLT[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. Backlight Auto-Frequency Low Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AFLT  
R/W  
00000000 Compared against 8 MSB’s of Brightness Code (register 0x05)  
7.6.7 Backlight Auto-Frequency High Threshold Register (Address = 0x07)[Reset = 0x00]  
54. Backlight Auto-Frequency High Threshold Register  
7
6
5
4
3
2
1
0
AFHT[7]  
R/W-0  
AFHT[6]  
R/W-0  
AFHT[5]  
R/W-0  
AFHT[4]  
R/W-0  
AFHT[3]  
R/W-0  
AFHT[2]  
R/W-0  
AFHT[1]  
R/W-0  
AFHT[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. Backlight Auto-Frequency High Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AFHT  
R/W  
00000000 Compared against 8 MSB’s of Brightness Code (register 0x05)  
40  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.6.8 Backlight Enable Register (Address = 0x08)[Reset = 0x00]  
55. Backlight Enable Register  
7
6
5
4
3
2
1
0
SOFTWARE_  
RESET  
NOT USED  
BL_EN  
Reserved  
LED3_EN  
LED2_EN  
LED1_EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. Backlight Enable Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SOFTWARE_RESET  
R/W  
0
0 = No reset  
1 = Device reset (automatically returns to 0 after reset)  
6-5  
4
NOT USED  
BL_EN  
R/W  
0
0 = BL disabled  
1 = BL enabled  
3
2
Reserved  
LED3_EN  
R/W  
R/W  
0
0
Must be written to 0  
0 = Current sink 3 disabled  
1 = Current sink 3 enabled  
1
0
LED2_EN  
LED1_EN  
R/W  
R/W  
0
0
0 = Current sink 2 disabled  
1 = Current sink 2 enabled  
0 = Current sink 1 disabled  
1 = Current sink 1 enabled  
7.6.9 Bias Configuration 1 Register (Address = 0x09)[Reset = 0x18]  
56. Bias Configuration 1 Register  
7
6
5
4
3
2
1
0
LCM_EN[2]  
R/W-0  
LCM_EN[1]  
R/W-0  
LCM_EN[0]  
R/W-0  
VPOS_DISCH  
R/W-1  
VNEG_DISCH  
R/W-1  
VPOS_EN  
R/W-0  
VNEG_EN  
R/W-0  
EXT_EN  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. Bias Configuration 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
LCM_EN  
R/W  
000  
000 = Bias supply off (I2C and external)  
100 = Normal mode  
101 = Auto sequence  
110 = Wake1  
111 = Wake2  
4
3
2
1
0
VPOS_DISCH  
VNEG_DISCH  
VPOS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
0
0
0
0 = No pulldown on VPOS  
1 = Pulldown on VPOS when in shutdown  
0 = No pulldown on VNEG  
1 = Pulldown on VNEG when in shutdown  
0 = VPOS disabled  
1 = VPOS enabled  
VNEG_EN  
0 = VNEG disabled  
1 = VNEG enabled  
EXT_EN  
Activates external enables (LCM_EN1 and LCM_EN2)  
0 = External enables are disabled. VPOS and VNEG can only  
be enabled via bit VPOS_EN and VNEG_EN, respectively.  
(Default)  
1 = External enables are enabled. VPOS and VNEG can only be  
enabled via pin LCM_EN1 and LCM_EN2, respectively.  
版权 © 2016–2018, Texas Instruments Incorporated  
41  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.6.10 Bias Configuration 2 register (Address = 0x0A)[Reset = 0x11]  
57. Bias Configuration 2 Register  
7
6
5
4
3
2
1
0
BIAS_SHORT  
_MODE[1]  
BIAS_SHORT  
_MODE[0]  
VPOS  
_RAMP[1]  
VPOS  
_RAMP[0]  
VNEG  
_RAMP[3]  
VNEG  
_RAMP[2]  
VNEG  
_RAMP[1]  
VNEG  
_RAMP[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. Bias Configuration 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
BIAS_SHORT_MODE  
R/W  
00  
0X = Flag only  
10 = Flag + shutdown VPOS/VNEG  
11 = Flag + shutdown VPOS/VNEG/Backlight  
5:4  
3:0  
VPOS_RAMP  
VNEG_RAMP  
R/W  
R/W  
01  
VPOS ramp time, low to high:  
00 = 256 µs  
01 = 512 µs  
10 = 768 µs  
11 = 1024 µs  
0001  
VNEG ramp time, high to low:  
0000 = 512 µs  
0001 = 1024 µs  
0010 = 1536 µs  
0011 = 2048 µs  
0100 = 2560 µs  
0101 = 3072 µs  
0110 = 3584 µs  
0111 = 4096 µs  
1000 = 4608 µs  
1001 = 5120 µs  
1010 = 5632 µs  
1011 = 6144 µs  
1100 = 6656 µs  
1101 = 7168 µs  
1110 = 7680 µs  
111 = 8192 µs  
7.6.11 Bias Configuration 3 Register (Address = 0x0B)[Reset = 0x00]  
58. Bias Configuration 3 Register  
7
6
5
4
3
2
1
0
NOT USED  
VPOS_SC  
_FILT[1]  
VPOS_SC  
_FILT[0]  
VNEG_SC  
_FILT[1]  
VNEG_SC  
_FILT[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. Bias Configuration 3 Register Field Descriptions  
Bit  
7:4  
5:4  
Field  
Type  
Reset  
Description  
NOT USED  
VPOS_SC_FILT  
R/W  
00  
VPOS short circuit filter timer  
00 = 2 ms  
01 = 1 ms  
10 = 500 µs  
11 = 100 µs  
1:0  
VNEG_SC_FILT  
R/W  
00  
VNEG short circuit filter timer  
00 = 2 ms  
01 = 1 ms  
10 = 500 µs  
11 = 100 µs  
42  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.6.12 LCM Boost Bias Register (Address = 0x0C)[Reset = 0x28]  
59. LCM Boost Bias Register  
7
6
5
4
3
2
1
0
NOT USED  
LCM_OUT[5]  
R/W-1  
LCM_OUT[4]  
R/W-0  
LCM_OUT[3]  
R/W-1  
LCM_OUT[2]  
R/W-0  
LCM_OUT[1]  
R/W-0  
LCM_OUT[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. LCM Boost Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
