LM5140QRWGTQ1 [TI]

宽输入电压、双路 2.2MHz 低 Iq 同步降压控制器 | RWG | 40 | -40 to 150;
LM5140QRWGTQ1
型号: LM5140QRWGTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

宽输入电压、双路 2.2MHz 低 Iq 同步降压控制器 | RWG | 40 | -40 to 150

控制器 开关
文件: 总49页 (文件大小:2726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
LM5140-Q1 具有宽输入范围的双路同步降压控制器  
1 特性  
2 应用  
1
符合 AEC-Q100 1 级标准  
TA = -40ºC 125ºC)  
汽车电子产品  
信息娱乐系统  
输入工作电压范围为 3.8V 65V(最高绝对电压  
70V)  
仪表板  
高级驾驶员辅助系统 (ADAS)  
两个具有以下电压特性的交错式降压控制器:  
3 说明  
VOUT13.3V5V 固定电压或 1.5V 15V  
可调节电压,精度为 ±1%  
LM5140-Q1 是一款双路同步降压控制器,用于高电  
压、宽 VIN 降压转换器 应用. 此控制方法基于电流模式  
控制。电流模式控制可提供固有线路前馈、逐周期电流  
限制和简化的环路补偿。  
VOUT25V8V 固定电压或 1.5V 15V  
可调节电压,精度为 ±1%  
2.2MHz 440kHz 固定开关频率,精度为 ±7%  
可选择与外部时钟保持同步  
LM5140-Q1 具有 可调节转换率控制功能,能够简化  
CISPR 和汽车级电磁干扰 (EMI) 要求的合规性。  
LM5140-Q1 可在 2.2MHz 440kHz 的可选开关频率  
下运行,两条控制器通道发生 180º 出相。在轻负载或  
无负载条件下,LM5140-Q1 通过在跳周期模式下运行  
来提升低功耗效率。LM5140-Q1 具备一个自动切换至  
外部偏置电源的高电压偏置稳压器,能够提升效率并降  
低输入电流。其他 功能 包括频率同步、逐周期电流限  
制、针对持续过载条件的断续模式保护、独立的电源正  
常输出以及独立的使能输入。  
用于附加转换器的 SYNC 输出时钟  
关断模式电流:9µA(典型值)  
无负载待机电流:35µA(典型值)(单通道运行)  
电流限值阈值可编程为 50mV 75mV,精度为  
±10%  
用于 VOUT1 VOUT2 的独立使能输入  
针对持续过载条件的断续模式保护  
独立的电源正常输出  
具有可调节转换率控制的高侧和低侧栅极驱动器  
在轻负载条件下可选择二极管仿真或连续导通  
具有可湿性侧面的超薄型四方扁平无引线 (VQFN)-  
40 封装  
器件信息(1)  
器件型号  
LM5140-Q1  
封装  
VQFN (40)  
封装尺寸(标称值)  
6.00mm x 6.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
VIN  
VIN  
VCC  
HB1  
HB2  
HO2  
HO1  
HOL1  
VOUT2  
HOL2  
VOUT1  
SW1  
SW2  
LO1  
LO2  
LOL2  
LOL1  
PGND1  
PG1  
PGND2  
LM5140-Q1  
EN2  
VIN  
EN1  
VIN  
PG2  
ILSET  
VCC  
SYNOUT  
CS1  
VOUT1  
CS2  
VOUT2  
VCCX  
SYNIN  
COMP1  
COMP2  
FB2  
VCC  
FB1  
VCC  
OSC AGND SS1 RES SS2 DEMB VDDA  
VCC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA02  
 
 
 
