LME49722MAX/NOPB [TI]

High Performance, High Fidelity Dual Audio Operational Amplifier;
LME49722MAX/NOPB
型号: LME49722MAX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High Performance, High Fidelity Dual Audio Operational Amplifier

文件: 总13页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
LME49722 Low Noise, High Performance, High Fidelity Dual Audio Operational Amplifier  
Check for Samples: LME49722  
1
FEATURES  
DESCRIPTION  
The LME49722 is part of the ultra-low distortion, low  
noise, high slew rate operational amplifier series  
optimized and fully specified for high performance,  
high fidelity applications. Combining advanced  
leading-edge process technology with state-of-the-art  
circuit design, the LME49722 audio operational  
amplifiers deliver superior audio signal amplification  
for outstanding audio performance. The LME49722  
combines extremely low voltage noise density  
(1.9nV/Hz) rate with vanishingly low THD+N  
(0.00002%) to easily satisfy the most demanding  
audio applications. To ensure that the most  
challenging loads are driven without compromise, the  
LME49722 has a high slew rate of ±22V/µs and an  
output current capability of ±28mA. Further, dynamic  
range is maximized by an output stage that drives  
2kloads to within 1V of either power supply voltage.  
2
Easily Drives 600Loads  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
PSRR and CMRR Exceed 120dB (typ)  
APPLICATIONS  
Ultra High Quality Audio Amplification  
High Fidelity Preamplifiers, Phono Preamps,  
and Multimedia  
High Performance Professional Audio  
High Fidelity Equalization and Crossover  
Networks with Active Filters  
High Performance Line Drivers and Receivers  
Low Noise Industrial Applications Including  
Test, Measurement, and Ultrasound  
The LME49722 has a wide supply range of ±2.5V to  
±18V. Over this supply range the LME49722  
maintains excellent common-mode and power supply  
rejection, and low input bias current. This Audio  
Operational Amplifier achieves outstanding AC  
performance while driving complex loads with values  
as high as 100pF with gain value greater than 2.  
Directly interchangeable with LME49720, LM4562  
and LME49860 for similar operating voltages.  
Table 1. KEY SPECIFICATIONS  
VALUE  
UNIT  
±2.5V to  
±18  
Wide Operating Voltage Range  
V
nV/Hz  
(typ)  
Equivalent Noise  
Equivalent Noise  
(Frequency = 1kHz)  
(Frequency = 10Hz)  
1.9  
2.8  
nV/Hz  
(typ)  
PSRR  
120  
dB (typ)  
V/μs (typ)  
% (typ)  
Slew Rate  
±22  
RL = 2kΩ  
0.00002  
0.00002  
135  
THD+N  
(AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
RL = 600Ω  
% (typ)  
Open Loop Gain (RL = 600)  
Input Bias Current  
dB (typ)  
nA (typ)  
mV (typ)  
50  
Voltage Offset  
±0.02  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
Typical Application  
C2  
R2  
V
P-P  
R1  
-
LME49722  
+
C1  
f
= > 300 kHz for V  
= 20V, R2 C2 ö R1 C1  
P-P  
MAX  
Figure 1. Wide Bandwidth Low Noise Low Drift Amplifier  
Connection Diagram  
1
2
3
4
8
7
6
5
+
OUTPUT A  
V
INVERTING INPUT A  
OUTPUT B  
A
B
-
+
+
-
NON-INVERTING  
INPUT A  
INVERTING INPUT B  
NON-INVERTING  
INPUT B  
-
V
Figure 2. 8-Lead SOIC  
See D Package  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)(3)  
Absolute Maximum Ratings  
Supply Voltage (VS = VCC-VEE  
Storage Temperature  
Input Voltage  
Output Short Circuit(4)  
ESD Susceptibility(5)  
ESD Susceptibility(6)  
)
38V  
65°C to 150°C  
(V-) - 0.7V to (V+) + 0.7V  
Continuous  
2000V  
200V  
Junction Temperature (TJMAX  
)
150°C  
Thermal Resistance  
θJA  
θJC  
154°C/W  
27°C/W  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified.  
(2) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise  
modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not  
ensured.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given inAbsolute Maximum Ratings,  
whichever is lower. For the LME49722, TJMAX = 150°C and the typical θJC is 27°C/W.  
(5) Human body model, applicable std. JESD22-A114C.  
(6) Machine model, applicable std. JESD22-A115-A.  
Operating Ratings  
Temperature Range  
TMIN TA TMAX  
40°C TA 85°C  
±2.5V VS ±18V  
Supply Voltage Range  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49722  
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
(1)(2)  
Electrical Characteristics for the LME49722  
The following specifications apply for VS = ±15V and ±18V, RL = 2k, fIN = 1kHz unless otherwise specified. Limits apply for  
TA = 25°C,  
LME49722  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
AV = 1, VOUT = 3Vrms  
(3)  
(4)  
Typical  
Limit  
THD+N  
IMD  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
RL = 2kΩ  
RL = 600Ω  
0.00002  
0.00002  
%
0.00009  
% (max)  
AV = 1, VOUT = 3VRMS  
Two-tone, 60Hz & 7kHz 4:1  
0.00002  
%
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
fIN = 100kHz  
55  
45  
MHz (min)  
AV = 1, VOUT = 10VP-P  
±22  
±15  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
Full Power Bandwidth  
12  
MHz  
AV = –1, 10V step, CL = 100pF  
0.1% error range  
ts  
Settling time  
1.2  
μs  
eINV  
Equivalent Input Voltage Noise  
fBW = 20Hz to 20kHz  
0.25  
0.35  
2.5  
μVRMS (max)  
f= 1kHz  
VS = ±15V  
VS = ±18V  
1.9  
1.9  
nVHz  
nVHz (max)  
eN  
Equivalent Input Voltage Density  
f = 10Hz  
VS = ±15V  
VS = ±18V  
2.8  
3.2  
nVHz  
nVHz  
f = 1kHz  
f = 10Hz  
2.6  
6
pA/Hz  
pA/Hz  
In  
Current Noise Density  
VOS  
Offset Voltage  
VCM = 0V  
ΔVS = 20V(5)  
±0.02  
120  
±0.7  
110  
mV (max)  
dB (min)  
PSRR  
Power Supply Rejection Ratio  
fIN = 1kHz  
fIN = 20kHz  
136  
135  
dB  
dB  
ISOCH-CH Channel-to-Channel Isolation  
VCM = 0V  
VS = ±15V  
VS = ±18V  
IB  
Input Bias Current  
50  
53  
nA  
nA (max)  
200  
ΔIOS/ΔTe Input Bias Current Drift vs  
–40°C TA 85°C  
0.1  
nA/°C  
mp  
IOS  
Temperature  
VCM = 0V  
VS = ±15V  
VS = ±18V  
Input Offset Current  
25  
32  
nA  
nA (max)  
100  
+14.0  
–13.9  
(VCC) – 2.0  
(VEE) + 2.0  
V (min)  
V (min)  
VS = ±15V  
VIN-CM  
Common-Mode Input Voltage Range  
+17.0  
–16.9  
(VCC) – 2.0  
(VEE) + 2.0  
V (min)  
V (min)  
VS = ±18V  
CMRR  
ZIN  
Common-Mode Rejection  
–10V VCM 10V  
128  
30  
110  
120  
dB (min)  
kΩ  
Differential Input Impedance  
Common Mode Input Impedance  
ZCM  
–10V VCM 10V  
1000  
MΩ  
–12V VOUT 12V, RL = 600Ω  
–12V VOUT 12V, RL = 2kΩ  
–12V VOUT 12V, RL = 10kΩ  
135  
140  
140  
dB  
dB  
dB  
AVOL  
Open Loop Voltage Gain  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified.  
(2) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise  
modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not  
ensured.  
(3) Typical values represent most likely parametric norms at TA = +25°C, and at the Recommended Operation Conditions at the time of  
product characterization and are not ensured.  
(4) Datasheet min/max specification limits are specified by test or statistical analysis.  
(5) PSRR is measured as follow: VOS is measured at two supply voltages, ±5V and ±15V. PSRR = | 20log(ΔVOS/ΔVS) |.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
Electrical Characteristics for the LME49722 (1)(2) (continued)  
The following specifications apply for VS = ±15V and ±18V, RL = 2k, fIN = 1kHz unless otherwise specified. Limits apply for  
TA = 25°C,  
LME49722  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
(3)  
(4)  
Typical  
Limit  
VS = ±15V  
RL = 600Ω  
RL = 2kΩ  
+13.7/–14  
±14.0  
±14.1  
VPEAK  
VPEAK  
VPEAK  
RL = 10kΩ  
VOM  
Output Voltage Swing  
VS = ±18V  
RL = 600Ω  
RL = 2kΩ  
+16.6/–16.8  
±17.0  
VPEAK (min)  
VPEAK  
±15.5  
RL = 10kΩ  
±17.1  
VPEAK  
RL = 600Ω  
VS = ±15V  
VS = ±18V  
IOUT  
Output Current  
±23  
±27.6/–28  
mA  
mA (min)  
±23  
+43  
–40  
mA  
mA  
IOUT-CC  
Short Circuit Current  
Output Impedance  
Sink to Source  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ZOUT  
0.01  
13  
IOUT = 0mA  
VS = ±15V  
VS = ±18V  
Total Quiescent Power Supply  
Current  
IS  
12.1  
12.3  
mA  
mA (max)  
16  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49722  
 
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
Typical Performance Characteristics  
THD+N  
vs  
THD+N  
vs  
Output Voltage  
Output Voltage  
+VCC = –VEE = 15V, fIN = 1kHz, RL = 2k  
+VCC = –VEE = 15V, fIN = 1kHz, RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
100m  
1
10  
20  
10m  
100m  
1
10  
20  
V
RMS  
V
RMS  
Figure 3.  
Figure 4.  
THD+N  
vs  
THD+N  
vs  
Output Voltage  
Output Voltage  
+VCC = –VEE = 18V, fIN = 1kHz, RL = 2kΩ  
+VCC = –VEE = 18V, fIN = 1kHz, RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
100m  
1
10  
20  
10m  
100m  
1
10  
20  
V
RMS  
V
RMS  
Figure 5.  
Figure 6.  
THD+N  
vs  
THD+N  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V, VO = 3VRMS, RL = 2kΩ  
+VCC = –VEE = 15V, VO = 3VRMS, RL = 600Ω  
0.001  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20  
50  
200 500 1k 2k  
100  
5k 10k  
20k  
20  
50 100 200 500 1k 2k 5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7.  
Figure 8.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
Typical Performance Characteristics (continued)  
THD+N  
THD+N  
vs  
vs  
Frequency  
+VCC = –VEE = 18V, VO = 3VRMS, RL = 2kΩ  
0.001  
Frequency  
+VCC = –VEE = 18V, VO = 3VRMS, RL = 600Ω  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20  
50  
200 500 1k 2k  
20k  
20  
100  
5k 10k  
50 100 200 500 1k 2k 5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9.  
Figure 10.  
IMD  
vs  
IMD  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V, RL = 2kΩ  
+VCC = –VEE = 15V, RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
100m  
500m  
1
5
10  
20  
100m  
500m  
1
5
10  
20  
V
RMS  
V
RMS  
Figure 11.  
Figure 12.  
IMD  
vs  
IMD  
vs  
Frequency  
Frequency  
+VCC = –VEE = 18V, RL = 2kΩ  
+VCC = –VEE = 18V, RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
100m  
500m  
1
5
10  
20  
100m  
500m  
1
5
10  
20  
V
RM  
S
V
RMS  
Figure 13.  
Figure 14.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49722  
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
Typical Performance Characteristics (continued)  
IMD  
vs  
IMD  
vs  
Frequency  
Frequency  
+VCC = –VEE = 2.5V, RL = 600Ω  
+VCC = –VEE = 2.5V, RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
100m  
500m  
1
2
100m  
500m  
1
2
V
RMS  
V
RMS  
Figure 15.  
Figure 16.  
Voltage Noise Density  
vs  
Voltage Noise Density  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V  
+VCC = –VEE = 18V  
100  
10  
1
100  
10  
1
V
V
= 30V  
S
V
V
= 36V  
S
= 15V  
CM  
= 18V  
CM  
1.84 nV/µHz  
1.80 nV/µHz  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17.  
Figure 18.  
Current Noise Density  
vs  
Current Noise Density  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V  
+VCC = –VEE = 18V  
100  
100  
V
= 36V  
V = 18V  
CM  
V
S
= 30V  
= 15V  
S
V
CM  
10  
10  
2.4 pA/µHz  
2.4 pA/µHz  
1
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19.  
Figure 20.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
Typical Performance Characteristics (continued)  
PSRR+  
vs  
PSRR-  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V, VRIPPLE = 200mVPP, RL = 2kΩ  
+VCC = –VEE = 15V, VRIPPLE = 200mVPP, RL = 2kΩ  
-40  
-40  
-50  
-60  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
100  
20  
1k  
10k 20k  
100  
20  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21.  
Figure 22.  
Crosstalk  
vs  
CMRR  
vs  
Frequency  
Frequency  
+VCC = –VEE = 15V, RL = 2k, VOUT = 3VRMS  
+VCC = –VEE = 15V, RL = 2kΩ  
0
-50  
0
-50  
-100  
-150  
-100  
-150  
20  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23.  
Figure 24.  
Output Voltage  
vs  
Output Voltage  
vs  
Supply Voltage  
Supply Voltage  
THD+N = 1%, RL = 2kΩ  
THD+N = 1%, RL = 600Ω  
12  
14  
12  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 25.  
Figure 26.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49722  
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
Typical Performance Characteristics (continued)  
Supply Current  
Full Power Bandwidth  
vs  
vs  
Supply Voltage  
RL = 2kΩ  
Frequency  
+VCC = –VEE = 15V, RL = 2kΩ  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
0
-10  
-20  
-30  
-40  
-50  
0 dB = 1V  
PP  
10.0  
0
2
4
6
8
10 12 14 16 18 20  
1
10 100 1k 10k 100k 1M  
100M  
10M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 27.  
Figure 28.  
Gain Phase  
vs  
Frequency  
+VCC = –VEE = 15V  
180  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-20  
10  
100M  
10k 100k 1M 10M  
100  
1k  
FREQUENCY (Hz)  
Figure 29.  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
LME49722  
www.ti.com  
SNAS454 MARCH 2008  
APPLICATION INFORMATION  
APPLICATION HINTS  
The LME49722 is a high speed operational amplifier which can operate stably in most of the applications. For the  
application with gain greater than 2, capacitive loads up to 100pF will cause little change in the phase  
characteristics of the amplifiers and are therefore allowable. Capacitive loads greater than 10pF must be isolated  
from the output, if the gain value is less than 2. The most straightforward way to do this is to put a resistor (its  
value 20) in series with the output. The resistor will also prevent unnecessary power dissipation if the output  
is accidentally shorted.  
R1  
470W  
R3  
150 kW  
-
LOW IMPEDANCE  
MICROPHONE  
½ LME49722  
+
C1  
4.7 mF  
R7  
100W  
R6  
10 kW  
R2  
470W  
R4  
150 kW  
OUTPUT  
2
2
2
2
2
2
ñ
ñ
Total voltage noise density: e  
ö e + e  
+ e  
= 1.9 + 2 (2.7 ),  
N_total  
N
N_R1  
N_R2  
then e  
= 4.3 nV/µHz. For e  
= e  
ö 2.7 nV/µHz, if R1 = R2 ö 470W.  
N_R2  
N_total  
N_R1  
Or total voltage noise = 0.13 mV input referred in a 1 kHz noise bandwidth.  
Figure 30. Low Impedance Microphone Pre-amplifier  
0.05 mF  
-
11 kW  
3.6 kW  
1.8 kW  
11 kW  
100 kW  
10 mF  
½ LME49722  
INPUT  
+
0.005 mF  
11 kW  
10 kW  
3.6 kW  
1.8 kW  
100 kW  
0.022 mF  
500 kW  
-
0.005 mF  
OUTPUT  
½ LME49722  
+
Figure 31. Three-Band Active Tone Control  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49722  
LME49722  
SNAS454 MARCH 2008  
www.ti.com  
REVISION HISTORY  
Rev  
Date  
Description  
1.0  
03/27/08  
Initial release.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Links: LME49722  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LME49723

Dual High Fidelity Audio Operational Amplifier
NSC

LME49723

2 通道、17MHz、高保真、高性能音频运算放大器
TI

LME49723MA

Dual High Fidelity Audio Operational Amplifier
NSC

LME49723MA/NOPB

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85
TI

LME49723MAX/NOPB

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85
TI

LME49724

High Performance, High Fidelity, Fully-Differential Audio Operational Amplifier
NSC

LME49724

2 通道、50MHz、高保真、高性能、全差动音频运算放大器
TI

LME49724MR

High Performance, High Fidelity, Fully-Differential Audio Operational Amplifier
NSC

LME49724MR

OP-AMP, 1000uV OFFSET-MAX, 50MHz BAND WIDTH, PDSO8, PSOP-8
TI

LME49724MR/NOPB

2 通道、50MHz、高保真、高性能、全差动音频运算放大器 | DDA | 8 | -40 to 85
TI

LME49724MRX

IC,DIFFERENTIAL AMPLIFIER,SINGLE,SOP,8PIN,PLASTIC
TI

LME49724MRX/NOPB

2 通道、50MHz、高保真、高性能、全差动音频运算放大器 | DDA | 8 | -40 to 85
TI