NOT USED  
LCM_OUT  
R/W  
101000  
LCM_OUT voltage (50-mV steps): LCM_OUT = 4 V + (Code ×  
50 mV)  
000000 = 4 V  
000001 = 4.55V  
:
101000 = 6 V (Default)  
:
111111 = 7.15 V  
7.6.13 VPOS Bias Register (Address = 0x0D)[Reset = 0x1E]  
60. VPOS Bias Register  
7
6
5
4
3
2
1
0
NOT USED  
VPOS[5]  
R/W-0  
VPOS[4]  
R/W-0  
VPOS[3]  
R/W-1  
VPOS[2]  
R/W-1  
VPOS[1]  
R/W-1  
VPOS[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. VPOS Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
NOT USED  
VPOS  
R/W  
011110  
VPOS voltage (50-mV steps): VPOS = 4 V + (Code × 50 mV),  
6.5 V max  
000000 = 4 V  
000001 = 4.05 V  
:
011110 = 5.5 V (Default)  
:
110010 = 6.5 V  
110011 to 111111 map to 6.5 V  
7.6.14 VNEG Bias Register (Address = 0x0E)[Reset = 0x1C]  
61. VNEG Bias Register  
7
6
5
4
3
2
1
0
NOT USED  
VNEG[5]  
R/W-0  
VNEG[4]  
R/W-1  
VNEG[3]  
R/W-1  
VNEG[2]  
R/W-1  
VNEG[1]  
R/W-0  
VNEG[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2016–2018, Texas Instruments Incorporated  
43  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
24. VNEG Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
NOT USED  
VNEG  
R/W  
011100  
VNEG voltage (–50-mV steps): VNEG = -4 V - (Code × 50 mV),  
-6.5 V min  
000000 = –4 V  
000000 = –4.05 V  
:
011100 = -5.4 V (Default)  
:
110010 = –6.5 V  
110011 to 111111 map to –6.5 V  
7.6.15 Flags Register (Address = 0x0F)[Reset = 0x00]  
62. Flags Register  
7
6
5
4
3
2
VNEG_SHORT  
R-0  
1
0
NOT USED  
TSD  
R-0  
LCM_OVP  
R-0  
NOT USED  
VPOS_SHORT  
R-0  
BL_OVP  
R-0  
BL_OCP  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. Flags Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NOT USED  
R
R
0
0
0 = Normal operation  
1 = Thermal shutdown triggered (die temperature > 140°C)  
6
TSD  
0 = Normal operation  
1 = VLCM_OUT > 7.8 V  
5
4
3
LCM_OVP  
NOT USED  
VPOS_SHORT  
R
R
R
R
0
0
0
0
0 = Normal operation  
1 = VPOS output has hit the overcurrent threshold  
0 = Normal operation  
1 = VVNEG > 0.84 × VVNEG_target  
2
1
0
VNEG_SHORT  
BL_OVP  
0 = Normal operation  
1 = Backlight boost output > OVP threshold  
0 = Normal operation  
1 = Backlight boost switch current > OCP threshold  
BL_OCP  
44  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
7.6.16 Option 1 Register (Address = 0x10)[Reset = 0x06]  
63. Option 1 Register  
7
6
5
4
3
2
1
0
NOT USED  
Reserved  
LED3_FB  
LED2_FB  
LED1_FB  
PWM_FILT[1]  
PWM_ FILT[0]  
PWM_24MHZ_  
SAMPLE  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-1  
RW-1  
RW-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. Option 1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
NOT USED  
6
Reserved  
R/W  
R/W  
0
0
Must be written to 0  
5
LED3_FEEDBACK_DISABLE  
0 = Feedback enabled  
1 = Feedback disabled  
4
3
LED2_FEEDBACK_DISABLE  
LED1_FEEDBACK_DISABLE  
PWM_FILT  
R/W  
R/W  
R/W  
0
0 = Feedback enabled  
1 = Feedback disabled  
0
0 = Feedback enabled  
1 = Feedback disabled  
2:1  
11  
PWM Glitch Filter  
00 = No filter  
01 = 100 ns  
10 = 150 ns  
11 = 200 ns  
0
PWM_24MHz_SAMPLE  
R/W  
0
0 = Low-frequency options (see 0x03 bit[2])  
1 = 24-MHz PWM sample frequency  
7.6.17 Option 2 Register (Address = 0x11)[Reset = 0x35]  
64. Option 2 Register  
7
6
5
4
3
2
1
0
BL_L  
SELECT[1]  
BL_L  
SELECT[0]  
BL_SEL_P[1]  
BL_SEL_P[0]  
BL_SEL_I[1]  
BL_SEL_I[0]  
BL_CURRENT  
_LIMIT[1]  
BL_CURRENT  
_LIMIT[0]  
RW-0  
RW-0  
RW-1  
RW-1  
RW-0  
RW-1  
RW-0  
RW-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. Option 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BACKLIGHT_BOOST_L_SELECT  
RW  
00  
00 = 4.7 µH  
01 = 10 µH  
10 = 15 µH  
11 = 15 µH  
5-4  
3-2  
1-0  
BACKLIGHT_SEL_P  
BACKLIGHT_SEL_I  
RW  
RW  
11  
01  
01  
These bits must be written to 11 (default values) to ensure  
backlight boost stability with recommended external components  
for all LED configurations  
These bits must be written to 01 (default values) to ensure  
backlight boost stability with recommended external components  
for all LED configurations  
BACKLIGHT_BOOST_CURRENT_ RW  
LIMIT  
00 = 0.9 A  
01 = 1.2 A  
10 = 1.5 A  
11 = 1.8 A  
版权 © 2016–2018, Texas Instruments Incorporated  
45  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.6.18 PWM-to-Digital Code Readback LSB Register (Address = 0x12)[Reset = 0x00]  
65. PWM-to-Digital Code Readback LSB Register  
7
6
5
4
3
2
1
0
PWM_TO  
_DIG[7]  
PWM_TO  
_DIG[6]  
PWM_TO  
_DIG[5]  
PWM_TO  
_DIG[4]  
PWM_TO  
_DIG[3]  
PWM_TO  
_DIG[2]  
PWM_TO  
_DIG[1]  
PWM_TO  
_DIG[0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. PWM-to-Digital Code Readback LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PWM_TO_DIG  
R
00000000 11-bit PWM-to-digital conversion code LSBs  
7.6.19 PWM-to-Digital Code Readback MSB Register (Address = 0x13)[Reset = 0x00]  
