LMH32401IRGTR [TI]

可编程增益、差分输出高速跨阻放大器 | RGT | 16 | -40 to 125;
LMH32401IRGTR
型号: LMH32401IRGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可编程增益、差分输出高速跨阻放大器 | RGT | 16 | -40 to 125

放大器
文件: 总41页 (文件大小:2432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH32401  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
LMH32401 450MHz 可编程增益、差分输出跨阻放大器  
1 特性  
3 说明  
• 集成的可编程增益2kΩ20kΩ  
• 性能= 2kΩ、CPD = 1pF:  
LMH32401 器件是一款增益可编程的单端输入转差分  
输出跨阻放大器适用于光检测和测距激光雷达应  
用和激光测距系统。可以为 LMH32401 器件配置 2kΩ  
20kΩ益。LMH32401 器件具1.5VPP 的输出摆  
可驱100Ω载。  
– 带宽450 MHz  
– 输入参考噪声250nARMS  
– 上升下降时间0.8ns  
• 性能= 20kΩ、CPD = 1pF:  
LMH32401 器件集成了一100mA 钳位电路可以为  
放大器提供保护并允许器件迅速从过载输入状况中恢  
复。LMH32401 器件还具有一个集成式环境光消除电  
可取代光电二极管与放大器之间的交流耦合从而  
节省布板空间并降低系统成本。当需要直流耦合时可  
以禁用环境光消除电路。  
– 带宽275 MHz  
– 输入参考噪声49nARMS  
– 上升下降时间1.3ns  
• 集成式环境光消除  
• 集成100mA 保护钳位  
• 集成式输出多路复用器  
• 宽输出摆幅1.5 V VPP  
• 静态电流30mA  
当不使用放大器时可以使用 EN 引脚将 LMH32401  
器件置于低功耗模式以节省电力。将放大器置于低功  
耗模式会使其输出引脚进入高阻抗状态。此功能允许多  
LMH32401 放大器多路复用到单个 ADC EN 控  
制引脚将用作多路复用器选择功能。  
• 封装16 VQFN 和裸片  
• 温度范围40 125° C  
2 应用  
封装信息(1)  
机械扫描激光雷达  
固态扫描激光雷达  
激光测距仪  
ToF 位置传感器  
无人机视觉  
工业机器人激光雷达  
移动机器人激光雷达  
扫地机器人激光雷达  
封装尺寸标称值)  
器件型号  
LMH32401  
封装  
VQFN (16)  
3.00mm × 3.00mm  
器件信息(1)  
芯片尺寸标称值)  
器件型号  
LMH32401  
封装  
裸片  
1.025mm × 1.060mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
3
GAIN  
EN  
VDD1  
VDD2  
1 kΩ  
0
-3  
-6  
-9  
100-mA  
Clamp  
10 kΩ  
Differential Output ADC  
Driver  
IN  
TIA  
10 Ω  
OUTÞ  
VOCM  
OUT+  
Ambient Light  
Cancellation  
Þ VBIAS  
IDC EN  
VOD  
+
2x  
œ
-12  
Gain = 2 kW  
Gain = 20 kW  
Output Offset  
10 Ω  
-15  
10M  
100M  
Frequency [Hz]  
1G  
GND  
简化版方框图  
闭环跨阻带宽  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS965  
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
Table of Contents  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Application ................................................... 26  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................29  
10.1 Layout Guidelines................................................... 29  
10.2 Layout Example...................................................... 30  
11 Device and Documentation Support..........................31  
11.1 Device Support........................................................31  
11.2 Documentation Support.......................................... 31  
11.3 接收文档更新通知................................................... 31  
11.4 支持资源..................................................................31  
11.5 Trademarks............................................................. 31  
11.6 静电放电警告...........................................................31  
11.7 术语表..................................................................... 31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics: Gain = 2 k....................... 7  
6.6 Electrical Characteristics: Gain = 20 k..................... 8  
6.7 Electrical Characteristics: Both Gains.........................9  
6.8 Electrical Characteristics: Logic Threshold and  
Switching Characteristics............................................ 11  
6.9 Typical Characteristics..............................................12  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................21  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (August 2022) to Revision D (January 2023)  
Page  
Updated the backside potential information for bare die package information in the Pin Configuration and  
Functions section ...............................................................................................................................................3  
Changes from Revision B (February 2022) to Revision C (August 2022)  
Page  
• 将裸片的状态从预发更改为正在供.............................................................................................................1  
Updated the bare die package information in the Pin Configuration and Functions section.............................. 3  
Changes from Revision A (September 2020) to Revision B (February 2022)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
• 向部分和器件信表添加了裸片预发布封............................................................................................. 1  
Added the bare die preview package to the Pin Configuration and Functions section.......................................3  
Changes from Revision * (October 2019) to Revision A (June 2020)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
5 Pin Configuration and Functions  
GAIN  
16  
NC  
15  
VDD2  
14  
NC  
13  
12  
11  
10  
9
VOCM  
OUTÞ  
OUT+  
VOD  
GND  
VDD1  
IN  
1
2
3
4
Thermal Pad  
NC  
5
6
8
7
IDC_EN  
EN  
NC  
GND  
Not to scale  
5-1. RGT Package, 16-Pin VQFN with Exposed Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
EN  
NO.  
6
I
I
I
Device enable pin. EN = logic low = normal operation (default)(1); EN = logic high = power off mode.  
Gain setting. GAIN = low = 2 kΩ(default)(1); GAIN = high = 20 kΩ.  
Amplifier ground.  
GAIN  
GND  
16  
1, 7  
Ambient light cancellation (ALC) loop enable. IDC_EN = logic low = enable DC current cancellation  
(default)(1); IDC_EN = logc high = disable DC current cancellation.  
IDC_EN  
5
3
I
IN  
I
Transimpedance amplifier input.  
No connection.  
NC  
4, 8, 13, 15  
11  
Inverting amplifier output. When light is incident on the photodiode the output pin transitions in a  
negative direction from the no light condition (APD anode connected to negative bias).  
O
OUT–  
Noninverting amplifier output. When light is incident on the photodiode the output pin transitions in a  
positive direction from the no light condition (APD anode connected to negative bias).  
OUT+  
VDD1  
VDD2  
10  
2
O
I
Positive power supply for the transimpedance amplifier stage.  
Positive power supply for the differential amplifier stage. Tie VDD1 and VDD2 to the same power  
supply with independent power-supply bypassing.  
14  
I
VOCM  
12  
9
I
I
Differential amplifier common-mode output setting.  
VOD  
Differential amplifier differential output offset setting.  
Thermal pad  
Connect the thermal pad to GND or the most negative power supply of the device under test (DUT).  
(1) TI recommends driving a digital pin with a low-impedance source rather than leaving the pin floating because fast-moving transients  
can couple into the pin and inadvertently change the logic level.  
(2) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH32401  
 
 
 
