LMV7231SQE/NOPB [TI]

精密微功耗十六路比较器 | RTW | 24 | -40 to 125;
LMV7231SQE/NOPB
型号: LMV7231SQE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

精密微功耗十六路比较器 | RTW | 24 | -40 to 125

比较器
文件: 总28页 (文件大小:1639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
LMV7231 Hex Window Comparator With 1.5% Precision and 400-mV Reference  
1 Features  
3 Description  
The LMV7231 device is a 1.5% accurate Hex  
Window Comparator which can be used to monitor  
power supply voltages or any other analog output,  
such as an analog temperature sensor or current-  
sense amplifier. The device uses an internal 400-mV  
reference for the comparator trip value. The  
comparator set points can be set through external  
resistor dividers. The LMV7231 has 6 outputs (CO1  
to CO6) that signal an undervoltage or overvoltage  
event for each power supply input. An output (AO) is  
also provided to signal when any of the power supply  
inputs have an overvoltage or undervoltage event.  
This ability to signal an undervoltage or overvoltage  
event for the individual power supply inputs, in  
addition to an output to signal such an event on any  
of the power supply inputs, adds unparalleled system  
protection capability.  
1
(For VS = 3.3 V ±10%, Typical Unless Otherwise  
Noted)  
Undervoltage and Overvoltage Detection  
High Accuracy Voltage Reference: 400 mV  
Threshold Accuracy: ±1.5% (Maximum)  
Wide Supply Voltage Range 2.2 V to 5.5 V  
Input and Output Voltage Range Above V+  
Internal Hysteresis: 6 mV  
Propagation Delay: 2.6 µs to 5.6 µs  
Supply Current 7.7 µA Per Channel  
24-Lead WQFN Package  
Temperature Range: –40°C to +125°C  
2 Applications  
The 2.2-V to 5.5-V power supply voltage range, low  
supply current, and input or output voltage range  
above V+ make the LMV7231 ideal for a wide range  
of power supply monitoring applications. Operation is  
ensured over the –40°C to +125°C temperature  
range. The device is available in a 24-pin WQFN  
package.  
Power Supply Voltage Monitoring  
Battery Monitoring  
Handheld Instruments  
Relay Driving  
Industrial Control Systems  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
LMV7231  
WQFN (24)  
4.00 mm × 4.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Typical Application  
V+  
Monitored Voltage #1  
COPOL  
Channel 1  
+
-
+IN1  
*
*
CO1  
+
-
Monitored Voltage #6  
-IN1  
COPOL  
REF  
OV1 UV1  
Controller  
(FPGA)  
CO6  
+IN6  
-IN6  
Channel 6  
OV6 UV6  
REF  
REF  
AOSEL  
AO  
OV1  
OV2  
OV3  
OV4  
OV5  
OV6  
+400mV  
*
UV1  
UV2  
UV3  
UV4  
UV5  
UV6  
* Open Drain  
LMV7231  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 17  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 3.3-V Electrical Characteristics ................................. 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 Device and Documentation Support ................. 20  
11.1 Device Support...................................................... 20  
11.2 Documentation Support ....................................... 20  
11.3 Community Resources.......................................... 20  
11.4 Trademarks........................................................... 20  
11.5 Electrostatic Discharge Caution............................ 20  
11.6 Glossary................................................................ 20  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 20  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (March 2013) to Revision F  
Page  
Added Device Information table, Pin Configuration and Functions section, ESD Ratings and Thermal Information  
tables, Feature Description section, Device Functional Modes, Application and Implementation section, Power  
Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,  
Packaging, and Orderable Information section ..................................................................................................................... 1  
Changes from Revision D (March 2013) to Revision E  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 17  
2
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
 
