LMP8640QMKE-T/NOPB [TI]

AEC-Q100、-2V 至 42V、950kHz 电流感应放大器 | DDC | 6 | -40 to 125;
LMP8640QMKE-T/NOPB
型号: LMP8640QMKE-T/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AEC-Q100、-2V 至 42V、950kHz 电流感应放大器 | DDC | 6 | -40 to 125

放大器 光电二极管
文件: 总34页 (文件大小:1064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
LMP8640/-Q1/HV Precision High Voltage Current Sense Amplifiers  
1 Features  
3 Description  
The LMP8640, LMP8640-Q1 and the LMP8640HV  
are precision current sense amplifiers that detect  
small differential voltages across a sense resistor in  
the presence of high input common mode voltages  
with a supply voltage range from 2.7 V to 12 V.  
1
Typical Values, TA = 25°C  
High Common-Mode Voltage Range  
LMP8640: -2 V to 42 V  
LMP8640-Q1: -2 V to 42 V, AEC-Q100  
LMP8640HV: -2 V to 76 V  
The LMP8640 and LMP8640-Q1 accept input signals  
with common mode voltage range from -2 V to 42 V,  
while the LMP8640HV accepts input signal with  
common mode voltage range from -2 V to 76 V. The  
LMP8640 and LMP8640HV have fixed gain for  
applications that demand accuracy over temperature.  
The LMP8640 and LMP8640HV come out with three  
different fixed gains 20 V/V, 50 V/V, 100 V/V ensuring  
a gain accuracy as low as 0.25%. The output is  
buffered in order to provide low output impedance.  
This high side current sense amplifier is ideal for  
sensing and monitoring currents in DC or battery  
Supply Voltage Range: 2.7 V to 12 V  
Gain Options: 20 V/V; 50 V/V; 100 V/V  
Max Gain Error: 0.25%  
Low Offset Voltage: 900 µV  
Input Bias Current: 13 µA  
PSRR: 85 dB  
CMRR (2.1V to 42V): 103 dB  
Temperature Range: -40°C to 125°C  
6-Pin Thin SOT-23 Package  
powered  
systems,  
excellent  
AC  
and  
DC  
specifications over temperature, and keeps errors in  
the current sense loop to a minimum. The LMP8640  
and LMP8640HV are ideal choice for industrial and  
consumer applications, while the LMP8640-Q1 is an  
AEC-Q100 grade 1 qualified version of the LMP8640  
for automotive applications. The LMP8640-x is  
available in SOT-23-6 package.  
2 Applications  
High-Side Current Sense  
Vehicle Current Measurement  
Motor Controls  
Battery Monitoring  
Remote Sensing  
Device Information(1)  
Power Management  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
LMP8640  
LMP8640-Q1  
LMP8640HV  
SOT23 (6)  
2.9 mm x 1.6 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Simplified Schematic  
Output Voltage vs Input Voltage  
I
S
13.0  
VS=12V, VCM=12V  
12.0  
R
+IN  
-IN  
R
S
11.0  
10.0  
9.0  
L
o
a
d
LMP8640  
R
IN  
IN  
8.0  
7.0  
-
+
+
6.0  
5.0  
4.0  
V
V
3.0  
2.0  
1.0  
0.0  
A
G
ADC  
200 300  
V
OUT  
0
100  
400  
500  
600  
R
= 2*R  
IN  
G
VSENSE (mV)  
-
V
G = 10 V/V in 20 V/V gain option  
G = 25 V/V in 50 V/V gain option  
G = 50 V/V in 100 V/V gain option  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
Table of Contents  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application .................................................. 18  
9.3 Do's and Don'ts ...................................................... 20  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings - LMP8640, LMP8640HV.............. 4  
7.3 Handling Ratings - LMP8640-Q1.............................. 4  
7.4 Recommended Operating Conditions(2) ................... 4  
7.5 Thermal Information.................................................. 5  
7.6 Electrical Characteristics 2.7 V ................................ 5  
7.7 Electrical Characteristics 5 V (5)................................ 6  
7.8 Electrical Characteristics 12 V (5).............................. 8  
7.9 Typical Characteristics............................................ 10  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 21  
12 Device and Documentation Support ................. 23  
12.1 Device Support...................................................... 23  
12.2 Documentation Support ........................................ 23  
12.3 Related Links ........................................................ 23  
12.4 Trademarks........................................................... 23  
12.5 Electrostatic Discharge Caution............................ 23  
12.6 Glossary................................................................ 23  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (April 2013) to Revision G  
Page  
New Q Device added to datasheet ........................................................................................................................................ 1  
Changed data sheet flow and layout to conform with new TI standards. Added the following sections: Application  
and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical,  
Packaging, and Ordering Information .................................................................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
5 Device Comparison Table  
MAX COMMON MODE  
DEVICE NAME  
GAIN  
QUALIFICATIONS  
VOLTAGE  
-2 V to +42 V  
-2 V to +42 V  
-2 V to +42 V  
-2 V to +42 V  
-2 V to +42 V  
-2 V to +76 V  
-2 V to +76 V  
-2 V to +76 V  
LMP8640-T  
LMP8640-T  
x20  
x20  
LMP8640-Q1-T  
LMP8640-F  
x20  
Automotive AEC-Q100, Grade 1  
x50  
LMP8640-H  
x100  
x20  
LMP8640HV-T  
LMP8640HV-F  
