LMX2571 [TI]

具有移频键控 (FSK) 调制功能的 1.34GHz、低功耗、极端温度 RF 合成器;
LMX2571
型号: LMX2571
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有移频键控 (FSK) 调制功能的 1.34GHz、低功耗、极端温度 RF 合成器

文件: 总59页 (文件大小:2554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMX2571  
ZHCSDH8 MARCH 2015  
LMX2571 低功耗、高性能 PLLatinum™ RF 合成器,采用 FSK 调制  
1 特性  
3 说明  
1
输出频率范围:10MHz 1344MHz  
LMX2571 是一款低功耗、高性能、宽带 PLLatinum™  
射频 (RF) 合成器,该合成器集成了 Δ-Σ 分数 N PLL、  
多核压控振荡器 (VCO)、可编程输出分压器以及两个  
输出缓冲器。 VCO 内核的工作频率高达 5.376GHz,  
持续输出频率范围为 10MHz 1344MHz。  
低相位噪声和毛刺  
12.5kHz 偏移 @ 480MHz 时为 –123dBc/Hz  
1MHz 偏移 @ 480MHz 时为 –145dBc/Hz  
标准化锁相环 (PLL) 噪底为 –231dBc/Hz  
杂散优于 –75dBc/Hz  
该合成器还可搭配外部 VCO 使用。 在此配置下,需  
使用专用的 5V 电荷泵和输出分压器。  
新型 FastLock 技术,缩短了锁定时间  
新型整数边界毛刺去除技术  
该合成器还包含一个独特的可编程乘法器,有助于去除  
毛刺,即使毛刺落在整数边界,系统也仍能够使用任一  
通道。  
集成 5V 电荷泵和输出驱动器,用于外部压控振荡  
(VCO) 操作  
24 8 电平或者任意电平数直接数字移频键控  
(FSK) 调制  
其输出具有 SPDT 开关,可用作 FDD 无线电应用中的  
发送/接收开关。 并且可同时导通两个开关,以便同时  
提供双输出。  
一个 TX/RX 输出或两个扇出输出  
晶振、XO 或差分参考时钟输入  
低电流消耗  
LMX2571 通过编程或相应引脚来支持直接数字 FSK  
调制。 该器件支持离散电平 FSK、脉冲成形 FSK 以  
及模拟 FM 调制。  
39mA 典型合成器模式(内部 VCO)  
9mA 典型 PLL 模式(外部 VCO)  
24 位分数 N Δ-Σ 调制器  
该器件采用了一项全新的 FastLock 技术,即使在外部  
VCO 与窄带回路滤波器搭配使用时,用户也能够在不  
1.5ms 的时间内从一个频率切换至另一频率。  
2 应用  
双工模式数字专业双向无线电  
dPMRDMRPDTP25 Phase I  
低功耗无线电通信系统  
器件信息(1)  
器件型号  
LMX2571  
封装  
封装尺寸(标称值)  
卫星通信调制解调器  
无线麦克风  
WQFN (36)  
6.00mm x 6.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
专有无线连接  
手持式测试和测量设备  
3.3V  
3.3V/5V  
0.1µF  
0.1µF  
LMX2571  
100pF  
Vcc3p3  
VccIO  
5V CP  
supply  
CP  
MUX  
Int. charge  
pump  
Output  
divider  
OP  
To driver amplifier  
MUX  
XO  
Phase  
detector  
R-divider  
Prescaler  
VrefVCO  
VregVCO  
N-divider  
2.2µF  
0.1µF  
100pF  
G4  
modulator  
Fast  
lock  
5V charge  
pump  
VCO  
MUX  
Output  
divider  
Lock  
dect  
µWIRE  
SPI  
Enable  
To receive mixer  
FLout CPoutExt  
Fin  
FSK  
MUXout CE  
TrCtl  
SoC / DSP  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNAS654  
 