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
5 Pin Configuration and Functions  
RTW Package  
24-Pin WQFN  
Top View  
-IN1  
+IN1  
-IN2  
+IN2  
-IN3  
+IN3  
CO6  
AO  
AOSEL  
COPOL  
GND  
LMV7231  
RESERVED  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
–IN1  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Digital Input  
Power  
Negative input for window comparator 1  
Positive input for window comparator 1  
Negative input for window comparator 2  
Positive input for window comparator 2  
Negative input for window comparator 3  
Positive input for window comparator 3  
Negative input for window comparator 4  
Positive input for window comparator 4  
Negative input for window comparator 5  
Positive input for window comparator 5  
Negative input for window comparator 6  
Positive input for window comparator 6  
Connect to GND  
2
+IN1  
3
–IN2  
4
+IN2  
5
–IN3  
6
+IN3  
7
–IN4  
8
+IN4  
9
–IN5  
10  
11  
12  
13  
14  
+IN5  
–IN6  
+IN6  
RESERVED  
GND  
Ground reference pin for the power supply voltage  
The state of this pin determines whether the CO1-CO6 pins are active “HIGH” or “LOW”. When tied LOW the  
CO1-CO6 outputs go LOW to indicate an out-of-window comparison.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
COPOL  
AOSEL  
AO  
Digital Input  
Digital Input  
The state of this pin determines whether the AO pin is active on an overvoltage or undervoltage event. When  
tied LOW the AO output is active upon an overvoltage event.  
Open-Drain NMOS This output is the ANDED combination of either the overvoltage comparator outputs or the undervoltage  
Digital Output  
comparator outputs and is controlled by the state of the AOSEL. AO pin is active-low.  
Open-Drain NMOS  
Digital Output  
CO6  
Window comparator 6 NMOS open-drain output  
Open-Drain NMOS  
Digital Output  
CO5  
Window comparator 5 NMOS open-drain output  
Window comparator 4 NMOS open-drain output  
Window comparator 3 NMOS open-drain output  
Window comparator 2 NMOS open-drain output  
Window comparator 1 NMOS open-drain output  
Open-Drain NMOS  
Digital Output  
CO4  
Open-Drain NMOS  
Digital Output  
CO3  
Open-Drain NMOS  
Digital Output  
CO2  
Open-Drain NMOS  
Digital Output  
CO1  
24  
V+  
Power  
Power supply pin  
DAP  
DAP  
Thermal Pad  
Die Attach Paddle (DAP). Connect to GND.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMV7231  
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)(3)  
See  
.
MIN  
MAX  
6
UNIT  
V
Supply voltage  
Voltage at input / output pin  
Output current  
GND 0.3  
6
V
10  
mA  
mA  
°C  
Total package current  
Junction temperature(4)  
Storage temperature, Tstg  
50  
150  
150  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) For soldering specifications, see Absolute Maximum Ratings for Soldering (SNOA549).  
(4) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.  
6.2 ESD Ratings  
VALUE  
±2000  
±200  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
Machine model  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).  
6.3 Recommended Operating Conditions  
MIN  
2.2  
MAX  
5.5  
UNIT  
V
Supply voltage  
Junction temperature(1)  
–40  
125  
°C  
(1) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.  
4
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
 
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
6.4 Thermal Information  
LMV7231  
THERMAL METRIC(1)  
RTW (WQFN)  
24 PINS  
37.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40.2  
16.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
16.2  
RθJC(bot)  
5.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 3.3-V Electrical Characteristics  
Unless otherwise specified, all limits ensured for TA = 25°C, V+ = 3.3 V ±10%, GND = 0 V, and RL > 1 M.  
PARAMETER  
TEST CONDITION  
TA = –10°C to +70°C  
TA = –10°C to +70°C  
MIN(1)  
TYP(2)  
MAX(1)  
406  
408.6  
401  
403.2  
8.8  
UNIT  
394  
400  
VTHR  
Threshold: input rising  
RL = 10 kΩ  
mV  
391.4  
386  
394  
VTHF  
VHYST  
IBIAS  
Threshold: input falling  
Hysteresis (VTHR VTHF  
Input bias current  
RL = 10 kΩ  
RL = 10 kΩ  
mV  
mV  
nA  
383.8  
3.9  
)
6.0  
–5  
0.05  
5
VIN = V+, GND, and  
5.5 V  
TA = –10°C to +70°C  
TA = –10°C to +70°C  
TA = –10°C to +70°C  
–15  
15  
160  
200  
250  
0.4  
VOL  
Output low voltage  
IL = 5 mA  
mV  
VOUT = V+, 5.5 V and  
40 mV of overdrive  
IOFF  
Output leakage current  
μA  
1
High-to-low propagation  
delay (+IN falling)  
2.6  
5.4  
5.6  
2.8  
0.5  
6
tPDHL1  
tPDHL2  
10 mV of overdrive  
10 mV of overdrive  
10 mV of overdrive  
μs  
μs  
μs  
High-to-low propagation  
delay (-IN rising)  
10  
10  
6
Low-to-high propagation  
delay (+IN rising)  
tPDLH1  
tPDLH2  
Low-to-high propagation  
delay (-IN falling)  
10 mV of overdrive  
μs  
μs  
tr  
tf  
Output rise time  
CL= 10 pF, RL= 10 kΩ  
0.25  
0.3  
0.2  
1
CL = 100 pF, RL = 10  
kΩ  
Output fall time  
μs  
μA  
μA  
TA = –10°C to +70°C  
Digital input logic 1 leakage  
current  
IIN(1)  
TA = –10°C to +70°C  
0.2  
1
Digital input logic 0 leakage  
current  
IIN(0)  
TA = –10°C to +70°C  
TA = –10°C to +70°C  
TA = –10°C to +70°C  
VIH  
VIL  
Digital input logic 1 voltage  
Digital input logic 0 voltage  
0.7 × V+  
V
V
0.3 × V+  
60  
46  
No loading (outputs  
high)  
IS  
Power supply current  
μA  
TA = –10°C to +70°C  
84  
V+ ramp rate = 1.1 ms  
V+ step = 2.5 V to 4.5 V  
400  
μV  
μV  
VTH power supply  
sensitivity(3)  
VTHPSS  
V+ ramp rate = 1.1 ms  
V+ step = 4.5 V to 2.5 V  
–400  
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the  
Statistical Quality Control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(3) VTH power supply sensitivity is defined as the temporary shift in the internal voltage reference due to a step on the V+ pin.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMV7231  
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
6.6 Typical Characteristics  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
396 397 398 399 400 401 402 403 404  
396 397 398 399 400 401 402 403 404  
Input Rising Threshold (mV)  
Input Rising Threshold (mV)  
Figure 2. IN Input Rising Threshold Distribution  
Figure 1. +IN Input Rising Threshold Distribution  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
390 391 392 393 394 395 396 397 398  
390 391 392 393 394 395 396 397 398  
Input Falling Threshold (mV)  
Input Falling Threshold (mV)  
Figure 3. +IN Input Falling Threshold Distribution  
Figure 4. IN Input Falling Threshold Distribution  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0  
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0  
Hysteresis (mV)  
Hysteresis (mV)  
Figure 5. +IN Hysteresis Distribution  
Figure 6. IN Hysteresis Distribution  
6
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
 
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
Typical Characteristics (continued)  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
405  
405  
404  
403  
402  
401  
400  
399  
398  
397  
396  
395  
404  
403  
402  
401  
+IN  
400  
+IN  
399  
398  
-IN  
-IN  
397  
396  
395  
2
3
4
5
6
-40 -20  
0
20 40 60 80 100 120  
Temperature (°C)  
Supply Voltage (V)  
Figure 7. Input Rising Threshold Voltage vs Temperature  
Figure 8. Input Rising Threshold Voltage vs Supply Voltage  
400  
400  
399  
398  
397  
396  
395  
399  
398  
397  
396  
395  
-IN  
394  
-IN  
394  
393  
392  
393  
392  
+IN  
+IN  
391  
391  
390  
390  
2
3
4
5
6
-40 -20  
0
20 40 60 80 100 120  
Temperature (°C)  
Supply Voltage (V)  
Figure 10. Input Falling Threshold Voltage vs Supply  
Voltage  
Figure 9. Input Falling Threshold Voltage vs Temperature  
10  
9
10  
9
+IN  
8
8
+IN  
7
6
5
7
6
5
-IN  
-IN  
4
4
3
2
1
0
3
2
1
0
-40 -20  
0
20 40 60 80 100 120  
Temperature (°C)  
2
3
4
5
6
Supply Voltage (V)  
Figure 11. Hysteresis vs Temperature  
Figure 12. Hysteresis vs Supply Voltage  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMV7231  
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
Typical Characteristics (continued)  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
60  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
125°C  
T
= 25°C  
A
50  
85°C  
40  
25°C  
5.5V  
30  
-40°C  
20  
10  
0
3.3V  
2.2V  
8
1
2
3
4
5
6
0
1
2
3
4
5
6
7
9
10  
Supply Voltage (V)  
Output Sink Current (mA)  
Figure 13. Supply Current vs Supply Voltage and  
Temperature  
Figure 14. Supply Current vs Output Sink Current  
40  
55  
T
A
= -40°C  
T = 85°C  
A
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
5.5V  
5.5V  
3.3V  
3.3V  
2.2V  
2.2V  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 15. Supply Current vs Output Sink Current  
Figure 16. Supply Current vs Output Sink Current  
60  
5
T
A
= 125°C  
-40°C  
+IN, -IN  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
0
5.5V  
85°C  
+IN, -IN  
-5  
3.3V  
-10  
-15  
-20  
25°C  
+IN, -IN  
2.2V  
25°C  
+IN, -IN  
0
1
2
3
4
5
6
7
8
9
10  
-0.3  
-0.2  
Input Voltage (V)  
-0.1  
Output Sink Current (mA)  
Figure 17. Supply Current vs Output Sink Current  
Figure 18. Bias Current vs Input Voltage  
8
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
Typical Characteristics (continued)  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
0.4  
2.0  
125°C -IN  
1.6  
1.2  
0.8  
0.4  
0.0  
0.3  
125°C +IN  
25°C -IN  
0.2  
-40°C -IN  
85°C -IN  
0.1  
25°C +IN  
-40°C +IN  
0.0  
0.0  
85°C +IN  
3.0 3.6  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
0.0  
0.6  
1.2  
1.8  
2.4  
Input Voltage (V)  
Input Voltage (V)  
Figure 19. Bias Current vs Input Voltage  
Figure 20. Bias Current vs Input Voltage  
450  
600  
T
A
= 25°C  
T = 85°C  
A
400  
350  
300  
250  
200  
150  
100  
50  
V+ = 2.2V  
500  
400  
300  
200  
100  
0
V+ = 2.2V  
V+ = 3.3V  
V+ = 3.3V  
V+ = 5.5V  
6
V+ = 5.5V  
6
0
0
2
4
8
10  
0
2
4
8
10  
Ouput Sink Current (mA)  
Output Sink Current (mA)  
Figure 21. Output Voltage Low vs Output Sink Current  
Figure 22. Output Voltage Low vs Output Sink Current  
350  
700  
T
A
= -40°C  
T = 125°C  
A
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
V+ = 2.2V  
V+ = 2.2V  
V+ = 3.3V  
V+ = 3.3V  
V+ = 5.5V  
V+ = 5.5V  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 23. Output Voltage Low vs Output Sink Current  
Figure 24. Output Voltage Low vs Output Sink Current  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMV7231  
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
Typical Characteristics (continued)  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
100  
70  
60  
50  
40  
30  
20  
10  
0
V+ = 3.3V  
T
A
= 25°C  
-40°C  
25°C  
80  
60  
40  
20  
0
V+ = 5.5V  
85°C  
V+ = 3.3V  
125°C  
V+ = 2.2V  
0
1
2
4
5
6
0
1
1
2
3
Output Voltage (V)  
Output Voltage (V)  
Figure 25. Output Short Circuit Current vs Output Voltage  
Figure 26. Output Short Circuit Current vs Output Voltage  
40  
1e2  
V+ = 3.3V  
RISE  
CL = 10 pF  
T
A
= 25°C  
1e1  
1
30  
20  
10  
0
1e-1  
1e-2  
1e-3  
FALL  
HL +IN  
0
10 20 30 40 50 60 70 80 90 100  
Input Overdrive (mV)  
1e-1  
1
1e1  
1e2  
1e3  
Output Pull-Up Resistor (kW)  
Figure 28. Rise and Fall Times vs Output Pullup Resistor  
Figure 27. Propagation Delay vs Input Overdrive  
when  
V
OUT  
V+ = 3.3V  
10  
t
t
+IN = V  
PDHL1  
PDLH1  
IN  
-IN = GND  
2V/DIV  
DC  
1
t
t
PDHL2  
PDLH2  
V when  
OUT  
+IN = V+  
-IN = V  
IN  
2V/DIV  
DC  
0.1  
0.01  
V
IN  
R
C
= 10 kW  
= 10 pF  
L
L
10 mV/DIV  
AC  
10 mV OF OVERDRIVE  
0
1
2
4
5
6
4 ms/DIV  
Output Voltage (V)  
Figure 30. Output Leakage Current vs Output Voltage  
Figure 29. Propagation Delay  
10  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
Typical Characteristics (continued)  
V+ = 3.3 V and TA =25°C unless otherwise noted.  
V+ = 3.3 V  
10  
1
0.1  
0.01  
0
1
2
4
5
6
Output Voltage (V)  
Figure 31. Output Leakage Current vs Output Voltage  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMV7231  
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LMV7231 is Hex Window Comparator which can be used to monitor power supply voltages and other critical  
system voltage levels.  
The LMV7231 contains 6 identical window comparators where the upper and lower trip points are set through  
external resistor dividers. Each input of the comparator is compared to a internal 1.5% accurate 400-mV  
reference voltage (VREF).  
The 6 window comparator outputs (CO1-CO6) signal an undervoltage or overvoltage event for each power  
supply input. The COPOL pin sets the inside or outside of the window indication.  
A combined OR'ed output (AO) is also provided to signal when any of the power supply inputs have an  
overvoltage or undervoltage event. AOSEL sets the logic polarity to create a power-good or error signal.  
7.2 Functional Block Diagram  
COPOL  
*
CO1  
UV  
+IN1  
+
-
1
*
B
*
*
CO2  
CO3  
Ref  
+
-
OV  
1
A
*
*
-IN1  
+IN2  
UV  
2
+
-
*
*
B
CO4  
CO5  
*
*
+
-
OV  
2
A
B
-IN2  
*
*
+IN3  
+
-
UV  
3
CO6  
+
-
OV  
UV  
A
3
OV  
1
-IN3  
AOSEL  
OV  
OV  
OV  
OV  
2
3
4
5
+IN4  
+
-
4
B
OV  
6
AO  
+
-
OV  
4
A
*
-IN4  
+IN5  
UV  
UV  
UV  
UV  
UV  
1
2
3
4
5
6
* Open  
Drain  
+
-
UV  
5
B
UV  
+
-
OV  
A
5
-IN5  
+IN6  
+
-
UV  
6
B
OV  
+
-
6
A
-IN6  
12  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
7.3 Feature Description  
The LMV7231 Hex Window Comparator with 1.5% precision can accurately monitor up to 6 power rails or  
batteries at one time. The input and output voltages of the device can exceed the supply voltage, V+, of the  
comparator, and can be up to the maximum ratings listed in the Absolute Maximum Ratings without causing  
damage or performance degradation. The typical microcontroller input pin with crowbar diode ESD protection  
circuitry does not allow the input to go above V+, and thus its usefulness is limited in power supply supervision  
applications.  
7.3.1 Input and Output Voltage Range Above V+  
The supply independent inputs of the window comparator blocks allow the LMV7231 to be tolerant of system  
faults. For example, if the power is suddenly removed from the LMV7231 due to a system malfunction while a  
voltage still exists on the input, it is not an issue as long as the monitored input voltage does not exceed the  
absolute maximum ratings. Another example where this feature comes in handy is a battery-sense application  
such as the one in Figure 32. The boards may be sitting on the shelf unbiased with V+ grounded, and yet have a  
fully charged battery onboard. If the comparator measuring the battery had crowbar diodes, the diode from –IN to  
V+ would turn on, sourcing current from the battery, eventually draining the battery. However, when using the  
LMV7231 no current, except the low input bias current of the device, flows into the chip, and the battery charge  
is preserved.  
V+ = 3.3V  
R1  
499k  
R2  
1M  
+
-
V
OUT  
VBATT  
R3  
3.01k  
Figure 32. Battery-Sense Application  
The output pin voltages of the device can also exceed the supply voltage, V+, of the comparator. This provides  
extra flexibility and enables designs which pull up the outputs to higher voltage levels to meet system  
requirements. For example, it is possible to run the LMV7231 at its minimum operating voltage, V+ = 2.2 V, but  
to bias a blue LED, pull up the output listed in the Absolute Maximum Ratings, with a forward voltage of VF = 4 V.  
In a power supply supervision application, the hardwired LMV7231 is a sound solution compared to the  
microcontroller with software alternative for several reasons. First, start-up is faster. During start-up, code loading  
time, oscillator ramp time, and reset time do not need to be accounted for. Second, operation is quick. The  
LMV7231 has a maximum propagation delay and is not affected by sampling and conversion delays related to  
reading data, calculating data, and setting flags. Third, the device has less overhead. The LMV7231 does not  
require an expensive power-consuming microcontroller nor is it dependent on controller code which could get  
damaged or crash.  
7.4 Device Functional Modes  
7.4.1 +IN1 through +IN6 Input Pins  
These inputs set the upper threshold voltage of the channel window comparator. The input voltage is compared  
to the internal 400-mV reference. These inputs are capable of input voltages up to the Absolute Maximum  
Ratings (6 V), independent of the V+ supply voltage.  
7.4.2 –IN1 through –IN6 Input Pins  
These inputs set the lower threshold voltage of the channel window comparator. The input voltage is compared  
to the internal 400-mV reference. These inputs are capable of input voltages up to the Absolute Maximum  
Ratings (6 V), independent of the V+ supply voltage.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMV7231  
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
Device Functional Modes (continued)  
7.4.3 CO1 through C06 Output Pins  
These are the open-drain outputs of the individual comparators. A pullup resistor is required or several outputs  
may be logic OR'ed together with a common pullup resistor. The polarity is determined by the COPOL input pin  
setting.  
7.4.4 COPOL Input Pin  
The state of this comparator output polarity select input pin determines whether the CO1-CO6 pins are active-  
high or active-low. When tied LOW, the CO1-CO6 outputs go LOW to indicate an out-of-window comparison.  
When tied HIGH, the outputs go LOW to indicate a within-window comparison.  
7.4.5 AO Output Pin  
This output is the AND'ed combination of either the overvoltage comparator outputs or the undervoltage  
comparator outputs and is controlled by the state of the AOSEL. The AO pin is active-low.  
7.4.6 AOSEL Input Pin  
The state of this AND output level select pin determines whether the AO pin is active on an overvoltage or  
undervoltage event. When tied LOW the AO output is active upon an overvoltage event.  
7.4.7 Three-Resistor Voltage Divider Selection  
The LMV7231 trip points can be set by external resistor dividers as shown in Figure 33.  
V+  
V
IN  
0.1 mF  
COPOL  
R1  
Ch. 1  
+
-
+IN1  
10k  
*
V
OUT  
R2  
R3  
*
CO1  
+
-
-IN1  
COPOL  
REF  
OV1 UV1  
OV6 UV6  
CO6  
+IN6  
-IN6  
Ch. 6  
REF  
REF  
REF  
AOSEL  
OV1  
OV2  
OV3  
OV4  
OV5  
OV6  
10k  
AO  
*
UV1  
UV2  
UV3  
UV4  
UV5  
UV6  
* Open  
Drain  
LMV7231  
RESERVED  
GND  
Figure 33. External Resistor Dividers  
Each trip point, overvoltage (VOV) and undervoltage (VUV), can be optimized for a falling supply (VTHF), or a rising  
supply (VTHR).  
14  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
 