LMP8640HV-H  
x50  
x100  
6 Pin Configuration and Functions  
6-Pin SOT-23  
DDC0006A Package  
(Top View)  
+
6
5
4
V
1
2
3
V
OUT  
LMP8640  
LMP8640HV  
-
NC  
-IN  
V
+IN  
Pin Functions  
PIN  
DESCRIPTION  
NUMBER  
NAME  
VOUT  
V-  
1
2
3
4
5
6
Output  
Negative Supply Voltage  
Positive Input  
+IN  
-IN  
Negative Input  
NC  
V+  
Not Internally Connected  
Positive Supply Voltage  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings(1)(2)(3)  
LMP8640 limits also apply to the LMP8640-Q1.  
MIN  
-0.3  
-6  
MAX  
13.2  
6
UNIT  
V
Supply Voltage (VS = V+ - V)  
Differential Voltage +IN- (-IN)  
V
Voltage at pins +IN, -IN  
LMP8640HV  
LMP8640, LMP8640-Q1  
-6  
80  
V
-6  
60  
V
Voltage at VOUT pin  
V-  
V+  
V
(4)  
Junction Temperature  
-40  
150  
°C  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the  
device is functional and the device should not be operated beyond such conditions.  
(2) For soldering specifications,see product folder at www.ti.com and http://www.ti.com/lit/SNOA549.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever  
is lower.  
7.2 Handling Ratings - LMP8640, LMP8640HV  
MIN  
-65  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
For input pins +IN, -IN  
For all other pins  
Charged device model (CDM)(2) All pins  
-5000  
-2000  
-1250  
-200  
5000  
2000  
1250  
200  
Human body model (HBM(1)  
)
V(ESD)  
Electrostatic discharge  
V
(3)  
Machine model (MM)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)  
7.3 Handling Ratings - LMP8640-Q1  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
-65  
°C  
Human body model (HBM), per AEC Q100-002(1)  
-2000  
-1000  
2000  
1000  
V
Charged device model (CDM), per  
AEC Q100-011  
All pins  
V(ESD)  
(2)  
Machine model (MM)  
All pins  
-200  
200  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)  
7.4 Recommended Operating Conditions(1)  
MIN  
MAX  
12  
UNIT  
V
Supply Voltage (VS = V+ - V)  
2.7  
-40  
(2)  
Operating Junction Temperature Range  
125  
°C  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the  
device is functional and the device should not be operated beyond such conditions.  
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever  
is lower.  
4
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
7.5 Thermal Information  
LMP8640  
LMP8640HV  
LMP8640-Q1  
THERMAL METRIC(1)  
UNIT  
THIN SOT-23  
6 PINS  
165  
(2)  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
28  
Junction-to-board thermal resistance  
24.6  
0.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
23.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever  
is lower.  
(1)  
7.6 Electrical Characteristics 2.7 V  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 2.7 V, V= 0 V, 2 V <  
VCM < 76 V, RL = 10 M. LMP8640 limits also apply to the LMP8640-Q1.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
VCM = 2.1 V  
-900  
900  
µV  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1 V, Over Temperature  
VCM = 2.1 V  
-1160  
1160  
Input Offset Voltage Drift(4) (5)  
2.6 µV/°C  
VCM = 2.1 V, VSENSE = 0 V  
VCM = 2.1 V, Over Temperature, VSENSE = 0 V  
f > 10 kHz  
12  
20  
27  
(6)  
Input Bias Current  
µA  
(5)  
eni  
Input Voltage Noise  
117  
20  
nV/Hz  
Gain LMP8640-T LMP8640HV-T  
Gain LMP8640-F LMP8640HV-F  
Gain LMP8640-H LMP8640HV-H  
50  
V/V  
100  
Gain AV  
VCM = 2.1 V  
-0.25%  
-0.51%  
0.25%  
0.51%  
Gain error  
VCM = 2.1 V, Over Temperature  
VCM = 2.1V, Over Temperature  
VCM = 2.1 V, 2.7 V < V+ < 12 V,  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
26.2 ppm/°C  
dB  
PSRR  
CMRR  
85  
LMP8640HV 2.1 V < VCM < 42 V  
LMP8640 2.1 V < VCM< 42 V  
103  
Common Mode Rejection Ratio  
dB  
LMP8640HV 2.1 V < VCM < 76 V  
-2 V <VCM < 2 V,  
95  
60  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device. Spec does not include input signal dependent currents on the  
positive input of approximately Vsense / 5KΩ due to topology feedback action.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
Electrical Characteristics 2.7 V (1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 2.7 V, V= 0 V, 2 V <  
VCM < 76 V, RL = 10 M. LMP8640 limits also apply to the LMP8640-Q1.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
Fixed Gain LMP8640-T  
LMP8640HV-T  
DC VSENSE = 67.5 mV,  
CL = 30 pF,RL= 1MΩ  
950  
(5)  
Fixed Gain LMP8640-F  
LMP8640HV-F  
DC VSENSE =27 mV,  
CL = 30 pF, RL= 1MΩ  
BW  
450  
230  
kHz  
(5)  
Fixed Gain LMP8640-H  
DC VSENSE = 13.5 mV,  
CL = 30 pF ,RL= 1 MΩ  
(5)  
LMP8640HV-H  
VCM =5 V, CL = 30 pF, RL = 1 M,  
LMP8640-T LMP8640HV-T VSENSE =100 mVpp,  
LMP8640-F LMP8640HV-F VSENSE =40 mVpp,  
LMP8640-H LMP8640HV-H VSENSE =20 mVpp,  
(7)(5)  
SR  
RIN  
Slew Rate  
1.4  
V/µs  
Differential Mode Input Impedance(5)  
Supply Current  
5
kΩ  
VCM = 2.1 V  
420  
600  
800  
VCM = 2.1 V, Over Temperature  
VCM = 2 V  
IS  
µA  
V
2000  
2500  
2750  
VCM = 2 V, Over Temperature  
VCM = 2.1 V  
Maximum Output Voltage  
2.65  
LMP8640-T LMP8640HV-T  
VCM = 2.1 V  
18.2  
40  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1 V  
Minimum Output Voltage  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1 V  
80  
CLOAD  
Max Output Capacitance Load(5)  
