LME49723MAX/NOPB [TI]

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85;
LME49723MAX/NOPB
型号: LME49723MAX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2 通道、17MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85

放大器 运算放大器
文件: 总29页 (文件大小:1490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
LME49723 Dual High Fidelity Audio Operational Amplifier  
Check for Samples: LME49723  
1
FEATURES  
DESCRIPTION  
The LME49723 is part of the ultra-low distortion, low  
noise, high slew rate operational amplifier series  
optimized and fully specified for high performance,  
high fidelity applications. Combining advanced  
leading-edge process technology with state-of-the-art  
circuit design, the LME49723 audio operational  
amplifiers deliver superior audio signal amplification  
for outstanding audio performance. The LME49723  
combines extremely low voltage noise density  
(3.6nV/Hz) with vanishingly low THD+N (0.0002%)  
to easily satisfy the most demanding audio  
applications. To ensure that the most challenging  
loads are driven without compromise, the LME49723  
has a high slew rate of ±20V/μs and an output current  
capability of ±26mA. Further, dynamic range is  
maximized by an output stage that drives 2kloads  
to within 1V of either power supply voltage and to  
within 1.4V when driving 600loads.  
2
Easily Drives 600Loads  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
PSRR and CMRR Exceed 100dB (typ)  
SOIC Package  
APPLICATIONS  
High Quality Audio Amplification  
High Fidelity Preamplifiers  
High Fidelity Multimedia  
Phono Pre Amps  
High Performance Professional Audio  
High Fidelity Equalization and Crossover  
Networks  
High Performance Line Drivers  
High Performance Line Receivers  
High Fidelity Active Filters  
The LME49723's outstanding CMRR (100dB), PSRR  
(100dB), and VOS (0.3mV) give the amplifier excellent  
operational amplifier DC performance.  
The LME49723 has a wide supply range of ±2.5V to  
±17V. Over this supply range the LME49723’s input  
circuitry maintains excellent common-mode and  
power supply rejection, as well as maintaining its low  
input bias current. The LME49723 is unity gain  
stable.  
KEY SPECIFICATIONS  
Power Supply Voltage Range: ±2.5 to ±17 V  
THD+N (AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
RL = 2k: 0.0002 % (typ)  
RL = 600: 0.0002 % (typ)  
The LME49723 is available in an 8–lead narrow body  
SOIC package. Demonstration boards are available  
for each package.  
Input Noise Density: 3.6 nV/Hz (typ)  
Slew Rate: ±8 V/μs (typ)  
Gain Bandwidth Product: 17 MHz (typ)  
Open Loop Gain (RL = 600): 105 dB (typ)  
Input Bias Current: 200 nA (typ)  
Input Offset Voltage: 0.3 mV (typ)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
TYPICAL APPLICATION  
150W  
www.ti.com  
150W  
3320W  
3320W  
26.1 kW  
+
909W  
-
-
-
-
LME49723  
LME49723  
+
+
+
+
3.83 kW  
+
100W  
OUTPUT  
22 nF//4.7 nF//500 pF  
10 pF  
INPUT  
47 kW  
47 nF//33 nF  
Note: 1% metal film resistors, 5% polypropylene capacitors  
Figure 1. Passively Equalized RIAA Phono Preamplifier  
CONNECTION DIAGRAM  
Dual-In-Line Package  
1
2
3
4
8
7
6
5
+
OUTPUT A  
V
INVERTING INPUT A  
OUTPUT B  
A
B
-
+
+
-
NON-INVERTING  
INPUT A  
INVERTING INPUT B  
NON-INVERTING  
INPUT B  
-
V
Figure 2. SOIC Package  
See Package Number D0008A  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
2
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)  
Power Supply Voltage (VS = V+ - V-)  
Storage Temperature  
36V  
65°C to 150°C  
