LME49721MAX/NOPB [TI]

High-Performance, High-Fidelity Rail-to-Rail Input/Output Audio Operational Amplifier;
LME49721MAX/NOPB
型号: LME49721MAX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High-Performance, High-Fidelity Rail-to-Rail Input/Output Audio Operational Amplifier

放大器 光电二极管
文件: 总29页 (文件大小:1118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
LME49721 High-Performance, High-Fidelity Rail-to-Rail Input/Output Audio Operational  
Amplifier  
Check for Samples: LME49721  
1
FEATURES  
DESCRIPTION  
The LME49721 is a low-distortion, low-noise Rail-to-  
Rail Input/Output operational amplifier optimized and  
fully specified for high-performance, high-fidelity  
applications. Combining advanced leading-edge  
process technology with state-of-the-art circuit  
design, the LME49721 Rail-to-Rail Input/Output  
operational amplifier delivers superior signal  
amplification for outstanding performance. The  
LME49721 combines a very high slew rate with low  
THD+N to easily satisfy demanding applications. To  
ensure that the most challenging loads are driven  
without compromise, the LME49721 has a high slew  
rate of ±8.5V/μs and an output current capability of  
±9.7mA. Further, dynamic range is maximized by an  
output stage that drives 10kloads to within 10mV of  
either power supply voltage.  
2
Rail-to-Rail Input and Output  
Easily Drives 10kLoads to Within 10mV of  
Each Power Supply Voltage  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
APPLICATIONS  
Ultra High-Quality Portable Audio  
Amplification  
High-Fidelity Preamplifiers  
High-Fidelity Multimedia  
State-of-the-Art Phono Pre Amps  
High-Performance Professional Audio  
The LME49721 has a wide supply range of 2.2V to  
5.5V. Over this supply range the LME49721’s input  
circuitry maintains excellent common-mode and  
power supply rejection, as well as maintaining its low  
input bias current. The LME49721 is unity gain  
stable.  
High-Fidelity Equalization and Crossover  
Networks  
High-Performance Line Drivers  
High-Performance Line Receivers  
High-Fidelity Active Filters  
DAC I–V Converter  
ADC Front-End Signal Conditioning  
KEY SPECIFICATIONS  
Power Supply Voltage Range: 2.2V to 5.5V  
Quiescent Current: 2.15mA (typ)  
THD+N (AV = 2, VOUT = 4Vp-p, f IN = 1kHz)  
RL = 2k: 0.00008% (typ)  
RL = 600: 0.0001% (typ)  
Input Noise Density: 4nV/Hz (typ), @ 1kHz  
Slew Rate: ±8.5V/μs (typ)  
Gain Bandwidth Product: 20MHz (typ)  
Open Loop Gain (RL = 600): 118dB (typ)  
Input Bias Current: 40fA (typ)  
Input Offset Voltage: 0.3mV (typ)  
PSRR: 103dB (typ)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL CONNECTION AND PINOUT  
1
2
8
+5V  
V
OUTPUTA  
DD  
7
6
5
V
DD  
INVERTING INPUT A  
OUTPUTB  
-
3
4
NON-INVERTING INPUT A  
INVERTING INPUT B  
V
IN  
+
V
SS  
NON-INVERTING INPUT B  
V
SS  
Figure 1. Buffer Amplifier  
Figure 2. 8-Pin SOIC (D Package)  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)  
Power Supply Voltage (VS = V+ - V-)  
Storage Temperature  
Input Voltage  
6V  
65°C to 150°C  
(V-) - 0.7V to (V+) + 0.7V  
Continuous  
Output Short Circuit(4)  
Power Dissipation  
ESD Rating(5)  
Internally Limited  
2000V  
ESD Rating(6)  
200V  
Junction Temperature  
Thermal Resistance, θJA (SOIC)  
Temperature Range, TMIN TA TMAX  
Supply Voltage Range  
150°C  
165°C/W  
–40°C TA 85°C  
2.2V VS 5.5V  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified  
(2) The Electrical Characteristics table lists ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower.  
(5) Human body model, applicable std. JESD22-A114C.  
(6) Machine model, applicable std. JESD22-A115-A.  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
 