30  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
(1)  
7.7 Electrical Characteristics 5 V  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 5 V, V= 0 V, 2 V < VCM  
< 76 V, RL = 10 M. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
VCM = 2.1 V  
-900  
900  
µV  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1 V, Over Temperature  
VCM = 2.1 V  
-1160  
1160  
Input Offset Voltage Drift(4) (5)  
2.6 µV/°C  
VCM = 2.1 V, VSENSE = 0 V  
VCM = 2.1 V, Over Temperature,VSENSE = 0 V  
f > 10 kHz  
13  
21  
28  
(6)  
Input Bias Current  
µA  
(5)  
eni  
Input Voltage Noise  
117  
nV/Hz  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device. Spec does not include input signal dependent currents on the  
positive input of approximately Vsense / 5KΩ due to topology feedback action.  
6
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Electrical Characteristics 5 V (1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 5 V, V= 0 V, 2 V < VCM  
< 76 V, RL = 10 M. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
Gain LMP8640-T LMP8640HV-T  
Gain LMP8640-F LMP8640HV-F  
Gain LMP8640-H LMP8640HV-H  
20  
50  
V/V  
100  
Gain AV  
VCM = 2.1 V  
-0.25%  
-0.51%  
0.25%  
0.51%  
Gain error  
VCM = 2.1 V, Over Temperature  
40°C to 125°C, VCM=2.1 V  
VCM = 2.1 V, 2.7V < V+ < 12 V,  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
26.2 ppm/°C  
dB  
PSRR  
CMRR  
85  
LMP8640HV 2.1 V < VCM < 42 V  
LMP8640 2.1 V < VCM< 42 V  
103  
Common Mode Rejection Ratio  
Fixed Gain LMP8640-T  
dB  
LMP8640HV 2.1 V < VCM < 76 V  
-2 V <VCM < 2 V,  
95  
60  
DC VSENSE = 67.5 mV,  
CL = 30 pF ,RL= 1 MΩ  
950  
450  
230  
(5)  
LMP8640HV-T  
Fixed Gain LMP8640-F  
LMP8640HV-F(5)  
DC VSENSE =27 mV,  
CL = 30 pF ,RL= 1 MΩ  
BW  
kHz  
Fixed Gain LMP8640-H  
LMP8640HV-H(5)  
DC VSENSE = 13.5 mV,  
CL = 30 pF ,RL= 1MΩ  
VCM =5 V, CL = 30 pF, RL = 1M,  
LMP8640-T LMP8640HV-T VSENSE = 200 mVpp,  
LMP8640-F LMP8640HV-F VSENSE = 80 mVpp,  
LMP8640-H LMP8640HV-H VSENSE = 40 mVpp,  
(7)(5)  
SR  
RIN  
Slew Rate  
1.6  
V/µs  
Differential Mode Input Impedance(5)  
Supply Current  
5
kΩ  
VCM = 2.1 V  
500  
722  
VCM = 2.1 V, Over Temperature  
VCM = 2 V  
922  
µA  
IS  
2050  
2500  
VCM = 2 V, Over Temperature  
VCM = 2.1 V  
2750  
V
Maximum Output Voltage  
4.95  
LMP8640-T LMP8640HV-T  
VCM = 2.1 V  
18.2  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1 V  
Minimum Output Voltage  
40  
80  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1 V  
CLOAD  
Max Output Capacitance Load(5)  
30  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
(1)  
7.8 Electrical Characteristics 12 V  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 12 V, V= 0V, 2 V < VCM  
< 76 V, RL = 10 M. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
VCM = 2.1 V  
-900  
900  
µV  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1 V, Over Temperature  
VCM = 2.1 V  
-1160  
1160  
Input Offset Voltage Drift(4) (5)  
2.6 µV/°C  
VCM = 2.1 V, VSENSE = 0 V  
VCM = 2.1 V, Over Temperature, VSENSE = 0 V  
f > 10 kHz  
13  
22  
28  
(6)  
Input Bias Current  
µA  
(5)  
eni  
Input Voltage Noise  
117  
20  
nV/Hz  
Gain LMP8640-T LMP8640HV-T  
Gain LMP8640-F LMP8640HV-F  
Gain LMP8640-H LMP8640HV-H  
50  
V/V  
100  
Gain AV  
VCM = 2.1 V  
-0.25%  
-0.51%  
0.25%  
0.51%  
Gain error  
VCM = 2.1 V, Over Temperature  
40°C to 125°C, VCM= 2.1 V  
VCM = 2.1 V, 2.7 V < V+ < 12 V,  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
26.2 ppm/°C  
dB  
PSRR  
CMRR  
85  
LMP8640HV 2.1 V < VCM < 42 V  
LMP8640 2.1 V < VCM< 42 V  
103  
Common Mode Rejection Ratio  
dB  
LMP8640HV 2.1 V < VCM < 76 V  
-2 V < VCM < 2 V,  
95  
60  
Fixed Gain LMP8640-T  
LMP8640HV-T  
DC VSENSE = 67.5 mV,  
CL = 30 pF, RL= 1 MΩ  
950  
450  
230  
(5)  
Fixed Gain LMP8640-F  
DC VSENSE =27 mV,  
CL = 30 pF, RL= 1 MΩ  
BW  
kHz  
(5)  
LMP8640HV-F  
Fixed Gain LMP8640-H  
DC VSENSE = 13.5 mV,  
CL = 30 pF, RL= 1 MΩ  
(5)  
LMP8640HV-H  
VCM =5 V, CL = 30 pF, RL = 1 M,  
LMP8640-T LMP8640HV-T VSENSE = 500 mVpp,  
LMP8640-F LMP8640HV-F VSENSE =200 mVpp,  
LMP8640-H LMP8640HV-H VSENSE =100 mVpp,  
(7)(5)  
SR  
RIN  
Slew Rate  
1.8  
5
V/µs  
Differential Mode Input Impedance(5)  
kΩ  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device. Spec does not include input signal dependent currents on the  
positive input of approximately Vsense / 5KΩ due to topology feedback action.  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
8
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Electrical Characteristics 12 V (1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 12 V, V= 0V, 2 V < VCM  
< 76 V, RL = 10 M. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3) MAX(2) UNIT  
VCM = 2.1 V  
720  
1050  
1250  
2800  
3000  
VCM = 2.1 V, Over Temperature  
VCM = 2 V  
IS  
Supply Current  
µA  
V
2300  
VCM = 2 V, Over Temperature  
VCM = 2.1 V  
Maximum Output Voltage  
Minimum Output Voltage  
11.85  
LMP8640-T LMP8640HV-T  
VCM = 2.1 V  
18.2  
40  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1 V  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1 V  
80  
CLOAD  
Max Output Capacitance Load(5)  
30  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
7.9 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