 
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
目录  
7.5 Programming .......................................................... 15  
7.6 Register Maps......................................................... 16  
Application and Implementation ........................ 34  
8.1 Application Information............................................ 34  
8.2 Typical Applications ............................................... 43  
8.3 Do's and Don'ts....................................................... 52  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements ............................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 14  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 54  
11 器件和文档支持 ..................................................... 55  
11.1 器件支持 ............................................................... 55  
11.2 文档支持 ............................................................... 55  
11.3 ....................................................................... 55  
11.4 静电放电警告......................................................... 55  
11.5 术语表 ................................................................... 55  
12 机械封装和可订购信息 .......................................... 55  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
5 Pin Configuration and Functions  
WQFN (NJK) Package  
36 Pins  
Top View  
1
27  
26  
25  
24  
23  
22  
21  
20  
19  
Vcc3p3  
Vcc3p3  
NC  
2
Bypass1  
3
Bypass2  
CPout  
Fin  
4
FSK_DV  
0
DAP  
5
FSK_D2  
GND  
6
FSK_D1  
VrefVCO  
VregVCO  
Vcc3p3  
CE  
7
FSK_D0  
8
NC  
9
Vcc3p3  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
Bypass1  
Bypass2  
CE  
NO.  
2
Bypass Place a 100-nF capacitor to GND.  
Bypass Place a 100-nF capacitor to GND.  
3
19  
11  
25  
30  
0
Input  
Chip Enable input. Active HIGH powers on the device.  
CLK  
Input  
MICROWIRE clock input.  
CPout  
CPoutExt  
DAP  
Output Internal VCO charge pump access point to connect to a 2nd order loop filter.  
Output 5-V charge pump output used in PLL mode (external VCO).  
GND  
Input  
The DAP should be grounded.  
MICROWIRE serial data input.  
DATA  
12  
High frequency AC coupled input pin for an external VCO. Leave it open or AC coupled to GND if not  
being used.  
Fin  
24  
Input  
FSK_D0  
FSK_D1  
FSK_D2  
FSK_DV  
FLout1  
FLout2  
GND  
7
6
Input  
Input  
Input  
Input  
FSK data bit 0 (FSK PIN mode) / I2S FS input (FSK I2S mode).  
FSK data bit 1 (FSK PIN mode) / I2S DATA input (FSK I2S mode).  
FSK data bit 2 (FSK PIN mode).  
5
4
FSK data valid input (FSK PIN mode) / I2S CLK input (FSK I2S mode).  
29  
28  
23  
31  
35  
13  
10  
8,14, 26  
34  
36  
16  
17  
18  
Output FastLock output control 1 for external switch. Output is HIGH when F1 is selected.  
Output FastLock output control 2 for external switch. Output is HIGH when F2 is selected.  
GND  
GND  
GND  
Input  
VCO ground.  
GND  
Charge pump ground.  
OSCin ground.  
GND  
LE  
MICROWIRE latch enable input.  
MUXout  
NC  
Output Multiplexed output that can be assigned to lock detect or readback serial data output.  
NC  
Do not connect these pins.  
Reference clock input.  
OSCin  
OSCin*  
RFoutRx  
RFoutTx  
TrCtl  
Input  
Input  
Complementary reference clock input.  
Output RF output used to drive receive mixer. Selectable open drain or push-pull output.  
Output RF output used to drive transmit signal. Selectable open drain or push-pull output.  
Input  
Transmit/Receive control. This pin controls the RF output port and the output frequency selection.  
Copyright © 2015, Texas Instruments Incorporated  
3
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
Supply Connect to 3.3-V supply.  
Supply Supply for digital logic interface. Connect to 3.3-V supply.  
DESCRIPTION  
NAME  
Vcc3p3  
NO.  
1, 9, 20,  
27  
VccIO  
15, 33  
Supply for 5-V charge pump. Connect to 5-V supply in PLL mode. Connect to either 3.3-V or 5-V  
supply in synthesizer mode.  
VcpExt  
32  
Supply  
VrefVCO  
VregVCO  
22  
21  
Bypass LDO output. Place a 100-nF capacitor to GND.  
Bypass Bias circuitry for the VCO. Place a 2.2-µF capacitor to GND.  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
3.6  
UNIT  
V
VCC Power supply voltage  
VIO  
VIN  
IO supply voltage  
IO input voltage  
3.6  
V
VCC + 0.3  
5.25  
V
VCP Charge pump supply voltage  
TJ Junction temperature  
TSTG Storage temperature  
V
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.45  
VCC  
5
UNIT  
VCC Power supply voltage  
VIO IO supply voltage  
3.15  
V
V
PLL mode (external VCO)  
VCP Charge pump supply voltage  
V
Synthesizer mode (internal VCO)  
VCC  
–40  
5
TA  
TJ  
Ambient temperature  
Junction Temperature  
85  
°C  
°C  
125  
4
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
6.4 Thermal Information  
LMX2571  
THERMAL METRIC(1)  
WQFN (NJK)  
36 PINS  
32.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
14.5  
6.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.3  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
3.15 V VCC 3.45 V, VIO = VCC, –40 °C TA 85 °C, except as specified. Typical values are at VCC = VIO = 3.3 V, VCP = 3.3  
V or 5 V in synthesizer mode, VCP = 5 V in PLL mode, TA = 25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CURRENT CONSUMPTION  
Configuration A(1)  
39  
44  
46  
51  
9
Configuration B(2)  
Configuration C(3)  
Configuration D(4)  
Configuration E(5)  
Configuration F(6)  
Configuration G(7)  
Total current in synthesizer mode (internal  
VCO)  
ICC  
fOUT = 480 MHz  
SE OSCin  
mA  
IPLL  
Total current in PLL mode (external VCO)  
Power down current  
15  
21  
CE = 0V or POWERDOWN bit = 1  
VCC = 3.3 V, Push-pull output  
ICCPD  
0.9  
OSCIN REFERENCE INPUT  
fOSCin  
OSCin frequency range  
OSCin input voltage(8)  
Single-ended or differential input  
Single-ended input  
10  
1.4  
150  
3.3  
1.5  
MHz  
V
VOSCin  
Differential input  
0.15  
CRYSTAL REFERENCE INPUT  
fXTAL  
CIN  
Crystal frequency range  
OSCin input capacitance  
Fundamental model, ESR < 200 Ω  
10  
40  
MHz  
pF  
1
MULT  
fMULTin  
fMULTout  
PLL  
MULT input frequency  
MULT output frequency  
10  
60  
30  
MHz  
MHz  
MULT > Pre-divider  
Not supported with crystal reference input  
130  
fPD  
Phase detector frequency  
Charge pump current(9)  
130  
MHz  
Internal charge pump  
312.5  
625  
Programmable minimum  
value  
5-V charge pump  
Internal charge pump  
5-V charge pump  
Internal charge pump  
5-V charge pump  
312.5  
625  
KPD  
Per programmable step  
µA  
7187.5  
6875  
Programmable maximum  
value  
(1) fOSCin = 19.44 MHz, MULT = 1, Prescaler = 4, fPD = 19.44 MHz, one RF output, output type = push pull, output power = –3 dBm  
(2) fOSCin = 19.44 MHz, MULT = 1, Prescaler = 2, fPD = 19.44 MHz, one RF output, output type = push pull, output power = –3 dBm  
(3) fOSCin = 19.44 MHz, MULT = 5, Prescaler = 2, fPD = 19.44 MHz, one RF output, output type = push pull, output power = –3 dBm  
(4) fOSCin = 19.44 MHz, MULT = 5, Prescaler = 2, fPD = 97.2 MHz, one RF output, output type = push pull, output power = –3 dBm  
(5) fOSCin = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, output from VCO  
(6) fOSCin = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, one RF output, output type = push pull, output power = –3 dBm  
(7) fOSCin = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, two RF outputs, output type = push pull, output power = –3 dBm  
(8) See OSCin Configuration for definition of OSCin input voltage.  
(9) This is referring to the total base charge pump current. In PLL mode, this is equal to EXTVCO_CP_IDN + EXTVCO_CP_IUP. In  
synthesizer mode, this is equal to CP_IDN + CP_IUP. See Table 5, Table 6 and Table 7 for details.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
3.15 V VCC 3.45 V, VIO = VCC, –40 °C TA 85 °C, except as specified. Typical values are at VCC = VIO = 3.3 V, VCP = 3.3  
V or 5 V in synthesizer mode, VCP = 5 V in PLL mode, TA = 25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–124  
–120  
–231  
–226  
MAX UNIT  
Internal charge pump  
PNPLL_1/f  
Normalized PLL 1/f noise(10)  
dBc/Hz  
5-V charge pump  
Internal charge pump  
5-V charge pump  
At maximum charge pump  
current  
PNPLL_Flat  
fRFin  
Normalized PLL noise floor(10)  
External VCO input frequency  
External VCO input power  
dBc/Hz  
100  
–10  
–5  
1400  
MHz  
dBm  
fRFin < 1 GHz  
PRFin  
fRFin 1 GHz  
VCO  
fVCO  
VCO frequency  
VCO gain(11)  
Allowable temperature drift(12)  
4300  
5376  
125  
MHz  
MHz/V  
°C  
KVCO  
fVCO = 4800 MHz  
56  
| ΔTCL  
|
VCO not being re-calibrated, –40 °C TA 85 °C  
fOSCin = fPD = 100 MHz  
100 Hz offset  
tVCOCal  
VCO calibration time  
140  
–32.4  
µs  
1 kHz offset  
–62.3  
10 kHz offset  
fOUT = 480 MHz  
–92.1  
PNVCO  
Open loop VCO phase noise  
dBc/Hz  
100 kHz offset  
–121.1  
–144.5  
–156.8  
1 MHz offset  
10 MHz offset  
RF OUTPUT  
Synthesizer mode  
10  
10  
1344  
1400  
fOUT  
RF output frequency  
MHz  
PLL mode, RF output from buffer  
PTX, PRX  
H2RFout  
RF output power  
Second harmonic  
0
dBm  
dBc  
fOUT = 480 MHz  
Power control bit = 6  
–25  
DIGITAL FSK MODULATION  
FSKLevel  
FSKBaud  
FSKDev  
FSK level(13)  
FSK baud rate(14)  
FSK PIN mode  
2
8
Loop bandwidth = 200 kHz  
Configuration H(15)  
100  
±39  
kSPs  
kHz  
FSK deviation  
DIGITAL INTERFACE  
VIH  
VIL  
IIH  
High level input voltage  
1.4  
VIO  
0.4  
25  
V
V
Low level input voltage  
High level input current  
Low level input current  
High level output voltage  
Low level output voltage  
VIH = 1.75 V  
VIL = 0 V  
–25  
–25  
2
µA  
µA  
V
IIL  
25  
VOH  
VOL  
IOH = 500 µA  
IOL = –500 µA  
0
0.4  
V
(10) Measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model the PLL noise for an  
infinite loop bandwidth as:  
PLL_Total = 10 * log[10(PLL_Flat / 10) + 10(PLL_Flicker / 10)  
PLL_Flat = PN1Hz + 20 * log(N) + 10 * log(fPD  
]
)
PLL_Flicker = PN10kHz – 10 * log(Offset / 10 kHz) + 20 * log(fOUT / 1 GHz)  
(11) The VCO gain changes as a function of the VCO core and frequency. See Integrated VCO for details.  
(12) Not tested in production. Ensured by characterization. Allowable temperature drift refers to programming the device at an initial  
temperature and allowing this temperature to drift WITHOUT reprogramming the device, and still have the device stay in lock. This  
change could be up or down in temperature and the specification does not apply to temperatures that go outside the recommended  
operating temperatures of the device.  
(13) The data showed here simply specifies the range of discrete FSK level that is supported in PIN mode. PIN mode supports 2-, 4- and 8-  
level of FSK modulation. If arbitrary level of FSK modulation is desired, use FSK SPI™ FAST mode or FSK I2S mode. See Direct Digital  
FSK Modulation for details.  
(14) The baud rate is limited by the loop bandwidth of the PLL loop. As a general rule of thumb, it is desirable to have the loop bandwidth at  
least twice the baud rate.  
(15) fPD = 100 MHz, DEN = 224, CHDIV1 = 5, CHDIV2 = 2, Prescaler = 2, FSK step value = 32716, 32819. The maximum achievable  
frequency deviation depends on the configuration, see Direct Digital FSK Modulation for details.  
6
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
6.6 Timing Requirements  
3.15 V VCC 3.45 V, VIO = VCC, –40 °C TA 85 °C, except as specified. Typical values are at VCC = VIO = 3.3 V, TA = 25  
°C.  
MIN NOM  
MAX UNIT  
MICROWIRE TIMING  
tES  
Clock to enable low time  
5
2
2
5
5
5
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCS  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
tCH  
tCWH  
tCWL  
tCES  
tEWH  
See Figure 1  
MSB  
LSB  
DATA  
tCS  
tCH  
CLK  
LE  
tCWL  
tCWH  
tES  
tCES  
tEWH  
Figure 1. MICROWIRE Timing Diagram  
There are several other considerations for programming:  
A slew rate of at least 30 V/µs is recommended for the CLK, DATA and LE. The same apply for other digital  
control signals such as FSK_D[0:2] and FSK_DV signals.  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE  
signal, the data is sent from the shift register to an active register.  
The LE pin may be held high after programming, causing the LMX2571 to ignore clock pulses.  
When CLK or DATA lines are shared between devices, it is recommended to divide down the voltage to the  
CLK, DATA, and LE pins closer to the minimum voltage. This provides better noise immunity.  
If the CLK and DATA lines are toggled while the VCO is in lock, as is sometimes the case when these lines  
are shared with other parts, the phase noise may be degraded during the time of this programming.  
Copyright © 2015, Texas Instruments Incorporated  
7
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25 °C, unless otherwise noted  
OSCin = 19.44 MHz  
fOUT = 200 MHz  
Synthesizer mode  
OSCin = 19.44 MHz  
fOUT = 500 MHz  
Synthesizer mode  
Figure 2. Typical Close Loop Phase Noise  
Figure 3. Typical Close Loop Phase Noise  
OSCin = 19.44 MHz  
fOUT = 900 MHz  
Synthesizer mode  
OSCin = 19.44 MHz  
fOUT = 1200 MHz  
Synthesizer mode  
Figure 4. Typical Close Loop Phase Noise  
Figure 5. Typical Close Loop Phase Noise  
FSKBaud = 4.8 kSPS  
FSK PIN mode  
Reference clock is a FM modulated signal with fMOD = 2.4 kHz  
Figure 6. 4FSK Direct Digital Modulation  
Figure 7. FM Modulation via Reference Clock  
8
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Typical Characteristics (continued)  
At TA = 25 °C, unless otherwise noted  
Switching between int. and ext. VCO as well as Tx and Rx port  
Freq. jump = 50 MHz  
LBW = 4 kHz  
PLL mode  
Figure 8. Output Port and VCO Switching  
Figure 9. FastLock with SPST Switch  
Start: 100 MHz  
Stop: 2000 MHz  
Figure 10. Fin input impedance  
Start: 10 MHz  
Stop: 300 MHz  
Figure 11. OSCin input impedance  
-80  
-80  
-90  
Modeled flicker noise  
Modeled flat noise  
OSCin noise  
Modeled flicker noise  
Modeled flat noise  
OSCin noise  
Modeled total noise  
Actual measurement  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
Model total noise  
Actual measurement  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
102  
102  
103  
104  
105  
106  
107  
103  
104  
105  
106  
107  
Offset /Hz  
fPD = 122.88 MHz  
Offset /Hz  
fPD = 61.44 MHz  
fOUT = 1228.8 MHz  
Synthesizer mode  
fOUT = 430.08 MHz  
PLL mode  
Figure 12. Normalized PLL 1/f Noise and Noise Floor  
Figure 13. Normalized PLL 1/f Noise and Noise Floor  
Copyright © 2015, Texas Instruments Incorporated  
9
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX2571 is a frequency synthesizer with low-noise, high-performance integrated VCOs. The 5-GHz VCO  
cores, together with the output channel dividers, can produce frequencies from 10 MHz to 1344 MHz. The  
LMX2571 supports two operation modes, synthesizer mode and PLL mode. In synthesizer mode, the entire  
device is utilized; in PLL mode the internal VCO is bypassed, and an external VCO is required to implement a  
complete synthesizer.  
The reference clock input supports a crystal used for the on-chip oscillator, AC-coupled differential clock signals,  
and DC-coupled single-ended clock signals such as XO or CMOS clock devices.  
The PLL is a fractional-N PLL with programmable Delta Sigma modulator (first order to fourth order). The  
fractional denominator is of variable length and up to 24-bits long, providing a frequency step with very fine  
resolution.  
The internal VCO can be bypassed, allowing the use of an external VCO. A separate 5-V charge pump is  
dedicated for the external VCO, eliminating the need for an op-amp to support 5-V VCOs. A new advanced  
FastLock technique is developed to shorten the lock time to less than 1.5 ms, even there is a very narrow loop  
bandwidth.  
A unique programmable multiplier is incorporated in the R-divider. The multiplier is used to avoid and reduce  
integer boundary spurs or to increase the phase detector frequency for higher performance.  
The LMX2571 supports direct digital FSK modulation, thus allowing a change in the output frequency by  
changing the N-divider value. The N-divider value can be programmed through MICROWIRE interface or through  
pins. Discrete 2-, 4- and 8-level FSK, as well as arbitrary-level FSK, are supported. Arbitrary-level FSK can be  
used to construct pulse-shaping FSK or analog-FM modulation.  
The output has an integrated T/R switch, and the divided-down internal or external VCO signal can be output to  
either the TX port or the RX port. The switch can also be configured as a 1:2 fanout buffer, providing the signal  
on both outputs at the same time. In addition to port switching, the output frequency can be switched between  
two pre-defined frequencies, F1 and F2, simultaneously. This feature is ideal for use in FDD duplex system  
where the TX frequency is different from RX (LO) frequency.  
The LMX2571 requires only a single 3.3-V power supply. Digital logic interface is 1.8-V input compatible. The  
analog blocks power supplies use integrated LDOs, eliminating the need for high performance external LDOs.  
Programming of the device is achieved through the MICROWIRE interface. The device can be powered down  
through a register programming or toggling the Chip Enable (CE) pin.  
7.2 Functional Block Diagram  
Vcc3p3  
VcpExt  
CPout  
VccIO  
Power  
supply  
5V CP  
supply  
CP  
MUX  
Int. charge  
pump  
Output  
divider  
OP  
MUX  
RFoutTx  
Phase  
detector  
R-divider  
Prescaler  
OSCin  
N-divider  
G4  
modulator  
Fast  
lock  
5V charge  
pump  
VCO  
MUX  
Output  
divider  
Lock  
dect  
µWIRE  
Enable  
RFoutRx  
SPI  
FSK  
FLout CPoutExt  
Fin  
MUXout CE  
TrCtl  
10  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.3 Feature Description  
7.3.1 Reference Oscillator Input  
The OSCin and OSCin* pins are used as frequency reference inputs to the device. The OSCin pin can be driven  
single-ended with a CMOS clock or a crystal oscillator. The on-chip crystal oscillator can also be used with an  
external crystal as the reference clock. Differential clock input is also supported, making it easily to interface with  
high performance system clock devices such as TI’s LMK series clock devices.  
Because the OSCin or OSCin* signal is used as a clock for VCO calibration, a proper signal needs to be applied  
at the OSCin and/or OSCin* pin at the time of programming the R0 register. A higher slew rate tends to yield the  
best fractional spurs and phase noise, so a square wave signal is best for the OSCin and/or OSCin*pins. If using  
a sine wave, higher frequencies tend to yield better phase noise and fractional spurs due to their higher slew  
rates.  
7.3.2 R-Dividers and Multiplier  
The R-divider consists of a Pre-divider, a Multiplier (MULT), and a Post-divider.  
Pre-  
divider  
Post-  
divider  
MULT  
OSCin  
Phase detector  
Figure 14. R-Divider  
Both the Pre- and Post-dividers divide frequency down while the MULT multiplies frequency up. The purpose of  
adding a multiplier is to avoid and reduce integer boundary spurs or to increase the phase-detector frequency for  
higher performance. See MULT Multiplier for details. The phase detector frequency, fPD, is therefore equal to  
fPD = (fOSCin / Pre-divider) * (MULT / Post-divider)  
(1)  
When using the Multiplier (MULT > 1), there are some points to remember:  
The Multiplier must be greater than the Pre-divider.  
Crystal mode must be disabled (XTAL_EN=0).  
Using the multiplier may add noise, especially for multiplier values greater than 6.  
7.3.3 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-divider and N-divider and generates a correction current  
corresponding to the phase error. This charge pump current is programmable to different strengths.  
7.3.4 PLL N-Divider and Fractional Circuitry  
The total N-divider value is determined by Ninteger + NUM / DEN. The N-divider includes fractional compensation  
and can achieve any fractional denominator (DEN) from 1 to 16,777,215 (224 – 1). The integer portion, Ninteger, is  
the whole part of the N-divider value and the fractional portion, Nfrac = NUM / DEN, is the remaining fraction.  
Ninteger, NUM and DEN are programmable.  