66. PWM-to-Digital Code Readback MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
PWM_TO  
_DIG[10]  
PWM_TO  
_DIG[9]  
PWM_TO  
_DIG[8]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. PWM-to-Digital Code Readback MSB Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R
Reset  
00000  
000  
Description  
RESERVED  
PWM_TO_DIG  
Reserved  
R
11-bit PWM-to-digital conversion code MSBs  
46  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM36273 integrates an LCD backlight driver and LCM positive and negative bias voltages into a single  
device. The backlight boost converter generates the high voltage required for the LEDs. The device can drive  
one, two, or three LED strings with up to eight white LEDs per string. Positive and negative bias voltages are  
post-regulated from the LCM bias boost output voltage. The LM36273 offers high performance, is highly  
configurable, and can support multiple LED configurations as well as independent control of the bias outputs.  
8.2 Typical Application  
D1  
L1  
10 µH  
C2  
1 µF  
L2  
2.2 µH  
2.7 V to 5 V  
IN  
BL_OUT  
LED1  
VBATT  
C1  
20 µF  
LED2  
SCL  
LED3  
SDA  
C+  
C-  
LM36273  
PWM  
CFLY  
10 µF  
µC/µP  
HWEN  
+5.8 V  
LCM_OUT  
VPOS  
LCM_EN1  
LCM_EN2  
C4  
10 µF  
+5.5 V  
C5  
10 µF  
-5.5 V  
VNEG  
C6  
10 µF  
Copyright © 2017, Texas Instruments Incorporated  
67. LM36273 Typical Application  
版权 © 2016–2018, Texas Instruments Incorporated  
47  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range (VIN  
)
2.7 V to 4.5 V (single Li-Ion cell battery)  
LED parallel/series configuration  
LED maximum forward voltage (Vf)  
Backlight LED current  
3 parallel, 6 series  
3.35 V  
maximum 30 mA / string  
Backlight boost maximum voltage  
Backlight boost SW frequency  
Backlight boost inductor  
29 V  
1 MHZ, 500 kHz, 250 kHz (auto-frequency option)  
10-μH, 1.5-A saturation current  
Backlight boost Schottky diode  
LCM boost output voltage  
VPOS output voltage  
NSR05F30NXT5G  
5.8 V  
5.5 V  
–5.5 V  
VNEG output voltage  
LCM boost inductor  
2.2-µH, 1.5-A saturation current  
The number of LED strings, number of series LEDs, and minimum input voltage are needed in order to calculate  
the peak input current. This information guides the designer to make the appropriate backlight boost inductor  
selection for the application. The LM36273 backlight boost converter output voltage (VOUT) is calculated as  
follows: number of series LEDs × Vƒ + 0.31 V. The LM36273 boost converter output current (IOUT) is calculated  
as follows: number of parallel LED strings × 30 mA. The LM36273 peak input current is calculated using 公式 5.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Component Selection  
30 shows examples of external components for the LM36273. Boost converter output capacitors can be  
replaced with dual output capacitors of lower capacitance as long as the minimum effective capacitance  
requirement is met. DC bias effect of the ceramic capacitors must be taken into consideration when choosing the  
output capacitors. This is especially true for the high output-voltage backlight-boost converter.  
30. Recommended External Components  
DESIGNATOR  
DESCRIPTION  
Ceramic capacitor  
Ceramic capacitor  
Inductor  
VALUE  
EXAMPLE  
C1, C4, C5, C6, CFLY  
10 µF, 10 V  
1 µF, 35 V  
C1608X5R0J106M  
C2  
L1  
L1  
L1  
L2  
D1  
C2012X7R1H105K125AB  
VLF504012MT-4R7M  
VLF504015MT-100M  
VLF504015MT-150M  
DFE201612P-2R2M  
NSR053F30NXT5G  
4.7 µH, 1.94 A  
10 µH, 1.44 A  
15 µH, 1.25 A  
2.2 µH, 1.5 A  
30 V, 500 mA  
Inductor  
Inductor  
Inductor  
Schottky diode  
8.2.2.1.1 Inductor Selection  
The LM36273 backlight boost requires a typical inductance in the range of 4.7 µH to 15 µH. To ensure boost  
stability the Backlight Boost L Select bit (register 0x11 bits [7:6]) must be selected depending on the value of  
inductance chosen. Use the 4.7-µH setting with a 6.8-µH inductor.  
The LCM boost is internally compensated for a typical inductance in the range of 1 µH to 2.2 µH. If the LCM  
boost output setting is greater than 6.3 V a 2.2-µH inductor must be used.  
There are two main considerations when choosing an inductor: the inductor RMS current rating must be greater  
than the RMS inductor current for the application, and the inductor saturation current must be greater than the  
peak inductor current for the application. Different saturation current rating specifications are followed by different  
manufacturers so attention must be given to details. Saturation current ratings are typically specified at 25°C.  
However, ratings at the maximum ambient temperature of the application should be requested from the  
48  
版权 © 2016–2018, Texas Instruments Incorporated  
 