(V-) - 0.7V to (V+) + 0.7V  
Continuous  
Input Voltage  
Output Short Circuit(4)  
Power Dissipation  
ESD Susceptibility(5)  
Internally Limited  
800V  
ESD Susceptibility(6)  
180V  
Junction Temperature  
150°C  
Thermal Resistance θJA (SO)  
Temperature Range TMIN TA TMAX  
Supply Voltage Range  
145°C/W  
–40°C TA 85°C  
±2.5V VS ± 17V  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) Amplifier output connected to GND, any number of amplifiers within a package.  
(5) Human body model, 100pF discharged through a 1.5kresistor.  
(6) Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then  
discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50).  
ELECTRICAL CHARACTERISTICS FOR THE LME49723(1)(2)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49723  
Typical(3) Limit(4)  
0.0002  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
AV = 1, VOUT = 3Vrms  
RL = 2kΩ  
RL = 600Ω  
Total Harmonic Distortion +  
Noise  
THD+N  
IMD  
% (max)  
%
0.0002  
0.0004  
AV = 1, VOUT = 3VRMS  
Two-tone, 60Hz & 7kHz 4:1  
Intermodulation Distortion  
0.0005  
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
19  
±8  
15  
±6  
MHz (min)  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
en  
Full Power Bandwidth  
4
MHz  
Equivalent Input Noise Voltage fBW = 20Hz to 20kHz  
0.45  
0.65  
5
μVRMS (max)  
f = 1kHz  
Equivalent Input Noise Density  
f = 10Hz  
3.2  
8.5  
nV/Hz  
(max)  
in  
f = 1kHz  
Current Noise Density  
f = 10Hz  
0.7  
1.3  
pA/Hz  
mV (max)  
μV/°C  
VOS  
Offset Voltage  
±0.3  
1
ΔVOS/ΔTe Average Input Offset Voltage  
mp  
–40°C TA 85°C  
ΔVS = 20V(5)  
0.2  
Drift vs Temperature  
Average Input Offset Voltage  
Shift vs Power Supply Voltage  
PSRR  
100  
95  
dB (min)  
fIN = 1kHz  
fIN = 20kHz  
118  
112  
ISOCH-CH  
IB  
Channel-to-Channel Isolation  
Input Bias Current  
dB  
VCM = 0V  
200  
300  
nA (max)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(3) Typical specifications are specified at +25ºC and represent the most likely parametric norm.  
(4) Tested limits are specified to AOQL (Average Outgoing Quality Level).  
(5) PSRR is measured as follows: VOS is measured at two supply voltages, ±5V and ±15V. PSRR = | 20log(ΔVOS/ΔVS) |.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS FOR THE LME49723(1)(2) (continued)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49723  
Typical(3) Limit(4)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
ΔIOS/ΔTe  
mp  
Input Bias Current Drift vs  
Temperature  
–40°C TA 85°C  
0.1  
nA/°C  
IOS  
Input Offset Current  
VCM = 0V  
7
100  
nA (max)  
(V+) –  
2.0  
(V-) + 2.0  
Common-Mode Input Voltage  
Range  
VIN-CM  
CMRR  
±14  
V (min)  
Common-Mode Rejection  
–10V<Vcm<10V  
–10V<Vcm<10V  
100  
30  
90  
dB (min)  
Differential Input Impedance  
kΩ  
ZIN  
Common Mode Input  
Impedance  
1000  
MΩ  
–10V<Vout<10V, RL = 600Ω  
–10V<Vout<10V, RL = 2kΩ  
–10V<Vout<10V, RL = 10kΩ  
RL = 600Ω  
100  
105  
98  
±12.5  
±21  
AVOL  
Open Loop Voltage Gain  
dB (min)  
105  
±13.5  
±14.0  
±14.1  
±25  
Maximum Output Voltage  
Swing  
VOUTMAX  
RL = 2kΩ  
V (min)  
RL = 10kΩ  
IOUT  
Output Current  
RL = 600, VS = ±17V  
mA (min)  
mA  
Instantaneous Short Circuit  
Current  
+53  
–42  
IOUT-CC  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ROUT  
Output Impedance  
0.01  
13  
Capacitive Load Drive  
Overshoot  
CLOAD  
IS  
100pF  
16  
%
Total Quiescent Current  
IOUT = 0mA  
6.7  
7.5  
mA (max)  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
 
