LME49725 [TI]

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier;
LME49725
型号: LME49725
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier

文件: 总25页 (文件大小:1730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
LME49725 PowerWise® Dual High Performance, High Fidelity Audio Operational Amplifier  
Check for Samples: LME49725  
1
FEATURES  
DESCRIPTION  
The LME49725 is part of the ultra-low distortion, low  
noise, high slew rate operational amplifier series  
optimized and fully specified for high performance,  
high fidelity applications. Combining advanced  
leading-edge process technology with state-of-the-art  
circuit design, the LME49725 audio operational  
amplifiers deliver superior audio signal amplification  
for outstanding audio performance. The LME49725  
combines extremely low voltage noise density  
(3.3nV/Hz) with vanishingly low THD+N (0.00004%)  
to easily satisfy the most demanding audio  
applications. To ensure that the most challenging  
loads are driven without compromise, the LME49725  
has a high slew rate of ±15V/μs and an output current  
capability of ±22mA. Further, dynamic range is  
maximized by an output stage that drives 2kloads  
to within 1V of either power supply voltage and to  
within 1.4V when driving 600loads.  
2
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
PSRR and CMRR Exceed 120dB (Typ)  
APPLICATIONS  
Audio Amplification  
Preamplifiers  
Multimedia  
Phono Preamplifiers  
Professional Audio  
Equalization and Crossover Networks  
Line Drivers  
Line Receivers  
Active Filters  
Part of the PowerWise® family of energy efficient  
solutions, the LME49725 consumes only 3.0mA of  
supply current per amplifier while providing superior  
performance to high performance, high fidelity  
applications.  
KEY SPECIFICATIONS  
Power Supply Voltage Range: ±4.5V to ±18 V  
THD+N (AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
RL = 2k: 0.00004% (Typ)  
RL = 600: 0.00004% (Typ)  
The LME49725's outstanding CMRR (120dB), PSRR  
(120dB), and VOS (0.5mV) give the amplifier excellent  
operational amplifier DC performance.  
Quiescent Current per Amplifier: 3.0 mA (Typ)  
Input Noise Density: 3.3 nV/Hz (Typ)  
Slew Rate: ±15 V/μs (Typ)  
The LME49725 has a wide supply range of ±4.5V to  
±18V. Over this supply range the LME49725’s input  
circuitry maintains excellent common-mode and  
power supply rejection, as well as maintaining its low  
input bias current. The LME49725 is unity gain  
stable. This audio operational amplifier achieves  
outstanding AC performance while driving complex  
loads with values as high as 100pF.  
Gain Bandwidth Product: 40 MHz (Typ)  
Open Loop Gain (RL = 600): 135 dB (Typ)  
Input Bias Current: 15 nA (Typ)  
Input Offset Voltage: 0.5 mV (Typ)  
DC Gain Linearity Error: 0.000009 % (Typ)  
The LME49725 is available in 8–lead narrow body  
SOIC.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Connection Diagram  
1
2
3
4
8
7
6
5
+
OUTPUT A  
V
INVERTING INPUT A  
OUTPUT B  
A
B
-
+
+
-
NON-INVERTING  
INPUT A  
INVERTING INPUT B  
NON-INVERTING  
INPUT B  
-
V
Figure 1. SOIC Package  
See Package Number D0008A  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
Power Supply Voltage (VS = V+ - V-)  
Storage Temperature  
Input Voltage  
38V  
65°C to 150°C  
(V-)-0.7V to (V+)+0.7V  
±0.7V  
Differential Input Voltage  
Output Short Circuit(3)  
Power Dissipation  
Continuous  