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
manufacturer. The saturation current must be greater than the sum of the maximum load current and the worst-  
case average-to-peak inductor current. When the boost device is boosting (VOUT > VIN) the inductor is one of the  
largest area of efficiency loss in the circuit. Therefore, choosing an inductor with the lowest possible series  
resistance is important, especially for an LCM bias converter. For proper inductor operation and circuit  
performance, ensure that the inductor saturation and the peak current limit setting of the LM36273 are greater  
than IPEAK in 公式 5:  
ILOAD  
VOUT  
VIN ì(VOUT - VIN ì h)  
2 ì fSW ì L ì VOUT  
IPEAK =  
ì
+ DILOAD where DILOAD =  
h
VIN  
(5)  
See detailed information in Understanding Boost Power Stages in Switch Mode Power Supplies  
http://focus.ti.com/lit/an/slva061/slva061.pdf. Power Stage Designer™ Tools can be used for the boost  
calculation: http://www.ti.com/tool/powerstage-designer.  
Also, the peak current calculated in 公式 5 is different from the peak inductor current setting (ISAT). The NMOS  
switch current limit setting (ICL_MIN) must be greater than IPEAK from 公式 5.  
8.2.2.1.2 Boost Output Capacitor Selection  
At least an 1-μF capacitor is recommended for the backlight boost converter output capacitor. A high-quality  
ceramic type X5R or X7R is recommended. Voltage rating must be greater than the maximum output voltage that  
is used. The effective output capacitance must always remain higher than 0.4 μF for stable operation.  
31 lists possible backlight output capacitors that can be used with the LM36273. 68 shows the DC bias of  
the four TDK capacitors. The useful voltage range is determined from the effective output voltage range for a  
given capacitor as determined by 公式 6:  
0.4 mF  
(1- Tol) ì(1 - Temp_co)  
DC Voltage Derating í  
(6)  
31. Recommended Backlight Output Capacitors  
RECOMMENDED MAX  
CASE  
SIZE  
VOLTAGE  
RATING (V)  
NOMINAL  
CAPACITANCE (µF)  
TEMPERATURE  
COEFFICIENT (%)  
OUTPUT VOLTAGE  
(FOR SINGLE  
PART NUMBER  
MANUFACTURER  
TOLERANCE (%)  
CAPACITOR)  
C2012X5R1H105K085AB  
C2012X5R1H225K085AB  
C1608X5R1V225K080AC  
C1608X5R1H105K080AB  
TDK  
TDK  
TDK  
TDK  
0805  
0805  
0603  
0603  
50  
50  
35  
50  
1
±10  
±10  
±10  
±10  
±15  
±15  
±15  
±15  
22  
24  
12  
15  
2.2  
2.2  
1
For example, with a 10% tolerance, and a 15% temperature coefficient, the DC voltage derating must be 0.4 /  
(0.9 × 0.85) = 0.523 µF. For the C1608X5R1H225K080AB (0603, 50-V) device, the useful voltage range occurs  
up to the point where the DC bias derating falls below 0.523 µF, or around 12 V. For configurations where VOUT  
is > 15 V, two of these capacitors can be paralleled, or a larger capacitor such as the C2012X5R1H105K085AB  
must be used.  
版权 © 2016–2018, Texas Instruments Incorporated  
49  
 