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Application ................................................. 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Switching Characteristics.......................................... 9  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 37  
11 Layout................................................................... 38  
11.1 Layout Procedure.................................................. 38  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 42  
12.1 器件支持 ............................................................... 42  
12.2 社区资源................................................................ 42  
12.3 ....................................................................... 42  
12.4 静电放电警告......................................................... 42  
12.5 Glossary................................................................ 42  
13 机械、封装和可订购信息....................................... 42  
8
5 修订历史记录  
日期  
修订版本  
注释  
2016 1 月  
*
最初发布版本。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
6 Pin Configuration and Functions  
RWG Package  
40 Pin VQFN  
Top View  
37  
36  
35  
34  
33  
40  
39  
38  
32  
31  
1
SS2  
30  
29  
SS1  
2
3
4
COMP2  
FB2  
COMP1  
FB1  
28  
27  
CS2  
CS1  
5
6
VOUT2  
VCCX  
26  
25  
VOUT1  
VIN  
Exposed Pad on Bottom  
Connect to Ground  
PG2  
7
8
24  
23  
PG1  
HOL2  
HOL1  
HO2  
SW2  
9
22  
21  
HO1  
SW1  
10  
20  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Connect Exposed Pad on bottom to AGND and PGND on the PCB.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SS2  
NO.  
Channel 2 soft-start programming pin. An external capacitor and an internal 20-μA current  
source set the ramp rate of the internal error amplifier reference during soft-start. Pulling SS  
pin below 80mV turns-off the channel 2 gate driver outputs, but all the other functions remain  
active.  
1
2
3
I
O
I
COMP2  
FB2  
Output of the channel 2 transconductance error amplifier.  
Feedback input of channel 2. Connect the FB2 pin to VDD for a 5 V output or connect FB2 to  
ground for a fixed 8V output. A resistive divider from the VOUT2 to the FB2 pin sets the  
output voltage level between 1.5 V and 15 V. The regulation threshold at the FB2 pin is 1.2  
V.  
Channel 2 current sense amplifier input. Make a low current Kelvin connection between this  
pin and the inductor side of the external current sense resistor.  
CS2  
4
5
6
I
I
I
Output and the current sense amplifier input of channel 2 . Connect this pin to the output  
side of the channel 2 current sense resistor.  
VOUT2  
VCCX  
Optional input for an external bias supply. If VCCX > 4.5 V, VCCX is internally connected to  
VCC and the internal VCC regulator is disabled. If VCCX is unused, it should be grounded.  
PG2  
7
8
9
O
O
O
An open collector output which goes low if VOUT2 is outside a specified regulation window.  
Channel 2 high-side gate driver turn-off output.  
HOL2  
HO2  
Channel 2 high-side gate driver turn-on output.  
Switching node of the channel 2 buck regulator. Connect to the bootstrap capacitor, the  
source terminal of the high-side MOSFET and the drain terminal of the low-side MOSFET.  
SW2  
10  
I
HB2  
11  
12  
13  
14  
O
O
O
G
Channel 2 high-side driver supply for bootstrap gate drive.  
Channel 2 low-side gate driver turn-off output.  
LOL2  
LO2  
Channel 2 low-side gate driver turn-on output.  
PGND2  
Power ground connection pin for low-side NMOS gate driver.  
Copyright © 2016, Texas Instruments Incorporated  
3
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
VCC  
NO.  
15  
16  
17  
18  
19  
20  
P
P
VCC bias supply pin. Pin 15 and pin 16 must to be connected together on the PCB.  
VCC bias supply pin. Pin 15 and pin 16 must to be connected together on the PCB.  
Power ground connection pin for low-side NMOS gate driver.  
Channel 1 low-side gate driver turn-on output.  
VCC  
PGND1  
LO1  
G
O
O
O
LOL1  
HB1  
Channel 1 low-side gate driver turn-off output.  
Channel 1 high-side driver supply for bootstrap gate drive.  
Switching node of the channel 1 buck regulator. Connect to the bootstrap capacitor, the  
source terminal of the high-side MOSFET and the drain terminal of the low-side MOSFET.  
SW1  
21  
I
HO1  
HOL1  
PG1  
VIN  
22  
23  
24  
25  
O
O
O
P
Channel 1 high-side gate driver turn-on output  
Channel 1 high-side gate driver turn-off output.  
An open collector output which goes low if VOUT1 is outside a specified regulation window.  
Supply voltage input source for the VCC regulators.  
VOUT1 and current sense amplifier input of channel 1. Connect to the output side of the  
channel 1 current sense resistor.  
VOUT1  
CS1  
26  
27  
I
I
Channel 1 current sense amplifier input. Make a low current Kelvin connection between this  
pin and the inductor side of the external current sense resistor.  
Feedback input of channel 1. Connect the FB1 pin to VDDA for a 3.3-V output or connect  
FB1 to ground for a 5-V output. A resistive divider from the VOUT1 to the FB1 pin sets the  
output voltage level between 1.5 V and 15 V. The regulation threshold at the FB1 pin is 1.2  
V.  
FB1  
28  
29  
30  
31  
I
O
I
COMP1  
SS1  
Output of the channel 1 transconductance error amplifier.  
Channel 2 soft-start programming pin. An external capacitor and an internal 20μA current  
source set the ramp rate of the internal error amplifier reference during soft-start. Pulling SS  
pin below 80mV turns-off the channel 1 gate driver outputs, but the all the other function  
remain active.  
EN1  
I
An active high logic input enables channel 1.  
Restart timer pin. An external capacitor configures the hiccup mode current limiting. The  
capacitor at the RES pin determines the time the controller will remain off before  
automatically restarting in hiccup mode. The two regulator channels operate independently.  
One channel may operate in normal mode while the other is in hiccup mode overload  
protection. The hiccup mode commences when either channel experiences 512 consecutive  
PWM cycles with cycle-by-cycle current limiting. Connect the RES pin to VDD during power  
up to disable hiccup mode protection.  
RES  
32  
O
Diode Emulation pin. If the DEMB pin is grounded, diode emulation is enabled. If it is  
connected to VDDA the LM5140-Q1 operates in FPWM mode with continuous conduction at  
light loads.  
DEMB  
ILSET  
33  
34  
I
I
Current Limit Threshold pin. Connecting the ILSET pin to VDDA sets the current limit  
threshold to 73 mV for channel 1 and channel 2.  
Connecting the ILSET pin to GND sets the current limit thresholds to 48 mV.  
Analog ground connection. Ground return for the internal voltage reference and analog  
circuits.  
AGND  
VDDA  
OSC  
35  
36  
37  
G
P
I
Internal analog bias regulator output. Connect a capacitor from the VDDA pin the AGND.  
Frequency selection pin. Connecting the OSC pin to VDDA selects the default oscillator  
frequency of 2.2 MHz. Connecting the OSC pin to ground sets frequency to 440 kHz.  
Sync input pin. The internal oscillator can be synchronized to an external clock. If the  
synchronization feature is not used, the SYNIN pin should be connected to AGND.  
SYNIN  
38  
I
Sync output pin. The TTL level output signal is 180º out of phase with the HO1 gate drive of  
channel 1.  
SYNOUT  
EN2  
39  
40  
O
I
An active high logic input enables channel 2.  
4
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-5  
MAX  
UNIT  
V
VIN  
70  
70  
SW1,SW2 to PGND  
V
SW1, SW2 to PGND (20ns transient)  
HB1 to SW1, HB2 to SW2  
V
-0.3  
-5  
6.5  
V
HB1 to SW1, HB2 to SW2 (20ns transient)  
HO1 to SW1, HOL1 to SW1, HO2 to SW2, HOL2 to SW2  
V
-0.3  
-5  
HB + 0.3  
V
HO1 to SW1, HOL1 to SW1, HO2 to SW2, HOL2 to SW2 (20ns transient)  
V
Input voltage  
LO1, LOL1, LO2, LOL2 to PGND  
-0.3  
-1.5  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
VCC + 0.3  
VCC + 0.3  
VDDA + 0.3  
70  
V
LO1, LOL1, LO2, LOL2 to PGND ( 20ns transient)  
OSC, SS1, SS2, COMP1, COMP2, RES, DEMB, ILSET  
EN1, EN2 to PGND  
V
V
V
VCC, VCCX, VDDA, PG1, PG2, FB1, FB2, SYNIN  
VOUT1, VOUT2, CS1, CS2  
6.5  
V
15.5  
V
VOUT1 to CS1, VOUT2 to CS2  
0.3  
V
PGND to  
AGND  
-0.3  
0.3  
V
Operating Junction Temperature(2)  
–40  
–40  
150  
150  
ºC  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)(2)  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011(3)  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe  
manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250 V CDM allows safe  
manufacturing with a standard ESD control process.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.8  
NOM  
MAX  
UNIT  
VIN  
65  
65  
V
V
V
SW1, SW2 to PGND  
HB1 to SW1, HB2 to SW2  
–0.3  
–0.3  
5
5
5.25  
HO1 to SW1, HOL1 to SW1, HO2  
to SW2, HOL2 to SW2  
–0.3  
–0.3  
HB + 0.3  
5.25  
V
V
LO1, LOL1, LO2, LOL2 to PGND  
VIN  
Input voltage range  
FB1, FB2, PG1, PG2, SYNIN,  
OSC, SS1, SS2, RES, DEMB,  
VCCX, ILSET  
–0.3  
5
V
EN1, EN2 to PGND  
VCC, VDDA  
–0.3  
–0.3  
1.5  
65  
5.25  
15  
V
V
5
5
VOUT1, VOUT2, CS1, CS2  
SYNOUT  
V
VO  
TJ  
Output voltage range  
–0.3  
–0.3  
–40  
5.25  
0.3  
V
PGND to AGND  
Operating Junction Temperature(2)  
V
150  
°C  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see the Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.4 Thermal Information  
LM5140-Q1  
THERMAL METRIC(1)  
VQFN (RWG)  
UNIT  
40 PINS  
34.8  
22.8  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
9.4  
RθJC(bot)  
0.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
7.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V, VCCX = 5 V, VOUT1 = 3.3 V, VOUT2 = 5 V, EN1 = EN2 = 5 V, OSC = VDDA, SYNIN = 0  
V, FSW = 2.2 MHz, no-load on the Drive Outputs (HO1, HOL1, LO2, LOL1, HO2, HOL2, LO2, and LOL2 outputs) (unless  
(1)(2)  
otherwise noted).  
PARAMETER  
VIN SUPPLY VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN 8 V- 18 V, EN1 = 0 V, EN2 = 0 V,  
VCCX = 0 V  
I(SHUTDOWN)  
Shutdown mode current  
Standby Current  
9
12.5  
µA  
µA  
EN1 = 5 V, EN2 = 0 V, VOUT1, in  
regulation, no-load, not switching.  
VIN 8 V - 18 V. DEMB = GND  
35  
I(STANDBY)  
Or EN1 = 0 V, EN2 = 5 V, VOUT2 in  
regulation, no-load, not switching,  
VOUT2 connected to VCCX,  
DEMB = GND.  
42  
µA  
VCC REGULATOR  
VIN = 6 V - 18 V, 0 - 150 mA,  
VCCX = 0 V  
VCC(REG)  
VCC regulation voltage  
4.75  
3.25  
5.0  
5.25  
3.55  
V
VCC(UVLO)  
VCC(HYST)  
ICC(LIM)  
VCC under voltage threshold  
VCC hysteresis voltage  
VCC rising, VCCX = 0 V  
VCCX = 0 V  
3.4  
175  
250  
V
mV  
mA  
VCC sourcing current limit  
VCCX = 0 V  
170  
VDDA  
VDDA(REG)  
VDDA(UVLO)  
VDDA(HYST)  
R(VDDA)  
Internal bias supply power  
VCCX = 0 V  
4.75  
3.1  
5.0  
3.2  
180  
50  
5.25  
3.3  
V
V
VCC rising, VCCX = 0 V  
VCCX = 0 V  
mV  
VCCX = 0 V  
VCCX  
VCCX(ON)  
R(VCCX)  
VCC rising  
4.1  
2.4  
4.3  
1
4.4  
V
VCCX = 5 V  
VCCX(HYST)  
200  
mV  
OSCILLATOR SELECT THRESHOLDS  
2.2 MHz Oscillator select threshold (OSC pin)  
440 kHz Oscillator select threshold (OSC pin)  
CURRENT LIMIT  
V
V
0.4  
ILSET = VDDA, Measure from  
CS to VOUT  
V(CS1)  
V(CS2)  
Current limit threshold1  
Current limit threshold2  
66  
44  
73  
48  
80  
53  
mV  
mV  
ILSET = GND, Measure from  
CS to VOUT  
Current sense delay to output  
Current sense amplifier gain  
Amplifier input bias  
40  
12  
ns  
V/V  
nA  
11.4  
2.4  
12.6  
10  
ICS(BIAS)  
75mV current limit select threshold  
(ILSET)  
V
V
75mV current limit select threshold  
(ILSET)  
0.4  
RES  
I(RES)  
V(RES)  
RES current source  
RES threshold  
20  
1.2  
µA  
V
Timer hIccup mode fault  
RES pull-down  
512  
5.0  
cycles  
RDS(ON)  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows:  
TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section.  
Copyright © 2016, Texas Instruments Incorporated  
7
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –40°C to 125°C, VIN = 12 V, VCCX = 5 V, VOUT1 = 3.3 V, VOUT2 = 5 V, EN1 = EN2 = 5 V, OSC = VDDA, SYNIN = 0  
V, FSW = 2.2 MHz, no-load on the Drive Outputs (HO1, HOL1, LO2, LOL1, HO2, HOL2, LO2, and LOL2 outputs) (unless  
otherwise noted). (1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT VOLTAGE REGULATION  
3.3 V  
VIN = 3.8 V - 42 V  
3.273  
4.95  
7.92  
3.3  
5.0  
8.0  
3.327  
5.05  
8.08  
V
V
V
5 V  
8 V  
VIN = 5.5 V - 42 V  
VIN = 8.5 V - 42 V  
FEEDBACK  
VOUT1 select threshold 3.3V  
Output  
VDDA-  
0.3  
V
V
VDDA-  
0.3  
VOUT2 select threshold 5.0V  
Regulated  
Feedback  
Voltage  
1.19  
1.2  
1.21  
500  
V
Resistance to ground on FB for  
FB=0 detection  
FB(LOWRES)  
FB(EXTRES)  
Ω
Thevenin equivalent resistance at  
FB for external regulation detection  
FB < 2 V  
5
kΩ  
TRANSCONDUCTANCE AMPLIFIER  
Gm  
FB  
Gain  
Feedback to COMP  
1010  
1200  
µS  
nA  
Input Bias Current  
15  
Transconductance Amplifier source  
current  
COMP = 1 V, FB = 1.0 V  
COMP = 1 V, FB = 1.4 V  
100  
100  
µA  
µA  
Transconductance Amplifier sink  
current  
POWER GOOD  
PG1 and PG2 Under Voltage trip  
levels  
Falling with respect to the regulation  
voltage  
PG(UV)  
90%  
92%  
94%  
PG1 and PG2 Over Voltage trip  
levels  
Rising with respect to the regulation  
voltage  
PG(OVP)  
108%  
110%  
3.4%  
112%  
PG(HYST)  
PG(VOL)  
PG(rdly)  
PG(fdly)  
PG1 and PG2  
OV Filter Time  
UV Filter Time  
Open Collector, Isink = 2 mA  
VOUT rising  
0.4  
V
25  
30  
µs  
µs  
VOUT falling  
HO GATE DRIVER  
VOLH  
VOHH  
trHO  
HO Low-state output voltage  
IHO = 100 mA  
0.05  
0.07  
4
V
V
HO High-state output voltage  
HO rise time (10% to 90%)  
HO fall time (90% to 10%)  
IHO = -100 mA, VOHH = VHB - VHO  
CLOAD = 2700 pf  
ns  
ns  
tfHO  
CLOAD = 2700 pf  
3
VHO = 0 V, SW = 0 V, HB = 5 V,  
VCCX = 5 V  
IOHH  
IOLH  
V(BOOT)  
I(BOOT)  
HO peak source current  
3.25  
Apk  
HO peak sink current  
UVLO  
VCCX = 5 V  
HO falling  
4.25  
2.5  
110  
3
Apk  
V
Hysteresis  
mV  
µA  
Quiescent current  
8
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Electrical Characteristics (continued)  
TJ = –40°C to 125°C, VIN = 12 V, VCCX = 5 V, VOUT1 = 3.3 V, VOUT2 = 5 V, EN1 = EN2 = 5 V, OSC = VDDA, SYNIN = 0  
V, FSW = 2.2 MHz, no-load on the Drive Outputs (HO1, HOL1, LO2, LOL1, HO2, HOL2, LO2, and LOL2 outputs) (unless  
otherwise noted). (1)(2)  
PARAMETER  
LO GATE DRIVER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLL  
VOHL  
trLO  