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
ELECTRICAL CHARACTERISTICS FOR THE LME49721  
The following specifications apply for the circuit shown in Figure 1. VS = 5V, RL = 10k, RSOURCE = 10, fIN = 1kHz, and TA =  
25°C, unless otherwise specified.  
LME49721  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(1)  
Limit(2)  
AV = +1, VOUT = 2Vp-p  
,
THD+N  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
RL = 2kΩ  
RL = 600Ω  
0.0002  
0.0002  
0.001  
% (max)  
%
AV = +1, VOUT = 2Vp-p  
Two-tone, 60Hz & 7kHz 4:1  
,
IMD  
0.0004  
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
20  
15  
MHz (min)  
AV = +1  
8.5  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
2.2  
MHz  
ns  
AV = 1, 4V step  
0.1% error range  
Settling time  
800  
.707  
4
fBW = 20Hz to 20kHz,  
A-weighted  
μVP-P  
(max)  
Equivalent Input Noise Voltage  
Equivalent Input Noise Density  
1.13  
6
en  
f = 1kHz  
A-weighted  
nV/Hz  
(max)  
In  
Current Noise Density  
Offset Voltage  
f = 10kHz  
4.0  
0.3  
fA/Hz  
VOS  
1.5  
85  
mV (max)  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOS/ΔTemp  
40°C TA 85°C  
1.1  
μV/°C  
Average Input Offset Voltage Shift vs  
Power Supply Voltage  
PSRR  
103  
dB (min)  
ISOCH-CH  
IB  
Channel-to-Channel Isolation  
Input Bias Current  
fIN = 1kHz  
117  
40  
dB  
fA  
VCM = VS/2  
Input Bias Current Drift vs  
Temperature  
ΔIOS/ΔTemp  
IOS  
–40°C TA 85°C  
48  
60  
fA/°C  
fA  
Input Offset Current  
VCM = VS/2  
(V+) – 0.1  
(V-) + 0.1  
VIN-CM  
Common-Mode Input Voltage Range  
V (min)  
CMRR  
Common-Mode Rejection  
1/f Corner Frequency  
VSS - 100mV < VCM < VDD + 100mV  
93  
70  
dB (min)  
Hz  
2000  
VSS - 200mV < VOUT < VDD + 200mV  
RL = 600Ω  
RL = 2kΩ  
RL = 10kΩ  
118  
122  
100  
dB (min)  
dB (min)  
dB (min)  
V (min)  
V (min)  
V (min)  
V (min)  
mA (min)  
mA  
AVOL  
Open Loop Voltage Gain  
Output Voltage Swing  
130  
115  
VDD – 30mV  
VSS + 30mV  
VDD – 10mV  
VSS + 10mV  
9.7  
VDD – 80mV  
VSS + 80mV  
VDD – 20mV  
VSS + 20mV  
9.3  
RL = 600Ω  
VOUTMIN  
RL = 10k, VS = 5.0V  
RL = 250, VS = 5.0V  
IOUT  
Output Current  
IOUT-SC  
Short Circuit Current  
100  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ROUT  
IS  
Output Impedance  
0.01  
46  
Quiescent Current per Amplifier  
IOUT = 0mA  
2.15  
3.25  
mA (max)  
(1) Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of  
product characterization and are not ensured.  
(2) Datasheet min/max specification limits are ensured by test or statistical analysis.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
Graphs were taken in dual supply configuration.  
THD+N vs Frequency  
THD+N vs Frequency  
VS = ±2.5V, VOUT = 4VP-P  
RL = 2k, AV = 2  
VS = ±2.5V, VOUT = 4VP-P  
RL = 2k, AV = 2, BW = 22kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20k  
20k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 3.  
Figure 4.  
THD+N vs Frequency  
VS = ±2.5V, VOUT = 4VP-P  
RL = 10k, AV = 2, BW = 22kHz  
THD+N vs Frequency  
VS = ±2.5V, VOUT = 4VP-P  
RL = 10k, AV = 2  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.00001  
0.0001  
0.00001  
20  
200  
2k  
20k  
20  
200  
2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5.  
Figure 6.  
THD+N vs Frequency  
VS = ±2.5V, VOUT = 4VP-P  
RL = 600, AV = 2, BW = 22kHz  
THD+N vs Frequency  
VS = ±2.5V, VOUT = 4VP-P  
RL = 600, AV = 2  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20k  
20  
200  
2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7.  
Figure 8.  
4
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 2k, AV = 2, BW = 22kHz  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 2k, AV = 2  
0.1  
0.01  
0.1  
0.01  
0.001  
0.0001  
0.001  
0.0001  
20  
200  
2k  
20k  
20k  
20k  
20  
200  
2k  
20k  
20k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9.  
Figure 10.  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 10k, AV = 2, BW = 22kHz  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 10k, AV = 2  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
20  
200  
2k  
20  
200  
2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11.  
Figure 12.  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 600, AV = 2, BW = 22kHz  
THD+N vs Frequency  
VS = ±2.75V, VOUT = 4VP-P  
RL = 600, AV = 2  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20  
200  
2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13.  
Figure 14.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
THD+N vs Output Voltage  
VS = ±1.1V  
THD+N vs Output Voltage  
VS = ±1.1V  
RL = 2k, AV = 2  
RL = 10k, AV = 2  
0.10  
0.01  
0.10  
0.01  
0.001  
0.0001  
0.001  
0.0001  
1
100m  
200m  
1
100m  
200m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15.  
Figure 16.  
THD+N vs Output Voltage  
VS = ±1.1V  
THD+N vs Output Voltage  
VS = ±1.5V  
RL = 600, AV = 2  
RL = 2k, AV = 2  
0.1  
0.01  
0.10  
0.01  
0.001  
0.001  
0.0001  
0.00001  
0.0001  
100m  
200m  
1
2
1
100m  
200m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 17.  
Figure 18.  
THD+N vs Output Voltage  
VS = ±1.5V  
THD+N vs Output Voltage  
VS = ±1.5V  
RL = 10k, AV = 2  
RL = 600, AV = 2  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
100M  
200M  
1
2
100m  
200m  
1
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 19.  
Figure 20.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
THD+N vs Output Voltage  
THD+N vs Output Voltage  
VS = ±2.5V  
VS = ±2.5V  
RL = 2k, AV = 2  
0.1  
RL = 10k, AV = 2  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
100m  
200m  
1
2
2
3
100m  
200m  
1
2
3
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 21.  
Figure 22.  
THD+N vs Output Voltage  
VS = ±2.5V  
THD+N vs Output Voltage  
VS = ±2.75V  
RL = 600, AV = 2  
RL = 2k, AV = 2  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.00001  
0.0001  
0.00001  
100m  
200m  
1
100m  
200m  
1
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 23.  
Figure 24.  
THD+N vs Output Voltage  
VS = ±2.75V  
THD+N vs Output Voltage  
VS = ±2.75V  
RL = 10k, AV = 2  
RL = 600, AV = 2  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.00001  
0.0001  
0.00001  
100m  
200m  
1
2
100m  
200m  
1
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 25.  
Figure 26.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VS = ±1.1V  
VS = ±1.1V  
VOUT = 2Vp-p  
RL = 2kΩ  
VOUT = 2Vp-p  
RL = 10kΩ  
+0  
-10  
-20  
-30  
-40  
-50  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
10k 20k  
20  
100 200  
1k 2k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27.  
Figure 28.  
Crosstalk vs Frequency  
VS = ±1.1V  
Crosstalk vs Frequency  
VS = ±1.5V,  
VOUT = 2Vp-p  
VOUT = 2Vp-p  
RL = 600Ω  
RL = 2kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
10k 20k  
20  
100 200  
1k 2k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29.  
Figure 30.  
Crosstalk vs Frequency  
VS = ±1.5V  
Crosstalk vs Frequency  
VS = ±1.5V  
VOUT = 2Vp-p  
VOUT = 2Vp-p  
RL = 10kΩ  
RL = 600Ω  
+0  
-10  
-20  
-30  
-40  
-50  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
10k 20k  
20  
100 200  
1k 2k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31.  
Figure 32.  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VS = ±2.5V  
VS = ±2.5V  
VOUT = 4Vp-p  
RL = 2kΩ  
VOUT = 4Vp-p  
RL = 10kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
10k 20k  
10k 20k  
10k 20k  
20  
100 200  
1k 2k  
10k 20k  
10k 20k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33.  
Figure 34.  
Crosstalk vs Frequency  
VS = ±2.5V  
Crosstalk vs Frequency  
VS = ±2.75V  
VOUT = 4Vp-p  
RL = 600Ω  
VOUT = 4Vp-p  
RL = 2kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-60  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
20  
100 200  
1k 2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35.  
Figure 36.  
Crosstalk vs Frequency  
VS = ±2.75V  
Crosstalk vs Frequency  
VS = ±2.75V  
VOUT = 4Vp-p  
RL = 10kΩ  
VOUT = 4Vp-p  
RL = 600Ω  
+0  
-10  
-20  
-30  
-40  
-50  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-60  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20  
100 200  
1k 2k  
20  
100 200  
1k 2k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37.  
Figure 38.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
PSRR vs Frequency  
PSRR vs Frequency  
VS = ±1.1V  
VRIPPLE = 200mVP-P  
RL = 10kΩ  
VS = ±1.1V  
VRIPPLE = 200mVP-P  
RL = 2kΩ  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
10  
100  
1000  
10000  
100000  
100000  
100000  
10  
10  
10  
100  
1000  
10000  
100000  
100000  
100000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39.  
Figure 40.  
PSRR vs Frequency  
VS = ±1.1V  
VRIPPLE = 200mVP-P  
RL = 600Ω  
PSRR vs Frequency  
VS = ±1.5V  
VRIPPLE = 200mVP-P  
RL = 2kΩ  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41.  
Figure 42.  
PSRR vs Frequency  
VS = ±1.5V  
VRIPPLE = 200mVP-P  
RL = 10kΩ  
PSRR vs Frequency  
VS = ±1.5V  
VRIPPLE = 200mVP-P  
RL = 600Ω  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
10  
100  
1000  
10000  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43.  
Figure 44.  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
PSRR vs Frequency  
PSRR vs Frequency  
VS = ±2.5V  
VRIPPLE = 200mVP-P  
RL = 10kΩ  
VS = ±2.5V  
VRIPPLE = 200mVP-P  
RL = 2kΩ  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
10  
10  
10  
100  
1000  
10000  
100000  
100000  
100000  
10  
10  
10  
100  
1000  
10000  
100000  
100000  
100000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45.  
Figure 46.  
PSRR vs Frequency  
VS = ±2.5V  
VRIPPLE = 200mVP-P  
RL = 600Ω  
PSRR vs Frequency  
VS = ±2.75V  
VRIPPLE = 200mVP-P  
RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
100  
1000  
10000  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47.  
Figure 48.  
PSRR vs Frequency  
VS = ±2.75V  
VRIPPLE = 200mVP-P  
RL = 10kΩ  
PSRR vs Frequency  
VS = ±2.75V  
VRIPPLE = 200mVP-P  
RL = 600Ω  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
100  
1000  
10000  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49.  
Figure 50.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
CMRR vs Frequency  
CMRR vs Frequency  
VS = ±1.5V  
VS = ±1.5V  
RL = 2kΩ  
RL = 10kΩ  
+0  