Internally Limited  
2000V  
ESD Rating(4)  
Pins 1, 4, 7 and 8  
Pins 2, 3, 5 and 6  
200V  
ESD Rating(5)  
100V  
Junction Temperature  
150°C  
Thermal Resistance  
θJA (SOIC)  
145°C/W  
Temperature Range (TMIN TA TMAX  
)
–40°C TA 85°C  
±4.5V VS ±18V  
Supply Voltage Range  
(1) “Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower.  
(4) Human body model, applicable std. JESD22-A114C.  
(5) Machine model, applicable std. JESD22-A115-A.  
2
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Electrical Characteristics for the LME49725(1)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49725  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(2)  
Limit(3)  
AV = 1, VOUT = 3Vrms  
THD+N  
IMD  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
RL = 2kΩ  
RL = 600Ω  
0.00004  
0.00004  
%
%
0.0002  
AV = 1, VOUT = 3VRMS  
Two-tone, 60Hz & 7kHz 4:1  
0.00005  
%
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
40  
30  
MHz (min)  
±15  
±10  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
7
MHz  
AV = –1, 10V step, CL = 100pF  
0.1% error range  
Settling time  
1.6  
0.4  
μs  
μVRMS  
(max)  
Equivalent Input Noise Voltage  
Equivalent Input Noise Density  
fBW = 20Hz to 20kHz  
0.8  
5.2  
en  
f = 1kHz  
f = 10Hz  
3.3  
20  
nV/Hz  
(max)  
f = 1kHz  
f = 10Hz  
1.4  
3.5  
pA/Hz  
pA/Hz  
in  
Current Noise Density  
Offset Voltage  
VOS  
±0.5  
±1.0  
100  
mV (max)  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOS/ΔTemp  
–40°C TA 85°C  
ΔVS = 20V(4)  
0.2  
μV/°C  
Average Input Offset Voltage Shift vs  
Power Supply Voltage  
PSRR  
120  
dB (min)  
fIN = 1kHz  
fIN = 20kHz  
118  
112  
dB  
dB  
ISOCH-CH  
IB  
Channel-to-Channel Isolation  
Input Bias Current  
VCM = 0V  
±15  
±90  
65  
nA (max)  
Input Bias Current Drift vs  
Temperature  
ΔIOS/ΔTemp  
IOS  
–40°C TA 85°C  
VCM = 0V  
0.1  
nA/°C  
Input Offset Current  
11  
nA (max)  
(V+)-2.0  
(V-)+2.0  
V (min)  
V (min)  
VIN-CM  
CMRR  
Common-Mode Input Voltage Range  
±13.9  
Common-Mode Rejection  
–10V<Vcm<10V  
120  
30  
100  
110  
dB (min)  
kΩ  
Differential Input Impedance  
Common Mode Input Impedance  
ZIN  
–10V<Vcm<10V  
1000  
135  
MΩ  
–10V<Vout<10V, RL = 600Ω  
–10V<Vout<10V, RL = 2kΩ  
–10V<Vout<10V, RL = 10kΩ  
RL = 600Ω  
dB (min)  
dB  
AVOL  
Open Loop Voltage Gain  
135  
135  
dB  
±13.6  
±13.9  
±14.0  
±22  
±11.5  
V (min)  
V
VOUTMAX  
Maximum Output Voltage Swing  
RL = 2kΩ  
RL = 10kΩ  
V
IOUT  
Output Current  
RL = 600, VS = ±17V  
mA (min)  
+45  
–35  
mA  
mA  
IOUT-CC  
Instantaneous Short Circuit Current  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of  
product characterization and are not ensured.  
(3) Datasheet min/max specification limits are ensured by test or statistical analysis.  
(4) PSRR is measured as follows: VOS is measured at two supply voltages, ±5V and ±15V, PSRR = |20log(ΔVOS/ΔVS)|.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Electrical Characteristics for the LME49725(1) (continued)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49725  
Limit(3)  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(2)  
fIN = 10kHz  
ROUT  
Output Impedance  
Closed-Loop  
Open-Loop  
0.01  
18  
CLOAD  
IS  
Capacitive Load Drive Overshoot  
Quiescent Current per Amplifier  
1/f Corner Frequency  
100pF  
16  
3.0  
120  
%
mA (max)  
Hz  
IOUT = 0mA  
4.5  
fC  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
 