 
LMH32401  
www.ti.com.cn  
BOND PAD  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
DIE THICKNESS  
BACKSIDE FINISH  
BACKSIDE POTENTIAL  
METALLIZATION  
Silicon with backgrind  
Wafer backside is not electrically isolated and should be held at  
the same potential as the most negative power supply  
connected to the die (GND)  
AlCu  
381 μm  
40  
LMH  
32401  
17  
16  
15  
14  
13  
1
PAD#1  
12  
2
11  
10  
9
3
4
5
6
7
8
0
40  
0
1025  
5-2. Bare Die Package  
5-2. Bond Pad Coordinates of Bare Die Version in Microns  
PAD NUMBER  
PAD NAME  
GND  
VDD1  
IN  
X-MIN  
Y-MIN  
711.4  
543  
X-MAX  
Y-MAX  
786.4  
618  
1
15  
90  
2
15  
90  
3
15  
362  
90  
437  
4
NC  
15  
201  
90  
276  
5
IDC_EN  
EN  
124.675  
286.675  
547.7  
713.675  
855  
15  
199.675  
361.675  
622.7  
788.675  
930  
90  
6
15  
90  
7
GND  
NC  
15  
90  
8
15  
90  
9
VOD  
OUT+  
NC  
169.075  
307.6  
452.5  
597.325  
736.05  
890  
244.075  
382.6  
527.5  
672.325  
811.05  
965  
10  
11  
12  
13  
14  
15  
16  
17  
855  
930  
855  
930  
OUT-  
VOCM  
NC  
855  
930  
855  
930  
713.65  
547.675  
286.675  
124.675  
788.65  
622.675  
361.675  
199.675  
VDD2  
NC  
890  
965  
890  
965  
GAIN  
890  
965  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.65  
VDD  
VDD  
25  
UNIT  
V
(2)  
VDD1, VDD2  
Total supply voltage, VDD  
Voltage at output pins  
0
V
Voltage at logic pins  
V
0.25  
IIN  
Continuous current into IN  
Continuous output current  
Junction temperature  
mA  
mA  
°C  
°C  
°C  
IOUT  
TJ  
35  
150  
125  
150  
TA  
Operating free-air temperature  
Storage temperature  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VDD1 and VDD2 should always be tied to the same supply and have separate power-supply bypass capacitors.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.45  
125  
UNIT  
V
VDD  
TA  
Total supply voltage  
3.3  
Operating free-air temperature  
°C  
40  
6.4 Thermal Information  
LMH32401(2)  
THERMAL METRIC(1)  
RGT (VQFN)  
12 PINS  
56.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67  
31.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.7  
ΨJT  
31.2  
ΨJB  
RθJC(bot)  
15.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH32401  
 
 
 
 
 
 
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
(2) Thermal information is applicable to packaged parts only.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.5 Electrical Characteristics: Gain = 2 k  
VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, GAIN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA = 25℃  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
Large-signal bandwidth  
Rise and fall time  
VOUT = 100 mVPP  
450  
450  
0.8  
MHz  
MHz  
ns  
VOUT = 1 VPP  
VOUT = 100 mVPP, pulse width = 10 ns  
VOUT = 1 VPP, pulse width = 10 ns  
IIN = 10 mA, pulse width = 10 ns  
f = 500 MHz  
Slew rate(2)  
1100  
4
V/µs  
ns  
Overload pulse extention (3)  
iN  
Integrated input current noise  
250  
nARMS  
DC PERFORMANCE  
Z21  
Small-signal transimpedance gain(4)  
Differential output offset voltage  
(VOUTVOUT+  
Differential output offset voltage drift  
1.75  
2
3.5  
2.25  
12  
kΩ  
mV  
VOD  
12  
)
±5.5  
µV/°C  
ΔVOD/ΔTA  
INPUT PERFORMANCE  
RIN  
Input Resistance  
60  
100  
2.47  
1.1  
120  
Ω
VIN  
Default input bias voltage  
Input pin floating  
Input pin floating  
2.42  
2.52  
V
Default input bias voltage drift  
mV/°C  
µA  
ΔVIN/ΔTA  
Z21 < 3-dB degradation from  
IIN = 50 µA  
IIN  
DC input current range  
600  
705  
(1) Input capacitance of photodiode.  
(2) Average of rising and falling slew rate.  
(3) Pulse width extension measured at 50% of pulse height of a square wave.  
(4) Gain measured at the amplifier output pins when driving a 100-Ωresistive load. At higher resistor loads the gain increases.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH32401  
 