 
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
Device Functional Modes (continued)  
Therefore, there are 22 = 4 different optimization cases:  
1. Exiting the voltage detection window (Figure 34)  
2. Rising into and out of the window (Figure 35)  
3. Entering the window (Figure 36)  
4. Falling into and out of the window (Figure 37)  
V
V
OV  
V
V
OV  
UV  
UV  
V
V
OUT  
OUT  
V
IN  
V
IN  
R3 set  
R3 set  
R2 = R3(V /V  
OV UV  
ꢀ1  
R2 = R3((V  
/V )V /V  
THF THR OV UV  
ꢀ)  
Rꢀ = R3((ꢀ/V  
1V  
THR OV  
- V /V  
OV UV  
1
Rꢀ = R3((ꢀ/V  
)V  
THR OV  
- (V  
/V )V /V  
THF THR OV UV  
)
Ex. V = 3.465 V, V  
OV  
= 3.ꢀ35 V, that is, V  
= 3.3 V 5ꢁ  
RANGE  
Ex. V = 3.465 V, V = 3.ꢀ35 V, that is, V  
OV UV  
= 3.3 V 5ꢁ  
UV  
RANGE  
R3 set to ꢀ0 kΩ  
R3 set to ꢀ0 kΩ  
R2 = ꢀ0k((3.465/3.ꢀ351 ꢀ1 ꢀ.05 kΩ  
Rꢀ = ꢀ0k((ꢀ/0.413.465 3.465/3.ꢀ351 75 kΩ  
R2 = ꢀ0k((0.394/0.4)3.465/3.ꢀ35 ꢀ) 887 Ω  
Rꢀ = ꢀ0k((ꢀ/0.4)3.465 - (0.394/0.4)3.465/3.ꢀ35) 75 kΩ  
Figure 34. Exiting the Voltage Detection Window  
Figure 35. Rising into and out of the Voltage  
Detection Window  
V
V
V
V
OV  
UV  
OV  
UV  
V
V
OUT  
OUT  
V
IN  
V
IN  
R3 set  
R3 set  
R2 = R3((V  
/V )V /V  
THR THF OV UV  
ꢀ)  
R2 = R3(V /V  
OV UV  
ꢀ1  
Rꢀ = R3((ꢀ/V  
)V  
THF OV  
- (V  
/V )V /V  
THR THF OV UV  
)
Rꢀ = R3((ꢀ/V  
1V  
THF OV  
- V /V 1  
OV UV  
= 3.ꢀ35 V, that is, V  
= 3.3 V 5ꢁ  
RANGE  
Ex. V = 3.465 V, V = 3.ꢀ35 V, that is, V  
OV UV  
Ex. V = 3.465 V, V  
OV  
= 3.3 V 5ꢁ  
UV  
RANGE  
R3 set to ꢀ0 kΩ  
R3 set to ꢀ0 kΩ  
R2 = ꢀ0k((0.4/0.394)3.465/3.ꢀ35 ꢀ) ꢀ.2ꢀ kΩ  
R2 = ꢀ0k((3.465/3.ꢀ351 ꢀ1  
ꢀ.05 kΩ  
Rꢀ = ꢀ0k((ꢀ/0.394)3.465 - (0.4/0.394)3.465/3.ꢀ35) 76.8 kΩ  
Rꢀ = ꢀ0k((ꢀ/0.39413.465 3.465/3.ꢀ351 76.8 kΩ  
Figure 36. Entering the Voltage Detection Window  
Figure 37. Falling into and out of the Voltage  
Detection Window  
NOTE  
For each case, each trip point can be optimized for either a rising or falling signal, but not  
both.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMV7231  
 