The order of the delta sigma modulator is also programmable from integer mode to fourth order. There are  
several dithering modes that are also programmable. Dithering is used to reduce fractional spurs. In order to  
make the fractional spurs consistent, the modulator is reset any time that the R0 register is programmed.  
7.3.5 Partially Integrated Loop Filter  
The LMX2571 integrates the third and fourth pole of the loop filter. The values for the resistors can be  
programmed independently through the MICROWIRE interface. The larger the values of the resistors, the  
stronger the attenuation of the internal loop filter. This partially integrated loop filter can only be used in  
synthesizer mode.  
Copyright © 2015, Texas Instruments Incorporated  
11  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
CPout  
Int. charge  
pump  
100pF  
50pF  
Figure 15. Integrated Loop Filter  
7.3.6 Low-Noise, Fully Integrated VCO  
The LMX2571 includes a fully integrated VCO. The VCO generates a frequency which varies with the tuning  
voltage from the loop filter. Output of the VCO is fed to a prescaler before going to the N-divider. The prescaler  
value is selectable between 2 and 4. In general, prescaler equals 2 will result in better phase noise especially  
when the PLL is operated in fractional-N mode. If the prescaler equals 4, however, the device will consume less  
current. The VCO frequency is related to the other frequencies and Prescaler as follows:  
fVCO = fPD * N-divider * Prescaler  
(2)  
In order to reduce the VCO tuning gain, thus improving the VCO phase noise performance, the VCO frequency  
range is divided into several different frequency bands. This creates the need for frequency calibration in order to  
determine the correct frequency band given a desired output frequency. The VCO is also calibrated for amplitude  
to optimize phase noise. These calibration routines are activated any time that the R0 register is programmed  
with the FCAL_EN bit equals one. It is important that a valid OSCin signal must present before VCO calibration  
begins.  
This device will support a full sweep of the valid temperature range of 125°C (–40°C to 85°C) without having to  
re-calibrate the VCO. This is important for continuous operation of the synthesizer under the most extreme  
temperature variation.  
7.3.7 External VCO Support  
The LMX2571 supports an external VCO in PLL mode. In PLL mode, the internal VCO and its associated charge  
pump are powered down, and a 5-V charge pump is switched in to support external VCO. No extra external low  
noise op-amp is required to support 5-V tuning range VCO. The external VCO output can be obtained directly  
from the VCO or from the device’s RF output buffer.  
7.3.8 Programmable RF Output Divider  
The internal VCO RF output divider consists of two sub-dividers; the total division value is equal to the  
multiplication of them. As a result, the minimum division is 4 while the maximum division is 448.  
Int.  
VCO  
Ext.  
VCO  
CHDIV1  
4,5,6,7  
CHDIV2  
1,2,4,8,16,32,64  
CHDIV3  
1,2,3,Y,9,10  
OP MUX  
OP MUX  
Figure 16. VCO Output Divider  
There is only one output divider when external VCO is being used. This divider supports even and odd division,  
and its values are programmable between 1 and 10.  
7.3.9 Programmable RF Output Buffer  
The RF output buffer type is selectable between push-pull and open drain. If open drain buffer is selected,  
external pullup to VccIO is required. Regardless of output type, output power can be programmed to various  
levels. The RF output buffer can be disabled while still keeping the PLL in lock. See RF Output Buffer Type for  
details.  
12  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Feature Description (continued)  
7.3.10 Integrated TX, RX Switch  
The LMX2571 integrates a T/R switch which is controlled by the TrCtl pin. The output from the internal VCO or  
external VCO divider will be routed to either the RFoutTx or RFoutRx ports, depending on the state of the TrCtl  
pin. The TrCtl pin not only controls the output port, but may also switch the output frequency simultaneously. For  
example, if TrCtl = 1, the active port is RFoutTx with an output frequency of F1. When TrCtl changes from 1 to 0,  
the active port could be RFoutRx with an output frequency of F2. LMX2571 has two sets of register to store the  
configurations for F1 and F2.  
The T/R switch could also be configured as a fanout buffer to output the same signal at both RFoutTx and  
RFoutRx ports at the same time. All of these features are also programmable, see Programming and Frequency  
and Output Port Switching with TrCtl Pin for details.  
7.3.11 Powerdown  
The LMX2571 can be powered up and down using the CE pin or the POWERDOWN bit. All registers are  
preserved in memory while it is powered down. When the device comes out of the powered down state, either by  
resuming the POWERDOWN bit to zero or by pulling back CE pin HIGH (if it was powered down by CE pin), it is  
required that register R0 with FCAL_EN=1 be programmed again to re-calibrate the device.  
7.3.12 Lock Detect  
The MUXout pin of the LMX2571 can be configured to output a signal that indicates when the PLL is being  
locked. If lock detect is enabled while the MUXout pin is configured as a lock-detect output, when the device is  
locked the MUXout pin output is a logic HIGH voltage. When the device is unlocked, MUXout output is a logic  
LOW voltage.  
7.3.13 FSK Modulation  
Direct digital FSK modulation is supported in LMX2571. FSK modulation is achieved by changing the output  
frequency by changing the N-divider value. The LMX2571 supports four different types of FSK operation.  
1. FSK PIN mode. LMX2571 supports 2-, 4- and 8-level FSK modulation in PIN mode. In this mode, symbols  
are directly fed to the FSK_D0, FSK_D1, and FSK_D2 pins. Symbol clock is fed to the FSK_DV pin. Symbols  
are latched into the device on the rising edge of the symbol clock. The maximum supported symbol clock  
rate is 1 MHz. The device has eight dedicated registers to pre-store the desired FSK frequency deviations,  
with each register corresponding to one of the FSK symbols. The LMX2571 will change its output frequency  
according to the states on the FSK pins; no extra register programming is required.  
2. FSK SPI mode. This mode is identical to the FSK PIN mode with the exception that the control for the  
selected FSK level is not performed with external pins but with register R34. Each time when register R34 is  
programmed, change only the FSK_DEV_SEL field to select the desired FSK frequency deviation as stored  
in the dedicated registers.  
3. FSK SPI FAST mode. In this mode, instead of selecting one of the pre-stored FSK level, change the FSK  
deviation directly by writing to the register R33, FSK_DEV_SPI_FAST field. As a result, this mode supports  
arbitrary-FSK level, which is useful to construct pulse-shaping or analog-FM modulation.  
4. FSK I2S mode. This mode is similar to the FSK SPI FAST mode, but the programming format is an I2S  
format on dedicated pins instead of SPI. The benefit of using I2S is that this interface could be shared and  
synchronous to other digital audio interfaces. The same FSK data input pins that are used in FSK PIN mode  
are re-used to support I2S programming. In this mode only the 16 bits of DATA field is required to program.  
The data is transmitted on the high or low side of the frame sync (programmable in register R34,  
FSK_I2S_FS_POL). The unused side of the frame sync needs to be at least one clock cycle. In other words,  
17 (16 + 1) CLK cycles are required at a minimum for one I2S frame. Maximum I2S clock rate is 100 MHz.  
I2S DATA  
(FSK_D1)  
MSB  
Bit 15  
LSB  
Bit 0  
FSK_D[0:2]  
FSK_DV  
I2S CLK  
(FSK_DV)  
I2S FS  
(FSK_D0)  
Figure 17. FSK PIN Mode Timing  
Figure 18. FSK I2S Mode Timing  
Copyright © 2015, Texas Instruments Incorporated  
13  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
See Direct Digital FSK Modulation for FSK operation details.  
7.3.14 FastLock  
The LMX2571 includes a FastLock feature that can be used to improve the lock times in PLL mode when the  
loop bandwidth is small. In general, the lock time is approximately equal to 4 divided by the loop bandwidth. If the  
loop bandwidth is 1 kHz, then the lock time would be 4 ms. However, if the fPD is much higher than the loop  
bandwidth, cycle slipping may occur, and the actual lock time will be much longer. Traditional fastlock usually  
reduces lock time by increasing loop bandwidth during frequency switching. However, there is a limitation on the  
achievable maximum loop bandwidth due to limitation on charge-pump current and loop filter component values.  
In some cases, this kind of fastlock technique will make cycle slip even worse.  
The LMX2571 adopts a new FastLock approach that eliminates the cycle slip problem. With an external analog  
SPST switch in conjunction with LMX2571’s FastLock control, the lock time for a 100-MHz frequency switch  
could be settled in less than 1.5 ms. See FastLock with External VCO for details.  
7.3.15 Register Readback  
The LMX2571 allows any of its registers to be read back. The MUXout pin can be programmed to support either  
lock-detect output or register-readback serial-data output. To read back a certain register value, follow the  
following steps:  
1. Set the R/W bit to 1; the data field contents are ignored.  
2. Send the register to the device; readback serial data will be output starting at the 9th clock cycle.  
R/W  
= 1  
Address  
7-bit  
Data  
= Ignored  
DATA  
CLK  
1st  
2nd-8th  
9th-24th  
Read back register value  
16-bit  
MUXout  
LE  
Figure 19. Register Readback Timing Diagram  
7.4 Device Functional Modes  
7.4.1 Operation Mode  
The device can be operated in synthesizer mode or PLL mode.  
1. Synthesizer mode. The internal VCO will be adopted.  
2. PLL mode. The device is operated as a standalone PLL; an external VCO is required to complete the loop.  
7.4.2 Duplex Mode  
LMX2571 supports fast frequency switching between two pre-defined register sets, F1 and F2. This feature is  
good for duplex operation. The device supports three duplex modes:  
1. Synthesizer duplex mode. Both F1 and F2 are operated in synthesizer mode.  
2. PLL duplex mode. Both F1 and F2 are operated in PLL mode.  
3. Synthesizer/PLL duplex mode. In this mode, F1 and F2 will be operated in different operation mode.  
7.4.3 FSK Mode  
LMX2571 supports four direct digital FSK modulation modes.  
1. FSK PIN mode. 2-, 4- and 8-level FSK modulation. Modulation data is fed to the device through dedicated  
pins.  
2. FSK SPI mode. 2-, 4- and 8-level FSK modulation. Pre-defined FSK deviation is selected through SPI  
programming.  
14  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Device Functional Modes (continued)  
3. FSK SPI FAST mode. This mode supports arbitrary-level FSK modulation. Desired FSK deviation is written  
to the device through SPI programming.  
4. FSK I2S mode. Arbitrary-level FSK modulation is supported. Desired FSK deviation is fed to the device  
through dedicated pins.  
7.5 Programming  
The LMX2571 is programmed using several 24-bit registers. A 24-bit shift register is used as a temporary register  
to indirectly program the on-chip registers. The shift register consists of a data field, an address field, and a R/W  
bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The following 7 bits, ADDR[6:0],  
form the address field which is used to decode the internal register address. The remaining 16 bits form the data  
field DATA[15:0]. While LE is low, serial data is clocked into the shift register upon the rising edge of clock. Serial  
data is shifted MSB first into the shift register when programming. When LE goes high, data is transferred from  
the data field into the selected active register bank. See Figure 1 for timing diagram details.  
7.5.1 Recommended Initial Power on Programming Sequence  
When the device is first powered up, it needs to be initialized, and the ordering of this programming is important.  
The sequence is listed below. After this sequence is completed, the device should be running and locked to the  
proper frequency.  
1. Apply power to the device and ensure the Vcc pins are at the proper levels.  
2. If CE is LOW, pull it HIGH.  
3. Wait 100 µs for the internal LDOs to become stable.  
4. Ensure that a valid reference is applied to the OSCin pin.  
5. Program register R0 with RESET=1. This will ensure all the registers are reset to their default values.  
6. Program in sequence registers R60, R58, R53, …, R1 and then R0.  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies in different scenarios is as follows:  
1. If the N-divider is changing, program the relevant registers, then program R0 with FCAL_EN = 1.  
2. In FSK SPI mode, FSK SPI FAST mode, and FSK I2S mode, the fractional numerator is changing; program  
the relevant registers only.  
3. If switching frequency between F1 and F2, program the relevant control registers only or toggle the TrCtl pin.  
See Frequency and Output Port Switching with TrCtl Pin for details.  
Copyright © 2015, Texas Instruments Incorporated  
15  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6 Register Maps  
23  
22 21 20 19 18 17 16  
ADDRESS[6:0]  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
POR  
REG  
.
R/W  
DATA[15:0]  
R60 R/W  
R58 R/W  
R53 R/W  
R47 R/W  
0
0
0
0
1
1
1
1
1
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
1
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
3C4000h  
3A0C00h  
352802h  
2F0000h  
DITHERING  
EXTVCO  
_CP  
_POL  
R42 R/W  
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
EXTVCO_CP_IDN  
CP_IDN  
2A0210h  
R41 R/W  
R40 R/W  
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
EXTVCO_CP_IUP  
EXTVCO_CP_GAIN  
290810h  
28101Ch  
CP_IUP  
0
CP_GAIN  
0
1
1
1
1
1
0
0
1
0
SDO_LD_  
SEL  
R39 R/W  
R35 R/W  
0
0
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
1
0
0
0
1
1
1
LD_EN  
2711F0h  
230647h  
OUTBUF  
_AUTO  
MUTE  
OUTBUF  
_TX  
_TYPE  
OUTBUF  
_RX  
_TYPE  
MULT_WAIT  
IPBUF  
DIFF_  
TERM  
IPBUF_  
SE_DIFF  
_SEL  
FSK_  
MODE_  
SEL0  
FSK_  
MODE_  
SEL1  
FSK_I2S_ FSK_I2S_  
FS_POL CLK_POL  
R34 R/W  
0
1
0
0
0
1
0
XTAL_PWRCTRL  
XTAL_EN  
FSK_LEVEL  
FSK_DEV_SEL  
221000h  
R33 R/W  
R32 R/W  
R31 R/W  
R30 R/W  
R29 R/W  
R28 R/W  
R27 R/W  
R26 R/W  
R25 R/W  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
FSK_DEV_SPI_FAST  
FSK_DEV7_F2  
FSK_DEV6_F2  
FSK_DEV5_F2  
FSK_DEV4_F2  
FSK_DEV3_F2  
FSK_DEV2_F2  
FSK_DEV1_F2  
FSK_DEV0_F2  
210000h  
200000h  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
EXTVCO  
_SEL  
_F2  
FSK_EN_  
F2  
R24 R/W  
R23 R/W  
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
EXTVCO_CHDIV_F2  
OUTBUF_TX_PWR_F2  
180010h  
1710A4h  
OUTBUF  
_TX_EN  
_F2  
OUTBUF  
_RX_EN  
_F2  
0
OUTBUF_RX_PWR_F2  
0
0
0
LF_R4_F2  
MULT_F2  
R22 R/W  
R21 R/W  
0
0
0
0
1
1
0
0
1
1
1
0
0
1
LF_R3_F2  
CHDIV2_F2  
PLL_R_F2  
CHDIV1_F2  
PFD_DELAY_F2  
168584h  
150101h  
PLL_R_PRE_F2  
PLL_N_  
PRE_F2  
R20 R/W  
0
0
1
0
1
0
0
FRAC_ORDER_F2  
PLL_N_F2  
140028h  
R19 R/W  
R18 R/W  
R17 R/W  
R16 R/W  
R15 R/W  
R14 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
1
0
1
0
PLL_DEN_F2[15:0]  
130000h  
120000h  
110000h  
100000h  
F0000h  
PLL_NUM_F2[15:0]  
PLL_DEN_F2[23:16]  
PLL_NUM_F2[23:16]  
FSK_DEV7_F1  
FSK_DEV6_F1  
FSK_DEV5_F1  
E0000h  
16  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Register Maps (continued)  
23  
22 21 20 19 18 17 16  
ADDRESS[6:0]  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
POR  
REG  
.
R/W  
DATA[15:0]  
R13 R/W  
R12 R/W  
R11 R/W  
R10 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
0
1
FSK_DEV4_F1  
D0000h  
C0000h  
B0000h  
A0000h  
90000h  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
R9  
R/W  
EXTVCO  
_SEL  
_F1  
FSK_EN_  
F1  
R8  
R/W  
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
EXTVCO_CHDIV_F1  
OUTBUF_TX_PWR_F1  
80010h  
710A4h  
OUTBUF  
_TX_EN  
_F1  
OUTBUF  
_RX_EN  
_F1  
R7  
R/W  
0
OUTBUF_RX_PWR_F1  
0
0
0
LF_R4_F1  
MULT_F1  
R6  
R5  
R/W  
R/W  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
LF_R3_F1  
CHDIV2_F1  
PLL_R_F1  
CHDIV1_F1  
PFD_DELAY_F1  
68584h  
50101h  
PLL_R_PRE_F1  
PLL_N_  
PRE_F1  
R4  
R/W  
0
0
0
0
1
0
0
FRAC_ORDER_F1  
PLL_N_F1  
40028h  
R3  
R2  
R1  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
PLL_DEN_F1[15:0]  
PLL_NUM_F1[15:0]  
30000h  
20000h  
10000h  
PLL_DEN_F1[23:16]  
PLL_NUM_F1[23:16]  
POWER  
DOWN  
RXTX_  
CTRL  
RXTX_  
POL  
F1F2_  
INIT  
F1F2_  
CTRL  
F1F2_  
MODE  
F1F2_  
SEL  
R0  
R/W  
0
0
0
0
0
0
0
0
0
RESET  
0
0
0
0
1
FCAL_EN  
3h  
Copyright © 2015, Texas Instruments Incorporated  
17  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
The POR value is the power-on reset value that is assigned when the device is powered up or the RESET bit is  
asserted. POR is not a default working mode, all registers are required to program properly in order to make the  
device works as desired.  
7.6.1 R60 Register (offset = 3Ch) [reset = 4000h]  
Figure 20. R60 Register  
15  
1
14  
0
13  
1
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-4000h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 1. R60 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Program A000h to this field.  
15-0  
R/W  
4000h  
7.6.2 R58 Register (offset = 3Ah) [reset = C00h]  
Figure 21. R58 Register  
15  
1
14  
0
13  
0
12  
0
11  
1
10  
1
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-C00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 2. R58 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Program 8C00h to this field.  
15-0  
R/W  
C00h  
7.6.3 R53 Register (offset = 35h) [reset = 2802h]  
Figure 22. R53 Register  
15  
0
14  
1
13  
1
12  
1
11  
1
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
0
R/W-2802h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 3. R53 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Program 7806h to this field.  
15-0  
R/W  
2802h  
18  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.4 R47 Register (offset = 2Fh) [reset = 0h]  
Figure 23. R47 Register  
15  
0
14  
13  
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
DITHERING  
R/W-0h  
R/W-  
0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. R47 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
R/W  
0h  
Program 0h to this field.  
14-13  
DITHERING  
R/W  
0h  
Set the level of dithering. This feature is used to mitigate spurs  
level in certain use case by increasing the level of randomness  
in the Delta Sigma modulator, typically done at the expense of  
noise at certain offset.  
0 = Disabled  
1 = Weak  
2 = Medium  
3 = Strong  
12-0  
R/W  
0h  
Program 0h to this field.  
7.6.5 R42 Register (offset = 2Ah) [reset = 210h]  
Figure 24. R42 Register  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
7
0
6
0
5
4
3
2
1
0
EXTV  
CO_C  
P_PO  
L
EXTVCO_CP_IDN  
R/W-8h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-  
0h  
R/W-10h  
Table 5. R42 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-6  
R/W  
8h  
Program 8h to this field.  
5
EXTVCO_CP_POL  
R/W  
0h  
Sets the phase detector polarity for external VCO in PLL mode  
operation. Positive means VCO frequency increases directly  
proportional to Vtune voltage.  
0 = Positive  
1 = Negative  
4-0  
EXTVCO_CP_IDN  
R/W  
10h  
Set the base charge pump current for external VCO in PLL  
mode operation. The total base charge pump current is equal to  
EXTVCO_CP_IDN  
+
EXTVCO_CP_IUP. EXTVCO_CP_IDN  
must be equal to EXTVCO_CP_IUP. Only even number values  
are supported.  
0 = Tri-state  
2 = 312.5 µA  
4 = 625 µA  
...  
30 = 3437.5 µA  
Copyright © 2015, Texas Instruments Incorporated  
19  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6.6 R41 Register (offset = 29h) [reset = 810h]  
Figure 25. R41 Register  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
EXTVCO_CP_IUP  
EXTVCO_CP_  
GAIN  
CP_IDN  
R/W-0h  
R/W-10h  
R/W-0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. R41 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
R/W  
0h  
Program 0h to this field.  