2500  
2400  
2300  
2200  
2100  
2000  
1900  
800  
VS =2.7V  
125°C  
|
|
700  
-40°C  
600  
700  
500  
500  
400  
300  
2.7  
300  
-2 -1  
5.3  
8.0  
10.6  
13.2  
0
1
2
3
4
16 28 40 52 64 76  
VS (V)  
VCM (V)  
Figure 1. Supply Curent vs. Supply Voltage  
Figure 2. Supply Current vs. VCM  
2300  
2500  
VS = 5V  
VS = 12V  
2100  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
1900  
1700  
1500  
125°C  
125 °C  
1300  
1100  
900  
700  
500  
300  
25°C  
-40°C  
25°C  
-40°C  
700  
500  
-2 -1  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
0
1
2
3
4
16 28 40 52 64 76  
VCM (V)  
VCM (V)  
Figure 3. Supply Current vs. VCM  
Figure 4. Supply Current vs. VCM  
140  
140  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
25°C  
-40°C  
125 °C  
25°C  
125°C  
-40°C  
V
= 5V  
V
= 5V  
S
S
80  
-2  
80  
-2  
11  
24  
37  
50  
63  
76  
11  
24  
37  
50  
63  
76  
V
(V)  
V
(V)  
CM  
CM  
Figure 5. CMRR vs. VCM (Gain 20 V/V)  
Figure 6. CMRR vs. VCM (Gain 50 V/V)  
10  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
200  
150  
100  
50  
140  
130  
120  
110  
100  
90  
V
= 5V  
S
-40°C  
125 °C  
25°C  
125°C  
0
25°C  
-50  
-100  
-150  
-200  
-40°C  
V
= 5V  
S
80  
-2  
-2  
11  
24  
37  
50  
63  
76  
11  
24  
37  
50  
63  
76  
V
(V)  
V
(V)  
CM  
CM  
Figure 7. CMRR vs. VCM (Gain 100 V/V)  
Figure 8. Input Voltage Offset vs. VCM  
100  
100  
0
0
-40°C  
-100  
-100  
-40°C  
-200  
-200  
125°C  
125 °C  
-300  
-300  
-400  
25°C  
-500  
-400  
25°C  
-500  
-600  
-700  
-600  
-700  
-800  
-800  
V
= 2.7V  
V = 5V  
S
S
-900  
-900  
-2 -1  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
V
V
CM  
CM  
Figure 9. Ibias vs. VCM  
Figure 10. Ibias vs. VCM  
100  
0
50  
40  
30  
20  
10  
VS=5V, VCM=5V  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
100  
1k  
10k  
100k  
1M  
10M  
V
CM  
FREQUENCY (Hz)  
Figure 11. Ibias vs. VCM  
Figure 12. Gain vs. Frequency  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
300  
13.0  
12.0  
11.0  
10.0  
9.0  
VS=12V, VCM=12V  
VS=12V, VCM=12V  
250  
200  
150  
100  
50  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
200 300  
0.0  
0
0
-3  
100  
400  
500  
600  
-2  
-1  
0
1
2
3
VSENSE (mV)  
VSENSE (mV)  
Figure 13. Output voltage vs. VSENSE  
Figure 14. Output Voltage vs. VSENSE (ZOOM Close to 0 V)  
V
= 5V, V = 12V  
CM  
S
VS=12V, VCM=12V  
TIME (2 Ps/DIV)  
TIME (2 Ps/DIV)  
Figure 16. Small Step Response  
Figure 15. Large Step Response  
VS = 5V, VCM = 12V  
VS = 5V, VCM= 12V  
TIME (400 ns/DIV)  
TIME (400 ns/DIV)  
Figure 17. Settling Time (Fall)  
Figure 18. Settling Time (Rise)  
12  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
V
CM  
V
CM  
V
OUT  
V
OUT  
V
S
= 5V, GAIN 20 V/V  
V
= 5V, GAIN 20 V/V  
S
TIME (4 és/DIV)  
TIME (4 és/DIV)  
Figure 19. Common Mode Step Response (Rise)  
Figure 20. Common Mode Step Response (Fall)  
2.505  
2.6  
VS=5V, VCM=12V  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
VS=5V, VCM=12V  
10  
1.9  
0
0
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
IOUT (mA)  
IOUT (mA)  
Figure 21. Load Regulation (Sinking)  
Figure 22. Load Regulation (Sourcing)  
100  
110  
V
S
= 5V, V  
CM  
= 12V  
V
= 5V, V  
= 12V  
CM  
S
80  
60  
40  
20  
0
90  
70  
50  
30  
10  
GAIN 100V/V  
GAIN 50V/V  
GAIN 20V/V  
GAIN 100 V/V  
GAIN 50V/V  
GAIN 20V/V  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Frequency (Hz)  
Figure 23. AC PSRR vs. Frequency  
Figure 24. AC CMRR vs. Frequency  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LMP8640 and LMP8640HV are single supply high side current sense amplifiers with a fixed gain of 20 V/V,  
50 V/V, 100 V/V and a common mode voltage range of -2 V to 42 V (LMP8640-x) or -2 V to 76 V (LMP8640HV-  
x) with a buffered voltage output.  
8.2 Functional Block Diagram  
+IN  
-IN  
R
LMP8640  
LMP8640HV  
R
IN  
IN  
-
+
+
V
G
V
OUT  
R
G
= 2*R  
IN  
-
V
8.3 Feature Description  
As seen in Figure 25, the current flowing through sense resistor RS develops a voltage drop equal to VSENSE  
across RS. The voltage at the -IN pin will now be less than +IN by an amount proportional to the VSENSE voltage.  
V
SENSE  
I
s
R
s
+IN  
-IN  
R
LMP8640  
R
IN  
IN  
L
o
a
d
-
+
+
V
I
G
V
OUT  
G
R
G
= 2*R  
IN  
-
V
Figure 25. Simple Current Monitor  
The low bias currents of the error amplifier cause little voltage drop through RIN-, so the negative input of the  
internal error amplifier is at essentially the same potential as the -IN input. The RIN resistors are 5 KΩ each.  
14  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Feature Description (continued)  
The error amplifier will detect this voltage error between it's inputs and drive the MOSFET gate to conduct more  
current, increasing the voltage drop across RIN+, until the servo amplifiers positive input matches the negative  
input. At this point, the voltage drop across RIN+ now matches VSENSE  
.
IG, a current proportional to IS, will flow according to the following relation:  
IG = VSENSE/RIN = RS* IS/RIN  
(1)  
IG also flows through the internal gain resistor RG developing a voltage drop equal to:  
VRG = IG * RG = (VSENSE/RIN) * RG = ((RS* IS)/ RIN )* RG  