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
Device Functional Modes (continued)  
The governing equations make it such that if the same resistor, R3, and overvoltage-to-undervoltage ratio,  
VOV/VUV, is used across the channels, the same nominal current travels through the resistor ladder. As a result,  
R2 is also the same across all channels, and only R1 needs to change to set voltage detection window  
maximizing reuse of resistor values and minimizing design complexity.  
Select the R3 resistor value to be below 100 kso the resistor current through the divider ladder is much greater  
than the LMV7231 bias current (15 nA worst case, 50 pA typical). If the current traveling through the resistor  
divider is on the same magnitude of the LMV7231 IBIAS, the IBIAS current creates an error in the circuit and  
causes trip voltage shifts. The greatest error due to IBIAS is caused when that current passes through the greatest  
equivalent resistance, REQ = R1(R2+R3), which is detected by the positive input of the window comparator,  
+IN.  
16  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMV7231 is specified for operation from 2.2 V to 5.5 V. Some of the specifications apply from –10°C to  
+70°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are  
presented in the Typical Characteristics and the 3.3-V Electrical Characteristics.  
8.2 Typical Application  
Figure 38 shows a typical power supply supervision circuit using the LMV7231 and the efficient, easy to use  
LM25007 step-down switching regulator.  
Input = 9V-42V  
VIN  
VCC  
C4  
0.1µF  
C3  
C1  
R1  
115k  
BST  
1.0 µF 0.1 µF  
0.01µF  
L1 100 µH  
C5  
LM25007  
C6  
R6  
121k  
RON/SD  
RCL  
SW  
V
OUT  
= 5V  
ON/OFF  
2200  
pF  
D1  
R2  
3k  
C7  
0.01 µF  
R5  
200k  
FB  
C2  
22 µF  
RTN  
R3  
3k  
V+ = 3.3V  
C8  
COPOL  
0.1 µF  
R7  
1.15k  
V+  
Ch. 1  
R10  
10k  
+
-
+IN1  
*
*
Controller  
(FPGA)  
CO1  
R8  
10  
C9  
*optional  
+
-
-IN1  
R9  
95.3  
V+  
R11  
10k  
COPOL  
UV1 OV1  
REF  
CO6  
+IN6  
-IN6  
Ch. 6  
UV6 OV6  
OV1  
REF  
AOSEL  
OV2  
OV3  
OV4  
OV5  
OV6  
REF  
REF  
V+  
R12  
10k  
AO  
*
UV1  
UV2  
UV3  
UV4  
UV5  
UV6  
* Open  
Drain  
LMV7231  
GND  
RESERVED  
Figure 38. Power Supply Supervision  
8.2.1 Design Requirements  
Table 1 describes the requested design parameters.  
Table 1. Design Parameters  
PARAMETER  
Logic Supply Voltage  
Monitored Voltage  
EXAMPLE VALUE  
3.3 V  
5 V  
Monitored Voltage Tolerance  
Window  
±5% (4.75 V to 5.25 V)  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMV7231  
 