11-7  
EXTVCO_CP_IUP  
R/W  
10h  
Set the base charge pump current for external VCO in PLL  
mode operation. The total base charge pump current is equal to  
EXTVCO_CP_IDN  
+
EXTVCO_CP_IUP. EXTVCO_CP_IDN  
must be equal to EXTVCO_CP_IUP. Only even number values  
are supported.  
0 = Tri-state  
2 = 312.5 µA  
4 = 625 µA  
...  
30 = 3437.5 µA  
6-5  
EXTVCO_CP_GAIN  
R/W  
0h  
Set the multiplication factor to the base charge pump current for  
external VCO in PLL mode operation. For example, if the gain  
here is 2x and if the total base charge pump current  
(EXTVCO_CP_IDN + EXTVCO_CP_IUP) is 2.5 mA, then the  
final charge pump current applied to the loop filter is 5 mA. The  
gain values are not precise. They are provided as a quick way to  
boost the total charge pump current for debug purposes or  
specific applications.  
0 = 1x  
1 = 2x  
2 = 1.5x  
3 = 2.5x  
4-0  
CP_IDN  
R/W  
10h  
Set the base charge pump current for internal VCO in  
synthesizer mode operation. The total base charge pump current  
is equal to CP_IDN + CP_IUP. CP_IDN must be equal to  
CP_IUP.  
0 = Tri-state  
1 = 156.25 µA  
2 = 312.5 µA  
3 = 468.75 µA  
...  
31 = 3593.75 µA  
20  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.7 R40 Register (offset = 28h) [reset = 101Ch]  
Figure 26. R40 Register  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
0
4
1
3
1
2
1
1
0
0
0
CP_IUP  
R/W-10h  
CP_GAIN  
R/W-0h  
R/W-0h  
R/W-1Ch  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. R40 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
R/W  
0h  
Program 0h to this field.  
12-8  
CP_IUP  
R/W  
10h  
Set the base charge pump current for internal VCO in  
synthesizer mode operation. The total base charge pump current  
is equal to CP_IDN + CP_IUP. CP_IDN must be equal to  
CP_IUP.  
0 = Tri-state  
1 = 156.25 µA  
2 = 312.5 µA  
3 = 468.75 µA  
...  
31 = 3593.75 µA  
7-6  
CP_GAIN  
R/W  
0h  
Set the multiplication factor to the base charge pump current for  
internal VCO in synthesizer mode operation. For example, if the  
gain here is 2x and if the total base charge pump current  
(CP_IDN + CP_IUP) is 2.5 mA, then the final charge pump  
current applied to the loop filter is 5 mA. The gain values are not  
precise. They are provided as a quick way to boost the total  
charge pump current for debug purposes or specific  
applications.  
0 = 1x  
1 = 2x  
2 = 1.5x  
3 = 2.5x  
5-0  
R/W  
1Ch  
Program 1Ch to this field.  
7.6.8 R39 Register (offset = 27h) [reset = 11F0h]  
Figure 27. R39 Register  
15  
0
14  
0
13  
0
12  
1
11  
0
10  
0
9
0
8
1
7
1
6
1
5
1
4
1
3
2
0
1
1
0
SDO_  
LD_SE  
L
LD_E  
N
R/W-11Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-  
0h  
R/W-0h  
R/W-  
0h  
Table 8. R39 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Program 11Fh to this field.  
15-4  
R/W  
11Fh  
3
SDO_LD_SEL  
R/W  
R/W  
0h  
0h  
Defines the MUXout pin function.  
0 = Register readback serial data output  
1 = Lock detect output  
2-1  
Program 1h to this field.  
Copyright © 2015, Texas Instruments Incorporated  
21  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Table 8. R39 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
LD_EN  
R/W  
0h  
Enables lock detect function.  
0 = Disabled  
1 = Enabled  
7.6.9 R35 Register (offset = 23h) [reset = 647h]  
Figure 28. R35 Register  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MULT_WAIT  
OUTB OUTB OUTB  
UF_A UF_TX UF_R  
UTOM _TYPE X_TYP  
UTE  
E
R/W-0h  
R/W-C8h  
R/W-  
1h  
R/W-  
1h  
R/W-  
1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. R35 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
R/W  
0h  
Program 0h to this field.  
13-3  
MULT_WAIT  
R/W  
C8h  
A 20-µs settling time is required for MULT, if it is enabled. These  
bits set the correct settling time according to the OSCin  
frequency. For example, if OSCin frequency is 100 MHz, set  
these bits to 2000. No matter if MULT is enabled or not, the  
configured MULT settling time forms part of the total frequency  
switching time.  
0 = Do not use this setting  
1 = 1 OSCin clock cycle  
...  
2047 = 2047 OSCin clock cycles  
2
OUTBUF_AUTOMUTE  
R/W  
1h  
If this bit is set, the output buffers will be muted until PLL is  
locked. This bit applies to the following events: (a) device  
initialization (b) manually change VCO frequency, and (c) F1F2  
switching. However, if the PLL is unlocked afterward (for  
example, OSCin is removed), the output buffers will not be  
muted and will remain active.  
0 = Disabled  
1 = Enabled  
1
0
OUTBUF_TX_TYPE  
OUTBUF_RX_TYPE  
R/W  
R/W  
1h  
1h  
Sets the output buffer type of RFoutTx. If the buffer is open drain  
output, a pullup to VccIO is required. See RF Output Buffer Type  
for details.  
0 = Open drain  
1 = Push pull  
Sets the output buffer type of RFoutRx. If the buffer is open  
drain output, a pullup to VccIO is required. See RF Output Buffer  
Type for details.  
0 = Open drain  
1 = Push pull  
22  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.10 R34 Register (offset = 22h) [reset = 1000h]  
Figure 29. R34 Register  
15  
14  
13  
12  
11  
10  
9
0
8
7
6
5
4
3
2
1
0
IPBUF IPBUF  
DIFF_ _SE_D  
TERM IFF_S  
EL  
XTAL_PWRCTRL  
XTAL_  
EN  
FSK_I FSK_I  
2S_FS 2S_CL  
_POL K_PO  
L
FSK_LEVEL  
FSK_DEV_SEL  
FSK_ FSK_  
MODE MODE  
_SEL0 _SEL1  
R/W-  
0h  
R/W-  
0h  
R/W-2h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-0h  
R/W-0h  
R/W-  
0h  
R/W-  
0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. R34 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
IPBUFDIFF_TERM  
R/W  
0h  
Enables independent 50 Ω input termination on both OSCin and  
OSCin* pins. This function is valid even if OSCin input is  
configured as single-ended input.  
0 = Disabled  
1 = Enabled  
14  
IPBUF_SE_DIFF_SEL  
XTAL_PWRCTRL  
R/W  
R/W  
0h  
2h  
Selects between single-ended and differential OSCin input.  
0 = Single-ended input  
1 = Differential input  
13-11  
Set the value of the series resistor being used to limit the power  
dissipation through the crystal when crystal is being used as  
OSCin input. See OSCin Configuration for details.  
0 = 0 Ω  
1 = 100 Ω  
2 = 200 Ω  
3 = 300 Ω  
4-7 = Reserved  
10  
XTAL_EN  
R/W  
0h  
Enables the crystal oscillator buffer for use as OSCin input. This  
bit will overwrite IPBUF_SE_DIFF_SEL.  
0 = Disabled  
1 = Enabled  
9
8
R/W  
R/W  
0h  
0h  
Program 0h to this field.  
FSK_I2S_FS_POL  
FSK_I2S_CLK_POL  
FSK_LEVEL  
Sets the polarity of the I2S Frame Sync input in FSK I2S mode.  
0 = Active HIGH  
1 = Active LOW  
7
R/W  
R/W  
0h  
0h  
Sets the polarity of the I2S CLK input in FSK I2S mode.  
0 = Rising edge strobe  
1 = Falling edge strobe  
6-5  
Define the desired FSK level in FSK PIN mode and FSK SPI  
mode. When this bit is zero, FSK operation in these modes is  
disabled even if FSK_EN_Fx = 1.  
0 = Disabled  
1 = 2FSK  
2 = 4FSK  
3 = 8FSK  
4-2  
FSK_DEV_SEL  
R/W  
0h  
In FSK SPI mode, these bits select one of the FSK deviations as  
defined in registers R25-32 or R9-16.  
0 = FSK_DEV0_Fx  
1 = FSK_DEV1_Fx  
...  
7 = FSK_DEV7_Fx  
Copyright © 2015, Texas Instruments Incorporated  
23  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Table 10. R34 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
FSK_MODE_SEL0  
R/W  
0h  
FSK_MODE_SEL0 and FSK_MODE_SEL1 define the FSK  
operation mode. FSK_MODE_SEL[1:0] =  
00 = FSK PIN mode  
01 = FSK SPI mode  
10 = FSK I2S mode  
11 = FSK SPI FAST mode  
0
FSK_MODE_SEL1  
R/W  
0h  
Same as above.  
7.6.11 R33 Register (offset = 21h) [reset = 0h]  
Figure 30. R33 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV_SPI_FAST  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. R33 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
FSK_DEV_SPI_FAST  
R/W  
0h  
Define the desired frequency deviation in FSK SPI FAST mode.  
See Direct Digital FSK Modulation for details.  
7.6.12 R25 to R32 Register (offset = 19h to 20h) [reset = 0h]  
Figure 31. R25 to R32 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV0_F2 to FSK_DEV7_F2  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. R25 to R32 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
FSK_DEV0_F2 to FSK_DEV7_F2  
R/W  
0h  
Define the desired frequency deviation in FSK PIN mode and  
FSK SPI mode. See Direct Digital FSK Modulation for details.  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.13 R24 Register (offset = 18h) [reset = 10h]  
Figure 32. R24 Register  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
1
0
FSK_E  
N_F2  
EXTVCO_CHDIV_F2  
EXTV  
CO_S  
EL_F2  
OUTBUF_TX_PWR_F2  
R/W-0h  
R/W-  
0h  
R/W-0h  
R/W-  
0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. R24 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
R/W  
0h  
Program 0h to this field.  
10  
FSK_EN_F2  
R/W  
0h  
Enables FSK operation in all FSK operation modes. When this  
bit is set, fractional denominator DEN should be zero. See Direct  
Digital FSK Modulation for details.  
0 = Disabled  
1 = Enabled  
9-6  
EXTVCO_CHDIV_F2  
R/W  
0h  
Set the value of the output channel divider, CHDIV3, when using  
external VCO in PLL mode.  
0 = Divide by 1  
1 = Reserved  
2 = Divide by 2  
3 = Divide by 3  
...  
10 = Divide by 10  
11-15 = Reserved  
5
EXTVCO_SEL_F2  
R/W  
R/W  
0h  
Selects synthesizer mode (internal VCO) or PLL mode (external  
VCO) operation.  
0 = Synthesizer mode  
1 = PLL mode  
4-0  
OUTBUF_TX_PWR_F2  
10h  
Set the output power at RFoutTx port. See RF Output Buffer  
Power Control for details.  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6.14 R23 Register (offset = 17h) [reset = 10A4h]  
Figure 33. R23 Register  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
1
0
OUTBUF_RX_PWR_F2  
OUTB OUTB  
UF_TX UF_R  
_EN_F X_EN_  
LF_R4_F2  
2
F2  
R/W-0h  
R/W-10h  
R/W-  
1h  
R/W-  
0h  
R/W-4h  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. R23 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
R/W  
0h  
Program 0h to this field.  
12-8  
OUTBUF_RX_PWR_F2  
OUTBUF_TX_EN_F2  
R/W  
10h  
Set the output power at RFoutRx port. See RF Output Buffer  
Power Control for details.  
7
R/W  
1h  
Enables RFoutTx port.  
0 = Disabled  
1 = Enabled  
6
OUTBUF_RX_EN_F2  
LF_R4_F2  
R/W  
0h  
Enables RFoutRx port.  
0 = Disabled  
1 = Enabled  
5-3  
2-0  
R/W  
R/W  
4h  
4h  
Program 0h to this field.  
Set the resistor value for the 4th pole of the internal loop filter.  
The shunt capacitor of that pole is 100 pF.  
0 = Bypass  
1 = 3.2 kΩ  
2 = 1.6 kΩ  
3 = 1.1 kΩ  
4 = 800 Ω  
5 = 640 Ω  
6 = 533 Ω  
7 = 457 Ω  
7.6.15 R22 Register (offset = 16h) [reset = 8584h]  
Figure 34. R22 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LF_R3_F2  
R/W-4h  
CHDIV2_F2  
R/W-1h  
CHDIV1_F2  
R/W-1h  
PFD_DELAY_F2  
R/W-4h  
MULT_F2  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. R22 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set the resistor value for the 3rd pole of the internal loop filter.  
15-13  
LF_R3_F2  
R/W  
4h  
The shunt capacitor of that pole is 50 pF.  
0 = Bypass  
1 = 3.2 kΩ  
2 = 1.6 kΩ  
3 = 1.1 kΩ  
4 = 800 Ω  
5 = 640 Ω  
6 = 533 Ω  
7 = 457 Ω  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Table 15. R22 Register Descriptions (continued)  
Bit  
Field  
CHDIV2_F2  
Type  
Reset  
Description  
12-10  
R/W  
1h  
Set the value of the output channel divider, CHDIV2, when using  
internal VCO in synthesizer mode.  
0 = Divide by 1  
1 = Divide by 2  
2 = Divide by 4  
3 = Divide by 8  
4 = Divide by 16  
5 = Divide by 32  
6 = Divide by 64  
9-8  
CHDIV1_F2  
R/W  
1h  
Set the value of the output channel divider, CHDIV1, when using  
internal VCO in synthesizer mode.  
0 = Divide by 4  
1 = Divide by 5  
2 = Divide by 6  
3 = Divide by 7  
7-5  
4-0  
PFD_DELAY_F2  
MULT_F2  
R/W  
R/W  
4h  
4h  
Used to optimize spurs and phase noise. Suggested values are:  
Integer mode (NUM = 0): use PFD_DELAY 5  
Fractional mode with N-divider < 22: use PFD_DELAY 4  
Fractional mode with N-divider 22: use PFD_DELAY 3  
Set the MULT multiplier value. MULT value must be greater than  
Pre-divider value. MULT is not supported when crystal is being  
used as the reference clock input. See MULT Multiplier for  
details.  
0 = Reserved  
1 = Bypass  
2 = 2x  
...  
13 = 13x  
14-31 = Reserved  
7.6.16 R21 Register (offset = 15h) [reset = 101h]  
Figure 35. R21 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_R_F2  
R/W-1h  
PLL_R_PRE_F2  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. R21 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set the OSCin buffer Post-divider value.  
15-8  
PLL_R_F2  
R/W  
1h  
7-0  
PLL_R_PRE_F2  
R/W  
1h  
Set the OSCin buffer Pre-divider value. This value must be  
smaller than MULT value.  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6.17 R20 Register (offset = 14h) [reset = 28h]  
Figure 36. R20 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
_PRE_  
F2  
FRAC_ORDER_F2  
PLL_N_F2  
R/W-  
0h  
R/W-0h  
R/W-28h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. R20 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PLL_N_PRE_F2  
R/W  
0h  
Sets the Prescaler value.  
0 = Divide by 2  
1 = Divide by 4  
14-12  
FRAC_ORDER_F2  
R/W  
0h  
Select the order of the Delta Sigma modulator.  
0 = Integer mode  
1 = 1st order  
2 = 2nd order  
3 = 3rd order  
4-7 = 4th order  
11-0  
PLL_N_F2  
R/W  
28h  
Set the integer portion of the N-divider value. Maximum value is  
1023.  
7.6.18 R19 Register (offset = 13h) [reset = 0h]  
Figure 37. R19 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F2[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. R19 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set the LSB bits of the fractional denominator of the N-divider.  
15-0  
PLL_DEN_F2[15:0]  
R/W  
0h  
7.6.19 R18 Register (offset = 12h) [reset = 0h]  
Figure 38. R18 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_F2[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. R18 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set the LSB bits of the fractional numerator of the N-divider.  
15-0  
PLL_NUM_F2[15:0]  
R/W  
0h  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.20 R17 Register (offset = 11h) [reset = 0h]  
Figure 39. R17 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F2[23:16]  
R/W-0h  
PLL_NUM_F2[23:16]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. R17 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
PLL_DEN_F2[23:16]  
R/W  
0h  
Set the MSB bits of the fractional denominator of the N-divider.  
Set the MSB bits of the fractional numerator of the N-divider.  
7-0  
PLL_NUM_F2[23:16]  
R/W  
0h  
7.6.21 R9 to R16 Register (offset = 9h to 10h) [reset = 0h]  
Figure 40. R9 to R16 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV0_F1 to FSK_DEV7_F1  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. R9 to R16 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
FSK_DEV0_F1 to FSK_DEV7_F1  
R/W  
0h  
See Table 12.  
7.6.22 R8 Register (offset = 8h) [reset = 10h]  
Figure 41. R8 Register  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
1
0
FSK_E  
N_F1  
EXTVCO_CHDIV_F1  
EXTV  
CO_S  
EL_F1  
OUTBUF_TX_PWR_F1  
R/W-0h  
R/W-  
0h  
R/W-0h  
R/W-  
0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. R8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
R/W  
0h  
Program 0h to this field.  
See Table 13.  
See Table 13.  
See Table 13.  
See Table 13.  
10  
9-6  
5
FSK_EN_F1  
R/W  
R/W  
R/W  
R/W  
0h  
EXTVCO_CHDIV_F1  
EXTVCO_SEL_F1  
OUTBUF_TX_PWR_F1  
0h  
0h  
4-0  
10h  
Copyright © 2015, Texas Instruments Incorporated  
29  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6.23 R7 Register (offset = 7h) [reset = 10A4h]  
Figure 42. R7 Register  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
1
0
OUTBUF_RX_PWR_F1  
OUTB OUTB  
UF_TX UF_R  
_EN_F X_EN_  
LF_R4_F1  
1
F1  
R/W-0h  
R/W-10h  
R/W-  
1h  
R/W-  
0h  
R/W-4h  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. R7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
R/W  
0h  
Program 0h to this field.  
See Table 14.  
12-8  
7
OUTBUF_RX_PWR_F1  
OUTBUF_TX_EN_F1  
OUTBUF_RX_EN_F1  
R/W  
R/W  
R/W  
R/W  
R/W  
10h  
1h  
0h  
4h  
4h  
See Table 14.  
6
See Table 14.  
5-3  
2-0  
Program 0h to this field.  
See Table 14.  
LF_R4_F1  
7.6.24 R6 Register (offset = 6h) [reset = 8584h]  
Figure 43. R6 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LF_R3_F1  
R/W-4h  
CHDIV2_F1  
R/W-1h  
CHDIV1_F1  
R/W-1h  
PFD_DELAY_F1  
R/W-4h  
MULT_F1  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. R6 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
LF_R3_F1  
R/W  
4h  
See Table 15.  
See Table 15.  
See Table 15.  
See Table 15.  
See Table 15.  
12-10  
9-8  
CHDIV2_F1  
CHDIV1_F1  
PFD_DELAY_F1  
MULT_F1  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
4h  
4h  
7-5  
4-0  
30  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.25 R5 Register (offset = 5h) [reset = 101h]  
Figure 44. R5 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_R_F1  
R/W-1h  
PLL_R_PRE_F1  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. R5 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
See Table 16.  
See Table 16.  
15-8  
PLL_R_F1  
R/W  
1h  
7-0  
PLL_R_PRE_F1  
R/W  
1h  
7.6.26 R4 Register (offset = 4h) [reset = 28h]  
Figure 45. R4 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
_PRE_  
F1  
FRAC_ORDER_F1  
PLL_N_F1  
R/W-  
0h  
R/W-0h  
R/W-28h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. R4 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PLL_N_PRE_F1  
R/W  
0h  
See Table 17.  
See Table 17.  
See Table 17.  
14-12  
11-0  
FRAC_ORDER_F1  
PLL_N_F1  
R/W  
R/W  
0h  
28h  
7.6.27 R3 Register (offset = 3h) [reset = 0h]  
Figure 46. R3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F1[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. R3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
PLL_DEN_F1[15:0]  
R/W  
0h  
See Table 18.  
Copyright © 2015, Texas Instruments Incorporated  
31  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
7.6.28 R2 Register (offset = 2h) [reset = 0h]  
Figure 47. R2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_F1[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. R2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
PLL_NUM_F1[15:0]  
R/W  
0h  
See Table 19.  
7.6.29 R1 Register (offset = 1h) [reset = 0h]  
Figure 48. R1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F1[23:16]  
R/W-0h  
PLL_NUM_F1[23:16]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. R1 Register Descriptions  
Bit  
Field  
Type  
Reset  
Description  
See Table 20.  
See Table 20.  
15-8  
PLL_DEN_F1[23:16]  
R/W  
0h  
7-0  
PLL_NUM_F1[23:16]  
R/W  
0h  
32  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
7.6.30 R0 Register (offset = 0h) [reset = 3h]  
Figure 49. R0 Register  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
0
1
1
0
RESE POWE RXTX RXTX F1F2_I F1F2_ F1F2_ F1F2_  
T
FCAL_  
EN  
RDOW _CTRL _POL  
N
NIT  
CTRL MODE SEL  
R/W-0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-1h  
R/W-  
1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. R0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
R/W  
0h  
Program 0h to this field.  
13  
12  
RESET  
R/W  
R/W  
0h  
0h  
Resets all the registers to the default values. This bit is self-clearing.  
0 = Normal operation  
1 = Reset  
POWERDOWN  
Powers down the device. When the device comes out of the powered down state,  
either by resuming this bit to zero or by pulling back CE pin HIGH (if it was  
powered down by CE pin), it is required that register R0 with FCAL_EN = 1 be  
programmed again to re-calibrate the device. A 100-µs wait-time is recommended  
before programming R0.  
0 = Normal operation  
1 = Power down  
11  
10  
9
RXTX_CTRL  
RXTX_POL  
F1F2_INIT  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Sets the control mode of TX/RX switching.  
0 = Switching is controlled by register programming  
1 = Switching is controlled by toggling the TrCtl pin  
Defines the polarity of the TrCtl pin.  
0 = Active LOW = TX  
1 = Active HIGH = TX  
Toggling this bit re-calibrates F1F2 if F1, F2 are modified after calibration. This bit  
is not self-clear, so it is required to clear the bit value after use. See Register R0  
F1F2_INIT, F1F2_MODE usage for details.  
0 = Clear bit value  
1 = Re-calibrate  
8
7
F1F2_CTRL  
F1F2_MODE  
R/W  
R/W  
0h  
0h  
Sets the control mode of F1/F2 switching. Switching by TrCtl pin requires  
F1F2_MODE = 1.  
0 = Switching is controlled by register programming  
1 = Switching is controlled by toggling the TrCtl pin  
Calibrates F1 and F2 during device initialization (initial power on programming). It  
also enables F1-F2 switching with the TrCtl pin. Even if this bit is not set, F1-F2  
switching is still possible but the first switching time will not be optimized because  
either F1 or F2 will only be calibrated. If F1-F2 switching is not required, set this bit  
to zero. See Register R0 F1F2_INIT, F1F2_MODE usage for details.  
0 = Disable F1F2 calibration  
1 = Enable F1F2 calibration  
6
F1F2_SEL  
FCAL_EN  
R/W  
0h  
Selects F1 or F2 configuration registers.  
0 = F1 registers  
1 = F2 registers  
5-1  
0
R/W  
R/W  
1h  
1h  
Program 1h to this field.  
Activates all kinds of calibrations, suggest keep it enabled all the time. If it is  
desired that the R0 register be programmed without activating this calibration, then  
this bit can be set to zero.  
0 = Disabled  
1 = Enabled  
Copyright © 2015, Texas Instruments Incorporated  
33  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Direct Digital FSK Modulation  
In fractional mode, the finest delta frequency difference between two programmable output frequencies is equal  
to  
f1 – f2 = Δfmin = fPD * {[(N + 1) / DEN] – (N / DEN)} = fPD / DEN  
(3)  
In other words, when the fractional numerator is incremented by 1 (one step), the output frequency will change  
by Δfmin. A two steps increment will therefore change the frequency by 2 * Δfmin  
.
In FSK operation, the instantaneous carrier frequency is kept changing among some pre-defined frequencies. In  
general, the instantaneous carrier frequency is defined as a certain frequency deviation from the nominal carrier  
frequency. The frequency deviation could be positive and negative.  
Nominal  
carrier  
frequency  
4FSK symbol: 11 10 00  
01  
Instantaneous  
carrier  
frequency  
Frequency  
Negative  
swing  
Positive  
swing  
fDEV0  
fDEV  
1
Figure 50. General FSK Definition  
Figure 51. Typical 4FSK Definition  
The following equations define the number of steps required for the desired frequency deviation with respect to  
the nominal carrier frequency output at the RFoutTx or RFoutRx port.  
Table 31. FSK Step Equations  
POLARITY  
SYNTHESIZER MODE  
PLL MODE  
fDEV * DEN CHDIV1 * CHDIV2  
*
fDEV * DEN  
POSITIVE SWING  
Round  
Round  
CHDIV3  
*
fPD  
Prescaler  
fPD  
(4)  
(5)  
(7)  
NEGATIVE SWING  
2's complement of Equation 4  
(6) 2's complement of Equation 5  
In FSK PIN mode and FSK SPI mdoe, register R25-32 and R9-16 are used to store the desired FSK frequency  
deviations in term of the number of step as defined in the above equations. The order of the registers, 0 to 7,  
depends on the application system. A typical 4FSK definition is shown in Figure 51. In this case, FSK_DEV0_Fx  
and FSK_DEV1_Fx shall be calculated using Equation 4 or Equation 5 while FSK_DEV2_Fx and FSK_DEV3_Fx  
shall be calculated using Equation 6 or Equation 7.  
For example, if FSK PIN mode is enabled in F1 to support 4FSK modulation, set  
FSK_MODE_SEL1 = 0  
FSK_MODE_SEL0 = 0  
FSK_LEVEL = 2  
FSK_EN_F1 = 1  
34  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Table 32. FSK PIN Mode Example  
RAW FSK DATA STREAM INPUT  
EQUIVALENT SYMBOL INPUT  
REGISTER SELECTED  
RF OUTPUT  
10  
11  
10  
11  
01  
00  
...  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
...  
Freq.  
FSK_D0  
FSK_D1  
FSK_DV  
Time  
FSK SPI mode assumes the user knows which symbol to send; user can directly write to register R34,  
FSK_DEV_SEL to select the desired frequency deviation.  
For example, to enable the device to support 4FSK modulation at F1 using FSK SPI mode, set  
FSK_MODE_SEL1 = 0  
FSK_MODE_SEL0 = 1  
FSK_LEVEL = 2  
FSK_EN_F1 = 1  
Table 33. FSK SPI Mode Example  
DESIRED SYMBOL  
WRITE REGISTER FSK_DEV_SEL  
REGISTER SELECTED  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
10  
11  
10  
11  
01  
00  
...  
2
3
2
3
1
0
...  
Both the FSK PIN mode and FSK SPI mode support up to 8 levels of FSK. To support an arbitrary-level FSK,  
use FSK SPI FAST mode or FSK I2S mode. Constructing pulse-shaping FSK modulation by over-sampling the  
FSK modulation waveform is one of the use cases of these modes.  
Analog-FM modulation can also be produced in these modes. For example, with a 1-kHz sine wave modulation  
signal with peak frequency deviation of ±2 kHz, the signal can be over-sampled, say 10 times. Each sample point  
corresponding to a scaled frequency deviation.  
Freq. dev.  
+2kHz  
t5 t6 t7 t8 t9  
Time  
t0 t1 t2 t3 t4  
-2kHz  
Figure 52. Over-Sampling Modulation Signal  
Copyright © 2015, Texas Instruments Incorporated  
35  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
In FSK SPI FAST mode, write the desired FSK steps directly to register R33, FSK_DEV_SPI_FAST. To enable  
this mode, set  
FSK_MODE_SEL1 = 1  
FSK_MODE_SEL0 = 1  
FSK_EN_F1 = 1  
Table 34. FSK SPI FAST Mode Example  
TIME  
FREQUENCY  
DEVIATION  
CORRESPONDING FSK  
STEPS(1)  
BINARY EQUIVALENT  
WRITE TO  
FSK_DEV_SPI_FAST  
t0  
t1  
618.034 Hz  
1618.034 Hz  
2000 Hz  
518  
1357  
1678  
0000 0010 0000 0110  
0000 0101 0100 1101  
0000 0110 1000 1110  
518  
1357  
1678  
t2  
t6  
–1618.034 Hz  
–2000 Hz  
64178  
63857  
1111 1010 1011 0010  
1111 1001 0111 0001  
64178  
63857  
t7  
(1) Synthesizer mode, fVCO = 4800 MHz, fOUT = 480 MHz, fPD = 100 MHz, Prescaler = 2, DEN = 224, Use Equation 4 and Equation 6 to  
calculate the step value.  
In FSK I2S mode, clock in the desired binary format FSK steps in the FSK_D1 pin.  
FSK_D1  
FSK_DV  
FSK_D0  
t0  
t1  
Figure 53. FSK I2S Mode Example  
To enable FSK I2S mode, set  
FSK_MODE_SEL1 = 1  
FSK_MODE_SEL0 = 0  
FSK_EN_F1 =1  
8.1.2 Frequency and Output Port Switching with TrCtl Pin  
Register R0, RXTX_CTRL, and RXTX_POL are used to define the output port switching behavior with the TrCtl  
pin. To enable switching with TrCtl pin, set RXTX_CTRL=1.  
Table 35. TrCtl Pin Usage  
RXTX_CTRL  
RXTX_POL  
TrCtl PIN  
RFoutTx  
RFoutRx  
1
1
1
1
0
0
1
1
0
1
0
1
Active  
Active  
Active  
Active  
Register R0, F1F2_CTRL, and F1F2_SEL define the operation of the frequency switching between the two pre-  
defined frequencies F1 and F2. To switch frequency using the TrCtl pin, set F1F2_CTRL to 1. F1F2_SEL selects  
the output frequency for the current status. For example, if the current active output frequency is F1, toggling  
TrCtl pin will change the output frequency to F2. Toggling TrCtl pin again will change the output frequency back  
to F1.  
8.1.3 OSCin Configuration  
OSCin supports single-end clock, differential clock as well as crystal. Register R34 defines OSCin configuration.  
36  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
OSCin TYPE  
ZHCSDH8 MARCH 2015  
Table 36. OSCin Configuration  
SINGLE-ENDED CLOCK  
DIFFERENTIAL CLOCK  
CRYSTAL  
Connection  
Diagram  
VT  
C1  
0.1µF  
VT  
Rd  
OSCin  
OSCin  
OSCin  
OSCin*  
50Q  
OSCin*  
OSCin*  
50Qꢀ  
C2  
Register Setting  
IPBUF_SE_DIFF_SEL = 0  
IPBUF_SE_DIFF_SEL = 1  
IPBUFDIFF_TERM = 1  
XTAL_EN = 1  
XTAL_PWRCTRL = Crystal dependent  
Single-ended and differential input clock definitions are as follows:  
VOSCin  
VOSCin  
VOSCin  
CMOS  
Sine wave  
Figure 54. Input Clock Definition  
Differential  
The integrated crystal-oscillator circuit supports a fundamental mode, AT-cute crystal. The load capacitance, CL,  
is specific to the crystal, but usually on the order of 18 to 20 pF. While CL is specified for crystal, the OSCin input  
capacitance, CIN (1 pF typical), of the device and PCB stray capacitance, CSTRAY (approximately 1 to 3 pF), can  
affect the discrete load capacitor values, C1 and C2.  
For the parallel resonant circuit, the discrete capacitor values can be calculated as follows:  
CL = (C1 * C2) / (C1 + C2) + CIN + CSTRAY  
(8)  
(9)  
Typically, C1 = C2 for optimum symmetry, so Equation 8 can be rewritten in terms of C1 only:  
CL = C12 / (2 * C1) + CIN + CSTRAY  
Finally, solve for C1:  
C1 = 2 * (CL – CIN – CSTRAY  
)
(10)  
Electrical Characteristics provide crystal interface specifications with conditions that ensure start-up of the crystal,  
but it does not specify crystal power dissipation. The designer will need to ensure the crystal power dissipation  
does not exceed the maximum drive level specified by the crystal manufacturer. Over-driving the crystal can  
cause premature aging, frequency shift, and eventual failure. Drive level should be held at a sufficient level  
necessary to start-up and maintain steady-state operation. The power dissipated in the crystal, PXTAL, can be  
computed by:  
PXTAL = IRMS2 * RESR * (1 + Co / CL)2  
where  
IRMS is the rms current through the crystal  
RESR is the maximum equivalent series resistance specified for the crystal  
CL is the load capacitance specified for the crystal  
Co is the minimum shunt capacitance specified for the crystal  
IRMS can be measured using a current probe (for example, Tektronix CT-6 or equivalent) placed on the leg of  
the crystal connected to OSCin pin with the oscillation circuit active.  
(11)  
The internal configurable resistor, Rd, can be used to limit the crystal drive level, if necessary. If the power  
dissipated in the selected crystal is higher than the drive level specified for the crystal with Rd shorted, then a  
larger resistor value is mandatory to avoid over-driving the crystal. However, if the power dissipated in the crystal  
is less than the drive level with Rd shorted, then a zero value for Rd can be used. As a starting point, a suggested  
value for Rd is 200 Ω.  
Copyright © 2015, Texas Instruments Incorporated  
37  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
8.1.4 Register R0 F1F2_INIT, F1F2_MODE usage  
These register bits are used to define the calibration behavior. Correct setting is important to ensure that every  
F1-F2 switching time is optimized. Figure 55 illustrates the usage of these register bits.  
Freq  
F2'  
F2  
FCAL_EN=1  
Change F1, F2  
F1F2_INIT=1  
F1F2_MODE=1  
F1F2_INIT=0  
F1F2_INIT=0  
F1  
F1'  
Time  
t0  
t1  
t2  
t3  
t4  
t5  
t6 t7  
t8 t9  
t10  
t11  
Figure 55. F1F2_INIT, F1F2_MODE Usage  
Before t0: Device initialization  
Power up the device.  
Write all registers to the device.  
Ensure FCAL_EN = 1 to enable calibration.  
Set F1F2_MODE = 1 to make both F1 and F2 being calibrated during initialization. If F1F2_MODE = 0,  
only the output frequency (F1 in this example) will be calibrated, F2 will not be calibrated. Furthermore, if  
F1F2 switching is triggered by the TrCtl pin, F1F2_MODE must be equal to 1.  
Set F1F2_INIT = 0. Although the setting of this bit is irrelevant and not important here but if F1F2_INIT =  
1, change it back to zero before attempting to change the frequency from F1 to F2.  
At t0: Locked to F1  
After initialization, both F1 and F2 are calibrated. The calibration data is stored in the internal memory.  
At t1: Switch to F2.  
Since FCAL_EN = 1, calibration will start over again when the output is switching from F1 to F2. F2 calibration  
begins based on the last calibration data, which is the calibration data obtained at t0. If the environment (for  
example, temperature) does not change much, the new calibration data will be similar to the old data. As a result,  
the calibration time is minimal and therefore, the switching time will be short.  
At t2: Switch back to F1  
Again, F1 calibration starts over and begins with the last calibration data as obtained at t0. Calibration time is  
again very short, as is the switching time.  
At t3: Switch again to F2  
This time, the calibration begins with the calibration data obtained at t1, which is the last calibration data.  
At t4: Switch back to F1  
Calibration begins with the calibration data obtained at t2, which is the last calibration data.  
At t5: Set new F1, F2 frequency  
Write to the relevant registers to set the new F1 and F2 frequency (for example, change the N-divider values)  
Initiate calibration by re-writing register R0  
Set F1F2_INIT=1. Both F1' and F2' will be calibrated  
At t6: Locked to F1'  
F1' and F2' calibration completed and their calibration data are ready.  
At t7: Release F1F2_INIT bit  
This bit has to be reset to zero or otherwise both F1' and F2' will be calibrated every time they are toggling.  
At t8: F1' calibration data is updated  
Since F1F2_INIT is located in register R0, when writing F1F2_INIT = 0 to the device, calibration is once again  
triggered. However, only F1' will be re-calibrated, the calibration data of F2' remains unchanged.  
At t9: Switch to F2'  
F2' calibration begins with the calibration data obtained at t6, which is the last calibration data. Calibration time is  
again very short, as is the switching time.  
38  
Copyright © 2015, Texas Instruments Incorporated  
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
At t10: Switch back to F1'  
F1' calibration starts over and begins with the last calibration data as obtained at t8.  
At t11: Switch again to F2'  
The calibration begins with the calibration data obtained at t9, which is the last calibration data.  
As illustrated above, register F1F2_INIT must be used properly in order to ensure that every F1-F2 switching  
time is optimized.  
8.1.5 FastLock with External VCO  
Fastlock may be required in PLL mode where an external VCO with a narrow loop bandwidth is desired. The  
LMX2571 adopts a new FastLock approach to support the very fast switching time requirement in PLL mode.  
There are two control pins in the chip, FLout1 and FLout2. Each pin is used to control a SPST analog switch, S1  
and S2. The loop filter value with or without FastLock is the same, except that with FastLock, one more C2 and  
two SPST switches are needed.  
Ordinary 2nd  
order loop filter  
With FastLock  
control switches  
R2  
C2  
R2  
C2a=C2b=C2  
S1 S2  
C2b  
C2a  
Figure 56. FastLock with SPST Switches  
When LMX2571 is locked to F1, FLout1 will close the switch S1. When LMX2571 is locked to F2, either by  
toggling the TrCtl pin or program register R0, F1F2_SEL, S1 will be released while S2 will be closed by FLout2.  
Although S1 is released, the charge stored in C2a remains unchanged. Thus, when the output is switched back  
to F1, the Vtune voltage is almost correct, no (or little) charging or discharging to C2a is required which speeds  
up the switching time. For example, if Vtune for F1 and F2 are 1 V and 2 V, respectively, without FastLock, when  
the switching frequency shifts from F1 to F2, C2 will have to be re-charged from 1 V to 2 V — this is a big  
voltage jump. With FastLock, when S2 is closed, Vtune is almost equal to 2 V because C2b maintains the  
charge. Only a tiny voltage jump (re-charge) is required to make it reach the final Vtune voltage.  
Figure 57 and Figure 58 compare the frequency switching time using different switching methods. In both cases,  
the loop bandwidth is 4 kHz while fPD is 28 MHz. Figure 57 shows the switching time for a frequency jump from  
430 MHz to 480 MHz with SPST switches. Frequency switching is toggled by the TrCtl pin. Switching time is  
approximately 1 ms. Frequency switching in Figure 58 is done in the traditional way. That is, change the output  
frequency by writing to the relevant registers such as N-divider values. In this case, because fPD is very much  
bigger than the loop bandwidth, cycle slipping jeopardizes the switching time to more than 20 ms.  
Copyright © 2015, Texas Instruments Incorporated  
39  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Figure 57. F1F2 Switching With SPST Switches  
Figure 58. Change F1 Frequency Via SPI Programming  
8.1.6 OSCin Slew Rate  
A phase-lock loop consists of a clean reference clock, a PLL, and a VCO. Each of these contributes to the total  
phase noise. The LMX2571 is a high-performance PLL with integrated VCO. Both PLL noise and VCO noise are  
very good. Typical PLL 1/f noise and noise floor are –124 dBc/Hz and –231 dBc/Hz, respectively. To get the best  
possible phase-noise performance from the device the quality of the reference clock is very important because it  
may add noise to the loop. First of all, the phase noise of the reference clock must be good so that the final  
performance of the system is not degraded. Furthermore, using reference clock with a rather high slew rate (such  
as a square wave) is highly preferred. Driving the device input with a lower slew rate clock will degrade the  
device phase noise.  
For a given frequency, a sine wave clock has the slowest slew rate, especially when the frequency is low. A  
CMOS clock or differential clock have much faster slew rates and are recommended. Figure 59 shows a phase-  
noise comparison with different types of reference clocks. Output frequency is 480 MHz while the input clock  
frequency is 26 MHz. As one can see there is a 5-dB difference in phase noise when using a clipped sine wave  
TCXO compared to a differential LVPECL clock. The internal crystal oscillator of the LMX2571 performance is  
also very good. If temperature compensation is not required, use crystal as the reference clock is a very good  
price-performance option.  
-80  
Crystal  
TCXO  
LVPECL  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
103  
104  
105  
106  
107  
Offset /Hz  
Figure 59. Phase Noise vs Input Clock  
40  
Copyright © 2015, Texas Instruments Incorporated  
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
8.1.7 RF Output Buffer Power Control  
Registers OUTBUF_TX_PWR_Fx and OUTBUF_RX_PWR_Fx are used to set the output power at the RFoutTx  
and RFoutRx ports. Figure 60 shows a typical output power vs power control bit plot in synthesizer mode. VCO  
frequency was 4800 MHz, and channel dividers were set to produce the shown output frequencies.  
6
60  
58  
56  
54  
52  
50  
48  
46  
44  
fout=1200MHz  
fout=480MHz  
fout=150MHz  
3
Current, fout=480MHz  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
Power control bit  
Figure 60. Configurable RF Output Power  
8.1.8 RF Output Buffer Type  
Registers R35, OUTBUF_TX_TYPE, OUTBUF_RX_TYPE are used to configure the RF output buffer type  
between open drain and push-pull. Push-pull is easy to use; all that is required is a DC-blocking capacitor at the  
output. The output waveform is square wave and therefore, harmonics rich. Open-drain output provides an option  
to reduce the harmonics using an LC resonant pullup network at its output. Table 37 summarizes an example an  
open-drain vs push-pull application.  
Table 37. RF Output Buffer Type  
BUFFER TYPE  
OPEN DRAIN  
PUSH-PULL  
VccIO  
Connection  
Diagram  
39nH  
100pF  
2.7pF  
RFoutTx  
RFoutTx  
100pF  
100pF  
Output Power  
470 MHz  
480 MHz  
2.8 dBm  
490 MHz  
2.8 dBm  
470 MHz  
–0.1 dBm  
–30.4 dBc  
–11.9 dBc  
–28.5 dBc  
–15.6 dBc  
–29.5 dBc  
480 MHz  
0 dBm  
490 MHz  
0.1 dBm  
fo  
2.7 dBm  
–31 dBc  
2fo  
3fo  
4fo  
5fo  
6fo  
–30.7 dBc  
–17.9 dBc  
–40.4 dBc  
–17.8 dBc  
–27.2 dBc  
–30.5 dBc  
–18.1 dBc  
–41.6 dBc  
–17.6 dBc  
–28.5 dBc  
–30.2 dBc  
–12.1 dBc  
–28.4 dBc  
–15.6 dBc  
–29.8 dBc  
–30 dBc  
–17.3 dBc  
–39 dBc  
–12.4 dBc  
–28.1 dBc  
–15.7 dBc  
–29.3 dBc  
–18.1 dBc  
–27.6 dBc  
Clearly, with a proper LC pull up in open drain architecture, the 3rd to 5th harmonics could be reduced.  
8.1.9 MULT Multiplier  
The main purpose of the multiplier, MULT, in the R–divider is to push the in-band fractional spurs far away from  
the carrier such that the spurs could be filtered out by the loop filter. In a fractional engine, the fractional spurs  
appear at a multiple of fPD * Nfrac. In cases where both fPD and Nfrac are small, the fractional spurs will appear  
very close to the carrier. These kinds of spurs are called in-band spurs.  
Copyright © 2015, Texas Instruments Incorporated  
41  
 