VOUT = 2*(RS*IS)*G,  
(2)  
(3)  
where G=RG/RIN = 10 V/V, 25 V/V or 50 V/V, according to the gain option selected.  
The voltage on RG is then amplified by a gain of 2 by the output gain stage to create the final overall gain of x20,  
x50 and x100. The output stage has a low impedance drive allowing the LMP8640 to easily interface with other  
IC's (ADC, Mux, µC…). No external buffering is required.  
8.3.1 Selection of Sense Resistor  
The value chosen for the shunt resistor, RS, depends on the application. It plays a big role in a current sensing  
system and must be chosen with care. The selection of the shunt resistor needs to take in account the tradeoffs  
in small-signal accuracy, the power dissipated and the voltage loss across the shunt itself.  
In applications where a small current is sensed, a bigger value of RS is selected to minimize the error in the  
proportional output voltage. Higher resistor value improves the signal-to-noise ratio (SNR) at the input of the  
current sense amplifier and hence gives a more accurate output.  
Similarly when high current is sensed, the power losses in RS can be significant so a smaller value of RS is  
desired. In this condition it is also required to take in account also the power rating of RS resistor. The low input  
offset of the LMP8640 allows the use of small sense resistors to reduce power dissipation still providing a good  
input dynamic range. The input dynamic range is the ratio between the maximum signal that can be measured  
and the minimum signal that can be detected, where usually the input offset is the principal limiting factor.  
Figure 26. Example of a Kelvin (4-Wire) Connection to a Two-Terminal Resistor  
The amplifier inputs should be directly connected to the sense resistor pads using “Kelvin” or “4-wire” connection  
techniques. The paths of the input traces should be identical, including connectors and vias, so that these errors  
will be equal and cancel.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
Feature Description (continued)  
8.3.1.1 Resistor Power Rating and Thermal Issues  
The power dissipated by the sense resistor can be calculated from:  
PD = IMAX2 * RS  
where  
PD is the power dissipated by the resistor in Watts  
IMAX is the maximum load current in Amps  
RS is the sense resistor value in ohms.  
(4)  
The resistor must be rated for more than the expected maximum power (PD), with margin for temperature  
derating. Be sure to observe any power derating curves provided by the resistor manufacturer.  
Running the resistor at higher temperatures will also affect the accuracy. As the resistor heats up, the resistance  
generally goes up, which will cause a change in the measurement. The sense resistor should have as much  
heat-sinking as possible to remove this heat through the use of heatsinks or large copper areas coupled to the  
resistor pads. A reading drifting slightly after turn-on can usually be traced back to sense resistor heating.  
8.3.1.2 Using PCB Trace as a Sense Resistor  
While it may be tempting to use the resistance of a known area of PCB trace or copper area as a sense resistor,  
it is not recommended for precision measurements.  
The tempco of copper is typically 3300-4000ppm/°K (0.33% to 0.4% per °C), which can vary with PCB  
processes.  
A typical surface mount sense resistor temperature coefficient (tempco) is in the 50ppm to 500ppm per °C range  
offering more measurement consistency and accuracy over the copper trace. Special low tempco resistors are  
available in the 0.1 to 50ppm range, but at a much higher cost.  
8.3.2 Sense Line Inputs  
The sense lines should be connected to a point on the resistor that is not shared with the main current path, as  
shown in Figure 26 above. For lowest drift, the amplifier should be mounted away from any heat generating  
devices, which may include the sense resistor. The traces should be one continuous trace of copper from the  
sense resistor pad to the amplifier input pin pad, and ideally on the same copper layer with minimal vias or  
connectors. This can be important around the sense resistor if it is generating any significant heat gradients. Vias  
in the sense lines should be formed from continuous plated copper and routing through connectors should be  
avoided. It is better to extend the sense lines than to place the amplifier in a hostile environment.  
To minimize noise pickup and thermal errors, the input traces should be treated like a high-speed differential  
signal pair and routed tightly together with a direct path to the input pins on the same copper layer. They do not  
need to be "impedance matched", but should follow the same matching rules about vias, spacing and equal  
lengths. The input traces should be run away from noise sources, such as digital lines, switching supplies or  
motor drive lines. Remember that these input traces can contain high voltage, and should have the appropriate  
trace routing clearances to other traces and layers. Since the sense traces only carry the amplifier bias current  
(typically about 12µA per input at room temp), the connecting input traces can be thin traces running close  
together. This can help with routing or creating the required spacings.  