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics  
THD+N vs Frequency  
THD+N vs Frequency  
VS = 15V, VOUT = 3VRMS, RL = 600  
VS = 4.5V, VOUT = 1.2VRMS, RL = 600Ω  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 2.  
Figure 3.  
THD+N vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 600Ω  
THD+N vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS, RL = 2kΩ  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.00001  
20  
0.00001  
20  
200  
2k  
20k  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4.  
Figure 5.  
THD+N vs Frequency  
VS = 15V, VOUT = 3VRMS, RL = 2kΩ  
THD+N vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 2kΩ  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
20  
0.00001  
20  
200  
2k  
20k  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6.  
Figure 7.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
THD+N vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS, RL = 10kΩ  
0.1  
THD+N vs Frequency  
VS = 15V, VOUT = 3VRMS, RL = 10kΩ  
0.1  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20k  
2k  
20  
200  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8.  
Figure 9.  
THD+N vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 10kΩ  
THD+N vs Output Voltage  
VS = 4.5V, RL = 600, f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.00001  
0.00001  
20  
200  
2k  
20k  
10m  
100m  
1
4
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 10.  
Figure 11.  
THD+N vs Output Voltage  
VS = 15V, RL = 600, f = 1kHz  
THD+N vs Output Voltage  
VS = 18V, RL = 600, f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 12.  
Figure 13.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
THD+N vs Output Voltage  
VS = 4.5V, RL = 2k, f = 1kHz  
THD+N vs Output Voltage  
VS = 15V, RL = 2k, f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
4
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 14.  
Figure 15.  
THD+N vs Output Voltage  
VS = 18V, RL = 2k, f = 1kHz  
THD+N vs Output Voltage  
VS = 4.5V, RL = 10k, f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
4
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 16.  
Figure 17.  
THD+N vs Output Voltage  
VS = 15V, RL = 10k, f = 1kHz  
THD+N vs Output Voltage  
VS = 18V, RL = 10k, f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 18.  
Figure 19.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
CMRR vs Frequency  
VS = 4.5V, RL = 600Ω  
CMRR vs Frequency  
VS = 15V, RL = 600Ω  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20.  
Figure 21.  
CMRR vs Frequency  
VS = 15V, RL = 600Ω  
CMRR vs Frequency  
VS = 4.5V, RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22.  
Figure 23.  
CMRR vs Frequency  
VS = 15V, RL = 2kΩ  
CMRR vs Frequency  
VS = 18V, RL = 2kΩ  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
FREQUENCY (Hz)  
Figure 25.  
2k  
20k  
20  
200  
FREQUENCY (Hz)  
Figure 24.  
2k  
20k  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
CMRR vs Frequency  
VS = 4.5V, RL = 10kΩ  
CMRR vs Frequency  
VS = 15V, RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26.  
Figure 27.  
CMRR vs Frequency  
VS = 18V, RL = 10kΩ  
+PSRR vs Frequency  
VS = 4.5V, RL = 2k, VRIPPLE = 200mVP-P  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28.  
Figure 29.  
+PSRR vs Frequency  
+PSRR vs Frequency  
VS = 4.5V, RL = 10k, VRIPPLE = 200mVP-P  
VS = 4.5V, RL = 600, VRIPPLE = 200mVP-P  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30.  
Figure 31.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
+PSRR vs Frequency  
VS = 15V, RL = 2k, VRIPPLE = 200mVP-P  
0
+PSRR vs Frequency  
VS = 15V, RL = 10k, VRIPPLE = 200mVP-P  
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32.  
Figure 33.  
+PSRR vs Frequency  
+PSRR vs Frequency  
VS = 18V, RL = 2k, VRIPPLE = 200mVP-P  
VS = 15V, RL = 600, VRIPPLE = 200mVP-P  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34.  