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Table 38. MULT Application Example  
USE CASE  
OSCin  
PRE-DIVIDER  
MULT  
POST-DIVIDER  
fPD /MHz  
VCO  
/MHz  
Ninteger  
Nfrac  
SPURS  
/MHz  
/MHz  
19.2  
19.2  
19.2  
I
1
1
1
1
1
5
1
1
4
19.2  
19.2  
24  
460.8  
461  
24  
24  
19  
0
0
II  
0.0104167  
0.2083333  
0.2  
5
III  
461  
In Case I, the VCO frequency is an integer multiple of the fPD, so Nfrac is zero and there are no spurs. However,  
in Case II, the spur appears at an offset of 200 kHz. If this spur cannot be reduced by other typical spur-  
reduction techniques such as dithering, user can enable the MULT to overcome this problem. If the MULT is  
enabled as depicted in Case III, the spurs can be pushed to an offset of 5 MHz. In this case, the MULT together  
with the Post-divider changes the phase detector to a little bit higher frequency. As a consequence, the spurs are  
pushed further away from the carrier and are reduced more by the loop filter.  
Another use case of MULT is to make higher phase-detector frequency. For example, if OSCin is 20 MHz, user  
can set MULT to 5 to make fPD go to 100 MHz. As a result, the N-divider value will be reduced by 5 times;  
therefore, the PLL phase noise is reduced. A wide loop bandwidth can then be used to reduce the VCO noise.  
Consequently, the synthesizer close-in phase noise would be very good.  
The MULT multiplier is an active device in nature, whenever it is enabled, it will add noise to the loop. For best  
phase noise performance, it is recommended to set MULT not greater than 6.  
To use the MULT, beware of the restriction as indicated in the Electrical Characteristics table and Table 15.  
8.1.10 Integrated VCO  
The integrated VCO is composed of 3 VCO cores. The approximate frequency ranges for the three VCO cores  
with their gains is as follows:  
Table 39. Approximate VCO Ranges and VCO Gain  
VCO CORE  
TYPICAL FREQUENCY RANGE (MHz)  
TYPICAL VCO GAIN (MHz/V)  
LOW  
4200  
4560  
4920  
HIGH  
4700  
5100  
5520  
LOW  
46  
MID  
52  
HIGH  
61  
VCOL  
VCOM  
VCOH  
50  
56  
65  
55  
63  
73  
42  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
8.2 Typical Applications  
8.2.1 Synthesizer Duplex Mode  
In this example, the internal VCO is being used. The PLL will be put in fractional mode to support 4FSK direct  
digital modulation using FSK PIN mode. Both frequency (F1, F2) switching as well as RF output port switching is  
toggled by the TrCtl pin. MULT multiplier in the R-divider will be used to reduce spurs.  
3.3V  
3.3V  
3.3V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
26MHz  
Vcc3p3  
VccIO  
VcpExt  
Bypass  
100pF  
100pF  
RFoutTx  
OSCin  
OSCin*  
RFoutRx  
CPout  
LMX2571  
VrefVCO  
VregVCO  
2.2µF  
680Q  
0.1µF  
390pF  
4.7nF  
Figure 61. Typical Synthesizer Duplex Mode Application Schematic  
8.2.1.1 Design Requirements  
OSCin frequency = 26 MHz, LVCMOS  
RFoutTx frequency = 902 MHz  
RFoutRx frequency = 928 MHz  
Frequency switching time 500 µs  
4FSK modulation on TX, baud rate = 20 kSPs  
Frequency deviation = ±10 kHz and ±30 kHz  
FSK error 1 %  
Spurs –72 dBc  
Lock detect is required to indicate lock status  
Output power < 1 dBm  
8.2.1.2 Detailed Design Procedure  
First of all, calculate all the frequencies in each functional block.  
OSCin  
26MHz  
Pre-div  
1
MULT  
4
Post-div  
1
PDF  
104MHz  
VCO  
4510MHz  
CHDIV1  
5
CHDIV2  
1
Output  
902MHz  
N
21.68269231  
Prescaler  
2
Figure 62. F1 Frequency Plan  
Assign F1 frequency to be 902 MHz. With CHDIV1 = 5 and CHDIV2 = 1, the total division is 5. As a result, the  
VCO frequency will be 902 * 5 = 4510 MHz, which is within the VCO tuning range.  
OSCin is 26 MHz, put Pre-divider = 1 to meet the MULT input frequency range requirement.  
To meet the maximum MULT output frequency requirement, possible MULT values are 3 to 5. Play around the  
allowable MULT values and Post-divider values to get the optimum phase noise and spurs performance.  
Assuming MULT = 4 and Post-divider = 1 returns the best performance, then fPD = 104 MHz.  
N-divider = 21.68269231, that means Ninteger = 21 while Nfrac = 0.68269231. To use the direct digital modulation  
feature, put fractional denominator, DEN = 0. The actual DEN value is, in fact, equal to 224 = 16777216. So the  
fractional numerator, NUM, is equal to Nfrac * DEN = 11453676.  
Copyright © 2015, Texas Instruments Incorporated  
43  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Typical Applications (continued)  
Use Equation 4 and Equation 6 to calculate the required FSK steps. For +10 kHz frequency deviation, the FSK  
step value is equal to [10000 * 16777216 / (104 * 106)] * (5 * 1 / 2) = 4033. For –10 kHz frequency deviation, the  
FSK step value is equal to 2's complement of 4033 = 61502. Similarly, the FSK step values for ±30 kHz  
frequency deviation are 12099 and 53436.  
All the required configuration values for F2, 928 MHz can be calculated in the similar fashion and are  
summarized as follows:  
Table 40. Frequency Plan Summary  
CONFIGURATION PARAMETER  
F1 (902 MHz)  
F2 (928 MHz)  
Pre-divider  
MULT  
1
1
4
4
Post-divider  
PDF  
1
104 MHz  
4510 MHz  
21.68269231  
21  
1
104 MHz  
VCO  
4640 MHz  
N-divider  
Ninteger  
22.30769231  
22  
DEN  
0
0
NUM  
11453676  
5
5162220  
CHDIV1  
CHDIV2  
FSK_DEV0  
FSK_DEV1  
FSK_DEV2  
FSK_DEV3  
5
1
1
4033  
12099  
61502  
53436  
Assume here that the base charge pump current = 1250 µA, CP Gain = 1x and 3rd order Delta Sigma Modulator  
without dithering is adopted in both frequency sets. The register settings are summarized as follows:  
Table 41. Register Settings Summary  
CONFIGURATION  
PARAMETERS  
REGISTER BIT  
FCAL_EN  
COMMON SETTING  
1 = Enabled  
F1 SPECIFIC SETTING  
F2 SPECIFIC SETTING  
VCO calibration  
Lock detect  
SDO_LE_SEL  
LD_EN  
1 = Lock detect output  
1 = Enabled  
OSCin buffer type  
Dithering  
IPBUF_SE_DIFF_SEL  
DITHERING  
0 = SE input buffer  
0 = Disabled  
Charge pump gain  
Base charge pump current  
CP_GAIN  
1 = 1x  
CP_IUP  
8 = 1250 µA  
CP_IDN  
8 = 1250 µA  
MULT settling time  
Output buffer type  
MULT_WAIT  
OUTBUF_RX_TYPE  
OUTBUF_TX_TYPE  
OUTBUF_AUTOMUTE  
RXTX_POL  
520 = 20 µs  
1 = Push pull  
1 = Push pull  
Output buffer auto mute  
TrCtl pin polarity  
0 = Disabled  
0 = Active LOW = TX  
1 = TrCtl pin control  
1 = Enabled  
TX RX switching mode  
Enable F1 F2 initialization  
F1 F2 switching mode  
Pre-divider  
RXTX_CTRL  
F1F2_MODE  
F1F2_CTRL  
1 = Control by TrCtl pin  
PLL_R_PRE_F1  
PLL_R_PRE_F2  
MULT_F1  
1
4
1
4
MULT multiplier  
MULT_F2  
44  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Table 41. Register Settings Summary (continued)  
CONFIGURATION  
PARAMETERS  
REGISTER BIT  
PLL_R_F1  
COMMON SETTING  
F1 SPECIFIC SETTING  
F2 SPECIFIC SETTING  
Post-divider  
1
PLL_R_F2  
1
3 = 3rd order  
5 = 8 clock cycles  
1 = Divide by 5  
0 = Divide by 1  
4 = 800 Ω  
ΔΣ modulator order  
FRAC_ORDER_F1  
FRAC_ORDER_F2  
PFD_DELAY_F1  
PFD_DELAY_F2  
CHDIV1_F1  
3 = 3rd order  
5 = 8 clock cycles  
1 = Divide by 5  
0 = Divide by 1  
4 = 800 Ω  
PFD delay  
CHDIV1 divider  
CHDIV2 divider  
CHDIV1_F2  
CHDIV2_F1  
CHDIV2_F2  
Internal 3rd pole loop filter  
Internal 4th pole loop filter  
Output port selection  
Output power control  
FSK mode  
LF_R3_F1  
LF_R3_F2  
LF_R4_F1  
4 = 800 Ω  
LF_R4_F2  
4 = 800 Ω  
OUTBUF_TX_EN_F1  
OUTBUF_RX_EN_F2  
OUTBUF_TX_PWR_F1  
OUTBUF_RX_PWR_F2  
1 = TX port enabled  
6
1 = RX port enabled  
6
FSK_MODE_SEL1  
FSK_MODE_SEL0  
00 = FSK PIN mode  
2 = 4FSK  
FSK level  
FSK_LEVEL  
Enable FSK modulation  
FSK deviation at 00  
FSK deviation at 01  
FSK deviation at 10  
FSK deviation at 11  
Fractional denominator  
FSK_EN_F1  
1 = Enabled  
4033 = +10 kHz  
12099 = +30 kHz  
61502 = -10 kHz  
53436 = -30 kHz  
0
FSK_DEV0_F1  
FSK_DEV1_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
PLL_DEN_F1[23:16]  
PLL_DEN_F1[15:0]  
PLL_DEN_F2[23:16]  
PLL_DEN_F2[15:0]  
PLL_NUM_F1[23:16]  
PLL_NUM_F1[15:0]  
PLL_NUM_F2[23:16]  
PLL_NUM_F2[15:0]  
PLL_N_F1  
0
0
0
Fractional numerator  
174  
50412  
78  
50412  
Ninteger  
21  
PLL_N_F2  
22  
Prescaler  
PLL_N_PRE_F1  
PLL_N_PRE_F2  
0 = Divide by 2  
0 = Divide by 2  
Copyright © 2015, Texas Instruments Incorporated  
45  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
8.2.1.3 Synthesizer Duplex Mode Application Curves  
Figure 63. F1 (TX) Phase Noise and Spurs  
Figure 64. F2 (RX) Phase Noise and Spurs  
Figure 65. F1 (TX) to F2 (RX) Switching  
Figure 66. F2 (RX) to F1 (TX) Switching  
46  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
Figure 67. F1 to F2 Switching Time  
Figure 68. F2 to F1 Switching Time  
Figure 70. 4FSK Modulation Quality  
Figure 69. 4FSK Modulation  
Copyright © 2015, Texas Instruments Incorporated  
47  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
8.2.2 PLL Duplex Mode  
In this example, the internal VCO will be bypassed, and the device is used to lock to an external VCO. TI’s dual  
SPST analog switch, TS5A21366 is used to facilitate FastLock between two frequencies.  
3.3V  
3.3V  
5V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
16.8MHz  
Vcc3p3  
VccIO  
VcpExt  
Bypass  
100pF  
100pF  
RFoutTx  
VCO  
430-480MHz  
OSCin  
OSCin*  
Fin  
LMX2571  
10Q 10Q  
CPoutExt  
100pF  
VrefVCO  
VregVCO  
2.2µF  
10Q  
470nF 39nF 39nF  
50Q  
0.1µF  
FLout1  
FLout2  
TS5A21366  
4.7µF  
4.7µF  
Figure 71. Typical PLL Duplex Mode Application Schematic  
8.2.2.1 Design Requirements  
OSCin frequency = 16.8 MHz, LVCMOS  
F1 frequency = 430 MHz  
F2 frequency = 480 MHz  
Frequency switching time 1.5 ms within 100-Hz frequency tolerance  
8.2.2.2 Detailed Design Procedure  
Again, we need to figure out all the frequencies in each functional block first.  
OSCin  
16.8MHz  
Pre-div  
1
MULT  
5
Post-div  
3
PDF  
28MHz  
VCO  
430MHz  
CHDIV3  
1
Output  
430MHz  
N
15.35714286  
Figure 72. Frequency Plan in PLL Duplex Mode  
Follow the previous example to determine all the necessary configurations. Table 42 is the summary in this  
example.  
Table 42. PLL Duplex Mode Frequency Plan Summary  
CONFIGURATION PARAMETER  
F1 (430 MHz)  
F2 (480 MHz)  
Pre-divider  
MULT  
1
5
1
5
Post-divider  
PDF  
3
3
28 MHz  
430 MHz  
15.35714286  
15  
28 MHz  
480 MHz  
17.14285714  
17  
VCO  
N-divider  
Ninteger  
DEN  
1234567  
440917  
1234567  
176367  
NUM  
48  
Copyright © 2015, Texas Instruments Incorporated  
 