It should also be noted that, due to the nature of the device topology, the positive input bias current will vary with  
VSENSE with an extra current approximately equivalent to VSENSE / 5 kΩ on top of the typical 12 uA bias current.  
The negative input bias current is not in the feedback path and will not change over VSENSE. High or miss-  
matched source impedances should be avoided as this imbalance will create an additional error over input  
voltage.  
8.3.3 Effects of Series Resistance on Sense Lines  
Because the input stage uses precision 5 KΩ resistors internally to convert the voltage on the input pin to a  
current, any resistance added in series with the input pins will change this resistance, and thus alter the gain.  
If a resistance is added in series with an input, the gain of that input will not track that of the other input, causing  
a constant gain error.  
16  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
Feature Description (continued)  
It is not recommended to use external resistance to alter the gain, as external resistors will not have the same  
thermal matching as the internal thin film resistors. Any added resistance will severely degrade the offset and  
CMRR specifications. It is recommended that the total trace resistance be less than 10 ohms.  
If resistors are purposely added for filtering, resistance should be added equally to both inputs and the user  
should be aware that the gain will change slightly.  
8.4 Device Functional Modes  
8.4.1 Bias Current at Low Common Mode Voltage  
At common mode voltages below +2 V, the input bias current starts to reverse and crosses through zero at about  
+1.8 V. This can be seen in the Input Bias Current graphs in Figure 9 through Figure 11. Negative currents on  
the graph show curent flow out of the input and into the load. The graphs show the current for each input, so the  
actual "bias" current will be twice graph value. This total current could be as high as 1mA, depending on the point  
of equilibrium.  
While this will not affect the vast majority of applications, it may cause MOSFET switched designs with non-linear  
loads (like LED's or diode-isolated loads) to "float" above ground where the load leakage and bias currents attain  
equilibrium. A small resistor to ground (on the load supply side) can bleed-off this current.  
8.4.2 Applying Input Voltage with No Supply Voltage  
The full specified input common mode voltage range may be applied to the inputs while the LMP8640 power is  
off (V+ = 0 V). When the LMP8640 is powered off, the RIN resistors are disconnected internally by MOSFETS  
and the leakage currents are very low (sub uA).  
The 6 V input differential limit still applies, so at no time should the two inputs be more than 6 V apart. There are  
also Zener clamps on the inputs to ground, so do not exceed the input limits specified in the Absolute Maximum  
Ratings.  
8.4.3 Driving an ADC  
The input stage of an Analog to Digital converter can be modeled with a resistor and a capacitance to ground. So  
if the voltage source doesn't have a low impedance, an error in amplitude measurement will occur. In this case, a  
buffer is needed to drive the ADC. The LMP8640 has an internal output buffer able to directly drive a capacitive  
load up to 30 pF, or, the input stage of an ADC. It is recommended that an external low pass RC filter be added  
to the output of the LMP8640 to reduce the noise and limit the bandwidth of the current sense measurement.  
If the supply voltage of the LMP8640 is higher than the ADC supply voltage, care should be taken to prevent the  
LMP8640 output from over-driving the ADC input.  
This can be accomplished with a series resistance (which should be present when driving a ADC) and a  
clamping diode to the ADC's power supply. The diode will clamp the ADC input to a safe level. Do not completely  
rely on a calculated maximum output voltage. Transients or fault conditions outside the normal conditions area  
can cause the output to swing to a higher than expected voltage.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMP8640x amplifies the voltage developed across a current-sensing resistor.  
9.2 Typical Application  
I
S
R
S
+IN  
-IN  
R
L
o
a
d
LMP8640  
R
IN  
IN  
-
+
+
V
V
A
R
F
G
ADC  
V
OUT  
C
F
R
= 2*R  
G
IN  
-
V
Figure 27. Typical Application Example  
9.2.1 Design Requirements  
In this example, a current monitor application is required to measure the current into a load (peak current 10 A)  
with a resolution of 10 mA and 0.5% of accuracy.  
The 10bit analog to digital converter accepts a max input voltage of 4.1 V. In order to not burn too much power  
on the shunt resistor, it needs to be less than 10 m. Table 1 below summarizes the other design conditions.  
Table 1. Example Design Requirements  
VALUE  
WORKING CONDITION  
MIN  
5 V  
MAX  
5.5 V  
70 V  
70°C  
Supply Voltage  
Common mode Voltage  
Temperature  
48 V  
0°C  
Signal BW  
50 kHz  
9.2.2 Design Procedure  
9.2.2.1 First Step – LMP8640 or LMP8640HV Selection  
The required common mode voltage of the application implies that the right choice is the LMP8640HV (High  
common mode voltage up tp 76 V).  
18  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
 