LO Low-state Output Voltage  
LO High-state Output voltage  
LO rise time (10% to 90%)  
LO fall time (90% to 10%)  
LO peak source current  
LO peak sink current  
ILO = 100 mA  
0.05  
0.07  
4
V
V
ILO = -100 mA, VOHL = VCC - VLO  
CLOAD = 2700 pf  
ns  
tfLO  
CLOAD = 2700 pf  
3
ns  
IOHL  
IOLL  
VCCX = 5 V  
3.25  
4.25  
Apk  
Apk  
VCCX = 5 V  
ADAPTIVE DEAD TIME CONTROL  
V(GS-DET)  
tdly1  
VGS detection threshold  
HO off to LO on dead time  
LO off to HO on dead time  
VGS falling, no-load  
2.5  
20  
15  
V
ns  
ns  
tdly2  
DIODE EMULATION  
VIL  
DEM input low threshold  
0.4  
0.4  
0.4  
V
V
VIH  
SW  
FPWM input high threshold  
zero cross threshold  
2.4  
2.4  
-5  
1
mV  
ENABLE INPUTS EN1 AND EN2  
VIL  
Enable input low threshold  
VCCX = 0 V  
V
V
VIH  
Enable input high threshold  
Leakage  
VCCX = 0 V  
Ilkg  
EN1, EN2 logic inputs only  
µA  
SYN INPUT  
VIL  
VIH  
SYNIN input low threshold  
SYNIN input high threshold  
V
V
2.4  
SYNIN input low frequency range  
440kHz  
350  
550  
kHz  
kHz  
SYNIN input low frequency range  
2.2MHz  
1800  
2.4  
2600  
SYN OUTPUT  
VOH  
VOL  
Source -16 mA, VDDA = 5 V  
Sink 16 mA  
V
V
0.4  
28  
Phase between HO1 and HO2  
Duty Cycle  
180  
degrees  
50%  
SOFT-START  
ISS  
Soft-Start current  
16  
22  
3
µA  
RDS(ON)  
Soft-start pull-down resistance  
THERMAL  
TSD Thermal Shutdown  
175  
15  
ºC  
ºC  
Thermal shutdown hysteresis  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2060  
410  
TYP  
2200  
440  
45  
MAX  
2340  
470  
UNIT  
kHz  
kHz  
ns  
Oscillator Frequency, 2.2 MHz  
Oscillator Frequency, 440 kHz  
Minimum on-time  
OSC = VDDA, VIN = 8 V -18 V  
OSC = GND, VIN = 8 V - 18 V  
ton  
toff  
Minimum off-time  
100  
ns  
Copyright © 2016, Texas Instruments Incorporated  
9
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN 8 V  
VIN 12 V  
VIN 18 V  
VIN 8 V  
VIN 12 V  
VIN 18 V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IOUT (A)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IOUT (A)  
VIN 8-18 V  
EN1 = EN2 = 12 V  
VIN 8-18 V  
EN1 = EN2 = 12 V  
Figure 1. Efficiency vs VIN, FPWM  
Figure 2. Efficiency vs VIN, DEMB  
12  
10  
8
45  
40  
35  
30  
25  
20  
125èC  
25èC  
-40èC  
6
4
VIN 8 V  
VIN 12 V  
VIN 18 V  
2
0
-60  
-30  
0
30  
60  
90  
120  
150  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Temperature (èC)  
VIN (V)  
VIN 8-18 V  
EN1 = EN2 = 12 V  
VIN 8-18 V  
EN1 = 12 V, EN2 = 0 V  
Figure 3. I(SHUTDOWN) vs Temperature  
Figure 4. I(STANDBY) vs VIN  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
3.50  
3.48  
3.46  
3.44  
3.42  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
6
8
10  
12  
14  
16  
18  
-60  
-30  
0
30  
60  
90  
120  
150  
VIN (V)  
Temperature(èC)  
VIN 6-18V  
EN1 = EN2 = 12 V  
VCC Rising  
EN1 = EN2 = 12 V  
Figure 5. VCC(REG) vs VIN  
Figure 6. VCC(UVLO) vs Temperature  
10  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Typical Characteristics (continued)  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.18  
3.16  
3.14  
3.12  
3.10  
-60  
-20  
20  
60  
100  
140  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature(èC)  
VCC Rising  
EN1 = EN2 = 12 V  
VCC Rising  
Figure 8. VDDA(UVLO) vs Temperature  
Figure 7. VDDA(REG) vs Temperature  
4.36  
4.34  
4.32  
4.30  
4.28  
4.26  
4.24  
4.22  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
VIN = 12 V  
VCC Rising  
VIN = 12 V  
ILSET = VCC  
Figure 9. VCCX(ON) vs Temperature  
Figure 10. V(CS1) 73 mV Current Limit Threshold vs  
Temperature  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
13.0  
12.8  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
VIN = 12 V  
ILSET = GND  
VCC Rising  
Figure 12. Current Sense Amplifier Gain vs Temperature  
Figure 11. V(CS2) 48 mV Current Limit Threshold vs  
Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
3.332  
3.326  
3.320  
3.314  
3.308  
3.302  
3.296  
3.290  
3.284  
3.278  
3.272  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
125èC  
25èC  
-40èC  
125èC  
25èC  
-40èC  
0
1
2
3
4
5
6
0
1
2
3
4
5
Output Current (A)  
Output Current (A)  
VIN 12 V  
EN1 = 12 V  
EN2 = GND  
VIN 5.5 V - 42 V  
EN1 = GND  
EN2 = 12 V  
Figure 13. 3.3-V Output Voltage Regulation  
Figure 14. 5-V Output Voltage Regulation  
470  
465  
460  
455  
450  
445  
440  
435  
430  
425  
420  
415  
410  
2360  
2310  
2260  
2210  
2160  
2110  
2060  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
VIN 12 V  
OSC = VCC  
VIN 12 V  
OSC = GND  
Figure 15. 2.2-MHz Oscillator Frequency vs Temperature  
Figure 16. 440-kHz Oscillator Frequency vs Temperature  
80  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
70  
60  
50  
40  
30  
20  
-60  
-30  
0
30  
60  
90  
120  
150  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VIN 18 V  
VIN 3.8 V  
Figure 17. ton Minimum vs Temperature  
Figure 18. toff Minimum vs Temperature  
12  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
8 Detailed Description  
8.1 Overview  
The LM5140-Q1 is a dual channel switching controller which features all of the functions necessary to implement  
a high efficiency buck power supply that can operate over a wide input voltage range. The LM5140-Q1 is  
configured to provide two independent outputs. VOUT1 can be a fixed 3.3 V, 5 V, or adjustable between 1.5 V to  
15 V. VOUT2 can be a fixed 5 V, 8 V, or adjustable between 1.5 V to 15 V. This easy to use controller integrates  
high-side and low-side MOSFET drivers capable of sourcing 3.25 A and sinking 4.25 A peak . The control  
method is current mode control which provides inherent line feed-forward, cycle-by-cycle current limiting, and  
ease of loop compensation. With the OSC pin connected to VDD the default oscillator frequency is 2.2 MHz.  
With the OSC pin grounded the oscillator frequency is 440 kHz. A synchronization pin allows the LM5140-Q1 to  
be synchronized to an external clock. Fault protection features include current limiting, thermal shutdown, and  
remote shutdown capability. The LM5140-Q1 incorporates features that simplify compliance with the CISPR and  
Automotive EMI requirements. The LM5140-Q1 gate drivers provide adaptive slew rate control and interleaved  
operation (180 degree output of phase) of the two controller channels. The QFN-40L package with Wettable  
Flanks features an exposed pad to aid in thermal dissipation.  
Copyright © 2016, Texas Instruments Incorporated  
13  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
8.2 Functional Block Diagram  
SYNIN  
OSC  
CLK1  
CLK2  
VIN  
VREF 1.2 V  
BIAS  
VCCX  
COMMON  
OSCILLATOR  
SYNOUT  
VCC  
VDDA  
CONTROL  
VDDA  
DEMB1  
DEMB2  
DEMB  
20 µA  
DEMB  
AGND  
HICCUP FAULT  
TIMER 512  
CYCLES  
RESTART  
LOGIC  
RES  
CL  
OUT1 OUT2  
ILSET  
75 mV or  
50 mV  
ILSET  
EN1  
ILSET  
CL  
OUT1  
CURRENT  
LIMIT  
Gain = 12  
ILSET  
+
CS1  
+
-
-
VOUT1  
SLOPE  
COMPENSATION  
RAMP  
HB1  
HB1 UVLO  
3.3 V  
5.0 V  
300 mV  
8.0 V  
VOUT  
DECODER/  
MUX  
DEMB1  
OUT1  
+
HO1  
HOL1  
LEVEL  
SHIFT  
ADAPTIVE  
DEAD TIME  
FB1  
SW1  
+
-
PWM  
VCC  
R
S
Q
Q
SScomplete  
1200 µS  
_
STBY  
CLK1  
FBi  
300 mV  
LO1  
LOL1  
20 µA  
VREF  
+
+
SS1  
SS1  
PGND1  
SS1  
COMP1  
PG1  
STBY  
-
1.356 V  
1.056 V  
PGOV  
+
Pgdly  
25 µs  
_
STAND-BY  
-
PGUV  
+
+
VSTBY  
EN2  
CL  
OUT2  
CURRENT  
LIMIT  
Gain = 12  
ILSET  
+
CS2  
+
-
-
VOUT2  
HB2  
SLOPE  
HB2 UVLO  
3.3 V  
COMPENSATION  
RAMP  
300 mV  
5.0 V  
8.0 V  
VOUT  
DECODER/  
MUX  
DEMB2  
OUT2  
+
HO2  
HOL2  
FB2  
LEVEL  
SHIFT  
ADAPTIVE  
DEAD TIME  
SW2  
PWM  
+
-
VCC  
R
Q
Q
SScomplete  
1200 µS  
_
S
STBY  
CLK2  
FBi  
VREF  
300 mV  
LO2  
LOL2  
20 µA  
+
+
SS2  
SS2  
PGND2  
SS2  
COMP2  
PG2  
STBY  
-
1.356 V  
1.056 V  
PGOV  
+
Pgdly  
25 µs  
_
+
STAND-BY  
-
PGUV  
+
VSTBY  
14  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
8.3 Feature Description  
8.3.1 High Voltage Start-up Regulator  
The LM5140-Q1 contains an internal high voltage VCC bias regulator that provides the bias supply for the PWM  
controller and the gate drivers for the external MOSFETs. The input pin (VIN) can be connected directly to an  
input voltage source up to 65 V. The output of the VCC regulator is set to 5 V. When the input voltage is below  
the VCC set-point level, the VCC output will track VIN with a small voltage drop.  
In high voltage applications extra care should be taken to ensure the VIN pin does not exceed the absolute  
maximum voltage rating of 70 V curing line or load transients. Voltage ringing on the VIN pin that exceeds the  
Absolute Maximum Ratings can damage the IC. Use care during PCB board layout and high quality bypass  
capacitors to minimize ringing.  
8.3.2 VCC Regulator  
The VCC regulator output current limit is 150 mA (minimum). At power-up, the regulator sources current into the  
capacitors connected to the VCC pin. When the voltage on the VCC pin exceeds 3.4 V both output channels are  
enabled (if EN1 and EN2 are connected to a voltage source > 2.4 V) and the soft-start sequence begins. Both  
channels remain active unless the voltage on the VCC pin falls below the VCCUVLO threshold, of 3.2 V (typical) or  
the enable pins are switched to a low state. The LM5140-Q1 has two VCC pins; these pin must be connected  
together on the PCB. It is recommended that the VCC capacitor be split between the two VCC pins and  
connected to the respective PGND pins. The recommended range for the VCC capacitor is from 2.2 µF to 5 µF  
total.  
An internal 5-V linear regulator generates the VDDA bias supply. Bypass VDDA with a 100-nF or greater ceramic  
capacitor to ensure a low noise internal bias rail. Normally VDDA is 5 V, but there are two operating conditions  
where it regulates at 3.3 V. The first is in skip cycle mode with VOUT1 set to 3.3 V, and VOUT2 is disabled. The  
second is in a cold crank start-up where VIN is 3.8 V and VOUT1 is 3.3 V.  
Internal power dissipation in the VCC Regulator can be minimized by connecting the VCCX pin to a 5 V output at  
VOUT1 or VOUT2 or to an external 5 V supply. If VCCX > 4.5 V, VCCX is internally connected to VCC and the  
internal VCC regulator is disabled. If VCCX is unused, it should be grounded. Never connect the VCCX pin to a  
voltage greater than 6.5 V.  
8.3.3 Oscillator  
The LM5140-Q1 has independent oscillators that generate the clock for each channel and can be programmed to  
2.2 MHz or 440 kHz with the OSC pin. With the OSC pin connected to VDDA, both oscillators will be set to 2.2  
MHz. With OSC grounded, they will both be set to 440 kHz. The state of the OSC pin is read and latched during  
VCC power up and thus cannot be changed until VCC drops below the VCCUVLO threshold. CLK1 is the clock for  
channel 1; CLK2 is for channel 2. CLK1 and CLK2 are 180º out of phase. The rising edge of SYNOUT always  
corresponds to the rising edge of CLK2 which is 180º out of phase with CLK1.  
Under low VIN conditions when either of the high-side buck switch on time exceeds the programmed oscillator  
period, the LM5140-Q1 will extend the oscillator period of that channel until the PWM latch is reset by the current  
sense ramp exceeding the controller compensation voltage. In such an event, the oscillators (CLK1 and CLK2)  
operate independently and asynchronously until both channels can maintain output regulation at the programmed  
frequency.  
The approximate input voltage level where this occurs is:  
tp  
VINmin = VOUT ´  
ton(max)  
(1)  
Where tp = is the oscillator period, 454 ns (for 2.2 MHz operation) ton(max) = 354 ns  
For example, if VOUT1 = 3.3 V and VOUT2 = 5 V and VIN drops to 6.41 V:  
454 ns  
VIN = 5.0 V ´  
= 6.41V  
354 ns  
(2)  
In the above example, CLK2 frequency is required to drop to maintain regulation of VOUT2 while CLK1 can  
remain at the programmed frequency (refer to Figure 19). If VIN continues to drop, both CLK1 and CLK2  
frequencies are reduced Figure 20.  
Copyright © 2016, Texas Instruments Incorporated  
15  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
HO1 (Red)  
HO2 (Blk)  
SYNOUT (Blue)  
Figure 19. HO1, HO2, and SYNOUT VIN 6.41 V  
HO1 (Red)  
HO2 (Blk)  
SYNOUT (Blue)  
Figure 20. HO1, HO2, SYNOUT VIN 4.2 V  
Under high input voltage conditions (VIN > 20V) when the buck switch on time of either controller reaches the  
minimum on-time of 45ns typical, the LM5140-Q1 will reduce the oscillator frequency by skipping clock cycles for  
the appropriate channel.  
Using the same output voltages as in the example above with VIN = 36 V, CLK1 drops to 1.1 MHz and CLK2 is  
2.2 MHz, (refer to Figure 21), and SYNOUT is 2.2 MHz.  
HO1 (Red)  
HO2 (Blk)  
SYNOUT (Blue)  
Figure 21. HO1, HO2, and SYNOUT VIN 36 V  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Feature Description (continued)  
8.3.4 SYNIN and SYNOUT  
The SYNIN pin can be used to synchronize the LM5140-Q1 to an external clock. The synchronization range  
when the internal oscillator is set to 440 kHz is 374 kHz minimum to 506 kHz maximum. When the internal  
oscillator is set to 2.2 MHz the synchronization range is 1.87 MHz to 2.53 MHz. If the synchronization feature is  
not being used, the SYNIN pin should be grounded.  
CLK1 starts on the rising edge of the external synchronization clock (SYNIN). The HO1 pulse will follow  
approximately 110ns after CLK1 due to internal delays (refer to Figure 22). Similarly, CLK2 generates the HO2  
pulse after a short delay, and CLK2 is 180º out of phase with CLK1. SYNOUT always corresponds to the rising  
edge of CLK2.  
Figure 22. SYNIN and HO1 Timing (2.2 MHz)  
Under low VIN conditions when the frequency must be reduced to maintain output voltage regulation, the SYNIN  
input function will adapt as necessary. If VOUT1 can maintain regulation at the SYNIN frequency and VOUT2  
cannot, then CLK1 remains synchronized to SYNIN and the CLK2 frequency is reduced (refer to Figure 23). If  
VOUT1 cannot maintain regulation at the SYNIN frequency, then the SYNIN signal is ignored and channel 1  
frequency is reduced to maintain regulation. Channel 2 runs at the frequency determined by OSC pin or lower if  
required to maintain regulation on VOUT2 (refer to Figure 24).  
SYNIN  
SYNOUT  
HO1 (Red)  
HO2 (Blk)  
Figure 23. SYNIN (2.2 MHz) VIN 6.41 V  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
SYNIN  
SYNOUT  
HO1 (Red)  
HO2 (Blk)  
Figure 24. SYNIN (2.2 MHz) VIN 4.2 V  