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
8.2.2 Detailed Design Procedure  
The regulators output voltage is set to 5 V, according to the LM25007 data sheet, SNVS401.  
VOUT = 2.5 × (R2 + R3) / R3  
(1)  
(2)  
VOUT = 2.5 × (3 kΩ + 3 kΩ) / 3 kΩ = 5 V  
Resistor R6 and capacitors C6, C7 are utilized to minimize output ripple voltage per the AN-1453 LM25007  
Evaluation Board, (SNVA152).  
The comparator voltage window is set to 5 V ±5%. This requires input voltages of 420 mV and 380 mV, which  
calculates to R7 = 1.15 k, R8 = 10 , R9 = 95.3 . See the Three-Resistor Voltage Divider Selection section  
for details on how to set the comparator voltage window.  
With the components selected, the output ripple voltage on the LM25007 is approximately 30 to 35 mV and is  
reduced to about 4 mV at the comparator input, +IN1, by the resistor divider. This ripple voltage can be reduced  
multiple ways. First, user can operate the device in continuous conduction mode rather than discontinuous  
conduction mode. To do this increase the load current of the device (see SNVS401 for more details). However,  
the power rating of the resistors in the resistor ladder must not be exceeded. Second, ripple can be reduced  
further with a bypass capacitor, C9, at the resistor divider. If desired, select a 1-µF capacitor to achieve less than  
3-mV ripple at +IN1. However, there is a trade-off that adding capacitance at this node lowers the system  
response time.  
8.2.3 Application Curve  
Figure 39 shows the results of sweeping the regulator output voltage through the undervoltage and overvoltage  
thresholds. COPOL is set LOW so that the output goes LOW while the regulator voltage is within the ±5%  
thresholds.  
6.0  
COPOL = LOW  
5.5  
+5% V  
OV  
5.0  
-5% V  
UV  
CO1 Output  
Regulator Output  
4.5  
4.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Time (Seconds)  
C001  
Figure 39. Power Supply Supervisor Thresholds  
18  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
 
LMV7231  
www.ti.com  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
9 Power Supply Recommendations  
Bypass the supply pin, V+, with a 0.1-μF ceramic capacitor placed close to the V+ pin. If transients with rise or  
fall times of hundreds of μs and magnitudes of hundreds of mV are expected on the power supply line, an RC  
lowpass filter network as shown in Figure 40 is recommended for additional bypassing. If no such bypass  
network is used power supply transients can cause the internal voltage reference of the comparator to  
temporarily shift potentially resulting in a brief incorrect comparator output. For example, if an RC network with  
100-resistance and 10-μF capacitance (1.1-ms rise time) is used the voltage reference temporarily shifts the  
amount, VTH power supply sensitivity (VTHPSS), specified in the 3.3-V Electrical Characteristics table.  
R1  
100  
V
SUPPLY  
C1  
10 mF  
C2  
0.1 mF  
V+  
LMV7231  
Figure 40. Power Supply Bypassing  
10 Layout  
10.1 Layout Guidelines  
Proper grounding and the use of a ground plane helps to ensure the specified performance of the LMV7231.  
Minimizing trace lengths, reducing unwanted parasitic capacitance, and using surface-mount components also  
helps. Comparators are very sensitive to input noise.  
1. Use a printed-circuit-board with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1-µF ceramic surface mount capacitor) as close to V+ pin as possible.  
3. On the inputs and the outputs, keep lead lengths and the divider resistors as short possible to avoid noise  
pick-up.  
The DAP pad is connected to the bottom of the die and is not designed to carry current. The DAP thermal pad  
must be connected directly to the GND pin to avoid noise and possible voltage gradients. The primary grounding  
pin is the GND pin.  
10.2 Layout Example  
Figure 41. Example Layout  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMV7231  
 
LMV7231  
SNOSB45F FEBRUARY 2010REVISED JANUARY 2016  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
LMV7231 Evaluation Board, http://www.ti.com/tool/lmv7231eval  
11.2 Documentation Support  
11.2.1 Related Documentation  
LMV7231 Evaluation Board Manual, SNOU008  
LM25007 42-V, 0.5-A Step-Down Switching Regulator, SNVS401  
AN-1453 LM25007 Evaluation Board, SNVA152  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
20  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: LMV7231  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMV7231SQ/NOPB  
LMV7231SQE/NOPB  
LMV7231SQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
24  
24  
24  
1000 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
L7231SQ  
SN  
SN  
L7231SQ  
L7231SQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV7231SQ/NOPB  
LMV7231SQE/NOPB  
LMV7231SQX/NOPB  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
24  
24  
24  
1000  
250  
178.0  
178.0  
330.0  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
4500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV7231SQ/NOPB  
LMV7231SQE/NOPB  
LMV7231SQX/NOPB  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
24  
24  
24  
1000  
250  
208.0  
208.0  
367.0  
191.0  
191.0  
367.0  
35.0  
35.0  
35.0  
4500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMV7231SQX

Hex Window Comparator with 1.5 Precision and 400mV Reference
NSC

LMV7231SQX/NOPB

精密微功耗十六路比较器 | RTW | 24 | -40 to 125
TI

LMV7235

45ns, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
NSC

LMV7235

LMV7235/LMV7239/LMV7239Q 75 nsec, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
TI

LMV7235M5

45ns, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
NSC

LMV7235M5

LMV7235/LMV7239/LMV7239Q 75 nsec, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
TI

LMV7235M5/NOPB

高速低电压开漏比较器 | DBV | 5 | -40 to 85
TI

LMV7235M5X

45ns, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
NSC

LMV7235M5X

LMV7235/LMV7239/LMV7239Q 75 nsec, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
TI

LMV7235M5X/NOPB

High speed, low voltage open-drain comparator 5-SOT-23 -40 to 85
TI

LMV7235M7

45ns, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
NSC

LMV7235M7

LMV7235/LMV7239/LMV7239Q 75 nsec, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator with Open-Drain/Push-Pull Output
TI