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
9.2.2.2 Second Step – Gain Option Selection  
We can choose between three gain option (20 V/V, 50 V/V, 100 V/V). Considering the max input voltage of the  
ADC (4.1 V) , the max Sense voltage across the shunt resistor is evaluated according the following formula:  
VSENSE= (MAX Vin ADC) / Gain;  
(5)  
hence the max VSENSE will be 205 mV, 82 mV, 41 mV respectively. The shunt resistor are then evaluated  
considering the maximum monitored current :  
RS = (max VSENSE) / I_MAX  
(6)  
For each gain option the max shunt resistors are the following : 20.5 m, 8.2 m, 4.1 mrespectively.  
One of the project constraints requires RS<10 m, it means that the 20.5 mwill be discarded and hence the 50  
V/V and 100 V/V gain options are still in play.  
9.2.2.3 Third Step – Shunt Resistor Selection  
At this point an error budget calculation, considering the calibration of the Gain, Offset, CMRR, and PSRR, helps  
in the selection of the shunt resistor. In the table below the contribution of each error source is calculated  
considering the values of the Electrical Characteristics table at 5 V supply.  
Table 2. Resolution Calculation  
ERROR SOURCE  
CMRR calibrated at mid VCM range  
RS = 4.1 m  
77.9 µV  
8.9 µV  
RS = 8.1 mΩ  
77.9 µV  
8.9 µV  
PSRR calibrated at 5 V  
Total error (squared sum of contribution)  
Resolution (Total error / RS)  
78 µV  
78 µV  
19.2 mA  
9.6 mA  
Table 3. Accuracy Calculation  
ERROR SOURCE  
RS = 4.1 mΩ  
182 µV  
216 µV  
75.2 µV  
293 µV  
0.7%  
RS = 8.1 mΩ  
182 µV  
216 µV  
151 µV  
320 µV  
0.4%  
Tc Vos  
Nosie  
Gain drift  
Total error (squared sum of contribution)  
Accuracy 100*(Max_VSENSE / Total Error)  
From the tables above is clear that the 8.2 mshunt resistor allows the respect of the project's constraints. The  
power burned on the Shunt is 820 mW at 10 A.  
9.2.3 Application Performance Plot  
5
4
3
2
1
Vout  
0
0
2
4
6
8
10  
LOAD CURRENT (A)  
C001  
Figure 28. Application Example Results using 8.2 mΩ Resistor  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
9.3 Do's and Don'ts  
Do properly bypass the power supplies.  
Do add series resistance to the output when driving capacitive loads, cables, long traces, muxes and ADC  
inputs.  
Do not exceed the input common mode range.  
10 Power Supply Recommendations  
The input circuitry of the device can accurately measure signals on common-mode voltages beyond its power  
supply voltage, V+. For example, the voltage applied to the VS power supply terminal can be 5 V, whereas the  
load power-supply voltage being monitored (the common-mode voltage) can be as high as +76 V. Power-supply  
bypass capacitors are required for stability and should be placed as closely as possible to the supply and ground  
terminals of the device. A typical value for this supply bypass capacitor is 0.1 μF close to the V+ pin. The  
capacitors should be rated for at least twice the maximum expected applied voltage. Applications with noisy or  
high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
11 Layout  
11.1 Layout Guidelines  
Use 4-wire (Kelvin) connections to the sense resistor. Connect to the resistor at a point that is not within a  
direct high-current path (See Figure 29).  
Do not "share" part of the sense trace path with the load current.  
Maintain proper clearance and spacings around the input traces, as they may be at a higher voltage (up to 76  
V) than the surrounding traces and planes.  
Input traces from the sense resistor pads should follow the same path, be spaced tightly together, and ideally  
on the same copper layer.  
Vias used in the input traces should be of continuous plated copper to avoid creating thermocouples.  
Avoid routing inputs through jumpers and connectors. Even the best connectors introduce thermal errors  
("thermocouples"). Each input trace should have the same number of "thermocouples" if they cannot be  
avoided.  
Keep the amplifier away from heat generating devices. The copper-solder-lead junction on the input pins will  
form a thermocouple. The copper mass should be equal on both input pins.  
Avoid temperature gradients across the input pins. Input pins should be equal distance to the heat source.  
Place the LMP8640 in the most temperature-stable area possible and away from high-velocity air flows. It is  
better to carefully extend the input traces than to place the amplifier in a less-than-ideal environment.  
Give the sense resistor as much copper trace area as possible to dissipate heat as the resistor value will  
change slightly with temperature. Also see the resistor manufacturers datasheet or application notes for  
further layout guidelines.  
The power-supply bypass capacitor should be placed as closely as possible to the supply and ground  
terminals. The recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can  
be added to compensate for noisy or high-impedance power supplies.  
20  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
11.2 Layout Example  
Figure 29. Layout Example - Kelvin Connection to a Two-Terminal Resistor  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
www.ti.com  
Layout Example (continued)  
Figure 30. Layout Example - Four-Wire (Kelvin) Resistor Connection  