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.6 Electrical Characteristics: Gain = 20 kΩ  
VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, GAIN = 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA = 25℃  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
Large-signal bandwidth  
Rise and fall time  
VOUT = 100 mVPP  
275  
275  
1.3  
700  
4
MHz  
MHz  
ns  
VOUT = 1 VPP  
VOUT = 100 mVPP, pulse width = 10 ns  
VOUT = 1 VPP, pulse width = 10 ns  
IIN = 10 mA, pulse width = 10 ns  
f = 250 MHz  
Slew rate(2)  
V/µs  
ns  
Overload pulse extension (4)  
iN  
Integrated input current noise  
49  
nARMS  
DC PERFORMANCE  
Z21  
Small-signal transimpedance gain(3)  
Differential output offset voltage  
(VOUTVOUT+  
Differential output offset voltage  
17  
20  
5
22.5  
20  
kΩ  
mV  
VOD  
20  
)
±17.5  
µV/°C  
ΔVOD/ΔTA  
INPUT PERFORMANCE  
RIN  
Input Resistance  
270  
350  
2.47  
1.1  
410  
Ω
VIN  
Default input bias voltage  
Input pin floating  
Input pin floating  
2.42  
2.52  
V
Default input bias voltage drift  
mV/°C  
µA  
ΔVIN/ΔTA  
Z21 < 3-dB degradation from  
IIN = 5 µA  
IIN  
DC input current range  
60  
72  
(1) Input capacitance of photodiode.  
(2) Average of rising and falling slew rate.  
(3) Gain measured at the amplifier output pins when driving a 100-Ωresistive load. At higher resistor loads the gain increases.  
(4) Pulse width extension measured at 50% of pulse height of a square wave.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.7 Electrical Characteristics: Both Gains  
VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, GAIN = 0 V / 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA =  
25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT PERFORMANCE  
Single-sided output voltage swing (high)  
VOH  
VOL  
TA = 25°C  
Single-sided output voltage swing (low)(2) TA = 25°C  
2.87  
2.9  
0.36  
26.6  
V
V
(2)  
0.39  
32  
TA = 25°C, IIN = 500 µA, gain = 2 k,  
RL = 25 Ω  
24  
TA = 40°C, IIN = 500 µA, gain = 2 k,  
RL = 25 Ω  
IOUT  
Linear output drive (sink and source)  
27.1  
25.1  
mA  
TA = 125°C, IIN = 500 µA, gain = 2 k,  
RL = 25 Ω  
ISC  
Output short-circuit current (differential) (3)  
70  
21  
mA  
Ω
ZOUT  
ZOUT  
DC output impedance (amplifier enabled) Differential impedance  
DC output impedance in shutdown Differential impedance  
18  
24  
2.8  
3.3  
kΩ  
OUTPUT COMMON-MODE CONTROL (VOCM) PERFORMANCE  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
VOCM = 100 mVPP at VOCM pin  
VOCM = 1 VPP at VOCM pin  
285  
85  
MHz  
MHz  
f = 10 MHz, 1-nF capacitor to GND on VOCM  
pin  
eN  
Output common-mode noise  
17.8  
nV/Hz  
IN floating, VOCM = 1.1 V (driven)  
1
0.5%  
±1%  
17  
V/V  
Gain, (ΔVOCM/ΔVOCM)  
AV  
TA = 25°C, VOCM = 0.7 V to 2.3 V  
2%  
20  
2%  
0
Gain error  
TA = 40°C to 125°C, VOCM = 0.7 V to 2.3 V  
Input impedance  
kΩ  
VOCMOS VOCM pin default offset from 1.1 V  
VOCM floating, (VOCM measured - 1.1 V)  
10  
mV  
ΔVOCM  
ΔIIN  
/
VOCM error vs Input current  
µV/µA  
V
Gain = 20 k, VOCM driven to 1.1 V  
15  
1.1  
Output common-mode voltage,  
(VOUT+ + VOUT-)/2  
VOCM  
TA = 25°C, VOCM pin floating  
1.05  
1.15  
Output common-mode voltage drift,  
(ΔVOCM/ΔTA)  
75  
µV/°C  
V
TA = 40°C to 125°C, VOCM pin floating  
TA = 25°C, VOCM pin driven to 1.1 V  
Output common-mode voltage,  
(VOUT+ + VOUT-)/2  
VOCM  
1.05  
1.1  
1.15  
Output common-mode voltage drift,  
(ΔVOCM/ΔTA)  
TA = 40°C to 125°C,  
VOCM pin driven to 1.1 V  
µV/°C  
14  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, GAIN = 0 V / 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA =  
25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT DIFFERENTIAL OFFSET (VOD) PERFORMANCE  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
Differential output offset,  
VOD = 100 mVPP at VOD pin  
45  
14  
MHz  
MHz  
VOD = 1 VPP  
VOS_D  
IN floating, VOD = 0.5 V  
490  
490  
510  
0.03  
510  
530  
530  
mV  
mV/℃  
mV  
VOUT = (VOUTVOUT+  
)
Differential output offset drift, ΔVOS_D  
ΔTA  
/
/
IN floating, VOD = 0.5 V  
Differential output offset,  
VOS_D  
IN floating, VOD floating  
VOUT = (VOUTVOUT+  
)
Differential output offset drift, ΔVOS_D  
ΔTA  
IN floating, VOD floating  
0.04  
1.01  
mV/℃  
V/V  
Gain, (ΔVOUT/ΔVOD), where  
IN floating, VOCM = 1.1 V (driven)  
VOUT = (VOUTVOUT+  
)
AV  
5%  
TA = 25, VOD = 0 V to 1.2 V  
5%  
1%  
±1.5%  
2.5  
Gain error  
TA = 40to 125, VOD = 0 V to 1.2 V  
Input impedance  
kΩ  
AMBIENT LIGHT CANCELLATION PERFORMANCE (IDC_EN = 0 V) (4)  
18  
2.5  
35  
IIN = 0 µA 100 µA, GAIN = 2 kΩ  
IIN = 0 µA 10 µA, GAIN = 20 kΩ  
IIN = 100 µA 0 µA, GAIN= 2 kΩ  
IIN = 10 µA 0 µA, GAIN = 20 kΩ  
Settling time (within VOD limit)  
µs  
13  
Differential output offset (VOUTVOUT+  
shift from IDC = 10 µA < ±10 mV  
)
Ambient light current cancellation range  
2
3
mA  
POWER SUPPLY  
TA = 25°C  
24  
30  
32  
27  
33.5  
TA = 125°C  
TA = 40°C  
IQ  
Quiescent current, total  
mA  
dB  
Positive power-supply rejection ratio,  
VDD1 = VDD2  
PSRR+  
54  
66  
SHUTDOWN  
TA = 25°C  
TA = 40°C  
TA = 125°C  
TA = 25°C  
2.4  
3.3  
2.75  
5.2  
4.2  
IQ  
Disabled quiescent current (EN = VDD  
)
mA  
µA  
Enable pin input bias current  
(1) Input capacitance of photodiode.  
75  
120  
(2) Output levels achieved by adjusting VOCM, VOD, and input current.  
(3) Device cannot withstand continuous short-circuit between the differential outputs.  
(4) Enabling the ambient light cancellation loop adds noise to the system.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.8 Electrical Characteristics: Logic Threshold and Switching Characteristics  
VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, GAIN = 0 V / 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA =  
25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC THRESHOLD PERFORMANCE  
High gain enable, threshold voltage  
Low gain enable, threshold voltage  
EN control, disable threshold voltage  
EN control, enable threshold voltage  
Amplifier in high gain above this voltage  
Amplifier in low gain below this voltage  
Amplifier disabled above this voltage  
Amplifier enabled below this voltage  
1.8  
1
2
2
V
V
V
V
0.8  
0.8  
1.8  
1
Ambient light cancellation loop disabled  
above this voltage  
IDC_EN control, disable threshold voltage  
1.8  
1
2
V
V
Ambient light cancellation loop enabled  
below this voltage  
IDC_EN control, enable threshold voltage  
0.8  
GAIN CONTROL TRANSIENT PERFORMANCE  
High gain to low gain transition-time,  
(1% settling)  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP (Initial condition), IDC = 0 µA  
90  
ns  
ns  
Low gain to high gain transition-time,  
(1% settling)  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP (Final condition), IDC = 0 µA  
750  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP (Initial condition), IDC = 100  
µA  
High gain to low gain transition-time,  
(1% settling)  
4
4
µs  
µs  
Low gain to high gain transition-time,  
(1% settling)  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP (Final condition), IDC = 100 µA  
EN CONTROL TRANSIENT PERFORMANCE  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA, GAIN = 2 kΩ  
Enable transition-time (1% settling)  
125  
3
ns  
ns  
ns  
ns  
µs  
ns  
µs  
ns  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA, GAIN = 2 kΩ  
Disable transition-time (1% settling)  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
(1) Input capacitance of photodiode.  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA, GAIN = 20 kΩ  
850  
3
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA, GAIN = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA, GAIN = 2 kΩ  
=
=
=
=
10  
3.5  
4
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA, GAIN = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA, GAIN = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA, GAIN = 2 kΩ  
3
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH32401  
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
CIN = PCB only  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CIN = PCB only  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
10M  
100M  
Frequency [Hz]  
1G  
1G  
1G  
10M  
100M  
Frequency [Hz]  
1G  
1G  