 
 
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
C2012X5R1H105K085AB  
C2012X5R1H225K085AB  
C1608X5R1V225K080AC  
C1608X5R1H105K080AB  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
C006  
DC Bias  
68. DC Bias Derating for 0805 Case Size and  
0603 Case Size 35-V and 50-V Ceramic Capacitors  
For the LCM bias boost output a high-quality 10-μF ceramic type X5R or X7R capacitor is recommended.  
Voltage rating must be greater than the maximum output voltage that is used.  
8.2.2.1.3 Input Capacitor Selection  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the switching  
of the LM36273 boost converters and reduce noise on the input pin that can feed through and disrupt internal  
analog signals. For the LM36273 a 10-μF ceramic input capacitor works well. It is important to place the input  
capacitor as close to the input (IN) pin as possible. This reduces the series resistance and inductance that can  
inject noise into the device due to the input switching currents.  
50  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
8.2.3 Application Curves  
8.2.3.1 Backlight Curves  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Backlight system efficiency is defined as  
PLED / PIN, where PLED is actual power consumed in backlight LEDs. External components are from 30.  
8.2.3.1.1 Two LED Strings  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D201  
D202  
2p8s  
ƒ = 1 MHz  
L = 10 µH  
2p8s  
ƒ = 1 MHz  
L = 10 µH  
69. Backlight Boost Efficiency  
70. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D203  
D204  
2p8s  
ƒ = 500 kHz  
L = 10 µH  
2p8s  
ƒ = 500 kHz  
L = 10 µH  
71. Backlight Boost Efficiency  
72. Backlight System Efficiency  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Load (mA)  
Load (mA)  
D206  
D205  
2p8s  
ƒ = 250 kHz  
L = 10 µH  
2p8s  
ƒ = 250 kHz  
L = 10 µH  
74. Backlight System Efficiency  
73. Backlight Boost Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
51  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D207  
D208  
2p8s  
ƒ = 1 MHz  
L = 10 µH  
2p8s  
ƒ = 1 MHz  
L = 10 µH  
75. Backlight Boost Efficiency  
76. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D209  
D210  
2p8s  
ƒ = 500 kHz  
L = 10 µH  
2p8s  
ƒ = 500 kHz  
L = 10 µH  
77. Backlight Boost Efficiency  
78. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D211  
D212  
2p7s  
ƒ = 1 MHz  
L = 10 µH  
2p7s  
ƒ = 1 MHz  
L = 10 µH  
79. Backlight Boost Efficiency  
80. Backlight System Efficiency  
52  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
50  
0
0
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
Load (mA)  
D214  
D213  
2p7s  
ƒ = 500 kHz  
L = 10 µH  
2p7s  
ƒ = 500 kHz  
L = 10 µH  
82. Backlight System Efficiency  
81. Backlight Boost Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
Load (mA)  
Load (mA)  
D215  
D216  
2p7s  
ƒ = 250 kHz  
L = 10 µH  
2p7s  
ƒ = 250 kHz  
L = 10 µH  
83. Backlight Boost Efficiency  
84. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D217  
D218  
2p7s  
ƒ = 1 MHz  
L = 10 µH  
2p7s  
ƒ = 1 MHz  
L = 10 µH  
85. Backlight Boost Efficiency  
86. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
53  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D219  
D220  
2p7s  
ƒ = 500 kHz  
L = 10 µH  
2p7s  
ƒ = 500 kHz  
L = 10 µH  
87. Backlight Boost Efficiency  
88. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D221  
D222  
2p6s  
ƒ = 1 MHz  
L = 10 µH  
2p6s  
ƒ = 1 MHz  
L = 10 µH  
89. Backlight Boost Efficiency  
90. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D224  
D223  
2p6s  
ƒ = 500 kHz  
L = 10 µH  
2p6s  
ƒ = 500 kHz  
L = 10 µH  
92. Backlight System Efficiency  
91. Backlight Boost Efficiency  
54  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Load (mA)  
Load (mA)  
D225  
D226  
2p6s  
ƒ = 250 kHz  
L = 10 µH  
2p6s  
ƒ = 250 kHz  
L = 10 µH  
93. Backlight Boost Efficiency  
94. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D227  
D228  
2p6s  
ƒ = 1 MHz  
L = 10 µH  
2p6s  
ƒ = 1 MHz  
L = 10 µH  
95. Backlight Boost Efficiency  
96. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D229  
D230  
2p6s  
ƒ = 500 kHz  
L = 10 µH  
2p6s  
ƒ = 500 kHz  
L = 10 µH  