At high VIN when pulse skipping is necessary, HO1 drops to 1.1 MHz and HO2 remains at 2.2 MHz (refer to  
Figure 25), and SYNOUT is 2.2 MHz.  
SYNIN  
SYNOUT  
HO1 (Red)  
HO2 (Blk)  
Figure 25. SYNIN (2.2 MHz) VIN 36 V  
8.3.5 Enable  
The LM5140-Q1 contains two enable inputs, EN1 and EN2. The enable pins allow independent start-up and  
shutdown control of VOUT1 (EN1) and VOUT2 (EN2). The enable pins can be connected to a voltage as high as  
70 V. If the enable input is greater than 2.4 V, the respective controller output is enabled. If the enable pins is  
pulled below 0.4 V, the respective output will be in shutdown. If both outputs are disabled the LM5140-Q1 is in a  
low IQ shutdown mode, with 9-µA typical current drawn from the VIN pin. It is not recommended to leave either of  
the EN pins floating.  
8.3.6 Power Good  
The LM5140-Q1 includes output voltage monitoring signals for VOUT1 and VOUT2 to simplify sequencing and  
supervision. The power good function can be used to enable circuits that are supplied by the corresponding  
voltage rail or to turn-on sequenced supplies. Each power good output (PG1 and PG2) switches to a high  
impedance open drain state when the corresponding output voltage is in regulation. Each output switches low  
when the corresponding output voltage drops below the lower power good threshold (92% typical) or rises above  
the upper power good threshold (110% typical). A 25µs deglitch filter prevents any false tripping of the power  
good signals due to transients. Pull-up resistors of 10 kΩ (typical) are recommended from PG1 and PG2 to the  
relevant logic rail. PG1 and PG2 are asserted low during soft-start and when the corresponding buck converter is  
disabled by EN1 or EN2.  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Feature Description (continued)  
8.3.7 Output Voltage  
The LM5140-Q1 outputs can be independently configured for one of two fixed output voltages with no external  
feedback resistors or adjusted to the desired voltage using external resistor dividers. VOUT1 can be configured  
as a 3.3-V output by connecting the FB1 pin to VDDA, or a 5-V output by connecting the FB1 pin to ground with  
a maximum resistance of 500 Ω. VOUT2 can be configured as either a 5-V output or 8-V output. For a 5-V output  
at VOUT2, connect the FB2 pin to VDDA. For a fixed 8-V output at VOUT2 connect FB2 to ground with a  
maximum resistance of 500 Ω. The FB1 and FB2 connections (either VDDA or GND) are detected during power-  
up. The configuration setting is latched and can not be changed until the LM5140-Q1 is powered down with VCC  
falling below VCC(UVLO) (3.4 V typical) and then powered up again.  
Alternative output voltages can be set external resistive dividers from output to the FB pins. The output voltage  
adjustment range is between 1.5 V and 15 V. The regulation threshold at the FB pin is 1.2 V (VREF). To  
calculate RFB1 and RFB2 use Equation 3, refer to Figure 26:  
VOUT  
æ
ö
RFB2  
=
-1 ´RFB1  
ç
÷
VREF  
è
ø
(3)  
The recommend value for R(FB1) is between 10 kto 20 k.  
The Thevenin equivalent impedance of the resistive divider connected to the FB pins must be greater than 5 kΩ  
for the LM5140-Q1 to detect the divider and set the channel to the adjustable output mode.  
RFB1 ´RFB2  
RTH  
=
> 5 kW  
RFB1 + RFB2  
(4)  
If a low IQ mode is required, care should be taken when selecting the external resistors. The extra current drawn  
from the external divider is added to the LM5140-Q1 I(STANDBY) current (35 µA typical). The divider current  
reflected to VIN is divided down by the ratio of VOUT/VIN. For example, if VOUT is set to 5.5 V with RFB1 10 k,  
and RFB2 = 35.8 k(use 35.7 k), the input current at VIN required to supply the current in the feedback  
resistors is:  
VOUT  
VOUT  
5.5 V  
5.5 V  
IDIVIDER  
=
´
=
´
10 k + 35.8 k 12 V  
= 55.04 mA  
R
FB1 + RFB2  
VIN  
(5)  
(6)  
IVIN » I(STANDBY) + IDIVIDER » 35 mA + 55.04 m » 90.4 mA  
VIN = 12 V  
LOUT  
VOUT  
COUT  
RFB2  
LM5140-Q1 Transconductance Amplifier  
gm 1200uS  
_
FB  
VREF  
+
RFB1  
+
SS  
COMP  
Figure 26. Voltage Feedback  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
If one output is enabled and the other disabled, VCC output will be in regulation. The HB pin voltage of the  
disabled channel will charge to VCC through the boot strap diode. As a result, the HO driver bias current (~3uA)  
can charge the disabled channel VOUT to approximately 2.2 V. If this is not desired, a load resistor (100 k) can  
be added to the output that is disabled to maintain a low voltage off state.  
8.3.8 Minimum Output Voltage Adjustment  
There are two limitations to the minimum output voltage adjustment range: the LM5140-Q1 voltage reference 1.2  
V and the minimum switch node pulse width, tSW  
.
The minimum tSW time limits the voltage conversion ratio (VOUT/VIN). For fixed-frequency PWM operation, the  
voltage conversion ratio should meet the following condition:  
VOUT  
> tSW ´Fsw  
VIN  
(7)  
Where tSW is 70 ns (typical) and Fsw is the switching frequency. If the desired voltage conversion ratio does not  
meet the above condition, the controller transitions from fixed frequency operation into a pulse skipping mode to  
maintain regulation of the output voltage.  
For example if the desired output voltage is 3.3 V with a VIN of 20 V and operating at 2.2 MHz, the voltage  
conversion ratio test is:  
3.3 V  
> 70 ns´ 2.2 MHz  
20 V  
0.165 > 0.154  
(8)  
For Wide VIN applications and lower output voltages, an alternative is to use the LM5140-Q1 with 440-kHz  
oscillator frequency. Operating at 440 kHz, the limitation with the minimum ton time is less significant. For  
example, if a 1.8-V output is required with a VIN of 50 V:  
1.8 V  
> 70 ns´ 440 kHz  
50 V  
0.036 > 0.0308  
(9)  
8.3.9 Current Sense  
There are two methods to sense the inductor current of the buck converters. The first is using current sense  
resistor in series with the inductor and the second is to use the dc resistance of the inductor (DCR sensing).  
Figure 27 illustrates inductor current sensing using a current sense resistor. This configuration continuously  
monitors the inductor current providing accurate current-limit protection. For the best current-sense accuracy and  
over current protection, use a low inductance ±1% tolerance current-sense resistor between the inductor and  
output, with a Kelvin connection to the LM5140-Q1 sense amplifier.  
The LM5140-Q1 provides two user selectable current limit levels of 48 mV and 73 mV. If the ILSET pin is  
connected to VDDA, the current limit threshold is 73 mV. When the ILSET pin is connected to ground, the current  
limit set point is 48 mV. The ILSET pin is monitored during power up and the setting is latched. To change the  
setting, VIN power must be removed from the controller allowing the VCC voltage to drop below VCC(UVLO)  
.
If the peak differential current signal sensed from CS to VOUT exceeds the user selectable current limit level of  
48 mV or 73 mV, the current limit comparator immediately terminates the HO output for cycle-by-cycle current  
limiting.  
VCS  
Rsense =  
DI  
æ
ö
IOUTmax  
+
ç
÷
2
è
ø
(10)  
Where: VCS is user selectable threshold of 48 mV or 73 mV.  
IOUTmax is the over current set point which is set higher than the maximum load current to avoid tripping the over  
current comparator during load transients.  
ΔI is the peak-peak inductor current.  
20  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Feature Description (continued)  
LOUT  
Rsense  
VOUT  
COUT  
LM5140-Q1 Current Sense Amplifier  
Gain 12  
CS  
+
_
VOUT  
Figure 27. Current Sense  
8.3.10 DCR Current Sensing  
For high-power applications which do not require high accuracy current-limit protection, DCR sensing may be  
preferrable. This technique provides lossless and continuous monitoring of the output current using an RC sense  
network in parallel with the inductor. Using an inductor with a low DCR tolerance, the user can achieve a typical  
current limit accuracy within the range of 10% to 15% at room temperature.  
Components RSC and CCS in Figure 28 create a low-pass filter across the inductor to enable differential sensing  
of the voltage drop across inductor DCR. When RCS X CCS is equal to LOUT/LDCR, the voltage developed across  
the sense capacitor, CS, is a replica of the inductor DCR voltage waveform. Choose the capacitance of CCS to  
be greater than 0.1 μF to maintain a low impedance sensing network, thus reducing the susceptibility of noise  
pickup from the switch node. Carefully observe the PCB layout guidelines to ensure the noise and DC errors do  
not corrupt the differential current-sense signals applied across the CS and VOUT pins.  
The voltage drop across CCS  
:
1+ sLout  
VCS  
=
Ipk ´LDCR  
LDCR  
1+ sRCSCCS  
(11)  
LOUT  
LDCR  
VOUT  
COUT  
CCS  
RCS  
LM5140-Q1 Current Sense Amplifier  
Gain 12  
+
CS  
VOUT  
_
Figure 28. DCR Current Sensing  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
RCSCCS = LOUT/LDCR accurate DC and AC current sensing.  
If the RC time constant is not equal to the LOUT/LDCR time constant there will be an error.  
RCSCCS > LOUT/LDCR DC level still correct, the AC amplitude will be attenuated.  
RCSCCS < LOUT/LDCR DC level still correct, the AC amplitude will be amplified.  
8.3.11 Error Amplifier and PWM Comparator  
Each channel of the LM5140-Q1 has an independent high-gain transconductance amplifier which generates an  
error current proportional to the difference between the feedback voltage and an internal precision reference (1.2  
V). The output of each transconductance amplifier is connected to the COMP pin allowing the user to provide  
external control loop compensation. Generally for current mode control a type II network is recommended.  
8.3.12 Slope Compensation  
The LM5140-Q1 provides internal slope compensation to ensure stable operation with duty cycle greater than  
50%. To correctly use the internal slope compensation, the inductor value must be calculated based on the  
following guidelines:  
VOUT  
LOUT  
=
Fsw ´LX  
(12)  
Where LX is 1 ±0.25  
Lower inductor values increase the peak-to-peak inductor current, which minimizes size and cost and  
improves transient response at the cost of reduced efficiency due to higher peak currents.  
Higher inductance values decrease the peak-to-peak inductor current, which increases efficiency by reducing  
the RMS current at the cost of requiring larger output capacitors to meet load-transient specifications.  
8.4 Device Functional Modes  
8.4.1 Hiccup Mode Current Limiting  
The LM5140-Q1 includes an optional hiccup mode protection function that is enabled when a capacitor is  
connected to the RES pin. In normal operation the RES capacitor is discharged to ground. If 512 cycles of cycle-  
by-cycle current limiting occur on a either channel, the SS pin capacitor of that channel is pulled low and the HO  
and LO outputs are disabled (refer to Figure 29). A 20-μA current source begins to charge the RES capacitor.  
When the RES pin charges to 1.2 V, the RES pin is pulled low and the SS capacitor begins to charge. The 512  
cycle hiccup counter is reset if 4 consecutive switching cycles occur without exceeding the current limit threshold.  
Separate hiccup counters are provided for each channel, but the RES pin is shared by both channels. One  
channel can be in the hiccup protection mode while the other operates normally. In the event that both channels  
are in an over-current condition triggering hiccup protection, the last hiccup counter to expire will pull RES low  
and start the RES capacitor charging cycle. Both channels will then restart together when RES=1.2 V. If RES is  
connected to VDDA at power-up, the hiccup function is disabled for both channels.  
The controller is in forced PWM (FPWM) continuous conduciton mode when the DEMB pin is connected to  
VDDA. In this mode the SS pin is clamped to a level 200 mV above the feedback voltage to the internal error  
amplifier. This ensures that SS can be pulled low quickly during a brief overcurrent event and prevent overshoot  
of VOUT when the overcurrent condition is removed.  
If DEMB=0 V, the controller operates in diode emulation with light loads (discontinous conduction mode) and the  
SS pin is allowed to charge to VDDA. This reduces the quiescent current of the LM5140-Q1. If 32 or more cycle-  
by-cycle current limit events occur, the SS pin is clamped to 200 mV above the feedback voltage to the internal  
error amplifier until the hiccup counter is reset. Thus, if a momentary overload occurs that causes at least 32  
cycles of current limiting, the SS capacitor voltage will be slightly higher than the FB voltage and will control  
VOUT during recovery.  
22  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Device Functional Modes (continued)  
Current Limit  
Detected  
1.2 V RES Threshold  
IRES= 20 mA  
0 V  
RES  
I
SS = 20 mA  
SS  
1.2 V REF  
HO/HOL  
LO/LOL  
tRES  
tSS  
Current Limit persists  
during 512  
consecutive cycles  
Figure 29. Hiccup Mode  
8.4.2 Standby Mode  
The LM5140-Q1 operates with peak current mode control such that the feedback compensation voltage is  
proportional to the peak inductor current. During no-load or light load conditions, the output capacitor will  
discharge very slowly. As a result the compensation voltage will not demand a driver output pulses on a cycle-  
by-cycle basis. When the LM5140-Q1 controller detects that there have been 16 missing switching cycles, it  
enters Standby Mode and switches to a low IQ state to reduce the current drawn from VIN. For the LM5140-Q1 to  
go into a Standby Mode, the controller must be programmed for diode emulation (DEMB pin < 0.4 V). The typical  
IQ in Standby Mode is 35 µA with VOUT1 regulating at 3.3 V and VOUT2 disabled. With VOUT1 disabled and  
VOUT2 regulating to 5 V, the Standby Mode current is 42μA. With both channels in standby mode (VOUT1 = 3.3  
V and VOUT2 = 5 V) the VIN current is 75μA. Using external feedback resistors will add additional load to VOUT  
and significantly increase the Standby Mode VIN current.  
8.4.3 Soft-Start  
The soft-start feature allows the regulator to gradually reach the steady state operating point, thus reducing  
startup stresses and surges. The LM5140-Q1 regulates the FB pin to the SS pin voltage or the internal 1.2-V  
reference, whichever is lower. At the beginning of the soft-start sequence when SS = 0 V, the internal 20-μA soft-  
start current source gradually increases the voltage on an external soft-start capacitor connected to the SS pin,  
resulting in a gradual rise of the FB and output voltages.  
The controller is in the forced PWM (FPWM) mode when the DEMB pin is connected to VDDA. In this mode, the  
SS pin is clamped at 200 mV above the feedback voltage to the internal error amplifier. This ensures that SS can  
be pulled low quickly during brief over-current events and prevent overshoot of VOUT during recovery. SS can  
be pulled low with an external circuit to stop switching, but this is not recommended. Pulling SS low will result in  
COMP being pulled down internally as well. If the controller is operating in FPWM mode (DEMB = VDDA), LO  
will remain on and the low-side MOSFET will discharge the VOUT capacitor resulting in large negative inductor  
current. When the LM5140-Q1 pulls SS low internally due to a fault condition, the LO gate driver is disabled.  
8.4.4 Diode Emulation  
A fully synchronous buck regulator implemented with a free-wheel MOSFET rather than a diode has the  
capability to sink current from the output in certain conditions such as light load, over-voltage, and pre-bias  
startup. The LM5140-Q1 provides a diode emulation feature that can be enabled to prevent reverse (drain to  
source) current flow in the low-side free-wheel MOSFET. When configured for diode emulation, the low-side  
MOSFET is disabled when reverse current flow is detected. The benefit of this configuration is lower power loss  
Copyright © 2016, Texas Instruments Incorporated  
23  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
at no load or light load conditions and the ability to turn on into a pre-biased output without discharging the  
output. The negative effect of diode emulation is degraded light load transient response times. Enabling the  
diode emulation feature is recommended to allow discontinuous conduction operation. The diode emulation  
feature is configured with the DEMB pin. To enable diode emulation, connect the DEMB pin to ground or leave  
the pin floating. If continuous conduction operation is desired, the DEMB pin should be tied to VDDA.  
8.4.5 High and low-side Drivers  
The LM5140-Q1 contains a N-channel MOSFET gate drivers and an associated high-side level shifter to drive  
the external N-channel MOSFET. The high-side gate driver works in conjunction with an external bootstrap diode  
DBST, and bootstrap capacitor CBST, refer to Figure 30. During the on-time of the low-side MOSFET, the SW pin  
voltage is approximately 0 V and CBST is charged from VCC through the DBST. A 0.1-μF or larger ceramic  
capacitor, connected with short traces between the BST and SW pin, is recommended.  
The LO and HO outputs are controlled with an adaptive dead-time methodology which ensures that both outputs  
(HO and LO) are never enabled at the same time, preventing cross condiction. When the controller commands  
LO to be enabled, the adaptive dead-time logic first disables HO and waits for the HO-SW voltage to drop below  
2.5 V typical. LO is then enabled after a small delay (HO fall to LO rise delay). Similarly, the HO turn-on is  
delayed until the LO voltage has dropped below 2.5 V. HO is then enabled after a small delay (LO fall to HO rise  
delay). This technique ensures adequate dead-time for any size N-channel MOSFET device or parallel MOSFET  
configurations. Caution is advised when adding series gate resistors, as this may decrease the effective dead-  
time. Eachof the high and low-side drivers have an independent driver source and sink output pins. This allows  
the user to adjust drive strength to optimize the switching losses for maximum efficiency and control the slew rate  
for reduced EMI. The selected N-channel high-side MOSFET determines the appropriate boost capacitance  
values CBST in the Figure 30 according to Equation 13.  
QG  
CBST  
=
DVBST  
(13)  
Where QG is the total gate charge of the high-side MOSFET and ΔVBST is the voltage variation allowed on the  
high-side MOSFET driver after turn-on. Choose ΔVBST such that the available gate-drive voltage is not  
significantly degraded when determining CBST. A typical range of ΔVBST is 100 mV to 300 mV. The bootstrap  
capacitor should be a low-ESR ceramic capacitor. A minimum value of 0.1 µF to 0.47 µF is best in most cases.  
Care should be taken when choosing the high-side and low-side MOSFET devices with logic level gate  
thresholds.  
VCC  
DBST  
HB  
CBST  
RHO  
HO  
HOL  
RHOL  
SW  
VCC  
CVCC  
RLO  
LO  
LOL  
RLOL  
PGND  
Figure 30. Drivers  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LM5140-Q1 is a synchronous buck controller used to convert a higher input voltage to two lower output  
voltages. The following design procedure can be used to select external component values. Alternately, the  
WEBENCH® software may be used to generate a complete design. The WEBENCH software uses an iterative  
design procedure and accesses a comprehensive database of components when generating a design. This  
section presents a simplified discussion of the design process. In addition to the WEBENCH software the  
LM5140ADESIGN-CALC.XIXS quick start Excel calculator is available at www.ti.com.  
9.2 Typical Application  
VIN  
VCC  
HB1  
VIN  
HB2  
HO2  
HOL2  
SW2  
HO1  
OUT1  
OUT2  
HOL1  
SW1  
LO2  
LO1  
LM5140-Q1  
LOL2  
LOL1  
PGND1  
PGND2  
PG1  
EN1  
VIN  
EN2  
PG2  
VIN  
VCC  
ILSET  
SYNOUT  
CS2  
CS1  
VOUT1  
VOUT2  
VCCX  
SYNIN  
COMP1  
COMP2  
FB2  
VCC  
VCC  
FB1  
OSC AGND SS1 RES SS2 DEMB VDDA  
VCC  
Figure 31. 12-V to 3.3-V and 5-V Converter  
Copyright © 2016, Texas Instruments Incorporated  
25  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, the intended input, output and performance parameters are shown in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range (Steady State)  
Transient  
EXAMPLE VALUE  
8 V to 18 V  
42 V  
Cold Crank  
3.8 V  
Output voltage  
3.3 V  
Output current  
6 A  
Operating frequency  
2.2 MHz  
± 1%  
Output voltage regulation  
Standby current, one output enabled, no-load  
Shutdown Current  
< 35 µA  
9 µA  
9.2.2 Detailed Design Procedure  
Buck Inductor calculation  
Peak inductor current calculation  
Current Sense resistor  
Output capacitor  
Input filter design  
MOSFET selection  
Control Loop design  
9.2.2.1 Inductor Calculation  
For design simplification, the LM5140-Q1 has internal slope compensation to eliminate sub-harmonic oscillation.  
For proper slope compensation, the inductor value should be calculated based on the following guidelines:  
VOUT  
LOUT  
=
Fsw ´LX  
(14)  
Where LX is 1 ±0.25  
Lower inductor values increase the peak-to-peak inductor current, which minimizes size and cost and  
improves transient response at the expense of reduced efficiency due to higher peak currents.  
Higher inductance values decrease the peak-to-peak inductor current, which increases efficiency by reducing  
the RMS current but requires larger output capacitors to meet load-transient specifications.  
3.3 V  
LOUT  
=
= 1.5 mH  
2.2 MHz ´1  
(15)  
A standard inductor value of 1.5 µH is selected.  
VOUT 3.3 V  
=
Dmax  
=
= 0.413  
= 0.183  
VINmin  
8 V  
(16)  
(17)  
VOUT 3.3 V  
=
Dmin  
=
VINmax 18 V  
The maximum peak-to-peak inductor current is:  
VINmax - VOUT Dmin  
DI =  
´
LOUT  
Fsw  
(18)  
(19)  
18 V - 3.3 V  
1.5 mH  
0.183  
DI =  
´
= 0.815 Apk  
2.2 MHz  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
DI  
Ipk = IOUT +  
2
(20)  
(21)  
0.815  
2
Ipk = 6A +  
= 6.41Apk  
9.2.2.2 Current Sense Resistor  
When calculating the current sense resistor, the maximum output current capability (IOUTMAX) should be at least  
20% higher than the required full load current to account for tolerances, ripple current, and load transients. For  
this example, 120% of the 6.41 A peak inductor current calculated in the previous section (Ipk) is 7.69 A. The  
current sense resistor value can be calculated using:  
VCS  
Rsense =  
IOUTmax  
(22)  
73 mV  
Rsense =  
= 0.00949 W  
7.69 Apk  
(23)  
Where:VCS is the 73 mV current limit threshold.  
The Rsense value selected is 9 mΩ  
Carefully observe the PCB layout guidelines to ensure that noise and DC errors do not corrupt the differential  
current sense signals betwen the CS and VOUT pins. Place the sense resistor close to the devices with short,  
direct traces, creating Kelvin-sense connections between the current-sense resistor and the LM5140-Q1.  
The propagation delays through the current limit comparator, logic, and external MOSFET gate drivers allow the  
peak current to increase above the calculated current limit threshold. For a total propogation delay of tdlyTOTAL  
,
the worst case peak current through the inductor with the output is shorted can be calculated from:  
VINmax ´ tdlyTOTAL  
VCS  
Ipkshortckt  
=
+
Rsense  
L
(24)  
From the Electrical Characteristics, tdlyTOTAL 40 ns. Therefore:  
73 mV 18 V ´ 40 ns  
Ipkshortckt  
=
+
= 8.59 Apk  
0.009  
1.5 mH  
(25)  
Once the peak current and the inductance parameters are known, the inductor can be chosen. An inductor with a  
saturation current greater than Ipkshortckt (8.59 Apk) should be selected.  
9.2.2.3 Output Capacitor  
In a switch mode power supply, the minimum output capacitance is typically selected based on the capacitor  
ripple current rating and the load transient requirements. The output capacitor must be large enough to absorb  
the inductor energy and limit over voltage when transitioning from full-load to no-load, and to limit the output  
voltage undershoot during no-load to full load transients. The worst-case load transient from zero to full load  
occurs when the input voltage is at the maximum value and a current switching cycle has just finished. The total  
output voltage drop VOUTUV is the sum of the voltage drop while the inductor is ramping up to support the full  
load and the voltage drop before the next pulse can occur.  
The output capacitance required to maintain the minimum output voltage drop VOUTUV can be calculated as  
follows:  
2
L ´ISTEP  
COUTmin  
=
2´ VOUTUV ´Dmin ´(VINmax - VOUT)  
(26)  
(27)  
1.5 mH x 6 A2  
COUTmin  
=
= 304 µF  
2 x 33 mV x 0.183 x 18 V - 3.3 V  
(
)
.
Copyright © 2016, Texas Instruments Incorporated  
27  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Where:  
ISTEP = 6A  
VOUTUV = 1% of 3.3 V, or 33 mV  
For this example a total of 293 µF of capacitance is used, three 82-µF aluminum capacitors for energy storage  
and one 47 µF low ESR ceramic capacitor to reduce high frequency noise.  
Generally, when sufficient capacitance is used to satisfy the undershoot requirement, the overshoot during a full-  
load to no-load transient will also be satisfactory. After the output capacitance has been selected, calculate the  
output ripple current and verify that the ripple current is within the capacitor ripple current ratings.  
For this design, the output ripple current is:  
DI  
IOUT  
=
rms  
12  
(28)  
(29)  
0.815 A  
12  
IOUT  
=
0.235 Arms  
rms  
9.2.2.4 Input Filter  
A power supply input typically has a relatively high source impedance at the switching frequency. Good quality  
input capacitors are necessary to limit the ripple voltage at the VIN pin while supplying most of the switch current  
during the buck switch on-time. When the buck switch turns on, the current drawin from the input capacitor steps  
from zero to the valley of the inductor current waveform, then ramps up to the peak value, and then drops to the  
zero at turn-off.  
Average input current can be calculated from the total input power required to support the loads at VOUT1 and  
VOUT2:  
VOUT1´IOUT1+ VOUT2´IOUT2  
Pin =  
h
(30)  
The efficiency η is assumed to be 83% for this design example, yielding total input power:  
3.3 V ´ 6 A + 5.0 V ´5 A  
Pin =  
= 54 W  
0.83  
(31)  
Pin  
Iavg  
=
VINmin  
(32)  
(33)  
54 W  
8 V  
Iavg  
=
= 6.75 A  
The ripple voltage on the input capacitors will be reduced significantly with a dual channel operation since each  
channel operates 180º out of phase from the other. Capacitors connected in parallel should be evaluated for their  
RMS current rating. The ripple current will split between the input capacitors based on the relative impedance of  
the capacitors at the switching frequency.  
The input capacitors should be selected with sufficient RMS current rating and the maximum voltage rating. The  
input ripple current with one channel operating is:  
é
2 ù  
ú
û
DI  
(Ipk -Iavg )2 +  
´D  
+ (Iavg2 )´(1-Dmax  
é
ë
)
ù
û
I
=
ê
IN(rms)  
max  
12  
ê
ë
ú
(34)  
(35)  
é
2 ù  
ú
û
0.815  
12  
I
=
(6.41- 2.98)2 +  
´0.413 + (2.982 ´(1- 0.413)) = 3.16 A  
ê
IN(rms)  
ê
ë
ú
28  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
9.2.2.5 EMI Filter Design  
Switching regulators exhibit negative input impedance, which is lowest at the minimum input voltage. An under-  
damped LC filter exhibits a high output impedance at the resonant frequency of the filter. For stability, the filter  
output impedance must be less than the absolute value of the converter input impedance.  
2
VINmin  
Zin = -  
Pin  
(36)  
8 V2  
Zin = -  
= 1.18 W  
54 W  
(37)  
EMI Filter Design Steps:  
Calculate the required attenuation  
Capacitor CIN represents the existing capacitor at the input of the switching converter  
Filter inductor Lf is usually selected between 1 μH and 10 μH (3.6 µH was used for this application), but it can  
be smaller to reduce losses in a high current design  
Calculate capacitor Cf  
L
f
C
C
d
C
f
d
IN  
R
Figure 32. Input EMI Filter  
By calculating the first harmonic current from the Fourier series of the input current waveform and multiplying it  
by the input impedance (the impedance is defined by the existing input capacitor CIN), a formula can be derived  
to obtain the required attenuation:  
æ
ç
ç
ç
ö
÷
÷
÷
Ipk  
Attn = 20log  
Attn = 20log  
´ sin p x D  
- V  
(
)
max max  
2
p ´ ƒsw ´ CIN  
1mV  
ç
÷
ç
÷
è
ø
(38)  
æ
ç
ç
ç
ö
÷
÷
6.41  
´ sin(p´0.413) - 45 dBmV = 44.06 dB  
2
÷
p ´ 2.2 MHz ´10 mF  
1mV  
ç
÷
ç
÷
è
ø
(39)  
Vmax is the allowed dBμV noise level for the particular EMI standard, CIN is the existing input capacitors of the  
buck converter. For this application 10 µF was selected. Dmax is the maximum duty cycle. Ipk is the peak  
inductor current and for filter design purposes, the current at the input can be modeled as a squarewave. The  
EMI filter capacitor Cf is determined from:  
Attn  
æ
ç
ç
ö2  
÷
40  
1
10  
÷
÷
÷
ø
Cƒ =  
Lƒ 2´ p´F  
ç
SW  
ç
è
(40)  
ö2  
÷
44.06  
40  
æ
ç
ç
1
10  
2´ p´ 2.2 MHz  
Cƒ =  
=
= 0.25 mF  
÷
3.6 mF  
ç
ç
÷
÷
è
ø
(41)  
29  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
For this application, Cf was chosen to be 1 µF. Adding an input filter to a switching regulator modifies the control-  
to-output transfer function. The output impedance of the filter must be sufficiently small such that the input filter  
does not significantly affect the loop gain of the buck converter. The impedance peaks at the filter resonant  
frequency. The resonant frequency of the filter is given by:  
1
fr =  
2´ p Lƒ ´ Cƒ  
(42)  
1
fr =  
= 37.53 kHz  
2´ p 1.8 mH´10 mF  
(43)  
The purpose of Rd is to reduce the peak output impedance of the filter at the resonant frequency. The capacitor  
Cd blocks the dc component of the input voltage to avoids excessive power dissipation in Rd. The capacitor Cd  
should have lower impedance than Rd at the resonant frequency with a capacitance value greater than the input  
capacitor CIN. This will prevent CIN from interfering with the cutoff frequency of the main filter. Added damping is  
needed when the output impedance is high at the resonant frequency ( Q of filter formed by CIN and Lf is too  
high): An electrolytic cap Cd can be used as damping device, with the value of:  
Cd = 4 ³ CIN  
(44)  
Cd = 4 x 10 µF, a 47-µF capacitor was selected and Rd is chosen using:  
Lƒ  
Rd =  
CIN  
(45)  
1.8 mH  
Rd =  
= 0.424 W  
10 mF  
(46)  
9.2.2.6 MOSFET Selection  
The LM5140-Q1 gate drivers are powered by the internal 5-V VCC bias regulator. To reduce power dissipation in  
the controller and improve efficiency, the VCCX pin which should be connected to 5-V output or an external 5 V  
bias supply. The MOSFETs used with the LM5140 require a logic-level gate threshold with on-resistance  
specified with VGS = 4.5 V or lower.  
The four MOSFETs must be chosen with a VDS rating to withstand the maximum VIN voltage plus supply voltage  
transients and spikes (ringing). For automotive applications, the maximum VIN occurs during a load dump and the  
voltage can surge to 42 V under some conditions. A MOSFET with a VDS rating of 60 V would meet most  
application requirements. The N-channel MOSFETs must be capable of delivering the average load current plus  
peak ripple current during switching.  
The high-side MOSFET losses are associated with the RDS(ON) of the MOSFET and the switching losses.  
1
PdHS = (IOUT2 ´RDS(on) ´Dmax ) + VIN´(tr + tƒ)´IOUT ´ ƒsw  
2
(47)  
(48)  
1
PdHS = (6 A2 ´ 0.026 W ´0.413) + ´12 V ´(17 ns +17 ns)´ 6 A ´ 2.2 MHZ = 2.69 W  
2
The losses in the low-side MOSFET include the RDS(ON) losses, the dead time losses, and losses in the  
MOSFETs internal body diode. The body diode conducts the inductor current during the dead time before the  
rising edge of the switch node. Minority carriers are injected into and stored in the body diode PN junction. As the  
high-side FET begins to turn-on, a negative current must first flow through the diode to remove the stored charge  
before the diode can be reverse biased. During this time, the high-side MOSFET drain-source voltage remains at  
VIN until all the diode minority carriers are removed. Then the diode begins to block negative voltage and the  
reverse current continues to flow to charge the depletion capacitance of the body diode junction. The total charge  
requierd to reverse bias the diode is called reverse-recovery charge Qrr. The power loss in the low-side  
MOSFET can be calculated from:  
30  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
PdLS = (IOUT2 ´RDS(on) ´(1- Dmax )) + (IOUT ´(tdr + t)´FSW ´ VDFET ) + (DQrr ´FSW ´ VIN)  
PdLO = 62 A ´ 26 mW ´(1- 0.413) + (6A ´ 20 ns + 6A ´ 20 ns)´ 2.2 MHz ´0.8 V +105 nc ´ 2.2 MHz ´12 V = 3.744 W  
(49)  
(50)  
Where tdr and tdf are the switch node voltage rise and fall times (20 ns).  
VDFET the forward voltage drop across the low-side MOSFET internal body diode (0.8 V).  
DQrr the internal body diode reverse recovery charge (105 nC).  
RDS(ON) the on resistance of the low-side MOSFET ( 26 mat TJ = 125ºC).  
The table below provides parameters for several MOSFETs that have tested in the LM5140-Q1 evaluation  
module.  
QgMAX (nC)  
VGS = 4.5 V  
RDSON MAX (mΩ)  
Manufacturer  
Part Number  
VDS (V) ID (A)  
COSS /MAX  
Application  
VGS = 4.5  
VISHAY  
VISHAY  
SQJ850EP  
SQ7414EN  
60  
60  
60  
24  
5.6  
13  
30  
25  
32  
36  
215  
175  
217  
Automotive High Power  
Automotive Low Power  
Industrial  
Texas Instruments CSD18534Q5A  
11.1  
12.4  
9.2.2.7 Driver Slew Rate Control  
Figure 33 shows the high current driver outputs with independent source and current sink pins for slew rate  
control. Slew rate control enables the user to adjust the switch node rise and fall times which can reduce the  
conducted EMI in the FM radio band (30 MHz to 108 MHz). Using the LM5140-Q1 EVM, conducted emission  
were measured in accordance with CISPR 25. Figure 34 shows the measured results without slew rate control.  
The conducted EMI results with slew rate control are shown in Figure 35.  
VCC  
DBST  
HB  
CBST  
RHO  
HO  
HOL  
RHOL  
SW  
VCC  
CVCC  
RLO  
LO  
LOL  
RLOL  
PGND  
Figure 33. Drivers with Slew Rate Control  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Figure 34. EMI Measurements CISPR 25, No Slew Rate Control  
Referring to Figure 34 and Figure 35 a 10 dB reduction in conduction emissions in the FM band is attained by  
using slew rate control. This can reduce the size and cost of the EMI filters.  
Figure 35. EMI Measurements CISPR 25 with Slew Rate Control  
9.2.2.8 Sub-Harmonic Oscillation  
For peak current mode control, sub-harmonic oscillation occurs with a duty cycle greater than 50% and is  
characterized by alternating wide and narrow pulses at the SW pin. By adding a compensating ramp equal to the  
down-slope of the inductor current, any tendency toward sub-harmonic oscillation is damped within one switching  
cycle.  
In time-domain analysis, the steady-state inductor current starts and ends at the same value during one clock  
cycle. If the magnitude of the end-of-cycle current error, dI1, caused by an initial perturbation, dI0, is less than the  
magnitude of dI0 or dI1/dI0 > –1, the perturbation naturally disappears after a few cycles, refer to Figure 36. When  
dI1/dI0 < –1, the initial perturbation does not disappear resulting in sub-harmonic oscillation in steady-state  
operation. By choosing K > 1 , sub-harmonic oscillation will be avoided.  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Steady-State  
Inductor Current  
dI0  
ton  
dI1  
Inductor Current  
with Initial  
Perturbation  
Figure 36. Sub-Harmonic Oscillation  
dI0  
1
k
= 1-  
dI1  
(51)  
The relationship between Q and K factor is illustrated graphically in Figure 37.  
Figure 37. Sampling Gain Q vs K Factor  
The minimum value of K is 0.5. This is the same as time domain analysis result. When K < 0.5, the regulator is  
unstable. High gain peaking at 0.5 results in sub-harmonic oscillation at FSW//2. When K = 1, one-cycle damping  
is realized and Q is equal to 0.673 at this point. A higher K factor may introduce additional phase shift by moving  
the sampled gain inductor pole closer to the crossover frequency but will help reduce noise sensitivity in the  
current loop.  
9.2.2.9 Control Loop  
The open loop response of a buck converter is defined as the product of modulator and feedback transfer  
functions. When plotted on a dB scale, the open loop gain is shown as the sum of modulator gain and feedback  
gain. The modulator transfer function includes a power stage transfer function with an embedded current loop  
that can be simplified as one pole and a one zero system as shown in Equation 52. The modulator transfer  
function is defined as follows:  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
æ
ç
è
ö
÷
ø
s
1+  
wZ  
VOUT  
= AM´  
VC  
æ
ç
ç
è
ö æ  
ö
÷
÷
ø
s
s
s2  
wn2  
1+  
´ 1+  
+
÷ ç  
÷ ç  
ø è  
wp  
wnQ  
(52)  
FSW  
s = 2´ p´  
2
K = 1  
1
Q =  
p(K - 0.5)  
1
wZ =  
C
ESR ´ CO  
1
wP =  
R
LOAD ´ CO  
FSW  
wn = p´  
2
(53)  
The equation includes the sample gain at fSW//2 (ωn), which is caused by sampling effect of current mode  
control. Refer to section Sub-Harmonic Oscillation:  
s
s2  
1+  
+
2
wn  
wnQ  
(54)  
RLOAD  
AM =  
AM =  
(Rsense + RDCR )´ GCS  
0.471W  
= 3.035  
(0.007 + 0.0081)´12  
(55)  
(56)  
(57)  
Gain in dB 20log(AM)  
20 logM (3.035) = 9.64  
GCS is the current sense amplifier gain (12).  
RLOAD is the load resistance.  
RDCR is the dc resistance on the output inductor.  
9.2.2.10 Error Amplifier  
RCOMP and CCOMP configure the error amplifier gain characteristic to achieve a stable voltage feedback loop. One  
advantage of current mode control is the ability to compensate the loop with only two compensation components,  
RCOMP and CCOMP. The voltage loop gain is the product of the modulator gain and the error amplifier gain. For the  
3.3-V output of this design example, the modulator is treated as an ideal voltage-to-current converter. The  
modulator gain of the LM5140-Q1 can be modeled as:  
æ
ç
è
ö
÷
ø
s
1+  
1+  
wZEA  
VREF  
VO  
VC  
=
´ Gm´RAMP ´  
VOUT  
æ
ç
è
ö
÷
ø
s
wPEA  
(58)  
(59)  
(60)  
1
wZEA  
=
R
COMP ´ CCOMP  
1
wPEA  
»
R
AMP ´ CCOMP  
Where:  
34  
Copyright © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
VREF is the feedback voltage reference (1.2 V)  
Gm is the error amplifier gain transconductance (1200 µS)  
RAMP is the error amplilfier output impedance (2.5 M)  
RUPPER  
CO  
VREF  
VC  
+
-
RLOAD  
RCOMP  
CESR  
RLOWER  
CCOMP  
Figure 38. Transconductance Amplifier  
The procedure for choosing compensation components for a stable closed loop is:  
Select the desired open loop gain crossover frequency (fc); for this application 30 kHz was chosen  
Calculate the RCOMP resistor for the gain crossover frequency at 30 kHz  
2´ p´ CO ´Rsense´GCS  
VOUT  
RCOMP = fc  
´
VREF  
Gm  
(61)  
(62)  
3.3 V 2´ p´ 290 mF´0.007´12  
´
1.2 V  
RCOMP = 30 kHz ´  
= 10517 W  
1200´10-6  
The value selected for RCOMP is 10 kΩ  
Calculate the CCOMP capacitor value to create a zero that cancels the pole ωp (ωp = 1/(RLOAD x CO).  
RLOAD ´ CO  
CCOMP  
=
RCOMP  
(63)  
(64)  
0.477´ 290 mF  
CCOMP  
=
= 13.8 nF  
10000  
The value seleced for CCOMP is 10 nF  
Copyright © 2016, Texas Instruments Incorporated  
35  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
9.2.3 Application Curves  
Plotting the modulator gain and feedback gain, (refer to Figure 39).  
The results are a gain crossover frequency of 20 kHz with 82º of phase margin, (refer to Figure 40).  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
0
-10  
-20  
-30  
-40  
10  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50k  
100k 200k  
500k  
1M  
Frequency/Hertz  
Figure 39. (VO/VC) Modulator Gain and Phase  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
60  
40  
20  
0
-20  
-40  
10  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50k  
100k 200k  
500k  
1M  
Frequency/Hertz  
Figure 40. Open Loop Gain and Phase  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
10 Power Supply Recommendations  
The LM5140EVM was designed to operate over an input voltage supply range between 3.8 V and 42 V. This  
input supply must be well regulated. If the power source is located more than a few inches from the LM5140-Q1  
EVM, additional bulk capacitance and ceramic bypass capacitors may be required at the power supply input. An  
electrolytic capacitor with a value of 47 µF is typically a good choice.  
Copyright © 2016, Texas Instruments Incorporated  
37  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
11 Layout  
Careful PCB layout is critical to achieve low EMI and stable power supply operation. If possible, mount all the  
power components on the top side of the board, making the high frequency current loops as small as possible,  
and follow these guidelines of good layout practices:  
1. Keep the high-current paths short. This practice is essential for stable, jitter-free operation.  
2. Keep the power traces and load connections short. This practice is essential for high efficiency. Using thick  
copper (2 oz) can enhance full load efficiency by 1% or more.  
3. Minimize current-sensing errors by routing CS and VOUT using a kelvin sensing directly across the current-  
sense resistor (Rsense).  
4. Route high-speed switching nodes (HB, HO, LO, and SW) away from sensitive analog areas (FB, CS, and  
VOUT).  
11.1 Layout Procedure  
Place the power components first, with ground terminals adjacent to the low-side FET. If possible, make all  
these connections on the top layer with wide, copper-filled areas.  
Mount the controller IC as close as possible to the high and low-side MOSFETs. Make the grounds and high  
and low-sided drive gate drive lines as short and wide as possible. Place the series gate drive resistor as  
close to the MOSFET as possible to minimize gate ringing.  
Locate the gate drive components (D1 and C17) together and near the controller IC; refer to Figure 41. Be  
aware that peak gate drive currents can be as high as 4 A. Average current up to 150 mA can flow from the  
VCC pin to the VCC capacitor through the bootstrap diode to the bootstrap capacitor. Size the traces  
accordingly.  
Make the ground connections to the LM5140-Q1 controller as shown in Figure 43. Create a power grounds  
directly connected to all high-power components and an analog ground plane for sensitive analog  
components. The analog ground plane (AGND) and power ground plane (PGND1, and PGND2) must be  
connected at a single point directly under the IC (at the die attach pad or DAP).  
Figure 41 shows the schematic of the high frequency loops of one synchronous buck channel. The current  
flows through Q1 and Q2, through the power ground plane and back to VIN through the ceramic capacitors  
C11 and C12. This loop must be as small as possible to minimize EMI. Refer to Figure 42 For the  
recommended PCB layout.  
11.2 Layout Example  
Figure 41. Synchronous Buck Power Flow  
38  
Copyright © 2016, Texas Instruments Incorporated  
 
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Layout Example (continued)  
D1/C17 High-Side Bootstrap Circuit  
Buck High Frequency Current Path  
R10/C10 Snubber  
Figure 42. Synchronous Buck High Frequency Current Path  
Copyright © 2016, Texas Instruments Incorporated  
39  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
Layout Example (continued)  
AGND Plane  
AGND  
PGND1  
PGND2  
Figure 43. AGND and PGND Connections  
40  
版权 © 2016, Texas Instruments Incorporated  
LM5140-Q1  
www.ti.com.cn  
ZHCSEI6 JANUARY 2016  
Layout Example (continued)  
Figure 44. Top/Bottom PWM Layers  
版权 © 2016, Texas Instruments Incorporated  
41  
LM5140-Q1  
ZHCSEI6 JANUARY 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
42  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5140QRWGRQ1  
LM5140QRWGTQ1  
ACTIVE  
VQFNP  
VQFNP  
RWG  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
LM5140  
RWGQ1  
ACTIVE  
RWG  
NIPDAUAG  
LM5140  
RWGQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RWG0040A  
VQFN - 0.9 mm max height  
SCALE 2.200  
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
A
B
0.05  
0.00  
(0.09)  
PIN 1 ID  
DETAIL A  
6.1  
5.9  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
5.75)  
(0.15)  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9 MAX  
C
SEATING PLANE  
0.05 C  
(0.2)  
SEE DETAIL A  
SEE DETAIL B  
4X  
45 X 0.6 MAX  
11  
20  
10  
21  
SYMM  
4X  
3.3 0.1  
4.5  
1
30  
0.3  
40X  
36X 0.5  
0.2  
40  
31  
SYMM  
PIN 1 ID  
(R0.2)  
0.1  
C B  
C
A
0.5  
0.3  
0.05  
40X  
4221568/A 07/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWG0040A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.3)  
SYMM  
40  
31  
40X (0.6)  
40X (0.25)  
1
30  
36X (0.5)  
4X  
(1.4)  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
10  
21  
11  
20  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221568/A 07/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWG0040A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(5.8)  
2X (1.63)  
40  
31  
40X (0.6)  
40X (0.25)  
1
30  
36X (0.5)  
SYMM  
2X  
(1.63)  
(5.8)  
METAL  
TYP  
4X  
1.43)  
(
10  
21  
11  
20  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:12X  
4221568/A 07/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LM5141

低 IQ、宽输入范围同步降压控制器
TI

LM5141-Q1

汽车类宽输入 2.2MHz 低 IQ 同步降压控制器
TI

LM5141-Q1_V01

LM5141-Q1 Wide Input Range Synchronous Buck Controller
TI

LM5141QRGERQ1

汽车类宽输入 2.2MHz 低 IQ 同步降压控制器 | RGE | 24 | -40 to 150
TI

LM5141QRGETQ1

汽车类宽输入 2.2MHz 低 IQ 同步降压控制器 | RGE | 24 | -40 to 150
TI

LM5141QURGERQ1

LM5141-Q1 Wide Input Range Synchronous Buck Controller
TI

LM5141RGER

低 IQ、宽输入范围同步降压控制器 | RGE | 24 | -40 to 125
TI

LM5141RGET

低 IQ、宽输入范围同步降压控制器 | RGE | 24 | -40 to 125
TI

LM5143

具有超低 IQ 的 3.5V 至 65V 双路输出、可堆叠、同步降压直流/直流控制器
TI

LM5143-Q1

LM25149 42-V Synchronous Buck DC/DC Controller with Ultra-Low IQ and Integrated Active EMI Filter
TI

LM5143A-Q1

汽车类 3.5V 至 65V 低 IQ 双路输出可堆叠同步降压直流/直流控制器
TI

LM5143QRHARQ1

汽车类 3.5V 至 65V 低 IQ 双路输出可堆叠同步降压直流/直流控制器 | RHA | 40 | -40 to 150
TI