Figure 35.  
+PSRR vs Frequency  
+PSRR vs Frequency  
VS = 18V, RL = 10k, VRIPPLE = 200mVP-P  
VS = 18V, RL = 600, VRIPPLE = 200mVP-P  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36.  
Figure 37.  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
-PSRR vs Frequency  
-PSRR vs Frequency  
VS = 4.5V, RL = 2k, VRIPPLE = 200mVP-P  
VS = 4.5V, RL = 10k, VRIPPLE = 200mVP-P  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 38.  
Figure 39.  
-PSRR vs Frequency  
-PSRR vs Frequency  
VS = 15V, RL = 2k, VRIPPLE = 200mVP-P  
VS = 4.5V, RL = 600, VRIPPLE = 200mVP-P  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40.  
Figure 41.  
-PSRR vs Frequency  
-PSRR vs Frequency  
VS = 15V, RL = 10k, VRIPPLE = 200mVP-P  
VS = 15V, RL = 600, VRIPPLE = 200mVP-P  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42.  
Figure 43.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
-PSRR vs Frequency  
VS = 18V, RL = 2k, VRIPPLE = 200mVP-P  
-PSRR vs Frequency  
VS = 18V, RL = 10k, VRIPPLE = 200mVP-P  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
200k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 44.  
Figure 45.  
-PSRR vs Frequency  
VS = 18V, RL = 600, VRIPPLE = 200mVP-P  
Crosstalk vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS, RL = 600Ω  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46.  
Figure 47.  
Crosstalk vs Frequency  
VS = 15V, VOUT = 3VRMS, RL = 600Ω  
Crosstalk vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 600Ω  
0
-20  
0
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48.  
Figure 49.  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
Crosstalk vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS,, RL = 2kΩ  
Crosstalk vs Frequency  
VS = 15V, VOUT = 3VRMS,, RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50.  
Figure 51.  
Crosstalk vs Frequency  
VS = 18V, VOUT = 3VRMS,, RL = 2kΩ  
Crosstalk vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS,, RL = 10kΩ  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52.  
Figure 53.  
Crosstalk vs Frequency  
VS = 4.5V, VOUT = 1.2VRMS,, RL = 600Ω  
Crosstalk vs Frequency  
VS = 15V, VOUT = 3VRMS,, RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54.  
Figure 55.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Crosstalk vs Frequency  
VS = 15V, VOUT = 3VRMS,, RL = 600Ω  
Crosstalk vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 10kΩ  
0
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 56.  
Figure 57.  
Crosstalk vs Frequency  
VS = 18V, VOUT = 3VRMS, RL = 600Ω  
IMD vs Output Voltage  
VS = 4.5V, RL = 600Ω  
0
-20  
0.1  
0.01  
-40  
-60  
0.001  
-80  
-100  
-120  
-140  
0.0001  
0.00001  
20  
200  
2k  
20k  
10m  
100m  
1
4
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 58.  
Figure 59.  
IMD vs Output Voltage  
VS = 15V, RL = 600Ω  
IMD vs Output Voltage  
VS = 18V, RL = 600Ω  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 60.  
Figure 61.  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
IMD vs Output Voltage  
VS = 4.5V, RL = 2kΩ  
IMD vs Output Voltage  
VS = 15V, RL = 2kΩ  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
4
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 62.  
Figure 63.  
IMD vs Output Voltage  
VS = 18V, RL = 2kΩ  
IMD vs Output Voltage  
VS = 4.5V, RL = 10kΩ  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
4
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 64.  
Figure 65.  
IMD vs Output Voltage  
VS = 15V, RL = 10kΩ  
IMD vs Output Voltage  
VS = 18V, RL = 10kΩ  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10m  
100m  
1
10 20  
10m  
100m  
1
10 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 66.  
Figure 67.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Total Quiescent Current  
vs Power Supply  
Voltage Noise Density vs Frequency  
VCC = 15V, VEE = –15V, No Load  
100  
6.5  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
10  
1
4
6
8
10  
12  
14  
16 18  
1
10  
100  
1k  
10k  
100k  
POWER SUPPLY (V)  
FREQUENCY (Hz)  
Figure 68.  
Figure 69.  
Current Noise vs Frequency  
VCC = 15V, VEE = –15V, No Load  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 70.  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
APPLICATION INFORMATION  
OPERATING RATINGS AND BASIC DESIGN GUIDELINES  
The LME49725 has a supply voltage range from +9V to +36V single supply or ±4.5V to ±18V dual supply.  
Bypass capacitors for the supplies should be placed as close to the amplifier as possible. This will help minimize  
any inductance between the power supply and the supply pins. In addition to a 10μF capacitor, a 0.1μF capacitor  
is also recommended.  
The amplifier’s inputs lead lengths should also be as short as possible. If the op amp does not have a bypass  
capacitor, it may oscillate.  
Demonstration Board Schematic  
JP  
1
R
R
2
3
1
2
JMPR  
JMPR  
2
1
P
1
R
1
JP  
2
-
JMPR  
3
+
1
2
V
DD  
R
4
P
2
C
3
JP  
5
JP  
3
R
7
R
8
1
2
3
C
2
1
2
JMPR  
JMPR  
5
4
P
3
C
1
R
6
JP  
4
-
JMPR  
6
+
1
2
C
4
V
SS  
R
9
P
4
Bill Of Materials For Demonstration Board (Inverting Configuration)  
Description  
Designator(1)  
Part Number  
Mfg  
Ceramic Capacitor 0.1μF, 10% 50V  
0805 SMD  
C1, C2  
C0805C104K3RAC7533  
Kemet  
Tantalum Capacitor 10μF, 10% 20V,  
B-size  
C3, C4  
T491B106K025AT  
Kemet  
Resistor 0, 1/8W, 1% 0805 SMD  
Resistor 10k, 1/8W, 1% 0805 SMD  
Header, 2-Pin  
JMPR1, JMPR4, R1, R4, R6, R9  
R2, R3, R8, R7  
CRCW0805000020EA  
CRCW080510K0FKEA  
Vishay  
Vishay  
JP1, JP2, JP3, JP4  
JP5  
Header, 3-Pin  
SMA stand-up connectors  
P1-P4 (Optional)  
132134  
Amphenol COnnex  
(1) Do not stuff JMPR2, JMPR3, JMPR5, and JMPR6.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LME49725  
LME49725  
SNAS427A APRIL 2008REVISED APRIL 2013  
www.ti.com  
Demonstration Board Layout  
Figure 71. Silkscreen Layer  
Figure 72. Top Layer  
Figure 73. Bottom Layer  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49725  
LME49725  
www.ti.com  
SNAS427A APRIL 2008REVISED APRIL 2013  
REVISION HISTORY  
Rev  
1.0  
A
Date  
Description  
04/03/08  
04/03/13  
Initial release.  
Changed layout of National Data Sheet to TI format.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LME49725  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
LME49725MA/NOPB  
LME49725MAX/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOIC  
SOIC  
D
8
8
95  
Green (RoHS  
& no Sb/Br)  
SN | CU SN  
Level-1-260C-UNLIM  
L49725  
MA  
ACTIVE  
D
2500  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-1-260C-UNLIM  
-40 to 85  
L49725  
MA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LME49725MAX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
349.0 337.0 45.0  
LME49725MAX/NOPB  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LME49725MA

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
TI

LME49725MAX

LME49725 PowerWise Dual High Performance, High Fidelity Audio Operational Amplifier
TI

LME49726

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC

LME49726

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器
TI

LME49726MY

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC

LME49726MY/NOPB

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器 | DGN | 8 | -40 to 85
TI

LME49726MYX

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC

LME49726MYX/NOPB

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器 | DGN | 8 | -40 to 85
TI

LME49740

Quad High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49740

LME49740 Quad High-Performance, High-Fidelity Audio Operational Amplifier
TI

LME49740MA/NOPB

Quad High Performance, High Fidelity Audio Operational Amplifier 14-SOIC -40 to 85
TI

LME49740MAX/NOPB

Quad High Performance, High Fidelity Audio Operational Amplifier 14-SOIC -40 to 85
TI