97. Backlight Boost Efficiency  
98. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
55  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D231  
D232  
2p8s  
ƒ = 1 MHz  
L = 4.7 µH  
2p8s  
ƒ = 1 MHz  
L = 4.7 µH  
99. Backlight Boost Efficiency  
100. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D233  
D234  
2p8s  
ƒ = 500 kHz  
L = 4.7 µH  
2p8s  
ƒ = 500 kHz  
L = 4.7 µH  
101. Backlight Boost Efficiency  
102. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D235  
D236  
2p8s  
ƒ = 1 MHz  
L = 4.7 µH  
2p8s  
ƒ = 1 MHz  
L = 4.7 µH  
103. Backlight Boost Efficiency  
104. Backlight System Efficiency  
56  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
0
0
5
5
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D237  
D238  
2p8s  
ƒ = 500 kHz  
L = 4.7 µH  
2p8s  
ƒ = 500 kHz  
L = 4.7 µH  
105. Backlight Boost Efficiency  
106. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D239  
D240  
2p6s  
ƒ = 1 MHz  
L = 4.7 µH  
2p6s  
ƒ = 1 MHz  
L = 4.7 µH  
107. Backlight Boost Efficiency  
108. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D241  
D242  
2p6s  
ƒ = 500 kHz  
L = 4.7 µH  
2p6s  
ƒ = 500 kHz  
L = 4.7 µH  
109. Backlight Boost Efficiency  
110. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
57  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D244  
D243  
2p6s  
ƒ = 1 MHz  
L = 4.7 µH  
2p6s  
ƒ = 1 MHz  
L = 4.7 µH  
112. Backlight System Efficiency  
111. Backlight Boost Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load (mA)  
D245  
D246  
2p6s  
ƒ = 500 kHz  
L = 4.7 µH  
2p6s  
ƒ = 500 kHz  
L = 4.7 µH  
113. Backlight Boost Efficiency  
114. Backlight System Efficiency  
58  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
8.2.3.1.2 Three LED Strings  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
0
0
10  
10  
3
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
10  
3
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D301  
D302  
3p8s  
ƒ = 1 MHz  
L = 10 µH  
3p8s  
ƒ = 1 MHz  
L = 10 µH  
115. Backlight Boost Efficiency  
116. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D303  
D304  
3p8s  
ƒ = 500 kHz  
L = 10 µH  
3p8s  
ƒ = 500 kHz  
L = 10 µH  
117. Backlight Boost Efficiency  
118. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
6
9
12  
15  
18  
21  
24  
27  
30  
6
9
12  
15  
18  
21  
24  
27  
30  
Load (mA)  
Load (mA)  
D305  
D306  
3p8s  
ƒ = 250 kHz  
L = 10 µH  
3p8s  
ƒ = 250 kHz  
L = 10 µH  
119. Backlight Boost Efficiency  
120. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
59  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D307  
D308  
3p8s  
ƒ = 1 MHz  
L = 10 µH  
3p8s  
ƒ = 1 MHz  
L = 10 µH  
121. Backlight Boost Efficiency  
122. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D309  
D310  
3p8s  
ƒ = 500 kHz  
L = 10 µH  
3p8s  
ƒ = 500 kHz  
L = 10 µH  
123. Backlight Boost Efficiency  
124. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D311  
D312  
3p6s  
ƒ = 1 MHz  
L = 10 µH  
3p6s  
ƒ = 1 MHz  
L = 10 µH  
125. Backlight Boost Efficiency  
126. Backlight System Efficiency  
60  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D313  
D314  
3p6s  
ƒ = 500 kHz  
L = 10 µH  
3p6s  
ƒ = 500 kHz  
L = 10 µH  
127. Backlight Boost Efficiency  
128. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
50  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
3
6
9
12  
15  
18  
21  
24  
27  
30  
Load (mA)  
Load (mA)  
D315  
D316  
3p6s  
ƒ = 250 kHz  
L = 10 µH  
3p6s  
ƒ = 250 kHz  
L = 10 µH  
129. Backlight Boost Efficiency  
130. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D317  
D318  
3p6s  
ƒ = 1 MHz  
L = 10 µH  
3p6s  
ƒ = 1 MHz  
L = 10 µH  
131. Backlight Boost Efficiency  
132. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
61  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D319  
D320  
3p6s  
ƒ = 500 kHz  
L = 10 µH  
3p6s  
ƒ = 500 kHz  
L = 10 µH  
133. Backlight Boost Efficiency  
134. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D321  
D322  
3p8s  
ƒ = 1 MHz  
L = 15 µH  
3p8s  
ƒ = 1 MHz  
L = 15 µH  
135. Backlight Boost Efficiency  
136. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D323  
D324  
3p8s  