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
To enable external VCO operation, set the following bits:  
Table 43. PLL Duplex Mode Register Settings Summary  
CONFIGURATION PARAMETER  
Charge pump polarity  
REGISTER BITS  
EXTVCO_CP_POL  
SETTING  
0 = Positive  
1 = 1x  
External VCO charge pump gain  
EXTVCO_CP_GAIN  
EXTVCO_CP_IUP  
8 = 1250 µA  
8 = 1250 µA  
1 = External VCO  
Base charge pump current  
EXTVCO_CP_IDN  
Select PLL mode operation  
CHDIV3 divider  
EXTVCO_SEL_F1, EXTVCO_SEL_F2  
EXTVCO_CHDIV_F1, EXTVCO_CHDIV_F2 0 = Bypass  
Make sure that register R0, FCAL_EN is set so that FastLock is enabled.  
The loop bandwidth had been design to be around 4 kHz, while phase margin is about 40 degrees.  
8.2.2.3 PLL Duplex Mode Application Curves  
Figure 73. F1 to F2 Switching  
Figure 74. F2 to F1 Switching  
Figure 75. F1 to F2 Switching Time  
Figure 76. F2 to F1 Switching Time  
Copyright © 2015, Texas Instruments Incorporated  
49  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
8.2.3 Synthesizer/PLL Duplex Mode  
This example will demonstrate the device's capability in switching two frequencies using internal and external  
VCO. VCO switching is toggled by the TrCtl pin. Direct digital FSK modulation is enabled in TX using FSK I2S  
mode.  
3.3V  
3.3V  
5V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
19.2MHz  
Vcc3p3  
VccIO  
VcpExt  
Bypass  
100pF  
RFoutRx  
RFoutTx  
OSCin  
OSCin*  
100pF  
100pF  
VCO  
430-480MHz  
LMX2571  
Fin  
VrefVCO  
VregVCO  
10Q 10Q  
100pF  
2.2µF  
CPoutExt  
0.1µF  
10Q  
470nF 39nF 39nF  
4.7µF  
50Q  
Figure 77. Typical Synthesizer/PLL Duplex Mode Application Schematic  
8.2.3.1 Design Requirements  
OSCin frequency = 19.2 MHz, LVCMOS  
RFoutRX frequency = 440 MHz, external VCO = F1  
RFoutTx frequency = 540 MHz, internal VCO = F2  
Frequency switching time 1.5 ms within 100-Hz frequency tolerance  
Arbitrary FSK modulation to simulate analog FM modulation (10 times and 20 times over-sampling rate)  
FM modulation frequency = 1 kHz  
Frequency deviation = ±2000 Hz  
Spurs –72 dBc  
8.2.3.2 Detailed Design Procedure  
Frequency plans in TX and RX paths are as follows:  
OSCin  
19.2MHz  
Pre-div  
1
MULT  
1
Post-div  
1
PDF  
19.2MHz  
VCO  
440MHz  
CHDIV3  
1
Output  
440MHz  
N
22.91666687  
OSCin  
19.2MHz  
Pre-div  
1
MULT  
5
Post-div  
PDF  
96MHz  
VCO  
5400MHz  
CHDIV1  
5
CHDIV2  
Output  
540MHz  
1
2
N
28.125  
Prescaler  
2
Figure 78. TX and RX Frequency Plans  
Follow the previous examples to determine all the necessary configurations. To enable FSK I2S mode, set  
FSK_MODE_SEL1=1  
FSK_MODE_SEL=0  
FSK_EN_F2=1  
50  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
8.2.3.3 Synthesizer/PLL Duplex Mode Application Curves  
Figure 79. External VCO to Internal VCO Switching  
Figure 80. Internal VCO to External VCO Switching  
Figure 81. External VCO to Internal VCO Switching Time  
Figure 82. Internal VCO to External VCO Switching Time  
Copyright © 2015, Texas Instruments Incorporated  
51  
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
Figure 83. Simulated FM Modulation (10 times over-  
sampling)  
Figure 84. Simulated FM Modulation (20 times over-  
sampling)  
8.3 Do's and Don'ts  
INCORRECT  
CORRECT  
VregVCO  
VregVCO  
100nF  
2.2µF  
VregVCO DECOUPLING  
VcpExt SUPPLY  
DAP PIN  
3.3V or 5V: Synthesizer mode  
5V: PLL mode  
VcpExt  
DAP  
VcpExt  
DAP  
Figure 85. Do's and Don'ts  
52  
Copyright © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
9 Power Supply Recommendations  
It is recommended to place 100 nF capacitor close to each of the power supply pins. If fractional spurs are a  
large concern, using a ferrite bead to each of these power supply pins may reduce spurs to a small degree.  
VcpExt is the power supply pin for the 5-V charge pump. In PLL mode, the 5-V charge pump is active and a 5 V  
is required at VcpExt pin. In synthesizer mode, although the 5-V charge pump is not active, either a 3.3-V  
or 5-V supply is still needed at this pin.  
Because LMX2571 has integrated LDOs, the requirement to external power supply is relaxed. In addition to LDO,  
LMX2571 is able to operate with DC-DC converter. The switching noise from the DC-DC converter would not  
affect performance of the LMX2571. Table 44 lists some of the suggested DC-DC converters.  
Table 44. Recommended DC-DC Converters  
PART NUMBER  
TPS560200  
TPS62050  
TOPOLOGY  
Buck  
VIN  
VOUT  
IOUT  
500 mA  
SWITCHING FREQUENCY  
600 kHz  
4.5 V to 17 V  
2.7 V to 10 V  
3 V to 17 V  
4.5 V to 17 V  
2.5 V to 5.5 V  
0.8 V to 6.5 V  
0.7 V to 6 V  
0.9 V to 6 V  
0.76 V to 7 V  
2.5 V to 5.5 V  
Buck  
800 mA  
1 MHz  
TPS62160  
Buck  
1000 mA  
2000 mA  
500 mA to 1 A  
2.25 MHz  
TPS562200  
TPS63050  
Buck  
650 kHz  
Buck Boost  
2.5 MHz  
Copyright © 2015, Texas Instruments Incorporated  
53  
 
LMX2571  
ZHCSDH8 MARCH 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
See EVM instructions for details. In general, the layout guidelines are similar to most other PLL devices. The  
followings are some guidelines specific to the device.  
It may be beneficial to separate main ground and OSCin ground, crosstalk spurs might be reduced.  
Don't route any traces that carry switching signal close to the charge pump traces and external VCO.  
When using FSK I2S mode on this device, care should be taken to avoid coupling between the I2S clock and  
any of the PLL circuit.  
10.2 Layout Example  
Figure 86. Layout Example  
54  
版权 © 2015, Texas Instruments Incorporated  
LMX2571  
www.ti.com.cn  
ZHCSDH8 MARCH 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
德州仪器 (TI) 提供了多种软件工具来协助开发过程,其中包括用于编程的 CodeLoader、用于回路滤波和相位噪声/  
毛刺仿真的 Clock Design Tool、以及用于系统解决方案查找器的 Clock Architect。 所有这些工具均可从以下网址  
获得:www.ti.com。  
11.2 文档支持  
11.2.1 相关文档  
SPRA953《半导体和 IC 封装热指标》  
TS5A21366《具有 1.8V 兼容输入逻辑的 0.75双通道 SPST 模拟开关》  
TPS5602004.5V 17V 输入、500mA 同步降压 SWIFT™ 转换器》  
TPS62050800mA 同步降压转换器》  
TPS62160《具有 DCS 控制系统的 3V-17V 1A 降压转换器》  
TPS562200《采用 SOT-23 封装的 4.5V 17V 输入、2A 同步降压稳压器》  
TPS63050《微型单电感降压/升压转换器》  
11.3 商标  
PLLatinum is a trademark of Texas Instruments.  
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
55  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2571NJKR  
LMX2571NJKT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NJK  
NJK  
36  
36  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX2571  
LMX2571  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LMX2571-EP

具有 FSK 调制功能的增强型 1.34GHz、低功耗、极端温度 RF 合成器
TI

LMX2571NJKR

具有移频键控 (FSK) 调制功能的 1.34GHz、低功耗、极端温度 RF 合成器 | NJK | 36 | -40 to 85
TI

LMX2571NJKT

具有移频键控 (FSK) 调制功能的 1.34GHz、低功耗、极端温度 RF 合成器 | NJK | 36 | -40 to 85
TI

LMX2571SRHHTEP

具有 FSK 调制功能的增强型 1.34GHz、低功耗、极端温度 RF 合成器 | RHH | 36 | -55 to 125
TI

LMX2572

6.4GHz 低功耗宽带射频合成器
TI

LMX2572LP

采用 FSK 调制的 2GHz 低功耗宽带射频合成器
TI

LMX2572LPRHAR

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572LPRHAT

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572RHAR

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572RHAT

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2575HVMX-12

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-15

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI