LM66100-Q1 [TI]

具有集成式 FET 的汽车类 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管;
LM66100-Q1
型号: LM66100-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 FET 的汽车类 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管

二极管
文件: 总22页 (文件大小:1923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
LM66100-Q1 具有输入极性保护功能5.5V1.5A79mΩ、汽车类IQ 理想二  
极管  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
LM66100-Q1 是一款单输入单输出 (SISO) 集成式理想  
二极管是各种应用的理想之选。该器件包含一个可在  
1.5V 5.5V 入电压范围内运行的 P 道  
MOSFET并且支1.5A 的最大持续电流。  
– 器件温度等1-40°C 125°C 环境工作温度  
范围  
• 宽工作电压范围1.5V 5.5V  
VIN 反向关断电压:  
绝对最大值6V  
• 最大持续电(IMAX)1.5A  
• 导通电(RON):  
5V VIN = 79mΩ典型值)  
3.6V VIN = 91mΩ典型值)  
1.8V VIN = 141mΩ典型值)  
• 启用比较器芯(CE)  
• 通道状态指(ST)  
• 低电流消耗:  
该芯片通过比较 CE 引脚电压和输入电压来提供支持。  
CE 引脚电压高于输入电压时该器件被禁用并且  
MOSFET 关断。当 CE 引脚电压比较低时MOSFET  
开启。LM66100-Q1 还具有反极性保护 (RPP) 功能,  
可保护器件不受输入接线错误的影响例如电池装反。  
可在 ORing 配置中使用两个 LM66100-Q1 器件其实  
施方法与双二极管 ORing 相似。在此配置中该器件  
将最高输入电压传递到输出端同时阻断反向电流流入  
输入电源。这些器件可比较输入和输出电压从而确保  
内部电压比较器成功阻断反向电流。  
3.6V VIN 关断电(ISD,VIN)120nA典型值)  
3.6V VIN 静态电(IQ, VIN)150nA典型值)  
LM66100-Q1 采用标准 SC-70 封装工作结温范围为  
40°C 150°C。  
2 应用  
器件信息(1)  
信息娱乐系统、仪表组和音响主机  
汽车仪表组显示器  
ADAS 环视系ECU  
车身控制模块和网关  
封装尺寸标称值)  
器件型号  
封装  
SC-70 (6)  
LM66100-Q1  
2.1mm × 2.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGD6  
 
 
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................12  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Applications.................................................. 12  
10 Power Supply Recommendations..............................15  
11 Layout...........................................................................16  
11.1 Layout Guidelines................................................... 16  
11.2 Layout Example...................................................... 16  
12 Device and Documentation Support..........................17  
12.1 Receiving Notification of Documentation Updates..17  
12.2 支持资源..................................................................17  
12.3 Trademarks.............................................................17  
12.4 Electrostatic Discharge Caution..............................17  
12.5 术语表..................................................................... 17  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
Information.................................................................... 17  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (March 2022)  
Page  
• 将数据表状态从“预告信息”更改为“量产数据”.............................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. DCK Package 6-Pin SC-70 Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VIN  
I
Device input  
Device ground  
2
GND  
Active-low chip enable. Can be connected to VOUT for reverse current protection. Do not  
leave floating.  
3
4
5
6
CE  
N/C  
I
Not internally connected, can be tied to GND or left floating.  
O
O
Active-low open-drain output, pulled low when the chip is disabled. Hi-Z when the chip is  
enabled. Connect to GND if not required.  
ST  
VOUT  
Device output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
6  
MAX  
6
UNIT  
V
VIN  
Maximum Input Voltage Range  
VOUT  
VCE  
Maximum Output Voltage Range  
Maximum CE Pin Voltage  
6
V
0.3  
0.3  
0.3  
6
V
VST  
Maximum ST Pin Voltage  
6
V
ISW, MAX  
ISW, PLS  
ID, PLS  
ICE  
Maximum Continuous Switch Current  
Maximum Pulsed Switch Current (120 ms, 2% Duty Cycle)  
Maximum Pulsed Body Diode Current (0.1 ms, 0.2% Duty Cycle)  
Maximum CE Pin Current  
1.5  
2.5  
2.5  
A
A
A
mA  
mA  
°C  
°C  
°C  
1  
1  
IST  
Maximum ST Pin Current  
TJ  
Junction temperature  
150  
150  
300  
40  
65  
TSTG  
TLEAD  
Storage temperature  
Maximum Lead Temperature (10 s soldering time)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-  
002(1)  
±2000  
HBM ESD classification level 2  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-  
011  
±500  
CDM ESD classification level C4A  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
1
TYP  
MAX  
5.5  
UNIT  
VIN  
Input Voltage Range  
Output Voltage Range  
CE Pin Voltage Range  
ST Pin Voltage Range  
V
V
V
V
VOUT  
VCE  
VST  
5.5  
0
5.5  
0
5.5  
6.4 Thermal Information  
LM66100  
THERMAL METRIC(1)  
DCK (SC-70)  
UNIT  
6 PINS  
192  
124  
52  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34  
ΨJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
 
 
 
 
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
LM66100  
THERMAL METRIC(1)  
DCK (SC-70)  
6 PINS  
52  
UNIT  
Junction-to-board characterization parameter  
°C/W  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical values are at 25°C with an input voltage of 3.6V. Maximum and minimum values are across the entire operating  
voltage range, from 1.5V to 5.5V. (unless otherwise noted)  
UNI  
T
PARAMETER  
Input Supply (VIN)  
TEST CONDITIONS  
MIN TYP MAX  
VOUT = VIN  
VCE > VIN + 80 mV  
IOUT = 0 A (VOUT = open)  
25°C  
0.12 0.3 µA  
0.3 µA  
ISD,VIN  
VIN Shutdown Current  
VIN Quiescent Current  
40°C to 125°C  
25°C  
VOUT = VIN  
VCE < VIN 250 mV  
IOUT = 0 A (VOUT = open)  
0.15 0.3 µA  
0.3 µA  
IQ,VIN  
40°C to 125°C  
25°C  
0.2 0.5 µA  
2.7 µA  
VOUT VIN 5.5 V  
VCE > VIN + 80 mV  
40°C to 85°C  
40°C to 125°C  
40°C to 85°C  
40°C to 125°C  
40°C to 85°C  
40°C to 125°C  
8
µA  
OUT to IN Leakage Current  
(Current out of VIN)  
1.7 µA  
5.1 µA  
0.7 µA  
2.1 µA  
IOUT, OFF  
VOUT VIN 4.5 V  
VCE > VIN + 80 mV  
VOUT VIN 1.0 V  
VCE > VIN + 80 mV  
ON-Resistance (RON)  
25°C  
79  
95  
110  
RON  
RON  
RON  
ON-State Resistance  
VIN = 5 V  
40°C to 85°C  
40°C to 125°C  
25°C  
IOUT = 200 mA  
IOUT = 200 mA  
IOUT = 200 mA  
mΩ  
120  
91 110  
125  
ON-State Resistance  
ON-State Resistance  
VIN = 3.6 V  
VIN = 1.8 V  
40°C to 85°C  
40°C to 125°C  
25°C  
mΩ  
mΩ  
140  
141 180  
210  
40°C to 85°C  
40°C to 125°C  
230  
Comparator Chip Enable (CE)  
VON  
Turn ON Threshold  
mV  
VCE VIN  
40°C to 125°C  
80  
250 150  
VOFF  
ICE  
Turn OFF Threshold  
0
0
0
35  
80 mV  
VCE VIN  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
CE Pin Leakage Current  
CE Pin Leakage Current  
160 300 nA  
400 610 nA  
VCE < VIN 250 mV  
VCE > VIN + 80 mV  
ICE  
Reverse Current Blocking (RCB) and Body Diode Characteristics  
IRCB  
Reverse Activation Current  
Body Diode Forward Voltage  
VCE = VOUT  
0.5  
1
A
V
40°C to 125°C  
40°C to 125°C  
IOUT = 10 mA  
VCE > VIN + 80 mV  
VFWD  
0.1 0.5 1.1  
Status Indication (ST)  
VOL, ST  
Output Low Voltage  
IST = 1 mA  
0.1  
V
40°C to 125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM66100-Q1  
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Typical values are at 25°C with an input voltage of 3.6V. Maximum and minimum values are across the entire operating  
voltage range, from 1.5V to 5.5V. (unless otherwise noted)  
UNI  
T
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
tST  
IST  
Status Delay Time  
VCE transitions from low to high  
VCE < VIN 250 mV  
1
µs  
40°C to 125°C  
ST Pin Leakage Current  
20 nA  
40°C to 125°C 20  
6.6 Switching Characteristics  
Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended operating  
voltage at an ambient temperature of 25°C and a load of CL = 100 nF and RL = 1 kΩ  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
90  
40  
27  
2
MAX  
UNIT  
µs  
VIN = 1.8 V  
tON  
Turn ON Time  
VIN = 3.6 V  
VIN = 5 V  
µs  
µs  
VIN = 1.8 V  
VIN = 3.6 V  
VIN = 5 V  
µs  
tOFF  
Turn OFF Time  
Output Fall Time  
2
µs  
2
µs  
VIN = 1.8 V  
VIN = 3.6 V  
VIN = 5 V  
20  
10  
7.5  
µs  
tFALL  
µs  
µs  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
240  
200  
180  
160  
140  
120  
100  
80  
-40èC  
-40èC  
25èC  
85èC  
105èC  
220  
25èC  
85èC  
105èC  
200  
180  
160  
140  
120  
100  
80  
60  
40  
60  
20  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
D001  
D002  
VCE > VIN  
6-1. Shutdown Current vs Input Voltage  
VCE < VIN  
6-2. Quiescent Current vs Input Voltage  
1200  
180  
VOUT - VIN = 1V  
VOUT - VIN = 4.5V  
VOUT - VIN = 5.5V  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
1000  
800  
600  
400  
200  
0
160  
140  
120  
100  
80  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
VCE > VIN  
VCE < VIN  
IOUT = 200 mA  
6-3. Reverse Leakage Current vs Junction Temperature  
6-4. On-Resistance vs Junction Temperature  
-50  
65  
-40èC  
25èC  
-40èC  
25èC  
85èC  
105èC  
60  
55  
50  
45  
40  
35  
30  
25  
-75  
85èC  
105èC  
-100  
-125  
-150  
-175  
-200  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
D007  
D008  
6-5. Turn ON Threshold vs Input Voltage  
6-6. Turn OFF Threshold vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
0.6  
0.5  
0.4  
0.3  
0.2  
120  
100  
80  
60  
40  
20  
0
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
-40èC  
25èC  
85èC  
105èC  
0.1  
0
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (èC)  
D005  
D009  
VCE > VIN  
IOUT = 10 mA  
CL = 100 nF  
RL = 1 kΩ  
6-7. Body Diode Forward Voltage vs Input Voltage  
6-8. Turn ON Time vs Junction Temperature  
10  
22  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
20  
18  
16  
14  
12  
10  
8
8
6
4
2
0
6
4
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (èC)  
D010  
Junction Temperature (èC)  
D011  
CL = 100nF  
VIN = 1.8 V to 5 V  
RL = 1 kΩ  
CL = 100 nF  
RL = 1 kΩ  
6-9. Turn OFF Time vs Junction Temperature  
6-10. Fall Time vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7-1. Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM66100-Q1 is a Single-Input, Single-Output (SISO) integrated ideal diode that contains a P-channel  
MOSFET to minimize the voltage drop from input to output. The LM66100-Q1 can operate over an input voltage  
range of 1.5 V to 5.5 V and support a maximum continuous current of 1.5 A.  
The chip enable works by comparing the CE pin voltage to the input voltage. When the CE pin voltage is higher  
than VIN by 80 mV, the device is disabled and the MOSFET is off. When the CE pin voltage is lower than VIN by  
250 mV, the MOSFET is on. The LM66100-Q1 also comes with reverse polarity protection (RPP) that protects  
against events where the VIN and GND terminals are swapped.  
8.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Reverse Polarity Protection (RPP)  
In the event a negative input voltage is applied, the ideal diode stays off and prevent current flow to protect the  
system load. For a stand-alone, always on application, CE can be tied to GND so it does not go negative with  
respect to GND. See 8-1.  
8-1. RPP Protection Circuit  
8.3.2 Always-ON Reverse Current Blocking (RCB)  
By connecting the CE pin to VOUT, this allows the comparator to detect reverse current flow through the switch.  
If the output is forced above the selected input by VOFF, the channel switches off to stop the reverse current IRCB  
within tOFF. Once the output falls below VIN by VON, the device turns back on.  
8-2. RCB Circuit  
8-3. RCB Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM66100-Q1  
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8-1 summarizes the Device Functional Modes:  
8-1. Device Functional Modes  
State  
OFF  
ON  
IN-to-OUT  
Power Dissipation  
ST State  
Diode  
IOUT × VFWD  
L
Switch  
IOUT 2 × RON  
H
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LM66100-Q1 Ideal Diode can be used in a variety of stand-alone and multi-channel applications.  
9.2 Typical Applications  
9.2.1 Dual Ideal Diode ORing  
Two LM66100-Q1 Ideal Diodes can be used together for ORing between two power supplies.  
9-1. Dual Ideal Diode ORing  
9.2.1.1 Design Requirements  
Design a circuit that allows the highest input voltage to power a downstream system while providing reverse  
current protection.  
9.2.1.2 Detailed Design Procedure  
This circuit ties the CE of each device to the opposite power source. In this configuration, the highest supply is  
always selected using a make-before-break logic. This selection prevents any reverse current flow between the  
supplies and avoids the need of a dedicated reverse current blocking comparator. For ORing applications that  
need RPP, TI recommends to use a series resistor (RCE) to limit the current into the CE pin during a negative  
voltage event.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
 
 
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.1.3 Application Curves  
The below scope shot shows the output voltage (VOUT) being initially powered by VIN1. When VIN2 is applied,  
it powers VOUT because it is a higher voltage. When VIN2 is removed, VOUT is once again powered by VIN1.  
9-2. Dual Ideal Diode ORing Behavior  
9.2.2 Dual Ideal Diode ORing for Continuous Output Power  
9-3. Dual Ideal Diode ORing for Continuous Output Power  
9.2.2.1 Design Requirements  
The shortcoming of the previous implementation happens when both input voltages are the same for a long  
period of time. Then, both devices completely turn off, powering down the output load. To avoid this case, use  
the status output from the priority supply and a pullup resistor, causing both devices to switchover at the same  
time. For ORing applications that need RPP, TI recommends to use a series resistor (RCE) to limit the current  
into the CE pin during a negative voltage event.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM66100-Q1  
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.2.2 Application Curves  
The figures below show the switchover performance between VIN1 and VIN2.  
9-4. Switchover From VIN1 (5 V) to VIN2 (3.3 V) 9-5. Switchover From VIN2 (3.3 V) to VIN1 (5 V)  
9.2.3 ORing with Discrete MOSFET  
9-6. ORing with a Discrete MOSFET  
9.2.3.1 Design Requirements  
Similar to the Dual Ideal Diode circuit, the Status Output can also be used to control a discrete P-Channel  
MOSFET. This action can be useful in applications that want to minimize the leakage current on the secondary  
supply, such as battery backup systems. This configuration can also be used on systems that require a lower  
RON on the secondary rail, useful for higher current applications.  
When the Ideal Diode path is enabled, the status is Hi-Z and pulls up the gate of the external PFET to keep it off.  
When the main supply (VIN1) drops such that backup supply (VIN2) is higher than VIN1, the ideal diode is  
disabled and pulls the ST pin and the PFET gate low to turn on the discrete MOSFET path.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.3.2 Application Curves  
The figures below show the switchover performance between VIN1 and VIN2.  
9-7. Switchover From VIN1 5 V to VIN2 3.3 V  
9-8. Switchover From VIN2 3.3 V to VIN1 5 V  
10 Power Supply Recommendations  
The device is designed to operate with a VIN range of 1.5 V to 5.5 V. The VIN power supply must be well  
regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all  
transient load current steps. In most situations, using an input capacitance (CIN) of 1 μF is sufficient to prevent  
the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to  
respond to a large transient current or large load current step, additional bulk capacitance can be required on the  
input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM66100-Q1  
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, place the input and output  
capacitors close to the device to minimize the effects that parasitic trace inductances can have on normal  
operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.  
11.2 Layout Example  
11-1. LM66100-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM66100-Q1  
 
 
 
LM66100-Q1  
ZHCSO26A NOVEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM66100-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM66100QDCKRQ1  
PLM66100QDCKRQ1  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1IW  
PIW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Mar-2022  
OTHER QUALIFIED VERSIONS OF LM66100-Q1 :  
Catalog : LM66100  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM66100DCKR

具有集成式 FET 的 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125
TI

LM66100DCKT

具有集成式 FET 的 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 105
TI

LM66100QDCKRQ1

具有集成式 FET 的汽车类 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125
TI

LM66200

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、双输入理想二极管
TI

LM66200DRLR

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、双输入理想二极管 | DRL | 8 | -40 to 125
TI

LM6629MFX

Ultra-Low Noise, High-Speed Operational Amplifier with Shutdown
NSC

LM6685IM

COMPARATOR, 1900uV OFFSET-MAX, PDSO14, 0.150 INCH, PLASTIC, SOP-14
TI

LM6685IM

COMPARATOR, 1900uV OFFSET-MAX, PDSO14, 0.150 INCH, PLASTIC, SOP-14
ROCHESTER

LM6685IN

COMPARATOR, 1900uV OFFSET-MAX, PDIP16, PLASTIC, DIP-16
TI

LM6687IM

IC DUAL COMPARATOR, 1900 uV OFFSET-MAX, PDSO16, 0.150 INCH, PLASTIC, SOP-16, Comparator
NSC

LM6687IM

DUAL COMPARATOR, 1900uV OFFSET-MAX, PDSO16, 0.150 INCH, PLASTIC, SOP-16
TI

LM6687IN

IC DUAL COMPARATOR, 1900 uV OFFSET-MAX, PDIP16, PLASTIC, DIP-16, Comparator
NSC