1G  
Gain = 2 kΩ, VOUT = 100 mVPP  
Gain = 20 kΩ, VOUT = 100 mVPP  
6-1. Small Signal Response vs Input Capacitance  
6-2. Small Signal Response vs Input Capacitance  
69  
89  
66  
63  
60  
86  
83  
80  
CIN = PCB only  
57  
CIN = PCB only  
77  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
54  
74  
51  
10M  
71  
10M  
100M  
Frequency [Hz]  
100M  
Frequency [Hz]  
Gain = 2 kΩ, VOUT = 1 VPP  
Gain = 20 kΩ, VOUT = 1 VPP  
6-3. Large Signal Response vs Input Capacitance  
6-4. Large Signal Response vs Input Capacitance  
69  
89  
66  
63  
60  
57  
86  
83  
80  
77  
54  
74  
CIN = 0.5 pF, CLOAD = open  
CIN = 0.5 pF, CLOAD = 2.7 pF  
51  
CIN = 0.5 pF, CLOAD = open  
CIN = 0.5 pF, CLOAD = 2.7pF  
71  
10M  
100M  
Frequency [Hz]  
10M  
100M  
Frequency [Hz]  
Gain = 2 kΩ, VOUT = 100 mVPP  
Gain = 20 kΩ, VOUT = 100 mVPP  
6-5. Small Signal Response vs Load Capacitance  
6-6. Small Signal Response vs Load Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
10M  
100M  
Frequency [Hz]  
1G  
10M  
100M  
Frequency [Hz]  
1G  
Gain = 2 kΩ, CIN = PCB  
Gain = 20 kΩ, CIN = PCB  
6-7. Small Signal Response vs Ambient Temperature  
6-8. Small Signal Response vs Ambient Temperature  
3
10k  
Amplifier Enabled  
Amplifier Disabled  
0
-3  
-6  
-9  
1k  
100  
10  
ALC Disabled  
ALC Enabled, Gain = 2 kW  
ALC Enabled, Gain = 20 kW  
-12  
-15  
10k  
100k  
1M  
Frequency [Hz]  
10M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
IDC_IN = 100 µA  
Gain = 2 kΩ  
6-9. Low-side Frequency Response vs Ambient Light  
6-10. Closed-loop Output Impedance vs Frequency  
Cancellation  
20  
10  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 3 pF  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 3 pF  
10  
5
10k  
1
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-11. Input Noise Density vs Input Capacitance  
6-12. Input Noise Density vs Input Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
20  
10  
5
5
CLOAD = open  
CLOAD = 2.7 pF  
CLOAD = open  
CLOAD = 2.7 pF  
1
10k  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-13. Input Noise Density vs Load Capacitance  
100  
6-14. Input Noise Density vs Load Capacitance  
50  
IDC = 0 mA  
IDC = 0 mA  
IDC = 10 mA  
IDC = 100 mA  
IDC = 1 mA  
IDC = 10 mA  
IDC = 100 mA  
IDC = 1 mA  
10  
10  
5
1
10k  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-15. Input Noise Density vs Ambient Light DC Current  
6-16. Input Noise Density vs Ambient Light DC Current  
10  
200  
TA = 125èC  
TA = 25èC  
TA = -40èC  
Differential Noise  
Single-Ended Noise  
100  
1
0.5  
10k  
10  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 20 kΩ  
Gain = 20 kΩ  
6-17. Input Noise Density vs Ambient Temperature  
6-18. Output Noise Density vs Output Configuration  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
1.75  
1.5  
1.75  
1.5  
0.1 VPP  
1 VPP  
1.5 VPP  
0.1 VPP  
1 VPP  
1.5 VPP  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-19. Pulse Response vs Output Swing  
6-20. Pulse Response vs Output Swing  
1.5  
1.25  
1
1.5  
1.25  
1
IIN = 500 mA  
IIN = 1 mA  
IIN = 50 mA  
IIN = 1 mA  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
Gain = 20 kΩ  
Gain = 2 kΩ  
6-22. Overloaded Pulse Response  
6-21. Overloaded Pulse Response  
3.5  
3
3.5  
3
EN  
Differential Output  
EN  
Differential Output  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
Time (25 ns/div)  
Time (25 ns/div)  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-23. Turn-On Time  
6-24. Turn-On Time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
EN  
Differential Output  
EN  
Differential Output  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
Time (1 ns/div)  
Time (1 ns/div)  
Gain = 2 kΩ, VOD = 0.5 V  
6-25. Turn-Off Time  
Gain = 20 kΩ, VOD = 0.5 V  
6-26. Turn-Off Time  
0.15  
0.125  
0.1  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0.075  
0.05  
0.025  
0
-0.12  
-0.14  
-0.16  
-0.025  
Time (5 ms/div)  
Time (5 ms/div)  
Gain = 2 kΩ, IDC_IN = 0 µA 100 µA 1  
Gain = 2 kΩ, IDC_IN = 100 µA 0 µA1  
6-27. Ambient Loop Cancellation Settling Time  
6-28. Ambient Loop Cancellation Settling Time  
1.6  
1.4  
1.2  
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
Time (1 ms/div)  
Time (2 ms/div)  
Gain = 20 kΩ, IDC_IN = 0 µA 100 µA1  
Gain = 20 kΩ, IDC_IN = 100 µA 0 µA1  
6-29. Ambient Loop Cancellation Settling Time  
6-30. Ambient Loop Cancellation Settling Time  
1
Current due to ambient light transitions at t = 0 in.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
5
50  
125 èC  
-40 èC  
25 èC  
1
10  
5
125 èC  
-40 èC  
25 èC  
0.5  
-1000 -750 -500 -250  
0
250  
500  
750 1000  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
Input Current (mA)  
Input Current (mA)  
Gain = 2 kΩ, positive current is sinking current into the  
Gain = 20 kΩ, positive current is sinking current into the  
photodiode's cathode  
photodiode's cathode  
6-31. Transimpedance Gain vs Input Current  
6-32. Transimpedance Gain vs Input Current  
2040  
2020  
2000  
1980  
1960  
1940  
21000  
Unit 1  
Unit 2  
Unit 3  
Unit 1  
Unit 2  
Unit 3  
20500  
20000  
19500  
19000  
18500  
18000  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
Gain = 20 kΩ  
Gain = 2 kΩ  
6-34. Transimpedance Gain vs Ambient Temperature  
6-33. Transimpedance Gain vs Ambient Temperature  
2.5  
2.25  
2
2.6  
2.55  
2.5  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.45  
Unit 1  
Unit 2  
Unit 3  
2.4  
-40  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Supply Voltage (V)  
3
3.3  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
.
Gain = 20 kΩ  
6-35. Input Bias Voltage vs Supply Voltage  
6-36. Input Bias Voltage vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
34  
32  
30  
28  
26  
35  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
125 èC  
-40 èC  
25 èC  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
Supply Voltage (V)  
2
2.5  
3
3.5  
Temperature (èC)  
.
.
6-37. Quiescent Current vs Ambient Temperature  
6-38. Quiescent Current vs Supply Voltage  
1.8  
1.2  
1.1  
1
1.7  
1.6  
1.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Vout- (V)  
Vout+ (V)  
Vout- (V)  
Vout+ (V)  
1.4  
1.3  
1.2  
1.1  
1
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Current (mA)  
Input Current (mA)  
VOD = 0.75 V, VOCM = 1.4 V  
6-39. High-side Swing vs Input Current  
VOD = 0.75 V, VOCM = 0.8 V  
6-40. Low-side Swing vs Input Current  
1.5  
1.2  
0.9  
0.6  
0.3  
0
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
125 èC  
-40 èC  
25 èC  
0
0.3  
0.6  
Differential Output Offset Set (V)  
0.9  
1.2  
1.5  
1.8  
2
0.5  
1
1.5  
2
Input Current (mA)  
2.5  
3
3.5  
.
.
6-41. Differential Output Offset Gain  
6-42. Ambient Light Cancellation Range vs Ambient  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
35  
30  
25  
20  
15  
10  
5
3500  
3000  
2500  
2000  
1500  
1000  
500  
125 èC  
-40 èC  
25 èC  
0
0
25  
26  
27  
28  
29  
30  
31  
32  
33  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Enable Voltage (EN) (V)  
3
3.3  
Quiescent Current (mA)  
Logic switching demonstrated using EN pin. IDC_EN and gain  
pins behave similarly.  
.
6-44. Quiescent Current Distribution  
6-43. Logic Threshold vs Ambient Temperature  
2500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
0
17500  
1750  
1850  
1950  
2050  
2150  
2250  
18500  
19500  
20500  
Gain (W)  
21500  
22500  
Gain (W)  
.
Gain = 20 kΩ  
6-46. Transimpedance Gain (High) Distribution  
6-45. Transimpedance Gain (Low) Distribution  
4500  
3000  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
0
0
1
1.05  
1.1  
1.15  
1.2  
1.25  
450 460 470 480 490 500 510 520 530 540 550  
Output Common Mode Voltage (V)  
Differential Output Voltage(mV)  
.
.
6-47. Output Common-Mode Voltage (VOCM) Distribution  
6-48. Differential Output Offset Voltage (VOD) Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
6.9 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted).  
2000  
1500  
1000  
500  
0
3000  
2500  
2000  
1500  
1000  
500  
0
17.5  
18.25  
19  
19.75  
20.5  
21.25  
22  
2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
Differential Output Impedance (W)  
Differential Output Impedance (kW)  