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD+N vs Output Voltage  
THD+N vs Output Voltage  
VS = ±5V, RL = 2k  
VS = ±5V, RL = 10kΩ  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
10m  
100m  
1
3
10m  
100m  
1
2
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 3.  
Figure 4.  
THD+N vs Output Voltage  
THD+N vs Output Voltage  
VS = ±5V, RL = 600Ω  
VS = ±15V, RL = 2kΩ  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.00001  
20  
10m  
100m  
1
10  
10m  
100m  
1
2
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 5.  
Figure 6.  
THD+N vs Output Voltage  
VS = ±15V, RL = 10kΩ  
THD+N vs Output Voltage  
VS = ±15V, RL = 600Ω  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.00001  
0.00001  
20  
10m  
100m  
1
10  
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 7.  
Figure 8.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 2kΩ  
THD+N vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 10kΩ  
0.1  
0.001  
0.1  
0.001  
0.0001  
0.00001  
0.0001  
0.00001  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9.  
Figure 10.  
THD+N vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 600Ω  
PSRR+ vs Frequency  
VS = ±15V, RL = 2k, VRIPPLE = 200mVPP  
0.1  
0.001  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.0001  
0.00001  
-100  
-110  
-120  
-130  
-140  
20  
200  
2k  
20k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11.  
Figure 12.  
PSRR+ vs Frequency  
VS = ±5V, RL = 10k, VRIPPLE = 200mVPP  
+0  
PSRR+ vs Frequency  
VS = ±5V, RL = 600, VRIPPLE = 200mVPP  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13.  
Figure 14.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VS = ±15V, RL = 2k, VRIPPLE = 200mVPP  
+0  
PSRR+ vs Frequency  
VS = ±15V, RL = 10k, VRIPPLE = 200mVPP  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15.  
Figure 16.  
PSRR+ vs Frequency  
PSRR- vs Frequency  
VS = ±5V, RL = 2k, VRIPPLE = 200mVPP  
+0  
VS = ±15V, RL = 600, VRIPPLE = 200mVPP  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17.  
Figure 18.  
PSRR- vs Frequency  
PSRR- vs Frequency  
VS = ±5V, RL = 600, VRIPPLE = 200mVPP  
+0  
VS = ±5V, RL = 10k, VRIPPLE = 200mVPP  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19.  
Figure 20.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR- vs Frequency  
PSRR- vs Frequency  
VS = ±15V, RL = 10k, VRIPPLE = 200mVPP  
+0  
VS = ±15V, RL = 2k, VRIPPLE = 200mVPP  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21.  
Figure 22.  
PSRR- vs Frequency  
VS = ±15V, RL = 10k, VRIPPLE = 200mVPP  
CMRR vs Frequency  
VS = ±15V, RL = 2k, VIN = 200mVPP  
+0  
-10  
-20  
+0  
-10  
-20  
-30  
-40  
-50  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-80  
-100  
-110  
-120  
-130  
-140  
-90  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23.  
Figure 24.  
CMRR vs Frequency  
VS = ±15V, RL = 10k, VIN = 200mVPP  
CMRR vs Frequency  
VS = ±15V, RL = 600, VIN = 200mVPP  
+0  
-10  
-20  
-30  
-40  
-50  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25.  
Figure 26.  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 2k,  
Crosstalk vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 10k,  
0.01  
+0  
-10  
0.005  
-20  
0.002  
0.001  
-30  
-40  
-50  
0.0005  
-60  
0.0002  
0.0001  
-70  
-80  
-90  
0.00005  
-100  
-110  
-120  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20  
200  
2k  
20k  
Hz  
FREQUENCY (Hz)  
Figure 27.  
Figure 28.  
Crosstalk vs Frequency  
VS = ±15V, VOUT = 3VRMS, RL = 600,  
IMD vs Output Voltage  
VS = ±5V, RL = 2k,  
0.01  
0.1  
0.01  
0.005  
0.002  
0.001  
0.0005  
0.0002  
0.0001  
0.001  
0.00005  
0.00002  
0.00001  
0.0001  
10m  
20 50 100 200 500 1k 2k 5k 10k 20k  
100m  
1
2
5
Hz  
OUTPUT VOLTAGE (V)  
Figure 29.  
Figure 30.  
IMD vs Output Voltage  
VS = ±5V, RL = 10k,  
IMD vs Output Voltage  
VS = ±5V, RL = 600,  
0.1  
0.01  
0.1  
0.01  
0.001  
0.0001  
0.001  
0.0001  
10m  
100m  
1
2
5
10m  
100m  
1
2
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 31.  
Figure 32.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Output Voltage vs Load Resistance  
VS = ±5V, THD+N = 1%  
Output Voltage vs Load Resistance  
VDD = 15V, VSS = –15V, THD+N = 0.1%  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
500  
600  
800  
2k  
5k  
10k  
500  
600  
800  
2k  
5k  
10k  
LOAD RESISTANCE  
LOAD RESISTANCE  
Figure 33.  
Figure 34.  
Output Voltage vs Supply Voltage  
Output Voltage vs Supply Voltage  
RL = 2k, THD+N = 0.1%  
RL = 10k, THD+N = 0.1%  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 35.  
Figure 36.  
Output Voltage vs Supply Voltage  
Supply Current vs Supply Voltage  
RL = 600, THD+N = 1%  
RL = 2kΩ  
7
6
12  
10  
8
5
4
6
3
2
4
2
1
0
0
4
6
8
10  
12  
14  
16  
18  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (V)  
Figure 37.  
Figure 38.  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Supply Current vs Supply Voltage  
Supply Current vs Supply Voltage  
RL = 10kΩ  
RL = 600Ω  
7
6
7
6
5
4
5
4
3
2
3
2
1
0
1
0
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 39.  
Figure 40.  
Noninverting Amp  
Noninverting Amp  
Figure 41.  
Figure 42.  
Inverting Amp  
Voltage Gain & Phase vs Frequency  
Figure 43.  
Figure 44.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Power Bandwidth  
Equivalent Input Noise vs Frequency  
10  
5
2
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 45.  
Figure 46.  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
APPLICATION INFORMATION  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by LME49723 is below the capabilities of all commercially  
available equipment. This makes distortion measurements just slightly more difficult than simply connecting a  
distortion meter to the amplifier’s inputs and outputs. The solution, however, is quite simple: an additional  
resistor. Adding this resistor extends the resolution of the distortion measurement equipment.  
The LME49723’s low residual distortion is an input referred internal error. As shown in Figure 47, adding the 10Ω  
resistor connected between the amplifier’s inverting and non-inverting inputs changes the amplifier’s noise gain.  
The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier’s closed-loop  
gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that  
measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the  
value of R1 low as shown in Figure 47.  
This technique is verified by duplicating the measurements with high closed loop gain and/or making the  
measurements at high frequencies. Doing so produces distortion components that are within the measurement  
equipment’s capabilities. This datasheet’s THD+N and IMD values were generated using the above described  
circuit connected to an Audio Precision System Two Cascade.  
R2  
1000W  
-
LME49723  
R1  
10W  
Distortion Signal Gain = 1+(R2/R1)  
+
Analyzer Input  
Generator Output  
Audio Precision  
System Two  
Cascade  
Actual Distortion = AP Value/100  
Figure 47. THD+N and IMD Distortion Test Circuit  
The LME49723 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF  
will cause little change in the phase characteristics of the amplifiers and are therefore allowable.  
Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is  
to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is  
accidentally shorted.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LME49723  
 