+0  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
20  
20  
20  
200  
2k  
20k  
200k  
200k  
200k  
20  
20  
20  
200  
2k  
20k  
200k  
200k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51.  
Figure 52.  
CMRR vs Frequency  
VS = ±1.5V  
CMRR vs Frequency  
VS = ±2.5V  
RL = 600Ω  
RL = 2kΩ  
+0  
-20  
+0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
200  
2k  
20k  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 53.  
Figure 54.  
CMRR vs Frequency  
VS = ±2.5V  
CMRR vs Frequency  
VS = ±2.5V  
RL = 10kΩ  
RL = 600Ω  
+0  
-20  
+0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
200  
2k  
20k  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 55.  
Figure 56.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
CMRR vs Frequency  
CMRR vs Frequency  
VS = ±2.75V  
VS = ±2.75V  
RL = 2kΩ  
RL = 10kΩ  
+0  
+0  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 57.  
Figure 58.  
CMRR vs Frequency  
VS = ±2.75V  
Output Voltage Swing Neg vs Power Supply  
RL = 600Ω  
RL = 2kΩ  
+0  
-20  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-40  
-60  
-80  
-100  
-120  
-3.0  
20  
200  
2k  
20k  
200k  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
SUPPLY VOLTAGE (V-)  
FREQUENCY (Hz)  
Figure 59.  
Figure 60.  
Output Voltage Swing Neg vs Power Supply  
Output Voltage Swing Neg vs Power Supply  
RL = 10kΩ  
RL = 600Ω  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.0  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
SUPPLY VOLTAGE (V-)  
SUPPLY VOLTAGE (V-)  
Figure 61.  
Figure 62.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Graphs were taken in dual supply configuration.  
Output Voltage Swing Pos vs Power Supply  
Output Voltage Swing Pos vs Power Supply  
RL = 10kΩ  
RL = 2kΩ  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.5  
0.0  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 63.  
Figure 64.  
Output Voltage Swing Pos vs Power Supply  
Supply Current per amplifier vs Power Supply  
RL = 600Ω  
RL = 2k, Dual Supply  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
POWER SUPPLY (V)  
SUPPLY VOLTAGE (V)  
Figure 65.  
Figure 66.  
Supply Current per amplifier vs Power Supply  
Supply Current per amplifier vs Power Supply  
RL = 10k, Dual Supply  
RL = 600, Dual Supply  
3.5  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75  
1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75  
POWER SUPPLY (V)  
POWER SUPPLY (V)  
Figure 67.  
Figure 68.  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
APPLICATION INFORMATION  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by LME49721 is below the capabilities of all commercially  
available equipment. This makes distortion measurements just slightly more difficult than simply connecting a  
distortion meter to the amplifier's inputs and outputs. The solution. however, is quite simple: an additional  
resistor. Adding this resistor extends the resolution of the distortion measurement equipment.  
The LME49721's low residual is an input referred internal error. As shown in Figure 69, adding the 10resistor  
connected between a the amplifier's inverting and non-inverting inputs changes the amplifier's noise gain. The  
result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain  
is unaltered, the feedback available to correct distortion errors is reduced by 101. To ensure minimum effects on  
distortion measurements, keep the value of R1 low as shown in Figure 69.  
This technique is verified by duplicating the measurements with high closed-loop gain and/or making the  
measurements at high frequencies. Doing so, produces distortion components that are within equipments  
capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit  
connected to an Audio Precision System Two Cascade.  
R
2
R
1
1 kW  
1 kW  
-
R
3
LME49721  
10W  
+
Distortion Signal Gain = 1 + (R2/R3)  
Analyzer Input  
Generator Output  
Audio Precision  
System Two  
Cascade  
Figure 69. THD+N and IMD Distortion Test Circuit with AV = 2  
OPERATING RATINGS AND BASIC DESIGN GUIDELINES  
The LME49721 has a supply voltage range from +2.2V to +5.5V single supply or ±1.1 to ±2.75V dual supply.  
Bypassed capacitors for the supplies should be placed as close to the amplifier as possible. This will help  
minimize any inductance between the power supply and the supply pins. In addition to a 10μF capacitor, a 0.1μF  
capacitor is also recommended in CMOS amplifiers.  
The amplifier's inputs lead lengths should also be as short as possible. If the op amp does not have a bypass  
capacitor, it may oscillate.  
BASIC AMPLIFIER CONFIGURATIONS  
The LME49721 may be operated with either a single supply or dual supplies. Figure 70 shows the typical  
connection for a single supply inverting amplifier. The output voltage for a single supply amplifier will be centered  
around the common-mode voltage Vcm. Note: the voltage applied to the Vcm insures the output stays above  
ground. Typically, the Vcm should be equal to VDD/2. This is done by putting a resistor divider ckt at this node,  
see Figure 70.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LME49721  
 
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
R
1
R
2
V
IN  
V
DD  
V
DD  
-
V
OUT  
R
3
V
CM  
+
R
4
Figure 70. Single-Supply Inverting Op Amp  
Figure 71 shows the typical connection for a dual supply inverting amplifier. The output voltage is centered on  
zero.  
R
2
R
V
IN  
1
V
DD  
-
V
OUT  
+
V
SS  
Figure 71. Dual-Supply Inverting Op Amp  
Figure 72 shows the typical connection for the Buffer Amplifier or also called a Voltage Follower. A Buffer  
Amplifier can be used to solve impedance matching problems, to reduce power consumption in the source, or to  
drive heavy loads. The input impedance of the op amp is very high. Therefore, the input of the op amp does not  
load down the source. The output impedance on the other hand is very low. It allows the load to either supply or  
absorb energy to a circuit while a secondary voltage source dissipates energy from a circuit. The Buffer is a unity  
stable amplifier, 1V/V. Although the feedback loop is tied from the output of the amplifier to the inverting input,  
the gain is still positive. Note: if a positive feedback is used, the amplifier will most likely drive to either rail at the  
output.  
V
DD  
-
V
OUT  
V
IN  
+
Figure 72. Buffer  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
 
 
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
TYPICAL APPLICATIONS  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Figure 73. ANAB Preamp  
Figure 74. NAB Preamp Voltage Gain vs Frequency  
VO = V1–V2  
Figure 75. Balanced to Single-Ended Converter  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
VO = V1 + V2 V3 V4  
Figure 76. Adder/Subtracter  
Figure 77. Sine Wave Oscillator  
Illustration is f0 = 1 kHz  
Figure 78. Second-Order High-Pass Filter  
(Butterworth)  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
Illustration is f0 = 1 kHz  
Figure 79. Second-Order Low-Pass Filter  
(Butterworth)  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
Figure 80. State Variable Filter  
Figure 81. AC/DC Converter  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
Figure 82. 2-Channel Panning Circuit (Pan Pot)  
Figure 83. Line Driver  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
Figure 84. Tone Control  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
Figure 85. RIAA Preamp  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LME49721  
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
Illustration is:  
V0 = 101(V2 V1)  
Figure 86. Balanced Input Mic Amp  
22  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
LME49721  
www.ti.com  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
A. See Table 1.  
Figure 87. 10-Band Graphic Equalizer  
Table 1. C1, C2, R1, and R2 Values for Figure 87(1)  
fo (Hz)  
32  
C1  
C2  
R1  
R2  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
3.3μF  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
(1) At volume of change = ±12 dB Q = 1.7  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LME49721  
 
 
LME49721  
SNAS371C SEPTEMBER 2007REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Rev  
1.0  
1.1  
1.2  
C
Date  
Description  
09/26/07  
10/01/07  
04/21/10  
04/04/13  
Initial release.  
Input more info under the Buffer Amplifier.  
Added the Ordering Information table.  
Changed layout of National Data Sheet to TI format.  
24  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49721  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LME49721MA/NOPB  
LME49721MAX/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
D
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-1-260C-UNLIM  
L49721  
MA  
ACTIVE  
D
2500  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 85  
L49721  
MA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LME49721MAX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
349.0 337.0 45.0  
LME49721MAX/NOPB  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LME49722

Low Noise, High Performance, High Fidelity Dual Audio Operational Amplifier
NSC

LME49722

High Performance, High Fidelity Dual Audio Operational Amplifier
TI

LME49722MA

Low Noise, High Performance, High Fidelity Dual Audio Operational Amplifier
NSC

LME49722MA/NOPB

Low Noise, High Performance, High Fidelity Dual Audio Operational Amplifier 8-SOIC -40 to 85
TI

LME49722MAX

IC,OP-AMP,DUAL,SOP,8PIN,PLASTIC
TI

LME49722MAX/NOPB

High Performance, High Fidelity Dual Audio Operational Amplifier
TI

LME49723

Dual High Fidelity Audio Operational Amplifier
NSC

LME49723

2 通道、17MHz、高保真、高性能音频运算放大器
TI

LME49723MA

Dual High Fidelity Audio Operational Amplifier
NSC

LME49723MA/NOPB

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85
TI

LME49723MAX/NOPB

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85
TI

LME49724

High Performance, High Fidelity, Fully-Differential Audio Operational Amplifier
NSC