Amplifier Enabled  
Amplifier Disabled  
6-49. Differential Output Impedance (ZOUT) Distribution  
6-50. Differential Output Impedance (ZOUT) Distribution  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMH32401  
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
7 Detailed Description  
7.1 Overview  
The LMH32401 device is a single-channel, differential output, high-speed transimpedance amplifier (TIA) that  
features several integrated functions geared towards light detection and ranging (LIDAR) and pulsed time-of-  
flight (ToF) systems. The LMH32401 device is designed to work with photodiode (PD) configurations that can  
source or sink the current. When the photodiode sinks the photocurrent (anode is biased to a negative voltage  
and cathode is tied to the amplifier input) the fast recovery clamp activates when the amplifier input is  
overloaded. When the photodiode sources the photocurrent (cathode is biased to a positive voltage and anode  
is tied to the amplifier input) a soft clamp activates when the amplifier input is overloaded. When the soft clamp  
activates, the amplifier takes longer to recover. The recovery time depends on the level of input overload. The  
LMH32401 device is offered in a space-saving 3-mm × 3-mm, 16-pin VQFN package and is rated over a  
temperature range from 40°C to +125°C.  
7.2 Functional Block Diagram  
GAIN  
VDD1  
VDD2  
EN  
100 mA  
Clamp  
1 k  
IDC + ISIG  
10 k  
Differential Output ADC Driver  
IN  
ISIG  
R
2.4 × R  
10  
OUT  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
OUT+  
VOCM  
IDC EN  
R
2.4 × R  
10  
VDD  
VREF  
VDD  
Voltage to Current  
17 k  
3 k  
50.4 k  
25 k  
VOD  
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH32401  
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
7.3 Feature Description  
7.3.1 Switched Gain Transimpedance Amplifier  
The LMH32401 device features a programmable gain transimpedance amplifier (TIA) stage followed by a fixed-  
gain, single-ended input to differential output amplifier stage. The closed-loop bandwidth and noise of a TIA are  
affected by the transimpedance gain and photodiode capacitance. For a given value of photodiode capacitance,  
the LMH32401 device has higher bandwidth in its low-gain configuration compared to the high-gain  
configuration. Increasing the gain of the TIA stage by a factor of X increases the output signal by a factor X, but  
the noise contribution from the resistor only increases by X. The input-referred noise density of the low-gain  
configuration is therefore higher than the input-referred noise density of the high-gain configuration.  
The gain of the TIA stage is controlled by the GAIN pin. Setting this pin low places the TIA in its low-gain  
configuration, whereas setting the pin high places the TIA in a high-gain configuration. The LMH32401 device  
defaults to its low-gain configuration when the GAIN pin is left floating.  
7.3.2 Clamping and Input Protection  
The LMH32401 device is designed to work with photodiode (PD) configurations that can source or sink current;  
however, the LMH32401 is optimized for a sinking current configuration. It is assumed that the LMH32401 device  
is being used with a PD that is configured with its cathode tied to the amplifier input and the anode tied to a  
negative supply voltage, unless stated otherwise.  
The LMH32401 features two internal clamps, a fast recovery clamp and a soft clamp. The fast recovery clamp is  
the active clamp when the photodiode is sinking a photocurrent. The soft clamp is the active clamp when the  
photodiode is sourcing a photocurrent. Stray reflections from nearby objects with high reflectivity can produce  
large output current pulses from the PD. The linear input range of the LMH32401 device is approximately 65 µA  
in the high-gain configuration and 650 µA in the low-gain configuration (PD sinking the photocurrent).  
Input currents in excess of the linear current range cause the internal nodes of the amplifier to saturate, which  
increases the amplifier recovery time. The end result is a broadening of the output pulse leading to blind zones  
in the system response. To protect against this condition, the LMH32401 features an integrated clamp that  
absorbs and diverts the excess current to the positive supply (VDD1) when the amplifier detects its nodes  
entering a saturated condition. The integrated clamp minimizes the pulse extension to less than a few ns for  
input pulses up to 100 mA. The power-supply pins (VDD1 and VDD2) must each have their own bypass  
capacitors to prevent large input pulses from affecting the differential output stage. When the amplifier is in low-  
power mode, the clamp circuitry is still active, thereby protecting the TIA input.  
7.3.3 ESD Protection  
All LMH32401 pins have an internal electrostatic discharge (ESD) protection diode to the positive and negative  
supply rails to protect the amplifier from ESD events.  
7.3.4 Differential Output Stage  
The differential output stage of the LMH32401 device performs the following two functions, which are common  
across all differential amplifiers:  
1. Converts the single-ended output from the TIA stage to a differential output.  
2. Performs a common-mode output shift to match the specified ADC input common-mode voltage.  
The differential output stage has two 10-Ω series resistors on its output to isolate the amplifier output stage  
transistors from the package bond-wire inductance and printed circuit board (PCB) capacitance. The net gain of  
the LMH32401 device (TIA + output stage) is 2 kΩ (low gain) and 20 kΩ (high gain) when driving an external  
100-Ω resistor. When the external load resistor is increased above 100 Ω, the effective gain from the IN pin to  
the differential output pin increases. Conversely, when the external load resistor is decreased to less than 100  
Ω, the effective gain from the IN pin to the differential output pin decreases as a result of the larger voltage drop  
across the two internal 10-Ω resistors. When there is no load resistor between the OUT+ and OUTpins, the  
effective gain of the LMH32401 is 2.4 kΩand 24 kΩin the low-gain and high-gain configurations, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
The output common-mode voltage of the LMH32401 device can be set externally through the VOCM pin. A  
resistor divider internal to the amplifier, between VDD2 and ground sets the default voltage to 1.1 V. The internal  
resistors generate common-mode noise that is typically rejected by the CMRR of the subsequent ADC stage. To  
maximize the amplifier signal-to-noise ratio (SNR), place an external noise bypass capacitor to ground on the  
VOCM pin. In single-ended signal chains, such as ToF systems that use time-to-digital converters (TDCs), only a  
single output of the LMH32401 device is needed. In such situations, terminate the unused differential output in  
the same manner as the used output to maintain balance and symmetry. The signal swing of the single-ended  
output is half the available differential output swing. Additionally, the common-mode noise of the output stage,  
which is typically rejected by the differential input ADC, is now added to the total noise, further degrading SNR.  
The output stage of the LMH32401 device has an additional VOD input that sets the differential output between  
OUTand OUT+. 7-1 shows how each output pin of the LMH32401 device is at the voltage set by the  
VOCM pin (default = 1.1 V) when the photodiode output current is zero and the VOD input is set to 0 V. When  
the VOD pin is driven to a voltage of X volts, the two output pins are separated by X volts when the photodiode  
current is zero. The average voltage is still equal to VOCM. For example, 7-2 shows if VOCM is set to 1.1 V  
and VOD is set to 0.4 V, then OUT= 1.1 V + 0.2 V = 1.3 V and OUT+ = 1.1 V 0.2 V = 0.9 V.  
The VOD pin is functional only when the LMH32401 device is used with a PD that sinks the photocurrent. Set  
VOD = 0 V when the LMH32401 device is interfaced with a PD that sources the photocurrent. The VOD output  
offset feature is included in the LMH32401 device because the output current of a photodiode is unipolar.  
Depending on the reverse bias configuration, the photodiode can either sink or source current, but cannot do  
both at the same time. With the anode connected to a negative bias and the cathode connected to the TIA stage  
input, the photodiode can only sink current, which implies that the TIA stage output swings in a positive direction  
above its default input bias voltage (2.47 V). Subsequently, OUTonly swings below VOCM and OUT+ only  
swings above VOCM. 7-1 shows how the LMH32401 device only uses half of its output swing range (VOUT  
OUT+ VOUT) when VOD = 0 V, because one output never swings below VOCM and the other output never  
goes above VOCM. The signal dynamic range in this case is 0.4 VPP 0 V = 0.4 VPP  
=
V
.
7-2 shows how the VOD pin voltage allows OUTto be level-shifted above VOCM and OUT+ to be level-  
shifted below VOCM to maximize the output swing capabilities of the amplifier. The signal dynamic range in this  
case is 0.4 VPP (0.4 VPP) = 0.8 VPP  
.
VOUT = 0.4 VPP  
APD Excited  
VOUT = 0.4 VPP  
APD Excited  
VOUTÞ  
VOUT+  
VOUTÞ  
VOUT+  
1.3 V  
1.3 V  
VOD = 0 V  
VOCM = 1.1 V  
VOD = 0.4 V  
VOCM = 1.1 V  
0.9 V  
0.9 V  
VOUT = 0 VPP  
No output from APD  
VOUT = Þ0.4 VPP  
No output from APD  
7-1. Individual Single-Ended Outputs With VOD  
7-2. Individual Single-Ended Outputs With VOD  
= 0 V  
= 0.4 V  
When the LMH32401 device drives a 100-Ω load, the voltage set at the VOD pin is equal to the differential  
output offset (VOUT = VOUT+ VOUT) when the input signal current is zero. Use 方程式 1 to calculate the  
differential output offset under other load conditions.  
RL  
VOD = 1.2 ì VOD ì  
R ì 20 W  
(
)
L
(1)  
Where:  
VOD = Voltage applied at pin 9  
VOD = (VOUTVOUT+  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMH32401  
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
RL = External load resistance  
7.4 Device Functional Modes  
7.4.1 Ambient Light Cancellation (ALC) Mode  
The LMH32401 device has an integrated DC cancellation loop that cancels and voltage offsets from incidental  
ambient light. The ALC mode only works when the PD is sinking the photocurrent. The DC cancellation loop is  
enabled by setting IDC_EN low. Incident ambient light on a photodiode produces a DC current resulting in an  
offset voltage at the output of the LMH32401's TIA stage. The Functional Block Diagram shows how the ALC  
loop senses the low-frequency DC offset at the output of the TIA stage and compares it against an internal  
reference voltage (VREF). The ALC loop then outputs an opposing DC current (IDC) to compensate for the  
differential offset voltage at its input. The loop has a high-pass cutoff frequency of 100 kHz. The ambient light  
cancellation loop is disabled when the amplifier is placed in power-down mode.  
The shot noise current introduced by the DC cancellation loop increases the overall amplifier noise; so, if the  
ambient light level is negligible, then disable the loop to improve SNR. The cancellation loop helps save PCB  
space and system costs by eliminating the need for external AC coupling passive components. Additionally, the  
extra trace inductance and PCB capacitance introduced by using external AC coupling components degrades  
the LMH32401 device dynamic performance.  
7.4.2 Power-Down Mode (Multiplexer Mode)  
The LMH32401 device can be placed in low-power mode by setting EN high, which helps in saving system  
power. Enabling low-power mode puts the outputs of the internal amplifiers in the LMH32401 device, including  
the differential outputs, in a high-impedance state. 7-3 shows how this device feature can further save board  
space and cost by eliminating the need for a discrete high-speed multiplexer, if a system consists of several  
photodiode and amplifier channels multiplexed to a single ADC channel. The disabled channel outputs are not  
an ideal open circuit so as the number of multiplexed channels increases the disabled channels begin to load the  
enabled channel. Multiplexing more than four channels in parallel degrades the performance of the enabled  
channel. When the amplifier is in its low-power mode, the clamp circuitry is still active thereby protecting the TIA  
input. The ambient light cancellation loop is disabled when the amplifier is placed in power-down mode. When  
the LMH32401 device is brought out of power-down operation the ambient light cancellation loop requires  
several time constants to settle. 6-9 shows the low-frequency loop response which in turn determines the time  
constant needed for the loop to settle.  
1 kΩ  
DISABLED AMPLIFIER  
100mA  
Clamp  
10 kΩ  
10 Ω  
RISO  
TIA  
OUTÞ  
Ambient Light  
Cancellation  
Þ VBIAS  
+
œ
OUT+  
Output Offset  
10 Ω  
RISO  
RADC_IN  
EN = 3.3 V  
ADC12QJ1600  
CFILT  
VOCM  
RADC_IN  
1 kΩ  
ENABLED AMPLIFIER  
100mA  
Clamp  
10 kΩ  
10 Ω  
RISO  
TIA  
OUTÞ  
Ambient Light  
Cancellation  
Þ VBIAS  
+
œ
OUT+  
Output Offset  
10 Ω  
RISO  
EN = 0 V  
7-3. Configuring Two LMH32401 Devices in Multiplexer Mode to Drive a Single ADC  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The differential outputs of the LMH32401 device can directly drive a high-speed differential input ADC. 8-1  
shows the LMH32401 differential outputs directly driving the ADC12QJ1600. The effective signal gain between  
the TIA input and the ADC input is 2 kΩ or 20 kΩ when driving an ADC with a 100-Ω differential input  
impedance (RADC_IN = 50 Ω). 方程式 2 gives the effective signal gain between the TIA input and the ADC input  
when driving an ADC with any other value of differential input impedance (RADC_IN 50 Ω).  
GAIN  
VDD1  
VDD2  
1 kΩ  
100mA  
Clamp  
10 kΩ  
Differential Output  
ADC Driver  
IN  
OUTÞ  
TIA  
10 Ω  
RADC_IN  
Ambient Light  
Cancellation  
Þ VBIAS  
IDC EN  
VOD  
+
VOCM  
RADC_IN  
ADC12QJ1600  
œ
Output Offset  
10 Ω  
OUT+  
GND  
EN  
8-1. LMH32401 to ADC Interface  
2ì RADC_IN  
A V = 2 kW or 20 kW ì 1.2 ì  
(
)
2ì R  
+ 20 W  
(
)
ADC_IN  
(2)  
Where:  
AV = Differential gain from the TIA input to the ADC input  
RADC_IN = Input resistance of the ADC  
8-2 shows a matching resistor network between the LMH32401 output and the ADC12QJ1600 input. The  
matching network is needed to prevent signal reflections when the signal path between the LMH32401 and ADC  
is very long. 方程3 gives the effective gain from the TIA input to the ADC input when using a matching resistor  
network.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMH32401  
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
GAIN  
VDD1  
VDD2  
1 kΩ  
100mA  
Clamp  
10 kΩ  
Differential Output  
ADC Driver  
IN  
10 Ω  
RISO  
TIA  
OUTÞ  
RADC_IN  
Ambient Light  
Cancellation  
Þ VBIAS  
IDC EN  
VOD  
+
ADC12QJ1600  
VOCM  
RADC_IN  
œ
OUT+  
Output Offset  
10 Ω  
RISO  
GND  
EN  
8-2. LMH32401 to ADC Interface with a Matching Resistor Network  
2ì RADC_IN  
A V = 2 kW or 20 kW ì 1.2 ì  
(
)
2ì RADC_IN +2 ì RISO + 20 W  
(
)
(3)  
Where:  
AV = Gain from the TIA input to the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
方程式 4 gives the voltage to be applied at the VOD pin (pin 9) if a certain differential offset voltage (VOD) is  
needed at the ADC input for the circuit in 8-2.  
2 ì R  
+ 2 ì RISO + 20 W  
(
ì
)
1
ADC _IN  
VOD = VOD  
ì
«
÷
1.2  
2 ì R  
(
)
ADC _IN  
(4)  
Where:  
VOD = Voltage applied at pin 9  
VOD = Desired differential offset voltage at the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
8.2 Typical Application  
This section demonstrates the performance of the LMH32401 device when the input current flows into the IN pin.  
8-3 shows the circuit used to test the LMH32401 device with a voltage source. This configuration  
demonstrates the use case when the photodiode's anode is tied to the amplifier input and its cathode is tied to a  
positive voltage greater than 2.47 V.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
GAIN  
VDD1  
VDD2  
100mA  
Clamp  
1 kΩ  
10 kΩ  
2k  
Differential Output ADC Driver  
IN  
50measurement  
instrument  
ISIG  
R
2.4 × R  
10 ꢀ  
OUTÞ  
TIA  
25 ꢀ  
1 F  
1 F  
IDC  
+
+
2.47 V  
œ
CLOAD  
Ambient Light  
Cancellation  
œ
25 ꢀ  
IDC EN  
GND  
R
2.4 × R  
10 ꢀ  
VDD  
OUT+  
VREF  
VDD  
Voltage to Current  
17 kΩ  
3 kΩ  
50.4 kΩ  
VOD  
VOCM  
25 kΩ  
GND  
EN  
8-3. LMH32401 Test Circuit  
8.2.1 Design Requirements  
The objective is to design a low-noise, wideband differential output transimpedance amplifier. The design  
requirements are as follows:  
Amplifier supply voltage: 3.3 V  
Transimpedance gain: 2 kΩand 20 kΩ  
Input capacitance: CPCB 1 pF  
Target bandwidth: > 250 MHz  
Differential output offset (VOD): 0 V  
Ambient light cancellation (IDC_EN): 3.3 V (disabled)  
8.2.2 Detailed Design Procedure  
8-3 shows the LMH32401 device test circuit used to measure its bandwidth and transient pulse response. The  
voltage source is DC biased close to the input bias voltage of the LMH32401 device (approximately 2.47 V). The  
internal design of the LMH32401 device is optimized to only source current out of the input pin (pin 3), and all  
the data shown previously is with the current flowing out of the pin. When the voltage input from the source  
exceeds 2.47 V, the LMH32401 device input will sink the current. Set VOD = 0 V when the input has to sink the  
current from the photodiode, or in this case the voltage source. Set the DC bias so that sum of the input AC and  
DC component is always greater than the input voltage (2.47 V) when testing the LMH32401 device with a  
network analyzer or sinusoidal source.  
8-4 and 8-5 shows the bandwidth of the LMH32401 device when its input is sinking the current. The input  
current range of the LMH32401 device is reduced when it is sinking the current. This effect is seen by the  
decrease in bandwidth as the output swing increases and is more pronounced in a gain configuration of 20 kΩ.  
Compare 8-4 with 6-1 and 6-3 to see the effect of current direction and input range in a 2 kΩ gain  
configuration. In a similar way, compare 8-5 with 6-2 and 6-4 to see the effect of current direction and  
input range in a gain of 20 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
8-6 and 8-7 show the pulsed output response of the LMH32401 device when the input current is increased  
past the amplifier linear input range. When the input is sinking current, a soft clamp will aid in fast recovery;  
however, the pulse will stretch slightly as the input current overrange increases. Compare 8-6 with 6-21 to  
see the pulse extension effect in a gain of 2 kΩ. Compare 8-7 with 6-22 to see the pulse extension effect  
in a gain of 20 kΩ. Knowledge of the pulse extension can be used to determine the approximate input current  
even under overrange situations that can occur due to the presence of retro-reflectors in the environment. As  
shown in 7-1, each half of the differential output pulse will only swing above or below the VOCM voltage and  
the resulting maximum differential output swing is 0.75 VPP since VOD is set to 0 V. Consequently only half of  
the total ADC range is utilized in this photodiode configuration.  
8.2.3 Application Curves  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
VOUT = 0.1 VPP  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
VOUT = 0.1 VPP  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
10M  
100M  
Frequency [Hz]  
1G  
10M  
100M  
Frequency [Hz]  
1G  
8-4. Bandwidth vs Output Swing  
(Gain = 2 kΩ)  
8-5. Bandwidth vs Output Swing  
(Gain = 20 kΩ)  
1
1
IIN = 500 mA  
IIN = 1 mA  
IIN = 2.5 mA  
IIN = 50 mA  
IIN = 100 mA  
IIN = 500 mA  
IIN = 1 mA  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
8-6. Pulse Response vs Input Current  
(Gain = 2 kΩ)  
8-7. Pulse Response vs Input Current  
(Gain = 20 kΩ)  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
9 Power Supply Recommendations  
The LMH32401 device operates on 3.3-V supplies. The VDD1 and VDD2 pins must always be driven from the  
same supply source and individually bypassed. A low power-supply source impedance must be maintained  
across frequency. So use multiple bypass capacitors in parallel. Place the bypass capacitors as close to the  
supply pins as possible. Place the smallest capacitor on the same side of the PCB as the LMH32401 device.  
Placing the larger valued bypass capacitors on the same side of the PCB is preferable as well. However, if there  
are space constraints, then the capacitors can be moved to the opposite side of the PCB using multiple vias to  
reduce the series inductance resulting from the vias. The LMH32401 device can operate on bipolar supplies by  
connecting pins 1 and 7 to the negative supply. The thermal pad must always be connected to the most negative  
supply. The digital pin threshold voltages must be appropriately level shifted as they are connected to voltages at  
pins 1 and 7.  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the LMH32401 device requires careful  
attention to board layout parasitics and external component types. Recommendations that optimize performance  
include the following:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output pins can cause instability whereas parasitic capacitance on the input pin reduces the amplifier  
bandwidth. To reduce unwanted capacitance, cut out the power and ground traces under the signal input and  
output pins. Otherwise, ground and power planes must be unbroken elsewhere on the board.  
Minimize the distance from the power-supply pins to high-frequency bypass capacitors. Use high-  
quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage ratings at least three times  
greater than the amplifiers maximum power supplies. Place the smallest value capacitors on the same side  
as the DUT. If space constraints force the larger value bypass capacitors to be placed on the opposite side of  
the PCB, then use multiple vias on the supply and ground side of the capacitors. This configuration makes  
sure that there is a low-impedance path to the amplifiers power-supply pins across the amplifiers gain  
bandwidth specification. Avoid narrow power and ground traces to minimize inductance between the pins and  
the decoupling capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower  
frequency must be used on the supply pins. Place these decoupling capacitors further from the device. Share  
the decoupling capacitors among several devices in the same area of the printed circuit board (PCB).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMH32401  
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
10.2 Layout Example  
GND  
Place bypass capacitors close to VDD  
and GND pins on the same side as  
DUT. Use multiple vias to connect to  
power and GND planes  
16  
GAIN  
15  
NC  
14  
VDD2  
13  
NC  
Optional capacitor to reduce  
VOCM noise from internal  
resistors  
GND  
1
12  
VOCM  
GND  
VDD1  
11  
OUTÞ  
2
Remove GND and Power  
plane near output pins to  
minimize parasitic PCB  
capacitance. Resistors to  
further isolate parasitics  
Remove GND and Power plane  
between IN and APD to minimize  
parasitic capacitance  
Thermal Pad  
IN  
3
10  
OUT+  
Optional capacitor to reduce  
VOD noise from internal  
resistors  
9
VOD  
NC  
4
Þ VBIAS  
GND  
5
6
8
7
Optional isolation resistor to dampen  
resonance due to bond wire  
inductances and component  
capacitances  
IDC_EN  
EN  
NC  
GND  
10-1. Layout Recommendation  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
Texas Instruments, LMH32401 Transimpedance Amplifier Evaluation Module.  
Texas Instruments, Optical Front-End System Reference Design design guide.  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters  
design guide.  
Texas Instruments, LIDAR Pulsed Time of Flight Reference Design design guide.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, LMH32401IRGT Evaluation Module user's guide.  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report.  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1 blog.  
Texas Instruments, An Introduction to Automotive LIDAR.  
Texas Instruments, Maximizing the Dynamic Range of Analog Front Ends Having a Transimpedance  
Amplifier.  
Texas Instruments, Time of Flight and LIDAR Optical Front End Design.  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2 blog.  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits.  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow.  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model.  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMH32401  
 
 
 
 
 
 
 
 
LMH32401  
www.ti.com.cn  
ZHCSKC6D OCTOBER 2019 REVISED JANUARY 2023  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMH32401  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH32401IRGTR  
LMH32401IRGTT  
LMH32401YR  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
Y
16  
16  
0
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125  
-40 to 125  
-40 to 125  
L32401  
L32401  
Samples  
Samples  
Samples  
NIPDAU  
Call TI  
DIESALE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jan-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH32401IRGTR  
LMH32401IRGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH32401IRGTR  
LMH32401IRGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMH32401IRGTT

可编程增益、差分输出高速跨阻放大器 | RGT | 16 | -40 to 125
TI

LMH32401YR

可编程增益、差分输出高速跨阻放大器 | Y | 0 | -40 to 125
TI

LMH32404

具有集成多路复用功能的四通道差分输出跨阻放大器
TI

LMH32404-Q1

具有集成多路复用功能的汽车类四通道差分输出跨阻放大器
TI

LMH32404IRHFR

具有集成多路复用功能的四通道差分输出跨阻放大器 | RHF | 28 | -40 to 125
TI

LMH32404QWRHFRQ1

具有集成多路复用功能的汽车类四通道差分输出跨阻放大器 | RHF | 28 | -40 to 125
TI

LMH32404YR

具有集成多路复用功能的四通道差分输出跨阻放大器 | Y | 0 | -40 to 125
TI

LMH3401

7GHz、超宽带、全差动放大器
TI

LMH3401IRMSR

7GHz、超宽带、全差动放大器 | RMS | 14 | -40 to 85
TI

LMH3401IRMST

7GHz、超宽带、全差动放大器 | RMS | 14 | -40 to 85
TI

LMH34400

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器
TI

LMH34400IDRLR

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器 | DRL | 6 | -40 to 125
TI