ƒ = 500 kHz  
L = 15 µH  
3p8s  
ƒ = 500 kHz  
L = 15 µH  
137. Backlight Boost Efficiency  
138. Backlight System Efficiency  
62  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
50  
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D325  
D326  
3p8s  
ƒ = 1 MHz  
L = 15 µH  
3p8s  
ƒ = 1 MHz  
L = 15 µH  
139. Backlight Boost Efficiency  
140. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
50  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D327  
D328  
3p8s  
ƒ = 500 kHz  
L = 15 µH  
3p8s  
ƒ = 500 kHz  
L = 15 µH  
141. Backlight Boost Efficiency  
142. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
45  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D329  
D330  
3p8s  
ƒ = 1 MHz  
L = 4.7 µH  
3p8s  
ƒ = 1 MHz  
L = 4.7 µH  
143. Backlight Boost Efficiency  
144. Backlight System Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
63  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0
0
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D331  
D332  
3p8s  
ƒ = 500 kHz  
L = 4.7 µH  
3p8s  
ƒ = 500 kHz  
L = 4.7 µH  
145. Backlight Boost Efficiency  
146. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D333  
D334  
3p8s  
ƒ = 1 MHz  
L = 4.7 µH  
3p8s  
ƒ = 1 MHz  
L = 4.7 µH  
147. Backlight Boost Efficiency  
148. Backlight System Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Load (mA)  
Load (mA)  
D335  
D336  
3p8s  
ƒ = 500 kHz  
L = 4.7 µH  
3p8s  
ƒ = 500 kHz  
L = 4.7 µH  
149. Backlight Boost Efficiency  
150. Backlight System Efficiency  
64  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
8.2.3.2 LCM Bias Curves  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG efficiency  
is defined as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG)  
outputs, respectively. External components are from 30.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Load (mA)  
Load (mA)  
D101  
D102  
VLCM_OUT = 4.3 V  
VLCM_OUT = 5.3 V  
151. LCM Boost Efficiency  
152. LCM Boost Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.5 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Load (mA)  
Load (mA)  
D104  
D103  
VLCM_OUT = 4.8 V  
VLCM_OUT = 6.3 V  
154. LCM Boost Efficiency  
153. LCM Boost Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Load (mA)  
Load (mA)  
D105  
D106  
VLCM_OUT = 5.8 V  
155. LCM Boost Efficiency  
VLCM_OUT = 6.8 V  
156. LCM Boost Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
65  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
10  
20  
20  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
20  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D107  
D108  
D110  
D112  
VVPOS = 4 V  
VLCM_OUT = 4.3 V  
157. VPOS Efficiency  
VVPOS = 5 V  
VLCM_OUT = 5.3 V  
158. VPOS Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.5 V  
0
10  
30  
40  
50  
60  
70  
80  
0
10  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D109  
VVPOS = 6 V  
VLCM_OUT = 6.3 V  
159. VPOS Efficiency  
160. VPOS Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
10  
30  
40  
50  
60  
70  
80  
0
10  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D111  
VVPOS = 6 V  
VLCM_OUT = 6.3 V  
161. VPOS Efficiency  
VVPOS = 6.5 V  
VLCM_OUT = 6.8 V  
162. VPOS Efficiency  
66  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
40  
0
0
10  
20  
20  
20  
30  
40  
50  
60  
70  
80  
10  
20  
20  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D114  
D116  
D118  
D113  
D115  
D117  
VVNEG = -5 V  
VLCM_OUT = 5.3 V  
164. VNEG Efficiency  
VVNEG = -4 V  
VLCM_OUT = 4.3 V  
163. VNEG Efficiency  
90  
95  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.5 V  
0
10  
30  
40  
50  
60  
70  
80  
0
10  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
VVNEG = -6 V  
VLCM_OUT = 6.3 V  
165. VNEG Efficiency  
VVNEG = –4.5 V  
VLCM_OUT = 4.8 V  
166. VNEG Efficiency  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
10  
30  
40  
50  
60  
70  
80  
0
10  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
VVNEG = –5.5 V  
VLCM_OUT = 5.8 V  
167. VNEG Efficiency  
VVNEG = –6.5 V  
VLCM_OUT = 6.8 V  
168. VNEG Efficiency  
版权 © 2016–2018, Texas Instruments Incorporated  
67  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D119  
D120  
VVPOS = 4 V  
VVNEG = –4 V  
VLCM_OUT = 4.3 V  
VVPOS = 5 V  
VVNEG = –5 V  
VLCM_OUT = 5.3 V  
169. VPOS/VNEG Efficiency  
170. VPOS/VNEG Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.5 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D121  
D122  
VVPOS = 6 V  
VVNEG = –6 V  
VLCM_OUT = 6.3 V  
VVPOS = 4.5 V  
VVNEG = –4.5 V  
VLCM_OUT = 4.8 V  
171. VPOS/VNEG Efficiency  
172. VPOS/VNEG Efficiency  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D124  
D123  
VVPOS = 6.5 V  
VVNEG = –6.5 V  
VLCM_OUT = 6.8 V  
VVPOS = 5.5 V  
VVNEG = –5.5 V  
VLCM_OUT = 5.8 V  
174. VPOS/VNEG Efficiency  
173. VPOS/VNEG Efficiency  
68  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
9 Power Supply Recommendations  
The LM36273 is designed to operate from an input voltage supply range from 2.7 V to 5 V. This input supply  
must be well regulated and capable to supply the required input current. If the input supply is located far from the  
LM36273 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
Place the boost converter output capacitors as close to the output voltage and GND pins as possible.  
Minimize the boost converter switching loops by placing the input capacitors and inductors close to GND and  
switch pins.  
If possible, route the switching loops on top layer only. For best efficiency, try to minimize copper on the  
switch node to minimize switch pin parasitic capacitance while preserving adequate routing width.  
VIN input voltage pin must be bypassed to ground with a low-ESR bypass capacitor. Place the capacitor as  
close as possible to VIN pin.  
Place the output capacitor of the LDO as close to the output pins as possible. Also place the charge pump  
flying capacitor and output capacitor close to their respective pins.  
Route the internal pins on the second layer. Use offset micro vias to go from top layer to mid-layer1. Avoid  
routing the signal traces directly under the switching loops of the boost converters.  
版权 © 2016–2018, Texas Instruments Incorporated  
69  
LM36273  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
10.2 Layout Example  
VIAs to  
GND Plane  
VIAs to  
GND Plane  
VINL  
CVNEG  
CVPOS  
CFLY  
VNEG  
C-  
C+  
CP_GND  
CIN  
IN  
VPOS  
LCM_EN2  
LCM_EN1  
LCM_OUT  
LCM_SW  
BL_GND  
BL_SW  
NC  
SCL  
SDA  
VINL  
PWM  
HWEN  
LED3  
LED2  
LED1  
LLCM  
CLCM  
AGND  
BL_OUT  
LCM_GND  
BL_SW  
VIAs to  
GND Plane  
LBL  
CBL_OUT  
D1  
VINL  
VIAs to  
GND Plane  
175. LM36273 Layout Example  
70  
版权 © 2016–2018, Texas Instruments Incorporated  
LM36273  
www.ti.com.cn  
ZHCSGN8D FEBRUARY 2016REVISED MARCH 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
Power Stage Designer™ 工具可用于升压计算:http://www.ti.com.cn/tool/cn/powerstage-designer  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅:  
AN-1112 DSBGA 晶圆级芯片级封装》  
《了解开关模式电源中的升压功率级》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2018, Texas Instruments Incorporated  
71  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM36273YFFR  
ACTIVE  
DSBGA  
YFF  
24  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
LM36273  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM36273YFFR  
DSBGA  
YFF  
24  
3000  
180.0  
8.4  
1.72  
2.51  
0.69  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFF 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
LM36273YFFR  
3000  
Pack Materials-Page 2  
D: Max = 2.44 mm, Min = 2.38 mm  
E: Max = 1.671 mm, Min = 1.61 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM36273YFFR

三通道 LCD 背光和偏置电源 | YFF | 24 | -40 to 85
TI

LM36274

具有 LCD 偏置的集成背光驱动器
TI

LM36274YFFR

具有 LCD 偏置的集成背光驱动器 | YFF | 24 | -40 to 85
TI

LM363

LM363 Precision Instrumentation Amplifier
NSC

LM3630A

LM3630A High-Efficiency Dual-String White LED Driver
TI

LM3630ATME

LM3630A High-Efficiency Dual-String White LED Driver
TI

LM3630ATMX

LM3630A High-Efficiency Dual-String White LED Driver
TI

LM3630A_15

High-Efficiency Dual-String White LED Driver
TI

LM3631

适用于 LCD 面板的集成式 WLED 背光驱动器和偏置电源
TI

LM3631YFFR

适用于 LCD 面板的集成式 WLED 背光驱动器和偏置电源 | YFF | 24 | -40 to 85
TI

LM3632A

具有偏置电源和 1.5A LED 闪光灯驱动器的单芯片背光
TI

LM3632AYFFR

具有偏置电源和 1.5A LED 闪光灯驱动器的单芯片背光 | YFF | 30 | -40 to 85
TI