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for  
power line noise.  
Figure 48. Noise Measurement Circuit Total Gain: 115 dB @f = 1 kHz  
Input Referred Noise Voltage: en = V0/560,000 (V)  
Figure 49. RIAA Preamp Voltage Gain,  
RIAA Deviation vs Frequency  
Figure 50. Flat Amp Voltage Gain vs Frequency  
TYPICAL APPLICATIONS  
VO = V1–V2  
Figure 51. Balanced to Single Ended Converter  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
VO = V1 + V2 V3 V4  
Figure 52. Adder/Subtracter  
Figure 53. Sine Wave Oscillator  
Illustration is f0 = 1 kHz  
Figure 54. Second Order High Pass Filter (Butterworth)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
Illustration is f0 = 1 kHz  
Figure 55. Second Order Low Pass Filter (Butterworth)  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
Figure 56. State Variable Filter  
Figure 57. AC/DC Converter  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
Figure 58. 2 Channel Panning Circuit (Pan Pot)  
Figure 59. Line Driver  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
Figure 60. Tone Control  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
Figure 61. RIAA Preamp  
Illustration is:  
V0 = 101(V2 V1)  
Figure 62. Balanced Input Mic Amp  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
LME49723  
www.ti.com  
SNAS429B JANUARY 2008REVISED APRIL 2013  
Figure 63. Band Graphic Equalizer  
fo (Hz)  
C1  
C2  
R1  
R2  
32  
64  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
3.3μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LME49723  
LME49723  
SNAS429B JANUARY 2008REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Rev  
1.0  
1.01  
B
Date  
Description  
01/07/08  
02/11/08  
04/04/13  
Initial release.  
Text edits.  
Changed layout of National Data Sheet to TI format.  
20  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49723  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LME49723MA/NOPB  
LME49723MAX/NOPB  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
L49723  
MA  
ACTIVE  
2500 RoHS & Green  
SN  
L49723  
MA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LME49723MAX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LME49723MAX/NOPB  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LME49723MA/NOPB  
D
8
95  
495  
8
4064  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LME49724

High Performance, High Fidelity, Fully-Differential Audio Operational Amplifier
NSC

LME49724

2 通道、50MHz、高保真、高性能、全差动音频运算放大器
TI

LME49724MR

High Performance, High Fidelity, Fully-Differential Audio Operational Amplifier
NSC

LME49724MR

OP-AMP, 1000uV OFFSET-MAX, 50MHz BAND WIDTH, PDSO8, PSOP-8
TI

LME49724MR/NOPB

2 通道、50MHz、高保真、高性能、全差动音频运算放大器 | DDA | 8 | -40 to 85
TI

LME49724MRX

IC,DIFFERENTIAL AMPLIFIER,SINGLE,SOP,8PIN,PLASTIC
TI

LME49724MRX/NOPB

2 通道、50MHz、高保真、高性能、全差动音频运算放大器 | DDA | 8 | -40 to 85
TI

LME49725

PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49725

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
TI

LME49725MA

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
TI

LME49725MAX

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
TI

LME49726

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC