LM5163DDAR [TI]

具有超低 IQ 的 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150;
LM5163DDAR
型号: LM5163DDAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低 IQ 的 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150

转换器
文件: 总37页 (文件大小:2640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5163  
ZHCSKD6 OCTOBER 2019  
具有超低 IQ LM5163 100V 输入、0.5A 同步降压直流/直流转换器  
1 特性  
2 应用  
1
专为可靠耐用的应用 设计  
工业电池组 (10S)  
电池组 电动自行车/电动踏板车/LEV  
6V 100V 的宽输入电压范围  
结温范围:–40°C +150°C  
固定 3ms 内部软启动计时器  
峰值和谷值电流限制保护  
电机驱动器无人机通信设备  
3 说明  
LM5163 同步降压转换器用于在宽输入电压范围内进行  
调节,从而最大限度地减少对外部浪涌抑制组件的需  
求。50ns 的最短可控导通时间有助于实现较大的降压  
比,支持从 48V 标称输入到低电压轨的直接降压转  
换,从而降低系统的复杂性并减少解决方案成本。  
LM5163 在输入电压突降至 6V 时能够根据需要以接近  
100% 的占空比继续工作,使其成为宽输入电源范围工  
业和高电池节数电池组 应用的理想选择。  
输入 UVLO 和热关断保护  
适用于可扩展的工业电源和电池组  
最短导通时间和关闭时间低:50ns  
高达 1MHz 的可调节开关频率  
可实现高轻负载效率的二极管仿真  
10.5µA 空载输入静态电流  
3µA 关断静态电流  
超低 EMI 辐射  
针对 CISPR 25 5 标准进行了优化  
通过集成技术减小解决方案尺寸,降低成本  
LM5163 具有集成式高侧和低侧功率 MOSFET,可提  
供高达 0.5A 的输出电流。恒定导通时间 (COT) 控制  
架构可提供几乎恒定的开关频率,具有出色的负载和线  
路瞬态响应。其他 特性 LM5163 的其他特性包括超低  
IQ 和二极管仿真模式运行(可实现高轻负载效率)、  
创新的峰值和谷值过流保护、集成式 VCC 偏置电源和  
自举二极管、精密使能和输入 UVLO 以及具有自动恢  
复功能的热关断保护。开漏 PGOOD 指示器可提供进  
行定序、故障报告和输出电压监视功能。  
COT 模式控制架构  
集成式 0.725Ω NFET 降压开关  
集成式 0.34Ω NFET 同步整流器省去了外部肖  
特基二极管  
1.2V 内部电压基准  
无环路补偿组件  
内部 VCC 偏置稳压器和自举二极管  
漏极开路电源正常指示器  
PowerPAD™ 8 引脚 SOIC 封装  
LM5163 采用热增强型 8 引脚 SO PowerPAD™ 封  
装。其 1.27mm 引脚间距可以为高电压 应用的实施。  
使用 WEBENCH® 电源设计器创建定制稳压器设计  
器件信息(1)  
器件型号  
LM5163  
封装  
封装尺寸(标称值)  
SO PowerPAD (8)  
4.89mm × 3.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
典型应用效率,VOUT = 12V  
100  
VOUT = 12 V  
IOUT = 0.5 A  
LO  
120 µH  
U1  
V
IN = 6 V...100 V  
95  
90  
85  
80  
75  
VIN  
SW  
CBST  
LM5163  
CIN  
2.2 µF  
2.2 nF RFB1  
EN/UVLO  
BST  
FB  
448 kW  
COUT  
22 µF  
RON  
RRON  
RFB2  
100 kW  
70  
VIN = 15V  
VIN = 24V  
49.9 kW  
PGOOD  
GND  
65  
60  
VIN = 48V  
VIN = 60V  
*VOUT tracks VIN if VIN < 12 V  
0.001  
0.01  
0.1  
0.5  
Load (A)  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBB3  
 
 
 
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 23  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics ............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview .................................................................. 9  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 15  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持................................................................ 27  
11.2 相关文档 ............................................................... 27  
11.3 接收文档更新通知 ................................................. 27  
11.4 支持资源................................................................ 28  
11.5 ....................................................................... 28  
11.6 静电放电警告......................................................... 28  
11.7 Glossary................................................................ 28  
12 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
日期  
修订版本  
说明  
2019 10 月  
*
初始发行版  
2
版权 © 2019, Texas Instruments Incorporated  
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
5 Pin Configuration and Functions  
DDA Package  
8-Pin SO PowerPAD  
Top View  
GND  
SW  
VIN  
BST  
EP  
EN/UVLO  
PGOOD  
RON  
FB  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
1
GND  
G
Ground connection for internal circuits  
Regulator supply input pin to high-side power MOSFET and internal bias regulator. Connect  
directly to the input supply of the buck converter with short, low impedance paths.  
2
3
VIN  
P/I  
Precision enable and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in shutdown mode with all functions disabled. If the UVLO voltage is  
greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal VCC  
regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up  
sequence begins.  
EN/UVLO  
I
4
5
RON  
FB  
I
I
On-time programming pin. A resistor between this pin and GND sets the buck switch on-time.  
Feedback input of voltage regulation comparator  
Power good indicator. This pin is an open-drain output pin. Connect to a source voltage through an  
external pullup resistor between 10 kΩ to 100 kΩ.  
6
7
PGOOD  
BST  
O
Bootstrap gate-drive supply. Required to connect a high-quality 2.2-nF 50-V X7R ceramic capacitor  
between BST and SW to bias the internal high-side gate driver.  
P/I  
Switching node that is internally connected to the source of the high-side NMOS buck switch and  
the drain of the low-side NMOS synchronous rectifier. Connect to the switching node of the power  
inductor.  
8
SW  
EP  
P
Exposed pad of the package. No internal electrical connection. Solder the EP to the GND pin and  
connect to a large copper plane to reduce thermal resistance.  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2019, Texas Instruments Incorporated  
3
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
100  
100  
5.5  
UNIT  
VIN to GND  
EN to GND  
FB to GND  
RON to GND  
Input voltage  
V
5.5  
Bootstrap  
capacitor  
External BST to SW capacitance  
1.5  
2.5  
nF  
V
BST to GND  
–0.3  
–0.3  
–1.5  
–3  
105.5  
5.5  
BST to SW  
Output voltage  
SW to GND  
100  
SW to GND (20-ns transient)  
PGOOD to GND  
–0.3  
–40  
–65  
14  
150  
150  
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
100  
100  
100  
0.6  
UNIT  
V
VIN  
Input voltage  
6
VSW  
Switch node voltage  
Enable voltage  
V
VEN/UVLO  
ILOAD  
FSW  
V
Load current  
0.5  
2.2  
A
Switching frequency  
External BST to SW capacitance  
Programmable on-time  
1000  
kHz  
nF  
ns  
CBST  
tON  
50  
10000  
4
Copyright © 2019, Texas Instruments Incorporated  
 
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
6.4 Thermal Information  
LM5163  
DDA (SOIC)  
8 PINS  
43.4  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
59.5  
16.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.0  
ΨJB  
16.3  
RθJC(bot)  
3.9  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
SUPPLY CURRENT  
IQ-SHUTDOWN VIN shutdown current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN = 0 V  
3
10.5  
600  
15  
25  
µA  
µA  
µA  
IQ-SLEEP1  
IQ-ACTIVE  
EN/UVLO  
VSD-RISING  
VSD-FALLING  
VEN-RISING  
VEN-FALLING  
FEEDBACK  
VREF  
VIN sleep current  
VIN active current  
VEN = 2.5 V, VFB = 1.5 V  
VEN = 2.5 V  
880  
Shutdown threshold  
Shutdown threshold  
Enable threshold  
Enable threshold  
VEN/UVLO rising  
VEN/UVLO falling  
VEN/UVLO rising  
VEN/UVLO falling  
1.1  
V
V
V
V
0.45  
1.45  
1.35  
1.5  
1.4  
1.55  
1.44  
FB regulation voltage  
VFB falling  
1.181  
1.2  
1.218  
V
TIMING  
tON1  
On-time1  
On-time2  
On-time3  
On-time4  
VVIN = 6 V, RRON = 75 kΩ  
VVIN = 6 V, RRON = 25 kΩ  
VVIN = 12 V, RRON = 75 kΩ  
VVIN = 12 V, RRON = 25 kΩ  
5000  
650  
ns  
ns  
ns  
ns  
tON2  
tON3  
2550  
830  
tON4  
PGOOD  
FB upper threshold for PGOOD high  
to low  
VPG-UTH  
VPG-LTH  
VPG-HYS  
VFB rising  
VFB falling  
1.105  
1.055  
1.14  
1.08  
1.175  
1.1  
V
V
FB lower threshold for PGOOD high to  
low  
PGOOD upper and lower threshold  
hysteresis  
VFB falling  
VFB = 1 V  
60  
30  
mV  
RPG  
PGOOD pulldown resistance  
Ω
BOOTSTRAP  
VBST-UV  
Gate drive UVLO  
VBST rising  
2.7  
3.4  
V
POWER SWITCHES  
RDSON-HS High-side MOSFET RDSON  
RDSON-LS Low-side MOSFET RDSON  
ISW = –100 mA  
ISW = 100 mA  
0.725  
0.33  
Ω
Ω
Copyright © 2019, Texas Instruments Incorporated  
5
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
tSS  
Internal soft-start time  
1.75  
3
4.75  
ms  
CURRENT LIMIT  
IPEAK1  
Peak current limit threshold (HS)  
0.63  
0.63  
0.75  
0.75  
100  
0.6  
0.87  
0.87  
A
A
IPEAK2  
Peak current limit threshold (LS)  
Min of (IPEAK1 or IPEAK2) minus IVALLEY  
Valley current limit threshold  
IDELTA-ILIM  
IVALLEY  
mA  
A
0.5  
0.72  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
10  
°C  
°C  
TSD-HYS  
6
版权 © 2019, Texas Instruments Incorporated  
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
6.6 Typical Characteristics  
At TA = 25°C, VOUT = 12 V, LO = 120 µH, RRON = 105 kΩ, unless otherwise specified.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
0.001  
0.01  
0.1  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Load (A)  
Load (A)  
D001  
D002  
1. Conversion Efficiency (Log Scale)  
2. Conversion Efficiency (Linear Scale)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Sleep  
Shutdown  
Sleep  
Shutdown  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
Input Voltage (V)  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
D005  
D006  
3. VIN Shutdown and Sleep Supply Current versus  
4. VIN Shutdown and Sleep Supply Current versus Input  
Temperature  
Voltage  
725  
600  
580  
560  
540  
520  
500  
700  
675  
650  
625  
600  
575  
550  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Input Voltage (V)  
70  
80  
90 100  
Junction Temperature (èC)  
D007  
D008  
5. VIN Active Current versus Temperature  
6. VIN Active Current versus Input Voltage  
版权 © 2019, Texas Instruments Incorporated  
7
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VOUT = 12 V, LO = 120 µH, RRON = 105 kΩ, unless otherwise specified.  
1.21  
1.205  
1.2  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.195  
High-Side FET  
Low-Side FET  
1.19  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
7. Feedback Comparator Threshold versus Temperature  
0.8  
8. MOSFETs On-State Resistance versus Temperature  
6
5
4
3
2
1
0
RRT = 105 kW  
RRT = 43.2 kW  
0.7  
0.6  
0.5  
0.4  
Peak Current  
Valley Current  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Input Voltage (V)  
70  
80  
90 100  
Junction Temperature (èC)  
D011  
D012  
9. Peak and Valley Current Limit versus Temperature  
10. COT On-Time versus VIN  
8
版权 © 2019, Texas Instruments Incorporated  
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
7 Detailed Description  
7.1 Overview  
The LM5163 is an easy-to-use, ultra-low IQ constant on-time (COT) synchronous step-down buck regulator. With  
integrated high-side and low-side power MOSFETs, the LM5163 is a low-cost, highly efficient buck converter that  
operates from a wide input voltage of 6 V to 100 V, delivering up to 0.5-A DC load current. The LM5163 is  
available in an 8-pin SO Power PAD package with 1.27-mm pin pitch for adequate spacing in high-voltage  
applications. This constant on-time (COT) converter is ideal for low-noise, high-current, and fast load transient  
requirements, operating with a predictive on-time switching pulse. Over the input voltage range, input voltage  
feedforward is employed to achieve a quasi-fixed switching frequency. A controllable on-time as low as 50 ns  
permits high step-down ratios and a minimum forced off-time of 50 ns provides extremely high duty cycles,  
allowing VIN to drop close to VOUT before frequency foldback occurs. At light loads, the device transitions into an  
ultra-low IQ mode to maintain high efficiency and prevent draining battery cells connected to the input when the  
system is in standby. The LM5163 implements a smart peak and valley current limit detection circuit to ensure  
robust protection during output short circuit conditions. Control loop compensation is not required for this  
regulator, reducing design time and external component count.  
The LM5163 incorporates additional features for comprehensive system requirements, including an open-drain  
power good circuit for the following:  
Power-rail sequencing and fault reporting  
Internally-fixed soft start  
Monotonic start-up into prebiased loads  
Precision enable for programmable line undervoltage lockout (UVLO)  
Smart cycle-by-cycle current limit for optimal inductor sizing  
Thermal shutdown with automatic recovery  
These features enable a flexible and easy-to-use platform for a wide range of applications. The LM5163 supports  
a wide range of end-equipment systems requiring a regulated output from a high input supply where the transient  
voltage deviates from the DC level. The following are examples of such end equipment systems:  
48-V automotive systems  
High cell-count battery-pack systems  
24-V industrial systems  
48-V telecom and PoE voltage ranges  
The pin arrangement is designed for a simple layout requiring only a few external components.  
版权 © 2019, Texas Instruments Incorporated  
9
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
VIN  
VIN  
VDD  
BIAS  
REGULATOR  
CIN  
VDD UVLO  
RUV1  
EN/UVLO  
œ
STANDBY  
+
THERMAL  
SHUTDOWN  
RUV2  
1.5 V  
œ
SHUTDOWN  
BST  
+
LOGIC  
0.4 V  
VIN  
CBST  
RON  
ON/OFF  
TIMERS  
DISABLE  
CONSTANT  
ON-TIME  
CONTROL  
LOGIC  
VOUT  
LO  
VOUT  
SW  
VCC  
RFB1  
FEEDBACK  
COMPARATOR  
SLEEP  
COUT  
FB  
DETECT  
œ
ZC  
+
RRON  
VREF  
+
PGOOD  
ZX DETECT  
œ
RFB2  
PEAK/VALLEY  
CURRENT LIMIT  
œ
+
FB  
GND  
PGOOD  
COMPARATOR  
0.9*VREF  
7.3 Feature Description  
7.3.1 Control Architecture  
The LM5163 step-down switching converter employs a constant on-time (COT) control scheme. The COT control  
scheme sets a fixed on-time tON of the high-side FET using a timing resistor (RON). The tON is adjusted as Vin  
changes and is inversely proportional to the input voltage to maintain a fixed frequency when in continuous  
conduction mode (CCM). After expiration of tON, the high-side FET remains off until the feedback pin is equal or  
below the reference voltage of 1.2 V. To maintain stability, the feedback comparator requires a minimal ripple  
voltage that is in phase with the inductor current during the off-time. Furthermore, this change in feedback  
voltage during the off-time must be large enough to dominate any noise present at the feedback node. The  
minimum recommended ripple voltage is 20 mV. See 1 for different types of ripple injection schemes that  
ensure stability over the full input voltage range.  
During a rapid start-up or a positive load step, the regulator operates with minimum off-times until regulation is  
achieved. This feature enables extremely fast load transient response with minimum output voltage undershoot.  
When regulating the output in steady-state operation, the off-time automatically adjusts itself to produce the SW-  
pin duty cycle required for output voltage regulation to maintain a fixed switching frequency. In CCM, the  
switching frequency FSW is programmed by the RRON resistor. Use 公式 1 to calculate the switching frequency.  
VOUT (V)2500  
FSW (kHz) =  
RRON(kW)  
(1)  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
Feature Description (接下页)  
1. Ripple Generation Methods  
TYPE 1  
TYPE 2  
TYPE 3  
Lowest Cost  
Reduced Ripple  
Minimum Ripple  
LO  
LO  
VOUT  
VIN  
LO  
VOUT  
VIN  
VOUT  
VIN  
VIN  
SW  
VIN  
SW  
VIN  
SW  
RA  
CA  
LM5163  
CBST  
LM5163  
LM5163  
CBST  
CFF  
CIN  
CIN  
RFB1  
CBST  
RFB1  
RESR  
RESR  
EN/UVLO  
BST  
FB  
EN/UVLO  
BST  
FB  
EN/UVLO  
BST  
FB  
RFB1  
COUT  
CB  
RON  
RON  
RON  
RFB2  
COUT  
RFB2  
COUT  
RRON  
RRON  
RRON  
RFB2  
PGOOD  
GND  
PGOOD  
GND  
PGOOD  
GND  
10  
CA  
í
20mV  
RESR  
í
FSW (RFB1 || RFB2  
)
(7)  
DIL(nom)  
VOUT  
20mV VOUT  
(4)  
(5)  
(6)  
RESR  
í
RACA  
Ç
VFB1 ∂ DIL(nom)  
(2)  
(3)  
RESR  
í
V
- VOUT t  
(
)
20mV  
IN-nom  
ON @V  
(
)
IN-nom  
2V FSW COUT  
VOUT  
IN  
RESR  
í
(8)  
(9)  
2V FSW COUT  
1
IN  
tTR-settling  
CFF  
í
CB í  
2p FSW (RFB1 || RFB2  
)
3RFB1  
1 presents three different methods for generating appropriate voltage ripple at the feedback node. Type-1  
ripple generation method uses a single resistor, RESR, in series with the output capacitor. The generated voltage  
ripple has two components: capacitive ripple caused by the inductor ripple current charging and discharging the  
output capacitor and resistive ripple caused by the inductor ripple current flowing into the output capacitor and  
through series resistance RESR. The capacitive ripple component is out of phase with the inductor current and  
does not decrease monotonically during the off-time. The resistive ripple component is in phase with the inductor  
current and decreases monotonically during the off-time. The resistive ripple must exceed the capacitive ripple at  
VOUT for stable operation. If this condition is not satisfied, unstable switching behavior is observed in COT  
converters, with multiple on-time bursts in close succession followed by a long off time. 公式 2 and 公式 3 define  
the value of the series resistance RESR to ensure sufficient in-phase ripple at the feedback node.  
Type-2 ripple generation uses a CFF capacitor in addition to the series resistor. As the output voltage ripple is  
directly AC-coupled by CFF to the feedback node, the RESR and ultimately the output voltage ripple are reduced  
by a factor of VOUT / VFB1  
.
Type-3 ripple generation uses an RC network consisting of RA and CA, and the switch node voltage to generate a  
triangular ramp that is in-phase with the inductor current. This triangular wave is the AC-coupled into the  
feedback node with capacitor CB. Because this circuit does not use output voltage ripple, it is suited for  
applications where low output voltage ripple is critical. The AN-1481 Controlling Output Ripple and Achieving  
ESR Independence in Constant On-time (COT) Regulator Designs Application Note provides additional details  
on this topic.  
Diode emulation mode (DEM) prevents negative inductor current, and pulse skipping maintains the highest  
efficiency at light load currents by decreasing the effective switching frequency. DEM operation occurs when the  
synchronous power MOSFET switches off as inductor valley current reaches zero. Here, the load current is less  
than half of the peak-to-peak inductor current ripple in CCM. Turning off the low-side MOSFET at zero current  
reduces switching loss, and preventing negative current conduction reduces conduction loss. Power conversion  
efficiency is higher in a DEM converter than an equivalent forced-PWM CCM converter. With DEM operation, the  
duration that both power MOSFETs remain off progressively increases as load current decreases. When this idle  
duration exceeds 15 μs, the converter transitions into an ultra-low IQ mode, consuming only 10-μA quiescent  
current from the input.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
 
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Internal VCC Regulator and Bootstrap Capacitor  
The LM5163 contains an internal linear regulator that is powered from VIN with a nominal output of 5 V,  
eliminating the need for an external capacitor to stabilize the linear regulator. The internal VCC regulator supplies  
current to internal circuit blocks including the synchronous FET driver and logic circuits. The input pin (VIN) can  
be connected directly to line voltages up to 100 V. As the power MOSFET has a low total gate charge, use a low  
bootstrap capacitor value to reduce the stress on the internal regulator. It is required to select a high-quality 2.2-  
nF 50-V X7R ceramic bootstrap capacitor as specified in the Absolute Maximum Ratings section. Selecting a  
higher value capacitance stresses the internal VCC regulator and damages the device. A lower capacitance than  
required is not sufficient to drive the internal gate of the power MOSFET. An internal diode connects from the  
VCC regulator to the BST pin to replenish the charge in the high-side gate drive bootstrap capacitor when the  
SW voltage is low.  
7.3.3 Regulation Comparator  
The feedback voltage at FB is compared to an internal 1.2-V reference. The LM5163 voltage regulation loop  
regulates the output voltage by maintaining the FB voltage equal to the internal reference voltage, VREF. A  
resistor divider programs the ratio from output voltage VOUT to FB.  
For a target VOUT setpoint, use 公式 10 to calculate RFB2 based on the selected RFB1  
.
1.2V  
RFB2  
=
RFB1  
VOUT -1.2V  
(10)  
TI recommends selecting RFB1 in the range of 100 kΩ to 1 Mfor most applications. A larger RFB1 consumes  
less DC current, which is mandatory if light-load efficiency is critical. RFB1 larger than 1 MΩ is not recommended  
as the feedback path becomes more susceptible to noise. It is important to route the feedback trace away from  
the noisy area of the PCB and keep the feedback resistors close to the FB pin.  
7.3.4 Internal Soft Start  
The LM5163 employs an internal soft-start control ramp that allows the output voltage to gradually reach a  
steady-state operating point, thereby reducing start-up stresses and current surges. The soft-start feature  
produces a controlled, monotonic output voltage start-up. The soft-start time is internally set to 3 ms.  
7.3.5 On-Time Generator  
The on-time of the LM5163 high-side FET is determined by the RRON resistor and is inversely proportional to the  
input voltage, VIN. The inverse relationship with VIN results in a nearly constant frequency as VIN is varied. Use 公  
11 to calculate the on-time.  
RRON kW  
(
)
tON s =  
(
)
V
V 2.5  
)
(
IN  
(11)  
Use 公式 12 to determine the RRON resistor to set a specific switching frequency in CCM.  
VOUT (V)2500  
RRON(kW) =  
FSW (kHz)  
(12)  
Select RRON for a minimum on-time (at maximum VIN) greater than 50 ns for proper operation. In addition to this  
minimum on-time, the maximum frequency for this device is limited to 1 MHz.  
7.3.6 Current Limit  
The LM5163 manages overcurrent conditions with cycle-by-cycle current limiting of the peak inductor current.  
The current sensed in the high-side MOSFET is compared every switching cycle to the current limit threshold  
(0.75 A). To protect the converter from potential current runaway conditions, the LM5163 includes a foldback  
valley current limit feature, set at 0.6 A, that is enabled if a peak current limit is detected. As shown in 11, if  
the peak current in the high-side MOSFET exceeds 0.75 A (typical), the present cycle is immediately terminated  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
Feature Description (接下页)  
regardless of the programmed on-time (tON), the high-side MOSFET is turned off and the foldback valley current  
limit is activated. The low-side MOSFET remains on until the inductor current drops below this foldback valley  
current limit, after which the next on-pulse is initiated. This method folds back the switching frequency to prevent  
overheating and limits the average output current to less than 0.75 A to ensure proper short-circuit and heavy-  
load protection of the LM5163.  
vFB  
VREF  
iL  
Peak ILIM  
IAVG(ILIM)  
Valley ILIM  
IAVG1  
t
tON  
tSW  
< tON  
> tSW  
11. Current Limit Timing Diagram  
Current is sensed after a leading-edge blanking time following the high-side MOSFET turnon transition. The  
propagation delay of the current limit comparator is 100 ns. During high step-down conditions when the on-time  
is less than 100 ns, a back-up peak current limit comparator in the low-side FET also set at 0.75 A enables the  
foldback valley current limit set at 0.6 A. This innovative current limit scheme enables ultra-low duty-cycle  
operation, permitting large step-down voltage conversions while ensuring robust protection of the converter.  
7.3.7 N-Channel Buck Switch and Driver  
The LM5163 integrates an N-channel buck switch and associated floating high-side gate driver. The gate-driver  
circuit works in conjunction with an external bootstrap capacitor and an internal high-voltage bootstrap diode. A  
high-quality 2.2-nF, 50-V X7R ceramic capacitor connected between the BST and SW pins provides the voltage  
to the high-side driver during the buck switch on-time. See the Internal VCC Regulator and Bootstrap Capacitor  
section for limitations. During the off-time, the SW pin is pulled down to approximately 0 V, and the bootstrap  
capacitor charges from the internal VCC through the internal bootstrap diode. The minimum off-timer, set to 50  
ns (typical), ensures a minimum time each cycle to recharge the bootstrap capacitor. When the on-time is less  
than 300 ns, the minimum off-timer is forced to 250 ns to ensure that the BST capacitor is charged in a single  
cycle. This is vital during wake up from sleep mode when the BST capacitor is most likely discharged.  
7.3.8 Synchronous Rectifier  
The LM5163 provides an internal low-side synchronous rectifier N-channel MOSFET. This MOSFET provides a  
low-resistance path for the inductor current to flow when the high-side MOSFET is turned off.  
The synchronous rectifier operates in a diode emulation mode. Diode emulation enables the regulator to operate  
in a pulse-skipping mode during light load conditions. This mode leads to a reduction in the average switching  
frequency at light loads. Switching losses and FET gate driver losses, both of which are proportional to switching  
frequency, are significantly reduced at very light loads and efficiency is improved. This pulse-skipping mode also  
reduces the circulating inductor current and losses associated with conventional CCM at light loads.  
版权 © 2019, Texas Instruments Incorporated  
13  
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.9 Enable/Undervoltage Lockout (EN/UVLO)  
The LM5163 contains a dual-level EN/UVLO circuit. When the EN/UVLO voltage is below 1.1 V (typical), the  
converter is in a low-current shutdown mode and the input quiescent current (IQ) is dropped down to 3 µA. When  
the voltage is greater than 1.1 V but less than 1.5 V (typical), the converter is in standby mode. In standby mode  
the internal bias regulator is active while the control circuit is disabled. When the voltage exceeds the rising  
threshold of 1.5 V (typical), normal operation begins. Install a resistor divider from VIN to GND to set the  
minimum operating voltage of the regulator. Use 公式 13 and 公式 14 to calculate the input UVLO turnon and  
turnoff voltages, respectively.  
÷
RUV1  
RUV2  
V
= 1.5V 1+  
IN(on)  
«
(13)  
÷
RUV1  
RUV2  
V
= 1.4V 1+  
IN(off)  
«
(14)  
TI recommends selecting RUV1 in the range of 1 Mfor most applications. A larger RUV1 consumes less DC  
current, which is mandatory if light-load efficiency is critical. If input UVLO is not required, the power-supply  
designer can either drive EN/UVLO as an enable input driven by a logic signal or connect it directly to VIN. If  
EN/UVLO is directly connected to VIN, the regulator begins switching as soon as the internal bias rails are  
active.  
7.3.10 Power Good (PGOOD)  
The LM5163 provides a PGOOD flag pin to indicate when the output voltage is within the regulation level. Use  
the PGOOD signal for start-up sequencing of downstream converters or for fault protection and output  
monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 14 V.  
The typical range of pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease the  
voltage from a higher voltage pullup rail. When the FB voltage exceeds 95% of the internal reference VREF, the  
internal PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls  
below 90% of VREF, an internal 25-Ω PGOOD switch turns on and PGOOD is pulled low to indicate that the  
output voltage is out of regulation. The rising edge of PGOOD has a built-in deglitch delay of 5 µs.  
7.3.11 Thermal Protection  
The LM5163 includes an internal junction temperature monitor to protect the device in the event of a higher than  
normal junction temperature. If the junction temperature exceeds 175°C (typical), thermal shutdown occurs to  
prevent further power dissipation and temperature rise. The LM5163 initiates a restart sequence when the  
junction temperature falls to 165°C, based on a typical thermal shutdown hysteresis of 10°C. This is a non-  
latching protection, so the device cycles into and out of thermal shutdown if the fault persists.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
EN/UVLO provides ON and OFF control for the LM5163. When VEN/UVLO is below approximately 1.1 V, the  
device is in shutdown mode. Both the internal linear regulator and the switching regulator are off. The quiescent  
current in shutdown mode drops to 3 µA at VIN = 24 V. The LM5163 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below the UV threshold, the regulator remains off.  
7.4.2 Active Mode  
The LM5163 is in active mode when VEN/UVLO is above the precision enable threshold and the internal bias rail is  
above its UV threshold. In COT active mode, the LM5163 is in one of three modes depending on the load  
current:  
1. CCM with fixed switching frequency when load current is above half of the peak-to-peak inductor current  
ripple  
2. Pulse skipping and diode emulation mode (DEM) when the load current is less than half of the peak-to-peak  
inductor current ripple in CCM operation  
3. Current limit CCM with peak and valley current limit protection when an overcurrent condition is applied at  
the output  
7.4.3 Sleep Mode  
The Control Architecture section gives a brief introduction to the LM5163 diode emulation (DEM) feature. The  
converter enters DEM during light-load conditions when the inductor current decays to zero and the synchronous  
MOSFET is turned off to prevent negative current in the system. In the DEM state, the load current is lower than  
half of the peak-to-peak inductor current ripple and the switching frequency decreases when the load is further  
decreased as the device operates in a pulse skipping mode. A switching pulse is set when VFB drops below 1.2  
V.  
As the frequency of operation decreases and VFB remains above 1.2 V (VREF) with the output capacitor sourcing  
the load current for greater than 15 µs, the converter enters an ultra-low IQ sleep mode to prevent draining the  
input power supply. The input quiescent current (IQ) required by the LM5163 decreases to 10 µA in sleep mode,  
improving the light-load efficiency of the regulator. In this mode, all internal controller circuits are turned off to  
ensure very low current consumption by the device. Such low IQ renders the LM5163 as the best option to  
extend operating lifetime for off-battery applications. The FB comparator and internal bias rail are active to detect  
when the FB voltage drops below the internal reference VREF and the converter transitions out of sleep mode into  
active mode. There is a 9-µs wake-up delay from sleep to active states.  
版权 © 2019, Texas Instruments Incorporated  
15  
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM5163 requires only a few external components to step down from a wide range of supply voltages to a  
fixed output voltage. Several features are integrated to meet system design requirements, including the following:  
Precision enable  
Input voltage UVLO  
Internal soft start  
Programmable switching frequency  
A PGOOD indicator  
To expedite and streamline the process of designing of a LM5163-based converter, a comprehensive LM5163  
quickstart calculator is available for download to assist the designer with component selection for a given  
application. This tool is complemented by the availability of an evaluation module (EVM), numerous PSPICE  
models, as well as TI's WEBENCH® Power Designer. In order to modify the LM5164-Q1EVM-041 for the  
LM5163-Q1, change the inductor LO to 120 µH, the resistor RA to 226 kΩ, and the capacitance COUT to 22 µF.  
See 12 for the LM5163-Q1 applications circuit.  
8.2 Typical Application  
12 shows the schematic for a 12-V 0.5-A COT converter.  
VOUT = 12 V  
LO  
IOUT = 0.5 A  
U1  
VIN = 15 V...100 V  
120 mH  
VIN  
SW  
CA  
3.3 nF  
RA  
CBST  
LM5163  
CIN  
226 kW  
2.2 nF  
RFB1  
2.2 mF  
EN/UVLO  
BST  
FB  
453 kW  
COUT  
CB  
22 mF  
56 pF  
RON  
RRON  
RFB2  
100 kW  
PGOOD  
GND  
49.9 kW  
Copyright © 2018, Texas Instruments Incorporated  
12. Typical Application VIN(nom) = 48 V, VOUT = 12 V, IOUT(max) = 0.5 A, FSW(nom) = 300 kHz  
This and subsequent design examples are provided herein to showcase the LM5163  
converter in several different applications. Depending on the source impedance of the  
input supply bus, an electrolytic capacitor may be required at the input to ensure stability,  
particularly at low input voltage and high output current operating conditions. See the  
Power Supply Recommendations section for more details.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
Typical Application (接下页)  
8.2.1 Design Requirements  
The target full-load efficiency is 92% based on a nominal input voltage of 48 V and an output voltage of 12 V.  
The required input voltage range is 15 V to 100 V. The LM5163 delivers a fixed 12-V output voltage. The  
switching frequency is set by resistor RRON at 300 kHz. The output voltage soft-start time is 3 ms. 2 lists the  
required components. Refer to the LM5164-Q1EVM-041 User's Guide for more detail.  
2. List of Components  
COUNT  
REF DES  
CIN  
VALUE  
2.2 µF  
22 µF  
DESCRIPTION  
PART NUMBER  
CGA6N3X7R2A225K230AB  
TMK325B7226KMHT  
CGA3E2X7R2A332K080AA  
C0603C560J5GACTU  
GCM155R71H222KA37D  
MSS1260-124KL  
MANUFACTURER  
TDK  
2
1
1
1
1
1
1
1
1
1
1
Capacitor, Ceramic, 2.2 µF, 100 V, X7R, 10%  
Capacitor, Ceramic, 22 µF, 25 V, X7R, 10%  
Capacitor, Ceramic, 3300 pF, 16 V, X7R, 10%  
Capacitor, Ceramic, 56 pF, 50 V, X7R, 10%  
Capacitor, Ceramic, 2200 pF, 50 V, X7R, 10%  
Inductor, 120 µH, 210 mΩ, 1.65 A  
COUT  
CA  
Taiyo Yuden  
TDK  
3300 pF  
56 pF  
CB  
Kemet  
CBST  
LO  
2.2 nF  
120 µH  
100 kΩ  
453 kΩ  
49.9 kΩ  
226 kΩ  
MuRata  
Coilcraft  
Susumu Co Ltd  
Yageo  
RRON  
RFB1  
RFB2  
RA  
Resistor, Chip, 100 k, 1%, 0.1 W, 0603  
Resistor, Chip, 453 k, 1%, 0.1 W, 0603  
Resistor, Chip, 49.9 k, 1%, 0.1 W, 0603  
Resistor, Chip, 226 k, 1%, 0.1W, 0603  
Wide VIN synchronous buck converter  
RG1608P-1053-B-T5  
RT0603BRD07448KL  
RG1608P-4992-B-T5  
RT0603BRD07226KL  
LM5163DDAR  
Susumu Co Ltd  
Yageo  
U1  
TI  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5163 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Switching Frequency (RRON  
)
The switching frequency of the LM5163 is set by the on-time programming resistor placed at RON. As shown by  
公式 15, a standard 100 kΩ, 1% resistor sets the switching frequency at 300 kHz.  
VOUT (V)2500  
RRON(kW) =  
FSW (kHz)  
(15)  
Note that at very low duty cycles, the 50 ns minimum controllable on-time of the high-side MOSFET, tON(min)  
,
limits the maximum switching frequency. In CCM, tON(min) limits the voltage conversion step-down ratio for a given  
switching frequency. Use 公式 16 to calculate the minimum controllable duty cycle.  
DMIN = tON(min) FSW  
(16)  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size, and efficiency. Use 公式 17 to calculate the maximum supply voltage for a given tON(min) before  
switching frequency reduction occurs.  
VOUT  
V
=
IN(max)  
tON(min) FSW  
(17)  
8.2.2.3 Buck Inductor (LO)  
Use 公式 18 and 公式 19 to calculate the inductor ripple current (assuming CCM operation) and peak inductor  
current, respectively.  
÷
VOUT  
VOUT  
DIL =  
1-  
FSW LO  
V
IN  
«
(18)  
(19)  
DIL  
2
IL(peak) = IOUT(max)  
+
For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 50%  
of the rated load current at nominal input voltage. Use 公式 20 to calculate the inductance.  
«
VOUT  
VOUT  
LO  
=
1-  
÷
÷
FSW ∂ DIL  
V
IN(nom)  
(20)  
Choosing a 120-μH inductor in this design results in 250-mA peak-to-peak ripple current at a nominal input  
voltage of 48 V, equivalent to 50% of the 500-mA rated load current.  
Check the inductor data sheet to make sure the saturation current of the inductor is well above the current limit  
setting of the LM5163. Ferrite-core inductors have relatively lower core losses and are preferred at high switching  
frequencies, but exhibit a hard saturation characteristic – the inductance collapses abruptly when the saturation  
current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, and  
reduced efficiency, in turn compromising reliability. Note that inductor saturation current levels generally  
decrease as the core temperature increases.  
8.2.2.4 Output Capacitor (COUT  
)
Select a ceramic output capacitor to limit the capacitive voltage ripple at the converter output. This is the  
sinusoidal ripple voltage that is generated from the triangular inductor current ripple flowing into and out of the  
capacitor. Select an output capacitance using 公式 21 to limit the voltage ripple component to 0.5% of the output  
voltage.  
DIL  
COUT  
í
8 FSW VOUT(ripple)  
(21)  
Substituting ΔIL(nom) of 250-mA gives COUT greater than 3.1 μF. With voltage coefficients of ceramic capacitors  
taken in consideration, a 22-µF, 25-V rated capacitor with X7R dielectric is selected.  
8.2.2.5 Input Capacitor (CIN)  
An input capacitor is necessary to limit the input ripple voltage while providing AC current to the buck power  
stage at every switching cycle. To minimize the parasitic inductance in the switching loop, position the input  
capacitors as close as possible to the VIN and GND pins of the LM5163. The input capacitors conduct a square-  
wave current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive  
component of AC ripple voltage is a triangular waveform.  
Along with the ESR-related ripple component, use 公式 22 to calculate the peak-to-peak ripple voltage amplitude.  
IOUT D 1-D  
IN(ripple)  
(
)
+ IOUT RESR  
V
=
FSW CIN  
(22)  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
Use 公式 23 to calculate the input capacitance required for a load current, based on an input voltage ripple  
specification (ΔVIN).  
IOUT D1- D  
(
)
CIN  
í
FSW V  
-IOUT RESR  
(
)
IN(ripple)  
(23)  
The recommended high-frequency input capacitance is 2.2 µF or higher. Ensure the input capacitor is a high-  
quality X7S or X7R ceramic capacitor with sufficient voltage rating for CIN. Based on the voltage coefficient of  
ceramic capacitors, choose a voltage rating of twice the maximum input voltage. Additionally, some bulk  
capacitance is required if the LM5163 is not located within approximately 5 cm from the input voltage source.  
This capacitor provides parallel damping to the resonance associated with parasitic inductance of the supply  
lines and high-Q ceramics. See the Power Supply Recommendations section for more detail.  
8.2.2.6 Type 3 Ripple Network  
A Type 3 ripple generation network uses an RC filter consisting of RA and CA across SW and VOUT to generate a  
triangular ramp that is in phase with the inductor current. This triangular ramp is then AC-coupled into the  
feedback node using capacitor CB as shown in 12. Type 3 ripple injection is suited for applications where low  
output voltage ripple is crucial.  
Use 公式 24 and 公式 25 to calculate RA and CA to provide the required ripple amplitude at the FB pin.  
10  
CA  
í
FSW R  
RFB2  
(
)
FB1  
(24)  
For the feedback resistor values given in 12, 公式 24 dictates a minimum CA of 742 pF. In this design, a 3300  
pF capacitance is chosen. This is done to keep RA within practical limits between 100 kand 1 Mwhen using  
公式 25.  
V
- VOUT t  
(
)
IN(nom)  
ON(nom)  
RACA  
í
20mV  
(25)  
Based on CA set at 3.3 nF, RA is calculated to be 226 kto provide a 20-mV ripple voltage at FB. The general  
recommendation for a Type 3 network is to calculate RA and CA to get 20 mV of ripple at typical operating  
conditions, while ensuring a 12-mV minimum ripple voltage on FB at minimum VIN.  
While the amplitude of the generated ripple does not affect the output voltage ripple, it impacts the output  
regulation as it reflects as a DC error of approximately half the amplitude of the generated ripple. For example, a  
converter circuit with Type 3 network that generates a 40-mV ripple voltage at the feedback node has  
approximately 10-mV worse load regulation scaled up through the FB divider to VOUT than the same circuit that  
generates a 20-mV ripple at FB. Use 公式 26 to calculate the coupling capacitance CB.  
tTR-settling  
CB í  
3RFB1  
where  
tTR-settling is the desired load transient response settling time  
(26)  
CB calculates to 56 pF based on a 75-µs settling time. This value avoids excessive coupling capacitor discharge  
by the feedback resistors during sleep intervals when operating at light loads. To avoid capacitance fall-off with  
DC bias, use a C0G or NP0 dielectric capacitor for CB.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
 
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
8.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
0.001  
0.01  
0.1  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Load (A)  
Load (A)  
D001  
D002  
13. Conversion Efficiency (Log Scale)  
14. Conversion Efficiency (Linear Scale)  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
VOUT 100mV/DIV  
VIN = 15V  
IOUT 250mA/DIV  
VIN = 24V  
VIN = 48V  
VIN = 60V  
11.9  
11.8  
100 µs/DIV  
0
0.1  
0.2 0.3  
Output Current (A)  
0.4  
0.5  
Load  
VIN = 24 V  
IOUT = 0.125 A to 0.5 A at 0.1  
A/μs  
15. Load and Line Regulation Performance  
16. Load Step Response  
VIN 10V/DIV  
VIN 10V/DIV  
VOUT 2V/DIV  
VOUT 2V/DIV  
IOUT 100mA/DIV  
IOUT 100mA/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 0.5 A (Resistive)  
17. No-Load Start-up with VIN  
18. Full-Load Start-up with VIN  
20  
版权 © 2019, Texas Instruments Incorporated  
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
EN 5V/DIV  
EN 5V/DIV  
VOUT 5V/DIV  
VOUT 5V/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
2 ms/DIV  
2 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 0.5 A (Resistive)  
19. No-Load Start-up and Shutdown with EN/UVLO  
20. Full-Load Start-up and Shutdown with EN/UVLO  
VOUT 5V/DIV  
EN 5V/DIV  
VOUT 5V/DIV  
VSW 10V/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
500 µs/DIV  
2 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
Load = 0 A to Short  
21. Pre-bias Start-up with EN/UVLO  
22. Short Circuit Applied  
VOUT 5V/DIV  
VOUT 5V/DIV  
VSW 10V/DIV  
VSW 10V/DIV  
100 µs/DIV  
10 ms/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
VIN = 24 V  
Load = 0 A to Short to 0 A  
VIN = 24 V  
Load = Short to 0 A  
24. No Load to Short Circuit/Short Circuit Recovery  
23. Short Circuit Recovery  
版权 © 2019, Texas Instruments Incorporated  
21  
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
VSW 10V/DIV  
VSW 10V/DIV  
VOUT 20mV/DIV  
VOUT 50mV/DIV  
10 ms/DIV  
5 µs/DIV  
VIN = 24 V  
IOUT = 0 A  
25. No-Load Switching  
VIN = 24 V  
IOUT = 0.5 A  
26. Full-Load Switching  
Peak  
Average  
Peak  
Average  
Start 150 kHz  
Stop  
30 MHz  
Start 30 MHz  
Stop 108 MHz  
VIN = 48 V  
Load = 0.5 A  
VIN = 48 V  
Load = 0.5 A  
27. CISPR 25 Class 5 Conducted Emissions Plot, 150  
28. CISPR 25 Class 5 Conducted Emissions Plot, 30  
kHz to 30 MHz  
MHz to 108 MHz  
22  
版权 © 2019, Texas Instruments Incorporated  
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
9 Power Supply Recommendations  
The LM5163 buck converter is designed to operate from a wide input voltage range between 6 V and 100 V. The  
characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended  
Operating Conditions tables. In addition, the input supply must be capable of delivering the required input current  
to the fully-loaded regulator. Use 公式 27 to estimate the average input current.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
where  
η is the efficiency  
(27)  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables can have  
an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR ceramic  
input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at VIN each  
time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip during a  
load transient. If the converter is operating close to the minimum input voltage, this dip can cause false UVLO  
fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the input  
supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitor helps to damp the input resonant circuit and reduce any voltage  
overshoots. A 10-μF electrolytic capacitor with a typical ESR of 0.5 Ω provides enough damping for most input  
circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The Simple Success with Conducted EMI for DC-DC Converters  
Application Report provides helpful suggestions when designing an input filter for any switching regulator.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
PCB layout is a critical portion of good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or  
degrade the power supply performance.  
1. To help eliminate these problems, bypass the VIN pin to GND with a low-ESR ceramic bypass capacitor with  
a high-quality dielectric. Place CIN as close as possible to the LM5163 VIN and GND pins. Grounding for  
both the input and output capacitors must consist of localized top-side planes that connect to the GND pin  
and GND PAD.  
2. Minimize the loop area formed by the input capacitor connections to the VIN and GND pins.  
3. Locate the inductor close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
capacitive coupling.  
4. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
5. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
6. Have a single-point ground connection to the plane. Route the ground connections for the feedback, soft-  
start, and enable components to the ground plane. This prevents any switched or load currents from flowing  
in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic  
output voltage ripple behavior.  
7. Make VIN, VOUT and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
8. Minimize trace length to the FB pin. Place both feedback resistors, RFB1 and RFB2, close to the FB pin. Place  
CFF (if needed) directly in parallel with RFB1. If output setpoint accuracy at the load is important, connect the  
VOUT sense at the load. Route the VOUT sense path away from noisy nodes and preferably through a layer on  
the other side of a grounded shielding layer.  
9. The RON pin is sensitive to noise. Thus, locate the RRON resistor as close as possible to the device and  
route with minimal lengths of trace. The parasitic capacitance from RON to GND must not exceed 20 pF.  
10. Provide adequate heat sinking for the LM5163 to keep the junction temperature below 150°C. For operation  
at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-  
sinking vias to connect the exposed pad to the PCB ground plane. If the PCB has multiple copper layers,  
these thermal vias must also be connected to inner layer heat-spreading ground planes.  
10.1.1 Compact PCB Layout for EMI Reduction  
Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger  
area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to  
minimizing radiated EMI is to identify the pulsing current path and minimize the area of that path.  
29 denotes the critical switching loop of the buck converter power stage in terms of EMI. The topological  
architecture of a buck converter means that a particularly high di/dt current path exists in the loop comprising the  
input capacitor and the integrated MOSFETs of the LM5163, and it becomes mandatory to reduce the parasitic  
inductance of this loop by minimizing the effective loop area.  
24  
版权 © 2019, Texas Instruments Incorporated  
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
Layout Guidelines (接下页)  
VIN  
VIN  
2
CIN  
LM5163  
High  
di/dt  
loop  
BST  
High-side  
NMOS  
gate driver  
Q1  
LO  
SW  
VOUT  
8
CO  
Q2  
Low-side  
NMOS  
gate driver  
GND  
1
GND  
29. DC/DC Buck Converter With Power Stage Circuit Switching Loop  
The input capacitor provides the primary path for the high di/dt components of the current of the high-side  
MOSFET. Placing a ceramic capacitor as close as possible to the VIN and GND pins is the key to EMI reduction.  
Keep the trace connecting SW to the inductor as short as possible and just wide enough to carry the load current  
without excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to  
minimize parasitic resistance. Place the output capacitor close to the VOUT side of the inductor, and connect the  
return terminal of the capacitor to the GND pin and exposed PAD of the LM5163.  
10.1.2 Feedback Resistors  
Reduce noise sensitivity of the output voltage feedback path by placing the resistor divider close to the FB pin,  
rather than close to the load. This reduces the trace length of FB signal and noise coupling. The FB pin is the  
input to the feedback comparator, and as such, is a high impedance node sensitive to noise. The output node is  
a low impedance node, so the trace from VOUT to the resistor divider can be long if a short path is not available.  
Route the voltage sense trace from the load to the feedback resistor divider, keeping away from the SW node,  
the inductor, and VIN to avoid contaminating the feedback signal with switch noise, while also minimizing the  
trace length. This is most important when high feedback resistances greater than 100 kΩ are used to set the  
output voltage. Also, route the voltage sense trace on a different layer from the inductor, SW node, and VIN so  
there is a ground plane that separates the feedback trace from the inductor and SW node copper polygon. This  
provides further shielding for the voltage feedback path from switching noise sources.  
版权 © 2019, Texas Instruments Incorporated  
25  
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
10.2 Layout Example  
30 shows an example layout for the PCB top layer of a 2-layer board with essential components placed on the  
top side.  
Type 3 ripple  
injection  
Connect BST cap  
close to BST and SW  
Place FB resistors very  
close to FB & GND pins  
PGOOD  
connection  
Thermal vias under  
LM5163 PAD  
Place resistor R8  
close to the RON pin  
GND  
Optional RC  
VOUT  
connection  
Connect ceramic  
input cap close to  
VIN and GND  
EN/UVLO  
connection  
connection snubber to  
reduce SW  
node ringing  
30. LM5163 Single-Sided PCB Layout Example  
26  
版权 © 2019, Texas Instruments Incorporated  
 
LM5163  
www.ti.com.cn  
ZHCSKD6 OCTOBER 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
LM5163 快速入门计算器  
LM5163 仿真模型  
TI 参考设计库  
技术文章:  
使用低静态电流开关进行高电压转换  
为工业应用中的智能传感器发送器 供电  
Industrial Strength 设计 1 部分  
楼宇自动化趋势:预测性维护  
楼宇自动化趋势:用于改善用户舒适度的互联传感器  
11.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处以使用带 WEBENCH® 电源设计器的 LM5163 器件来创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)LM5164-Q1EVM-041 EVM 用户指南》  
德州仪器 (TI)《为您的 COT 降压转换器选择理想的纹波生成网络应用报告》  
德州仪器 (TI)《评估适用于具有成本效益的严苛应用的宽 VIN、低 EMI 同步降压 电路 白皮书》  
德州仪器 (TI)《电源的传导 EMI 规格概述白皮书》  
德州仪器 (TI)《电源的辐射 EMI 规格概述白皮书》  
德州仪器 (TI)《适用于智能恒温器且具有宽 VIN 转换器和电池电量计的 24V 交流功率级设计指南》  
德州仪器 (TI)《精确计量和 50μA 待机电流、13 节、48V 锂离子电池组参考设计指南》  
德州仪器 (TI)AN-2162:轻松抑制直流/直流转换器中的传导 EMI 应用报告》  
德州仪器 (TI)《利用宽 VIN 直流/直流转换器为无人机供电应用报告》  
德州仪器 (TI)《使用新的热指标应用报告》  
德州仪器 (TI)《半导体和 IC 封装热指标应用报告》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
版权 © 2019, Texas Instruments Incorporated  
27  
LM5163  
ZHCSKD6 OCTOBER 2019  
www.ti.com.cn  
11.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5163DDAR  
ACTIVE SO PowerPAD  
DDA  
8
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 150  
LM5163  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM5163 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
Automotive : LM5163-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.25  
C A B  
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
2.34  
2.24  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.34  
2.24  
4218825/A 05/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.34)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(2.34)  
SOLDER MASK  
SYMM  
(1.3)  
TYP  
OPENING  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(
0.2) TYP  
VIA  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218825/A 05/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.34)  
BASED ON  
0.125 THICK  
STENCIL  
(R0.05) TYP  
8X (1.55)  
1
8
8X (0.6)  
(2.34)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (1.27)  
5
4
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.62 X 2.62  
2.34 X 2.34 (SHOWN)  
2.14 X 2.14  
0.125  
0.150  
0.175  
1.98 X 1.98  
4218825/A 05/2016  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM5163H-Q1

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器
TI

LM5163HQDDARQ1

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器 | DDA | 8 | -40 to 165
TI

LM5163QDDARQ1

具有超低 IQ 的汽车类 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150
TI

LM5164

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164-Q1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164DDAR

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164DDAT

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164QDDARQ1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164QDDATQ1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5165

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器
TI

LM5165-Q1

具有超低 IQ 的汽车类 3V-65V、150mA 同步降压转换器
TI

LM5165DRCR

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器 | DRC | 10 | -40 to 150
TI