22  
Submit Documentation Feedback  
Copyright © 2010–2014, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
LMP8640, LMP8640-Q1, LMP8640HV  
www.ti.com  
SNOSB28G AUGUST 2010REVISED NOVEMBER 2014  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Evaluation Board for LMP8640HV-F, http://www.ti.com/tool/lmp8640hv-feval  
Evaluation Board for LMP8640HV-H, http://www.ti.com/tool/lmp8640hv-heval  
Evaluation Board for LMP8640HV-T, http://www.ti.com/tool/lmp8640hv-teval  
TINA-TI SPICE-Based Analog Simulation Program, http://www.ti.com/tool/tina-ti  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documantation, see the following:  
AN-1975 LMP8640 / LMP8645 Evaluation Board User Guide, SNOA546  
Absolute Maximum Ratings for Soldering, SNOA549  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 4. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LMP8640  
LMP8640-Q1  
LMP8640HV  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 Trademarks  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMP8640 LMP8640-Q1 LMP8640HV  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP8640HVMK-F/NOPB  
LMP8640HVMK-H/NOPB  
LMP8640HVMK-T/NOPB  
LMP8640HVMKE-F/NOPB  
LMP8640HVMKE-H/NOPB  
LMP8640HVMKE-T/NOPB  
LMP8640HVMKX-F/NOPB  
LMP8640HVMKX-H/NOPB  
LMP8640HVMKX-T/NOPB  
LMP8640MK-F/NOPB  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AD6A  
AF6A  
AB6A  
AD6A  
AF6A  
AB6A  
AD6A  
AF6A  
AB6A  
AC6A  
AE6A  
AA6A  
AC6A  
AE6A  
AA6A  
AC6A  
AE6A  
AA6A  
AUAA  
AUAA  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI | NIPDAU  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
LMP8640MK-H/NOPB  
LMP8640MK-T/NOPB  
LMP8640MKE-F/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-T/NOPB  
LMP8640MKX-F/NOPB  
LMP8640MKX-H/NOPB  
LMP8640MKX-T/NOPB  
LMP8640QMKE-T/NOPB  
LMP8640QMKX-T/NOPB  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
3000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMP8640, LMP8640-Q1 :  
Catalog : LMP8640  
Automotive : LMP8640-Q1  
NOTE: Qualified Version Definitions:  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP8640HVMK-F/NOPB SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LMP8640HVMK-H/NOPB SOT-23-  
THIN  
LMP8640HVMK-T/NOPB SOT-23-  
THIN  
LMP8640HVMKE-F/NOPB SOT-23-  
THIN  
LMP8640HVMKE-  
H/NOPB  
SOT-23-  
THIN  
250  
LMP8640HVMKE-T/NOPB SOT-23-  
THIN  
250  
LMP8640HVMKX-F/NOPB SOT-23-  
THIN  
3000  
3000  
3000  
LMP8640HVMKX-  
H/NOPB  
SOT-23-  
THIN  
LMP8640HVMKX-T/NOPB SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP8640MK-F/NOPB SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
180.0  
178.0  
178.0  
180.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.1  
3.2  
3.2  
3.1  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.05  
3.2  
3.2  
3.05  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.1  
1.4  
1.4  
1.1  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LMP8640MK-H/NOPB SOT-23-  
THIN  
LMP8640MK-T/NOPB SOT-23-  
THIN  
LMP8640MKE-F/NOPB SOT-23-  
THIN  
LMP8640MKE-H/NOPB SOT-23-  
THIN  
250  
LMP8640MKE-H/NOPB SOT-23-  
THIN  
250  
LMP8640MKE-T/NOPB SOT-23-  
THIN  
250  
LMP8640MKX-F/NOPB SOT-23-  
THIN  
3000  
3000  
3000  
3000  
250  
LMP8640MKX-F/NOPB SOT-23-  
THIN  
LMP8640MKX-H/NOPB SOT-23-  
THIN  
LMP8640MKX-T/NOPB SOT-23-  
THIN  
LMP8640QMKE-T/NOPB SOT-23-  
THIN  
LMP8640QMKX-T/NOPB SOT-23-  
THIN  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP8640HVMK-F/NOPB  
LMP8640HVMK-H/NOPB  
LMP8640HVMK-T/NOPB  
LMP8640HVMKE-F/NOPB  
LMP8640HVMKE-H/NOPB  
LMP8640HVMKE-T/NOPB  
LMP8640HVMKX-F/NOPB  
LMP8640HVMKX-H/NOPB  
LMP8640HVMKX-T/NOPB  
LMP8640MK-F/NOPB  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
183.0  
208.0  
208.0  
183.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
183.0  
191.0  
191.0  
183.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
35.0  
20.0  
35.0  
250  
250  
3000  
3000  
3000  
1000  
1000  
1000  
250  
LMP8640MK-H/NOPB  
LMP8640MK-T/NOPB  
LMP8640MKE-F/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-T/NOPB  
LMP8640MKX-F/NOPB  
LMP8640MKX-F/NOPB  
250  
250  
250  
3000  
3000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP8640MKX-H/NOPB  
LMP8640MKX-T/NOPB  
LMP8640QMKE-T/NOPB  
LMP8640QMKX-T/NOPB  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
3000  
250  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
3000  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LMP8640QMKX-T/NOPB

AEC-Q100、-2V 至 42V、950kHz 电流感应放大器 | DDC | 6 | -40 to 125
TI

LMP8640_15

LMP8640/-Q1/HV Precision High Voltage Current Sense Amplifiers
TI

LMP8645

Precision High Voltage Current Sense Amplifier
NSC

LMP8645

-2V 至 42V、990kHz、可变增益电流感应放大器
TI

LMP8645HV

Precision High Voltage Current Sense Amplifier
NSC

LMP8645HV

-2V 至 76V、990kHz、可变增益电流感应放大器
TI

LMP8645HVMK

Precision High Voltage Current Sense Amplifier
NSC

LMP8645HVMK/NOPB

-2V 至 76V、990kHz、可变增益电流感应放大器 | DDC | 6 | -40 to 125
TI

LMP8645HVMKE

Precision High Voltage Current Sense Amplifier
NSC

LMP8645HVMKE/NOPB

-2V 至 76V、990kHz、可变增益电流感应放大器 | DDC | 6 | -40 to 125
TI

LMP8645HVMKX

Precision High Voltage Current Sense Amplifier
NSC

LMP8645HVMKX/NOPB

-2V 至 76V、990kHz、可变增益电流感应放大器 | DDC | 6 | -40 to 125
TI