LMX2592RHAR [TI]

具有集成 VCO 的 9.8GHz 宽带频率合成器 | RHA | 40 | -40 to 85;
LMX2592RHAR
型号: LMX2592RHAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 VCO 的 9.8GHz 宽带频率合成器 | RHA | 40 | -40 to 85

文件: 总49页 (文件大小:2866K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMX2592  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
集成VCO LMX2592 高性能宽PLLatinum™ 射频合成器  
1 特性  
3 说明  
• 输出频率范围20 9800MHz  
• 相位噪声性能行业领先  
LMX2592 一款集成了 VCO 低噪声宽带射频  
PLL支持的频率范围为 20MHz 9.8GHz。该器件  
支持分数 N 和整数 N 模式具有一个 32 位分数分频  
支持选择合适的频率。其积分噪声为 49fs对于  
6GHz 输出),是理想的低噪声源。该器件融入了一流  
PLL VCO 积分噪声与集成的低压线性稳压器  
(LDO)从而无需高性能系统中的多个分立器件。  
VCO 相位噪声在输出6GHz 且偏移为  
1MHz 134.5dBc/Hz  
– 归一PLL 本底噪声-231dBc/Hz  
– 归一PLL 闪烁噪声-126dBc/Hz  
49fs RMS 抖动12kHz 20MHz)(对于  
6GHz 输出)  
该器件可接受高达 1.4GHz 的输入频率与分频器及可  
编程低噪声乘法器相结合可灵活设置频率。附加的可  
编程低噪声乘法器可帮助用户减轻整数边界杂散的影  
响。在分N 模式下该器件可将输出相位调整 32 位  
分辨率。对于需要快速频率变化的应用该器件支持耗  
时小25µs 的快速校准选项。  
• 输入时钟频率高1400MHz  
• 相位检测器频率高200MHz,  
且在整N 模式中高400MHz  
• 支持分N 和整N 模式  
• 双差分输出  
• 减少毛刺的创新型解决方案  
• 可编程相位调整  
• 可编程电荷泵电流  
使用一个 3.3V 电源即可能实现此性能。该器件支持 2  
个差分输出这两个输出也可灵活配置为单端输出。用  
户可选择将其中一个编程为从 VCO 或倍压器输  
另一个从通道分配器输出。若不想使用可分别禁  
用每个输出。  
• 可编程输出功率水平  
• 串行外设接(SPI) uWire4 线制串行接口)  
• 单电源运行3.3V  
封装信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
说明  
• 测试和测量设备  
• 国防和雷达  
• 微波回程  
LMX2592RHAT  
LMX2592RHAR  
VQFN (40)  
6.00mm × 6.00mm  
• 高速数据转换器的高性能时钟源  
• 卫星通信  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
External Loop Filter  
Cpout  
(pin 12)  
Vtune  
(pin 35)  
OSCinP  
(pin 8)  
OSCin  
Buffer  
Phase  
Detector  
RFoutAP  
RFoutAM  
RFoutBM  
RFoutBP  
MUX  
MUX  
Vcc  
Vcc  
Input  
Signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Multiplier  
Charge  
Pump  
Channel  
Divider  
ϕ
MUX  
OSCinM  
(pin 9)  
VCO  
doubler  
Sigma-Delta  
Modulator  
CSB (pin 24)  
Output  
Buffer  
SCK (pin 16)  
SDI (pin 17)  
Serial Interface  
Control  
N Divider  
Prescaler  
SDO / LD (pin 20)  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS646  
 
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
Table of Contents  
7.5 Programming............................................................ 18  
7.6 Register Maps...........................................................19  
8 Application and Implementation..................................30  
8.1 Application Information............................................. 30  
8.2 Typical Application.................................................... 37  
8.3 Power Supply Recommendations.............................38  
8.4 Layout....................................................................... 39  
9 Device and Documentation Support............................40  
9.1 Device Support......................................................... 40  
9.2 Documentation Support............................................ 40  
9.3 接收文档更新通知..................................................... 40  
9.4 支持资源....................................................................40  
9.5 Trademarks...............................................................40  
9.6 Electrostatic Discharge Caution................................40  
9.7 术语表....................................................................... 40  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements..................................................8  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Functional Description.............................................. 13  
7.4 Device Functional Modes..........................................17  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision F (October 2017) to Revision G (August 2022)  
Page  
• 将封装说明WQFN 更改VQFN................................................................................................................... 1  
Added a new requirement to Vtune pin description............................................................................................4  
Added HD2 and HD3 information to the Electrical Characteristics table............................................................7  
Removed sentence: The CLK signal should not be high when LE transitions to low.........................................8  
Changed the Channel Divider requirement...................................................................................................... 16  
Added a new register field, VTUNE_ADJ, in register R30................................................................................19  
Changed the position of register field, PFD_CTL, in register R13....................................................................19  
Added read only register R68, R69 and R70....................................................................................................19  
Added additional requirement for register CP_ICOARSE in 7-16 ...............................................................20  
Added additional information for register MUXOUT_HDRV in 7-44 ............................................................20  
Added a new register field, VTUNE_ADJ, in 7-25 .......................................................................................20  
Changed the register R0 FCAL_LPFD_ADJ configurable values.................................................................... 20  
Changed the register R13 PFD_CTL position.................................................................................................. 20  
Added the R68, R69 and R70 register field descriptions..................................................................................20  
Added External Loop Filter section...................................................................................................................36  
Moved the Power Supply Recommendations and Layout sections to the Application and Implementation  
section.............................................................................................................................................................. 38  
Changes from Revision E (July 2017) to Revision F (October 2017)  
Page  
Switched the RFoutBP and RFoutBM pins in the pinout diagram...................................................................... 4  
Changed register 7 and the register descriptions of 4, 20 and 46....................................................................19  
Changes from Revision D (February 2017) to Revision E (July 2017)  
Page  
Changed Channel Divider Setting as a Function of the Desired Output Frequency table................................16  
Changes from Revision C (October 2016) to Revision D (January 2017)  
Page  
• 从中删除< 25µs 快速校准模式项目........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
Changed the high level input voltage minimum value of from: 1.8 to: 1.4 ......................................................... 7  
Changed text from: the rising edge of the LE signal to: the rising edge of the last CLK signal.......................... 8  
Changed text from: the shift registers to an actual counter to: the shift registers to a register bank..................8  
Added content to the Voltage Controlled Oscillator section..............................................................................15  
Changed Channel Divider Setting as a Function of the Desired Output Frequency table................................16  
Changed register 0, 22, and 64 descriptions....................................................................................................19  
Changes from Revision B (July 2016) to Revision C (September 2016)  
Page  
• 根据最新文档和翻译标准更新了数据表文本....................................................................................................... 1  
Changed pin 30 name from: Rext to: NC............................................................................................................4  
Changed CDM value from: ±1250 V to: ±750 V................................................................................................. 6  
Changed parameter name from: Maximum reference input frequency to: reference input frequency............... 7  
Removed the charge pump current TYP range '0 to 12' and split range into MIN (0) and MAX (12) columns....  
7
Moved all typical values in the Timing Requirements table to minimum column ...............................................8  
Changed output frequency units from: MHz to: Hz in graphic ......................................................................... 10  
Changed high input value from: 700 to: 200 ....................................................................................................14  
Changed high input value from: 1400 to: 400 ..................................................................................................14  
Changed minimum output frequency step from: Fpd / PLL_DEN to: Fpd × PLL_N_PRE / PLL_DEN / [Channel  
divider value].....................................................................................................................................................14  
Changed text from: output dividers to: channel dividers ..................................................................................15  
Changed output frequency from: 3600 to: 3550 .............................................................................................. 16  
Changed VCO frequency from: 7200 to: 7100 ................................................................................................ 16  
Changed Phase shift (degrees) from: 360 × MASH_SEED / PLL_N_DEN / [Channel divider value] to: 360 x  
MASH_SEED x PLL_N_PRE / PLL_N_DEN / [Channel divider value]" ..........................................................17  
Changed register 7, 8, 19, 23, 32, 33, 34, 46, and 64 descriptions .................................................................19  
Added registers 20, 22, 25, 59, and 61 ............................................................................................................19  
Changed register descriptions from: Program to default to: Program to Register Map default values.............20  
Updated content in the Decreasing Lock Time section.................................................................................... 35  
Changed typical application image ..................................................................................................................37  
Changed charge pump value from: 4.8 to: 20.................................................................................................. 38  
Changed R2 value from: 0.068 to: 68...............................................................................................................38  
Changes from Revision A (December 2015) to Revision B (July 2016)  
Page  
Added VCO Calibration Time to Electrical Characteristics ................................................................................ 7  
Added registers 2, 4, and 62 to Register Table ................................................................................................19  
Changed register 38 in Register Table ............................................................................................................ 19  
Added R2 Register Field Descriptions .............................................................................................................20  
Added R4 Register Field Descriptions .............................................................................................................20  
Added R62 Register Field Descriptions ...........................................................................................................20  
Changes from Revision * (December 2015) to Revision A (December 2015)  
Page  
• 将器件状态从“产品预发布”更新至“量产数据”并发布了完整数据表............................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
5 Pin Configuration and Functions  
CE  
GND  
1
2
3
4
5
6
7
8
9
30 NC  
29 VrefVCO2  
28 NC  
VbiasVCO  
GND  
27 VbiasVCO2  
26 VccVCO2  
25 GND  
NC  
GND  
GND  
VccDIG  
OSCinP  
OSCinM  
24 CSB  
23 RFoutAP  
22 RFoutAM  
21 VccBUF  
VregIN 10  
5-1. RHA Package 40-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
CE  
NO.  
1
Input  
Chip Enable input. Active high powers on the device.  
CPout  
12  
Output  
Charge pump output. Recommend connecting C1 of loop filter close to pin.  
SPI chip select bar or uWire latch enable (abbreviated as LE in 6-1). High  
impedance CMOS input. 1.8 to 3.3-V logic.  
CSB  
DAP  
GND  
24  
Input  
GND  
Ground  
Ground  
RFout ground.  
VCO ground.  
2, 4, 6, 13, 14, 25,  
31, 34, 39, 40  
Programmable with register MUXOUT_SEL to be readback SDO or lock detect  
indicator (active high).  
MUXout  
NC  
20  
5, 28, 30, 32  
8
Output  
Not connected.  
Differential reference input clock (+). High input impedance. Requires connecting  
series capacitor (0.1-µF recommended).  
OSCinP  
Input  
Differential reference input clock (). High input impedance. Requires connecting  
series capacitor (0.1-µF recommended).  
OSCinM  
RFoutAM  
RFoutAP  
RFoutBP  
RFoutBM  
SCK  
9
Input  
Output  
Output  
Output  
Output  
Input  
Differential output A (). This output requires a pullup component for proper biasing.  
A 50-Ωresistor or inductor may be used. Place as close to output as possible.  
22  
23  
19  
18  
16  
Differential output A (+). This output requires a pullup component for proper biasing.  
A 50-Ωresistor or inductor may be used. Place as close to output as possible.  
Differential output B (+). This output requires a pullup component for proper biasing.  
A 50-Ωresistor or inductor may be used. Place as close to output as possible.  
Differential output B (). This output requires a pullup component for proper biasing.  
A 50-Ωresistor or inductor may be used. Place as close to output as possible.  
SPI or uWire clock (abbreviated as CLK in 6-1). High impedance CMOS input. 1.8  
to 3.3-V logic.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
SPI or uWire data (abbreviated as DATA in 6-1). High impedance CMOS input.  
1.8 to 3.3-V logic.  
SDI  
17  
Input  
VCO varactor internal voltage, access for bypass. Requires connecting 10-µF  
capacitor to VCO ground.  
VbiasVARAC  
VbiasVCO  
33  
3
Bypass  
Bypass  
VCO bias internal voltage, access for bypass. Requires connecting 10-µF capacitor  
to VCO ground. Place close to pin.  
VCO bias internal voltage, access for bypass. Requires connecting 1-µF capacitor to  
VCO ground.  
VbiasVCO2  
VCCBUF  
VCCCP  
27  
21  
11  
Bypass  
Supply  
Supply  
Output buffer supply. Requires connecting 0.1-µF capacitor to RFout ground.  
Charge pump supply. Recommend connecting 0.1-µF capacitor to charge pump  
ground.  
VCCDIG  
7
Supply  
Supply  
Supply  
Supply  
Digital supply. Recommend connecting 0.1-µF capacitor to digital ground.  
Digital supply. Recommend connecting 0.1-µF and 10-µF capacitor to digital ground.  
VCO supply. Recommend connecting 0.1-µF and 10-µF capacitor to ground.  
VCO supply. Recommend connecting 0.1-µF and 10-µF capacitor to VCO ground.  
VCCMASH  
VCCVCO  
VCCVCO2  
15  
37  
26  
VCO supply internal voltage, access for bypass. Requires connecting 10-µF  
capacitor to ground.  
VrefVCO  
VrefVCO2  
VregIN  
36  
29  
10  
38  
35  
Bypass  
Bypass  
Bypass  
Bypass  
Input  
VCO supply internal voltage, access for bypass. Requires connecting 10-µF  
capacitor to VCO ground.  
Input reference path internal voltage, access for bypass. Requires connecting 1-µF  
capacitor to ground. Place close to pin.  
VCO supply internal voltage, access for bypass. Requires connecting 1-µF capacitor  
to ground.  
VregVCO  
Vtune  
VCO tuning voltage input. This signal should be kept away from noise sources.  
Connect a 3.3-nF or more capacitor to VCO ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
3.6  
UNIT  
V
VCC  
VIN  
Power supply voltage  
Input voltage to pins other than VCC pins  
VCC + 0.3  
V
1.8 with VCC 1 with VCC  
=
VOSCin  
Voltage on OSCin (pin 8 and pin 9)  
Vpp  
Applied  
0
TL  
Lead temperature (solder 4 s)  
Junction temperature  
260  
150  
150  
°C  
°C  
°C  
TJ  
40  
65  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model (MM) ESD stress voltage  
V(ESD)  
V
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2500 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±1250 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
40  
NOM  
MAX  
3.45  
85  
UNIT  
V
VCC  
TA  
Power supply voltage  
Ambient temperature  
Junction temperature  
°C  
TJ  
125  
°C  
6.4 Thermal Information  
LMX2592  
THERMAL METRIC(1)  
RHA (VQFN)  
40 PINS  
30.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.3  
5.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
5.3  
ψJB  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
 
 
 
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
6.5 Electrical Characteristics  
3.15 V VCC 3.45 V, 40°C TA 85°C.  
Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VCC  
ICC  
IPD  
Supply voltage  
Supply current  
Powerdown current  
3.3  
250  
3.7  
V
Single 6-GHz, 0-dBm output(1)  
mA  
mA  
OUTPUT CHARACTERISTICS  
Fout  
Output frequency  
20  
9800  
800  
MHz  
dBm  
Output = 3 GHz, 50-Ωpullup, single-  
Pout  
Typical high output power  
8
ended(2)  
Reference input = 100 MHz, 7-GHz  
desired output(8)  
Tcal  
VCO calibration time  
590  
µs  
INPUT SIGNAL PATH  
REFin  
REFv  
Reference input frequency  
5
1400  
2
MHz  
Reference input voltage  
AC-coupled, differential(3)  
0.2  
Vppd  
Input signal path multiplier input  
frequency  
MULin  
40  
70  
MHz  
MHz  
Input signal path multiplier output  
frequency  
MULout  
180  
250  
PHASE DETECTOR AND CHARGE PUMP  
5
0.25  
0
200  
400  
12  
MHz  
MHz  
mA  
PDF  
Phase detector frequency  
Extended range mode(4)  
Programmable  
CPI  
Charge pump current  
PLL PHASE NOISE  
PLL_flicker_Nor  
Normalized PLL Flicker Noise(5)  
dBc/Hz  
dBc/Hz  
126  
231  
m
Normalized PLL Noise Floor (PLL  
Figure of Merit)(5)  
PLL_FOM  
VCO  
Allowable temperature drift(6)  
Output = 3 GHz  
VCO not being recalibrated  
100 kHz  
125  
°C  
|ΔTCL  
|
118.8  
140.3  
155.1  
156.3  
112.6  
134.2  
152.6  
156.2  
108.2  
129.1  
140.5  
141.1  
1 MHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
PNopen loop  
Output = 6 GHz  
dBc/Hz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
Output = 9.8 GHz  
10 MHz  
100 MHz  
HARMONIC DISTORTION(7)  
HD_fund  
8 GHz,  
Harmonic Distortion fundamental feed- VCO  
Fundamental (4 GHz)  
26  
through with doubler enabled  
doubler  
enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMX2592  
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
3.15 V VCC 3.45 V, 40°C TA 85°C.  
Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Testing output A, output at 5 GHz, output  
power level at 8.5-dBm, single-ended  
output, other end terminated with 50 Ω.  
HD2  
HD3  
2nd Order Harmonic Distortion(9)  
dBc  
27  
3rd Order Harmonic Distortion(9)  
dBc  
25  
DIGITAL INTERFACE  
VIH  
VIL  
IIH  
High level input voltage  
1.4  
0
VCC  
0.4  
25  
V
V
Low level input voltage  
High level input current  
Low level input current  
µA  
µA  
25  
25  
IIL  
25  
VCC –  
VOH  
High level output voltage  
V
Load/Source Current of 350 µA  
0.4  
VOL  
Low level output voltage  
Highest SPI write speed  
SPI read speed  
Load/Sink Current of 500 µA  
0.4  
75  
50  
V
SPIW  
SPIR  
MHz  
MHz  
(1) For typical total current consumption of 250 mA: 100-MHz input frequency, OSCin doubler bypassed, pre-R divider bypassed,  
multiplier bypassed, post-R divider bypassed, 100-MHz phase detector frequency, 0.468-mA charge pump current, channel divider off,  
one output on, 6GHz output frequency, 50-Ωoutput pullup, 0-dBm output power (differential). See the Application and Implementation  
section for more information.  
(2) For a typical high output power for a single-ended output, with 50-Ωpullup on both M and P side, register OUTx_POW = 63. Un-used  
side terminated with 50-Ωload.  
(3) There is internal voltage biasing so the OSCinM and OSCinP pins must always be AC-coupled (capacitor in series). Vppd is differential  
peak-to-peak voltage swing. If there is a differential signal (two are negative polarity of each other), the total swing is one subtracted by  
the other, each should be 0.1 to 1-Vppd. If there is a single-ended signal, it can have 0.2 to 2 Vppd. See the Application and  
Implementation section for more information.  
(4) To use phase detector frequencies lower than 5-MHz set register FCAL_LPFD_ADJ = 3. To use phase detector frequencies higher  
than 200 MHz, you must be in integer mode, set register PFD_CTL = 3 (to use single PFD mode), set FCAL_HPFD_ADJ = 3. For  
more information, see the Detailed Description section.  
(5) The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into flicker and flat  
components. PLL_flat = PLL_FOM + 20 × log(Fvco/Fpd) + 10 × log(Fpd / 1Hz). PLL_flicker (offset) = PLL_flicker_Norm + 20 ×  
log(Fvco / 1GHz) 10 × log(offset / 10kHz). Once these two components are found, the total PLL noise can be calculated as  
PLL_Noise = 10 × log(10PLL_Flat / 10 + 10PLL_flicker / 10).  
(6) Not tested in production. Ensured by characterization. Allowable temperature drift refers to programming the device at an initial  
temperature and allowing this temperature to drift without reprogramming the device, and still have the device stay in lock. This change  
could be up or down in temperature and the specification does not apply to temperatures that go outside the recommended operating  
temperatures of the device.  
(7) Not tested in production. Typical numbers from characterization with output settings: 50-Ωpullup, OUTA_POW = 15, channel divider  
off.  
(8) The is the calibration time from the time of FCAL_EN = 1 is triggered to the calibration algorithm completing and output at 7 GHz. A  
reference input signal of 100 MHz is used and register CAL_CLK_DIV = 0 for state machine clock to be 100 MHz. Faster calibration  
times can be achieve through changes of other register settings. See the Application and Implementation section for more information.  
This parameter is ensured by bench.  
(9) This parameter is verified by characterization on evaluation board, not tested in production.  
6.6 Timing Requirements  
3.15 V VCC 3.45 V, 40°C TA 85°C, except as specified. Typical values are at VCC = 3.3 V, TA = 25°C  
MIN  
TYP  
MAX UNIT  
MICROWIRE TIMING  
tES  
Clock to enable low time  
5
2
2
5
5
5
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCS  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
tCH  
tCWH  
tCWL  
tCES  
tEWH  
See 6-1  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
 
 
 
 
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
DATA  
MSB  
LSB  
tt  
CS  
t
tt  
t
CH  
CLK  
t
tt  
CWL  
t
tt  
CWH  
t
tt  
ES  
t
CES  
LE  
t
EWH  
6-1. Serial Data Input Timing Diagram  
There are several considerations for programming:  
A slew rate of at least 30 V/µs is recommended for the CLK, DATA, LE  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the last  
CLK signal, the data is sent from the shift registers to a register bank  
The LE pin may be held high after programming and clock pulses are ignored  
When CLK and DATA lines are shared between devices, TI recommends diving down the voltage to the CLK,  
DATA, and LE pins closer to the minimum voltage. This provides better noise immunity  
If the CLK and DATA lines are toggled while the VCO is in lock, as is sometimes the case when these lines  
are shared with other parts, the phase noise may be degraded during the time of this programming  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
6.7 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
-50  
-50  
-60  
Output = 3 GHz  
Output = 3 GHz  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
D002  
D004  
D005  
D001  
D003  
D005  
6-3. 3-GHz Output - Open-Loop Phase Noise  
6-2. 3-GHz Output - Closed-Loop Phase Noise  
-50  
-50  
Output = 6 GHz  
Output = 6 GHz  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
6-4. 6-GHz Output - Closed-Loop Phase Noise  
6-5. 6-GHz Output - Open-Loop Phase Noise  
-40  
0
Output = 9.8 GHz  
VCO direct = 4900 MHz  
VCO doubler enabled = 9800 MHz  
-50  
-60  
-20  
-40  
-70  
-80  
-60  
-90  
-80  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-120  
-140  
-160  
-180  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
100  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
6-6. 9.8-GHz Output - Closed-Loop Phase Noise  
6-7. 9.8-GHz Output - Open-Loop Phase Noise  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
6.7 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
-50  
-90  
-95  
49 fs jitter for 6-GHz output  
(integrate 12k to 20 MHz)  
Data  
-60  
-70  
Flicker  
Flat  
Model  
-80  
-100  
-105  
-110  
-115  
-120  
-125  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
1k  
10k  
100k  
1M  
Offset (Hz)  
D007  
D008  
6-8. Integrated Jitter (49 fs) - 6-GHz Output  
6-9. 6-GHz Output Wide Loop Bandwidth Showing PLL  
Performance  
-70  
-80  
-50  
Output = 6000 M (at -40°C)  
Output = 6000 M (at 25°C)  
Output = 6000 M (at 85°C)  
3.3 V on VCC  
3.3 V + 10-mVpp (830-kHz)  
ripple on VCC  
-60  
-70  
-90  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
D009  
D010  
6-10. Variation of Phase Noise Across Temperature  
6-11. Impact of Supply Ripple on 6-GHz Output Phase Noise  
10  
14  
18-nH pull-up - 5400  
50-W pull-up - 5400  
13  
12  
11  
10  
9
8
6
4
2
8
7
6
5
4
3
-40°C  
25°C  
85°C  
0
2
1
-2  
0
100M  
1G  
Output Frequency (Hz)  
10G  
2 4 6 8 10121416182022242628304850525456586062  
Output Power Code (OUTx_POW)  
D011  
D012  
6-12. High Output Power (50-ΩPullup, Single-Ended) vs  
6-13. Output Power at 5.4-GHz Output vs OUTx_POW Code (1  
Output Frequency  
- 31, 48 - 63)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
6.7 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
-50  
5.4-GHz output with 20-MHz PFD spur  
-60  
8
7
6
5
4
Calibrating to 6G (GHz)  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
0
10  
20  
30  
40  
50  
D013  
Time (µs)  
D014  
6-14. Typical PFD Spur for 5.4-GHz Output  
6-15. 20-µs Frequency Change Time to 6 GHz With Fast  
Calibration  
-60  
-70  
-140  
5400-MHz VCO direct  
Divide by 2  
Divide by 4  
Divide by 8  
Divide by 16  
Approximate Noise Floor (dBc/Hz)  
Approximate VCO Doubler Noise  
Floor (dBc/Hz)  
-80  
-145  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-150  
-155  
-160  
-165  
100  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
0
2000  
4000 6000  
Output Frequency (MHz)  
8000  
10000  
D015  
D016  
6-16. Impact of Channel Divider Settings on Phase Noise  
6-17. Noise Floor Variation With Output Frequency  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7 Detailed Description  
7.1 Overview  
The LMX2592 is a high performance wideband synthesizer (PLL with integrated VCO). The output frequency  
range is from 20 MHz to 9.5 GHz. The VCO core covers an octave from 3.55 to 7.1 GHz. The output channel  
divider covers the frequency range from 20 MHz to the low bound of the VCO core. The VCO-doubler covers the  
frequency range from the upper bound of the VCO to 9800MHz.  
The input signal frequency has a wide range from 5 to 1400 MHz. Following the input, there is an programmable  
OSCin doubler, a pre-R divider (previous to multiplier), a multiplier, and then a post-R divider (after multiplier) for  
flexible frequency planning between the input (OSCin) and the phase detector.  
The phase detector (PFD) can take frequencies from 5 to 200 MHz, but also has extended modes down to 0.25  
MHz and up to 400 MHz. The phase-lock loop (PLL) contains a Sigma-Delta modulator (1st to 4th order) for  
fractional N-divider values. The fractional denominator is programmable to 32-bit long, allowing a very fine  
resolution of frequency step. There is a phase adjust feature that allows shifting of the output phase in relation to  
the input (OSCin) by a fraction of the size of the fractional denominator.  
The output power is programmable and can be designed for high power at a specific frequency by the pullup  
component at the output pin.  
The digital logic is a standard 4-wire SPI or uWire interface and is 1.8-V and 3.3-V compatible.  
7.2 Functional Block Diagram  
CP_ICOARSE  
CP_IUP  
CP_IDN  
MUX  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Multiplier  
MULT  
Charge  
Pump  
Channel  
Divider  
MUX  
OSC_2X  
PLL_R_PRE  
PLL_R  
VCO  
doubler  
REF_EN  
MUX  
VCO_2X_EN  
Sigma-Delta  
Modulator  
PFD_DLY  
MASH_ORDER  
CHDIV_SEG1  
CHDIV_SEG2  
CHDIV_SEG3  
CHDIV_SEG_SEL  
OUTx_MUX OUTx_PD  
OUTx_POW  
N Divider  
PLL_N  
Prescaler  
PLL_N_PRE  
7.3 Functional Description  
7.3.1 Input Signal  
An input signal is required for the PLL to lock. The input signal is also used for the VCO calibration, so a proper  
signal needs to be applied before the start of programming. The input signal goes to the OSCinP and OSCinM  
pins of the device (there is internal biasing which requires AC-coupling caps in series before the pin). This is a  
differential buffer so the total swing is the OSCinM signal subtracted by the OSCinP signal. Both differential  
signals and single-ended signal can be used. Below is an example of the max signal level in each mode. It is  
important to have proper termination and matching on both sides (see Application and Implementation).  
Single-ended Input  
Differential Input  
OSCinP (pin 8) OSCin Buffer  
1 V  
0.5 V  
Vbias  
-0.5 V  
-1 V  
OSCinP (pin 8) OSCin Buffer  
+0.5 V  
Vbias  
1 V  
0.5 V  
Vbias  
-0.5 V  
-1 V  
1 V  
0.5 V  
Vbias  
-0.5 V  
-1 V  
-0.5 V  
+0.5 V  
Vbias  
-0.5 V  
OSCinM  
(pin 9)  
OSCinM  
(pin 9)  
7-1. Differential vs. Single-Ended Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMX2592  
 
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7.3.2 Input Signal Path  
The input signal path contains the components between the input (OSCin) buffer and the phase detector. The  
best PLL noise floor is achieved with a 200-MHz input signal for the highest dual-phase detector frequency. To  
address a wide range of applications, the input signal path contains the below components for flexible  
configuration before the phase detector. Each component can be bypassed. See 7-1 for usage boundaries if  
engaging a component.  
OSCin doubler: This is low noise frequency doubler which can be used to multiply input frequencies by two.  
The doubler uses both the rising and falling edge of the input signal so the input signal must have 50% duty  
cycle if enabling the doubler. The best PLL noise floor is achieved with 200-MHz PFD, thus the doubler is  
useful if, for example, a very low-noise, 100-MHz input signal is available instead.  
Pre-R divider: This is a frequency divider capable of very high frequency inputs. Use this to divide any input  
frequency up to 1400-MHz, and then the post-R divider if lower frequencies are needed.  
Multiplier: This is a programmable, low noise multiplier. In combination with the Pre-R and Post-R dividers,  
the multiplier offers the flexibility to set a PFD away from frequencies that may create critical integer boundary  
spurs with the VCO and output frequencies. See the Application and Implementation section for an example.  
The user should not use the doubler while using the low noise programmable multiplier.  
Post-R divider: Use this divider to divide down to frequencies below 5 MHz in extended PFD mode.  
7-1. Boundaries for Input Path Components  
INPUT  
OUTPUT  
LOW (MHz)  
HIGH (MHz)  
1400  
200  
LOW (MHz)  
HIGH (MHz)  
Input signal  
OSCin doubler  
Pre-R divider  
Multiplier  
5
5
10  
5
400  
700  
250  
125  
10  
40  
5
1400  
70  
180  
0.25  
Post-R divider  
PFD  
250  
0.25  
400  
7.3.3 PLL Phase Detector and Charge Pump  
The PLL phase detector, also known as phase frequency detector (PFD), compares the outputs of the post-R  
divider and N divider and generates a correction current with the charge pump corresponding to the phase error  
until the two signals are aligned in phase (the PLL is locked). The charge pump output goes through external  
components (loop filter) which turns the correction current pulses into a DC voltage applied to the tuning voltage  
(Vtune) of the VCO. The charge pump gain level is programmable and allow to modify the loop bandwidth of the  
PLL.  
The default architecture is a dual-loop PFD which can operate between 5 to 200 MHz. To use it in extended  
range mode the PFD has to be configured differently:  
Extended low phase detector frequency mode: For frequencies between 250 kHz and 5 MHz, low PFD mode  
can be activated (FCAL_LPFD_ADJ = 3). PLL_N_PRE also needs to be set to 4.  
Extended high phase detector frequency mode: For frequencies between 200 and 400 MHz, high PFD mode  
can be activated (FCAL_HPFD_ADJ = 3). The PFD also has to be set to single-loop PFD mode (PFD_CTL =  
3). This mode only works if using integer-N, and PLL noise floor will be about 6-dB higher than in dual-loop  
PFD mode.  
7.3.4 N Divider and Fractional Circuitry  
The N divider (12 bits) includes a multi-stage noise shaping (MASH) sigma-delta modulator with programmable  
order from 1st to 4th order, which performs fractional compensation and can achieve any fractional denominator  
from 1 to (232 1). Using programmable registers, PLL_N is the integer portion and PLL_NUM / PLL_DEN is  
the fractional portion, thus the total N divider value is determined by PLL_N + PLL_NUM / PLL_DEN. This allows  
the output frequency to be a fractional multiplication of the phase detector frequency. The higher the  
denominator the finer the resolution step of the output. There is a N divider prescaler (PLL_N_PRE) between the  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
VCO and the N divider which performs a division of 2 or 4. 2 is selected typically for higher performance in  
fractional mode and 4 may be desirable for lower power operation and when N is approaching max value.  
Fvco = Fpd × PLL_N_PRE × (PLL_N + PLL_NUM / PLL_DEN)  
Minimum output frequency step = Fpd × PLL_N_PRE / PLL_DEN / [Channel divider value]  
Typically, higher modulator order pushes the noise out in frequency and may be filtered out with the PLL.  
However, several tradeoff needs to be made. 7-2 shows the suggested minimum N value while in fractional  
mode as a function of the sigma-delta modulator order. It also describe the recommended register setting for the  
PFD delay (register PFD_DLY_SEL).  
7-2. MASH Order and N Divider  
INTEGER-N  
1st ORDER  
2nd ORDER  
3rd ORDER  
4th ORDER  
Minimum N divider (low bound)  
9
1
11  
1
16  
2
18  
2
30  
8
PFD delay recommended setting (PFD_DLY_SEL)  
7.3.5 Voltage Controlled Oscillator  
The voltage controlled oscillator (VCO) is fully integrated. The frequency range of the VCO is from 3.55 to 7.1  
GHz so it covers one octave. Channel dividers allow the generation of all other lower frequencies. The VCO-  
doubler allow the generation of all other higher frequencies. The output frequency of the VCO is inverse  
proportional to the DC voltage present at the tuning voltage point on pin Vtune. The tuning range is 0 V to 2.5 V.  
0 V generates the maximum frequency and 2.5 V generates the minimum frequency. This VCO requires a  
calibration procedure for each frequency selected to lock on. Each VCO calibration will force the tuning voltage  
to mid value and calibrate the VCO circuit. Any frequency setting in fast calibration occurs in the range of Vtune  
pin 0 V to 2.5 V. The VCO is designed to remained locked over the entire temperature range the device can  
support. 7-3 shows the VCO gain as a function of frequency.  
7-3. Typical kVCO  
VCO FREQUENCY (MHz)  
kVCO (MHz/V)  
3700  
4200  
4700  
5200  
5700  
6200  
6800  
28  
30  
33  
36  
41  
47  
51  
7.3.6 VCO Calibration  
The VCO calibration is responsible of setting the VCO circuit to the target frequency. The frequency calibration  
routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. A valid input (OSCin)  
signal to the device must present before the VCO calibration begins. To see how to reduce the calibration time,  
refer to the Application and Implementation section.  
7.3.7 VCO Doubler  
To go above the VCO upper bound, the VCO-doubler must be used (VCO_2X_EN=1). The doubling block can  
be enabled while the VCO is between 3.55 GHz (lowest VCO frequency) and 4.9 GHz. When VCO doubler is  
enabled, the N divider prescalar is automatically forced to divide by 4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMX2592  
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7.3.8 Channel Divider  
1
2
MUX  
Divide by  
2 or 3  
Divide by  
2,4,6, or 8  
Divide by  
2,4,6, or 8  
4
CHDIV_SEG_SEL  
CHDIV_SEG1  
CHDIV_SEG2  
CHDIV_SEG3  
7-2. Channel Divider Diagram  
To go below the VCO lower bound, the channel divider must be used. The channel divider consists of three  
programmable dividers controlled by the registers CHDIV_SEG1, CHDIV_SEG2, CHDIV_SEG3. The Multiplexer  
(programmed with register CHDIV_SEG_SEL) selects which divider is included in the path. The minimum  
division is 2 while the maximum division is 192. Un-used dividers can be powered down to save current  
consumption. The entire channel divider can be powered down with register CHDIV_EN = 0 or selectively setting  
registers CHDIV_SEG1_EN = 0, CHDIV_SEG2_EN = 0 ,CHDIV_SEG3_EN = 0. Unused buffers may also be  
powered down with registers CHDIV_DISTA_EN and CHDIV_DIST_EN. There are restrictions on the maximum  
VCO frequency when channel divider is engaged.  
7-4. Channel Divider vs VCO Frequency  
OUTPUT FREQUENCY (MHz)  
CHDIV SEGMENT  
TOTAL  
VCO FREQUENCY (MHz)  
DIVISION  
MIN  
1775  
1184  
888  
592  
444  
296  
222  
148  
111  
99  
MAX  
3550  
2200  
1184  
888  
592  
444  
296  
222  
148  
111  
99  
SEG1  
SEG2  
SEG3  
MIN  
3550  
3552  
3552  
3552  
3552  
3552  
3552  
3552  
3552  
3564  
3552  
3584  
3552  
3584  
3840  
MAX  
7100  
6600  
4736  
5328  
4736  
5328  
4736  
5328  
4736  
3996  
4752  
4736  
5376  
4736  
5376  
2
3
2
3
2
2
2
3
2
3
3
2
2
2
3
1
1
2
2
4
6
8
8
8
6
8
8
8
8
8
1
1
1
1
1
1
1
1
2
2
2
4
6
8
8
2
3
4
6
8
12  
16  
24  
32  
36  
48  
64  
96  
128  
192  
74  
56  
74  
37  
56  
28  
37  
20  
28  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7.3.9 Output Distribution  
VCO_DISTA_PD  
1
OUTA_MUXSEL  
MUX  
CHDIV_DISTA_EN  
Output Buffer A  
0
0
Channel  
Divider  
VCO  
CHDIV_DIST_PD  
CHDIV_DISTB_EN  
VCO_DISTB_PD  
MUX  
Output Buffer B  
OUTB_MUXSEL  
1
7-3. Output Distribution Diagram  
For each output A or B, there is a mux which select the VCO output directly or the channel divider output. Before  
these selection MUX there are several buffers in the distribution path which can be configured depending on the  
route selected. By disabling unused buffers, unwanted signals can be isolated and unneeded current  
consumption can be eliminated.  
7.3.10 Output Buffer  
Each output buffer (A and B) have programmable gain with register OUTA_POW and OUTB_POW. The RF  
output buffer configuration is open-collector and requires an external pullup from RFout pin to VCC. There are  
two pullup options that can be used with either resistor or inductor. Refer to the Application and Implementation  
section for design considerations.  
1. Resistor pullup: placing a 50-Ωresistor pullup matches the output impedance to 50-Ω. However, maximum  
output power is limited. Output buffer current settings should be set to a value before output power is  
saturated (output power increases less for every step increase in output current value).  
2. Inductor pullup: placing an inductor pullup creates a resonance at the frequency of interest. This offers  
higher output power for the same current and higher maximum output power. However, the output  
impedance is higher and additional matching may be required..  
7.3.11 Phase Adjust  
In fractional mode, the phase relationship between the output and the input can be changed with very fine  
resolution. Every time MASH_SEED register is written, it will trigger a phase shift of the amount described in 方  
1. The seed value should be less then the fractional-N denominator register PLL_N_DEN. The actual phase  
shift can be obtained with the following equation:  
Phase shift (degrees) = 360 × MASH_SEED × PLL_N_PRE / PLL_N_DEN / [Channel divider value]  
(1)  
7.4 Device Functional Modes  
7.4.1 Power Down  
Power up and down can be achieved using the CE pin (logic HIGH or LOW voltage) or the POWERDOWN  
register bit (0 or 1). When the device comes out of the powered-down state, either by pulling back CE pin HIGH  
(if it was powered down by CE pin) or by resuming the POWERDOWN bit to 0 (if it was powered down by  
register write), it is required that register R0 be programmed again to re-calibrate the device.  
7.4.2 Lock Detect  
The MUXout pin can be configured to output a signal that gives an indication for the PLL being locked. If lock  
detect is enabled (LD_EN = 1) and the MUXout pin is configured as lock detect output (MUXOUT_SEL = 1),  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMX2592  
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
when the device is locked, the MUXout pin output is a logic HIGH voltage, and when the device is unlocked,  
MUXout output is a logic LOW voltage.  
7.4.3 Register Readback  
The MUXout pin can be programmed (MUXOUT_SEL = 0) to use register readback serial data output. Timing  
requirements for MUXout to CLK follow the same specifications as Data to CLK in Timing Requirements. To read  
back a certain register value, use the following steps:  
1. Set the R/W bit to 1; the data field contents are ignored.  
2. Program this register to the device, readback serial data will be output starting at the 9th clock.  
R/W  
= 1  
Address  
7-bit  
Data  
= Ignored  
DATA  
CLK  
1st  
2nd - 8th  
9th - 24th  
Read back register value  
16-bit  
MUXout  
LE  
7-4. Register Readback Timing Diagram  
7.5 Programming  
The programming using 24-bit shift registers. The shift register consists of a R/W bit (MSB), followed by a 7-bit  
address field and a 16-bit data field. For the R/W (bit 23), 1 is read and 0 is write. The address field ADDRESS  
(bits 22:16) is used to decode the internal register address. The remaining 16 bits form the data field DATA (bits  
15:0). While CSB is low, serial data is clocked into the shift register upon the rising edge of clock (data is  
programmed MSB first). When CSB goes high, data is transferred from the data field into the selected register  
bank.  
7.5.1 Recommended Initial Power on Programming Sequence  
When the device is first powered up, the device needs to be initialized and the ordering of this programming is  
very important. After this sequence is completed, the device should be running and locked to the proper  
frequency.  
1. Apply power to the device and ensure the VCC pins are at the proper levels  
2. Ensure that a valid reference is applied to the OSCin pin  
3. Soft reset the device (write R0[1] = 1)  
4. Program the remaining registers  
5. Frequency calibrate (write R0[3] = 1)  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies is as follows:  
1. Set the new N divider value (write R38[12:1])  
2. Set the new PLL numerator (R45 and R44) and denominator (R41 and R40)  
3. Frequency calibrate (write R0[3] = 1)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7.6 Register Maps  
7.6.1 LMX2592 Register Map Default Values  
7-5. Register Table  
REG 23 22 21 20 19 18 17 16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R/  
W
ADDRESS[6:0]  
DATA [15:0]  
0
R/  
W
0
0
0
0
0
0
0
0
0
LD_EN  
0
0
0
1
FCAL_HPFD FCAL_LPFD_ ACA FCAL_EN MUXO RES POWE  
_ADJ  
ADJ  
L_E  
N
UT_S  
EL  
ET  
RDOW  
N
1
2
4
7
8
R/  
W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
CAL_CLK_DIV  
R/  
W
0
0
0
1
0
1
1
0
0
R/  
W
ACAL_CMP_DLY  
1
0
0
R/  
W
0
0
0
0
1
0
1
1
0
0
0
0
0
0
R/  
W
VCO_ID  
AC_OV  
R
VCO_  
CAPC  
TRL_  
OVR  
9
R/  
W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
1
0
1
1
1
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
0
1
0
1
0
0
0
0
0
OSC  
_2X  
0
REF_E  
N
1
0
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
0
0
0
10  
11  
12  
13  
14  
19  
20  
22  
23  
R/  
W
MULT  
R/  
W
PLL_R  
R/  
W
PLL_R_PRE  
R/  
W
CP_E  
N
0
0
0
0
0
0
0
0
0
0
1
PFD_CTL  
R/  
W
0
0
0
0
CP_IDN  
CP_IUP  
CP_ICOARSE  
R/  
W
VCO_IDAC  
0
1
R/  
W
0
0
0
0
0
1
0
ACAL_VCO_IDAC_STRT  
VCO_CAPCTRL  
R/  
W
1
0
R/  
W
FCAL  
_VC  
O_S  
EL_S  
TRT  
VCO_SEL  
VCO_  
SEL_  
FORC  
E
0
1
0
0
0
0
1
0
24  
25  
28  
29  
30  
R/  
W
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
R/  
W
R/  
W
R/  
W
R/  
W
MASH  
_DITH  
ER  
VTUNE_ADJ  
VCO_2  
X_EN  
31  
R/  
W
0
0
1
1
1
1
1
0
0
0
0
0
VCO_ VCO_D  
DIST ISTA_P  
0
CHDIV  
_DIST  
_PD  
0
0
0
0
0
0
1
B_PD  
D
32  
33  
34  
35  
R/  
W
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
1
1
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
1
0
0
1
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
0
0
0
1
R/  
W
0
0
1
1
R/  
W
CHDIV  
_EN  
R/  
W
CHDIV_SEG2  
CHD CHDIV  
IV_S _SEG  
EG3 2_EN  
_EN  
0
CHDIV CHD  
_SEG IV_S  
1
EG1  
_EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMX2592  
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-5. Register Table (continued)  
REG 23 22 21 20 19 18 17 16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R/  
W
ADDRESS[6:0]  
DATA [15:0]  
36  
R/  
W
0
1
0
0
1
0
0
0
0
0
0
CHDI CHDI  
V_DI V_DIS  
STB_ TA_E  
0
0
0
0
0
CHDIV_SEG_SEL  
CHDIV_SEG3  
EN  
N
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
R/  
W
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0
0
0
0
PLL_N  
_PRE  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
R/  
W
PLL_N  
R/  
W
PFD_DLY  
0
0
R/  
W
PLL_DEN[31:16]  
PLL_DEN[15:0]  
R/  
W
R/  
W
MASH_SEED[31:16]  
MASH_SEED[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
OUTB OUT  
R/  
W
R/  
W
R/  
W
R/  
W
0
0
OUTA_POW  
1
1
0
0
MASH_ORDER  
_PD  
A_P  
D
47  
48  
59  
R/  
W
0
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
OUTA_MUX  
0
0
0
0
1
0
0
1
0
1
1
0
1
1
0
OUTB_POW  
R/  
W
0
0
0
0
1
0
1
0
1
OUTB_MUX  
R/  
W
MUXO  
UT_HD  
RV  
0
0
0
61  
62  
64  
R/  
W
0
0
1
1
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
LD_TY  
PE  
R/  
W
0
0
R/  
W
ACAL_ FCA  
FAST L_FA  
ST  
AJUMP_SIZE  
rb_VCO_SEL  
FJUMP_SIZE  
68  
69  
70  
R
R
R
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_LD_VTUNE  
0
0
0
0
0
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
7.6.1.1 Register Descriptions  
7-5. R0 Register Field Descriptions  
BIT  
15:14  
13  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
LD_EN  
R/W  
1
Lock detect enable  
1: enable  
0: disable  
12:9  
8:7  
R/W  
R/W  
Program to Register Map default values  
FCAL_HPFD_ADJ  
FCAL_LPFD_ADJ  
0
0
Used for when PFD freq is high  
3: PFD > 200 MHz  
2: PFD > 150 MHz  
1: PFD > 100 MHz  
0: not used  
6:5  
R/W  
Used for when PFD freq is low  
3: PFD < 2.5 MHz  
2: 2.5 MHz PFD < 5 MHz  
1: 5 MHz PFD < 10 MHz  
0: PFD 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
BIT  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-5. R0 Register Field Descriptions (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
4
ACAL_EN  
R/W  
1
Enable amplitude calibration  
1: enable (calibration algorithm will set VCO amplitude. For  
manual mode set register VCO_IDAC_OVR=1, and then set the  
VCO amplitude by register VCO_IDAC)  
0: disable  
3
FCAL_EN  
R/W  
1
Enable frequency calibration  
1: enable (writing 1 to this register triggers the calibration  
sequence)  
0: disable  
2
1
0
MUXOUT_SEL  
RESET  
R/W  
R/W  
R/W  
1
0
0
Signal at MUXOUT pin  
1: Lock Detect (3.3 V if locked, 0 V if unlocked)  
0: Readback (3.3-V digital output)  
Reset  
Write with a value of 1 to reset device (this register will self-  
switch back to 0)  
POWERDOWN  
Powerdown whole device  
1: power down  
0: power up  
7-6. R1 Register Field Descriptions  
BIT  
15:3  
2:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
CAL_CLK_DIV  
R/W  
3
Divides down the OSCin signal for calibration clock  
Calibration Clock = OSCin / 2^CAL_CLK_DIV  
Set this value so that calibration clock is less than but as close  
to 200MHz as possible if fast calibration time is desired.  
7-7. R2 Register Field Descriptions  
BIT  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-8. R4 Register Field Descriptions  
BIT  
TYPE  
DEFAULT  
DESCRIPTION  
15:8  
ACAL_CMP_DLY  
R/W  
25  
VCO amplitude calibration delay. Lowering this value can speed  
calibration time. The guideline for this register is 2 x  
[ACAL_CMP_DLY value] x [calibration clock period] > 200ns. As  
described in CAL_CLK_DIV, the calibration clock is defined as  
OSCin / 2^CAL_CLK_DIV. For example, with the fastest  
calibration clock of 200MHz (OSCin=200MHz and  
CAL_CLK_DIV=0), the period is 5ns. So ACAL_CMP_DLY  
should be > 20. With the same derivation, an example of a  
OSCin=100MHz, ACAL_CMP_DLY should be > 10. This register  
is left at a default value of 25 if there is no need to shorten  
calibration time.  
7:0  
R/W  
Program to Register Map default values  
7-9. R7 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-10. R8 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:14  
R/W  
Program to Register Map default values  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-10. R8 Register Field Descriptions (continued)  
BIT  
FIELD  
VCO_IDAC_OVR  
TYPE  
DEFAULT  
DESCRIPTION  
13  
R/W  
0
This is the override bit for VCO amplitude (or IDAC value).  
When this is enabled, the VCO amplitude calibration function  
(ACAL_EN) is not used. VCO_IDAC register can be  
programmed to set the amplitude. Keep the VCO_IDAC value  
within 250 and 450.  
12:11  
10  
R/W  
R/W  
Program to Register Map default values  
VCO_CAPCTRL_OVR  
0
This is the override bit for VCO capacitor bank code (or  
CAPCTRL value). When this is enabled, the VCO frequency  
calibration function (FCAL_EN) is not used. the VCO_CAPCTRL  
register can be programmed to set the VCO frequency within the  
selected VCO core. The VCO core is selected by setting  
VCO_SEL_FORCE=1 and then selecting the core with  
VCO_SEL=1,2,3,4,5,6, or 7  
9:0  
R/W  
Program to Register Map default values  
7-11. R9 Register Field Descriptions  
BIT  
15:12  
11  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
OSC_2X  
R/W  
0
Reference path doubler  
1: enable  
0: disable  
10  
9
R/W  
R/W  
Program to Register Map default values  
REF_EN  
1
Enable reference path  
1: enable  
0: disable  
8:0  
R/W  
Program to Register Map default values  
7-12. R10 Register Field Descriptions  
BIT  
15:12  
11:7  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
MULT  
R/W  
1
Input signal path multiplier (input range from 40 - 70 MHz, output  
range from 180 - 250 MHz)  
6:0  
R/W  
Program to Register Map default values  
7-13. R11 Register Field Descriptions  
BIT  
15:12  
11:4  
3:0  
FIELD  
TYPE  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
Program to Register Map default values  
R divider after multiplier and before PFD  
Program to Register Map default values  
PLL_R  
1
7-14. R12 Register Field Descriptions  
BIT  
15:12  
11:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Program to Register Map default values  
R divider after OSCin doubler and before multiplier  
R/W  
PLL_R_PRE  
R/W  
1
7-15. R13 Register Field Descriptions  
BIT  
15  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
14  
CP_EN  
R/W  
1
Enable charge pump  
1: enable  
0: disable  
13:2  
R/W  
Program to Register Map default values  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
BIT  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-15. R13 Register Field Descriptions (continued)  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
1:0  
PFD_CTL  
R/W  
0
PFD mode  
0: Dual PFD (default)  
3: Single PFD (ONLY use if PFD freq is higher than 200MHz)  
7-16. R14 Register Field Descriptions  
BIT  
15:12  
11:7  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
CP_IDN  
R/W  
3
Charge pump current (DN) must equal to charge pump  
current (UP). Can activate any combination of bits.  
<bit 4>: 1.25 mA  
<bit 3>: 2.5 mA  
<bit 2>: 0.625 mA  
<bit 1>: 0.312 mA  
<bit 0>: 0.156 mA  
6:2  
1:0  
CP_IUP  
R/W  
R/W  
3
1
Charge pump current (UP) must equal to charge pump  
current (DN). Can activate any combination of bits.  
<bit 4>: 1.25 mA  
<bit 3>: 2.5 mA  
<bit 2>: 0.625 mA  
<bit 1>: 0.312 mA  
<bit 0>: 0.156 mA  
CP_ICOARSE  
Charge pump gain multiplier - multiplies charge pump current by  
a given factor:  
3: multiply by 2.5  
2: multiply by 1.5  
1: multiply by 2  
0: no multiplication  
For optimal accuracy of the lock detect circuit over temperature,  
it is recommended that only set this register to either 0 or 2.  
7-17. R19 Register Field Descriptions  
BIT  
15:12  
11:3  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
VCO_IDAC  
R/W  
300  
This is the VCO amplitude (or IDAC value). When VCO_IDAC is  
overridden with VCO_IDAC_OVR=1, VCO amplitude calibration  
function (ACAL_EN) is not used. VCO_IDAC register can be  
programmed to set the amplitude. VCO_IDAC value must be  
kept within 250 and 450.  
2:0  
R/W  
Program to Register Map default values  
7-18. R20 Register Field Descriptions  
BIT  
15:9  
8:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
ACAL_VCO_IDAC_STRT  
R/W  
300  
This register is used to aid the VCO amplitude calibration  
function (ACAL_EN). By default the amplitude calibration  
function searches from the low end of VCO_IDAC until it  
reaches the target value. Like the VCO_IDAC, this must be kept  
within 250 and 450. This can be set to a value closer to the  
target value, then the amplitude calibration time can be  
shortened typically final VCO_IDAC is somewhere around 300.  
7-19. R22 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:8  
R/W  
Program to Register Map default values  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-19. R22 Register Field Descriptions (continued)  
BIT  
FIELD  
VCO_CAPCTRL  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
R/W  
0
This is the VCO capacitor bank code (or CAPCTRL value).  
When VCO_CAPCTRL is overridden with  
VCO_CAPCTRL_OVR=1, VCO frequency calibration function  
(FCAL_EN) is not used. VCO_CAPCTRL register can be  
programmed to set the frequency in that core.  
VCO_SEL_FORCE=1 has to be set and VCO_SEL to select the  
VCO core, then CAPCTRL values between 0 to 183 will produce  
frequencies within this core (0 being the highest frequency and  
183 the lowest).  
7-20. R23 Register Field Descriptions  
BIT  
15  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
14  
FCAL_VCO_SEL_STRT  
R/W  
0
This is a register that aids the frequency calibration function.  
When this is enabled, a VCO core can be selected for the  
frequency calibration to start at, set by register VCO_SEL. By  
default the frequency calibration starts from VCO core 7 and  
works its way down. If you want for example to lock to a  
frequency in VCO core 1, you can set VCO_SEL to 2, so the  
calibration will start at VCO core 2 and end at target frequency  
at VCO core 1 faster.  
13:11  
VCO_SEL  
R/W  
1
0
This is the register used to select VCO cores. It works for  
VCO_CAPCTRL when VCO_CAPCTRL_OVR=1 and  
VCO_SEL_FORCE=1. It also aids the frequency calibration  
function with FCAL_VCO_SEL_STRT.  
10  
VCO_SEL_FORCE  
R/W  
R/W  
This register works to force selection of VCO cores. If  
VCO_CAPTRL_OVR=1 and this register is enabled, you can  
select the VCO core to use with VCO_SEL.  
9:0  
Program to Register Map default values  
7-21. R24 Register Field Descriptions  
BIT  
FIELD  
FIELD  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to default  
7-22. R25 Register Field Descriptions  
BIT  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-23. R28 Register Field Descriptions  
BIT  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-24. R29 Register Field Descriptions  
BIT  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-25. R30 Register Field Descriptions  
BIT  
15:11  
10  
FIELD  
MASH_DITHER  
VTUNE_ADJ  
TYPE  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
Program to Register Map default values  
MASH dithering: toggle on/off to randomize  
Program to Register Map default values  
0
9:8  
7:6  
Change this register field according to the VCO frequency  
0: fVCO < 6500 MHz  
3: fVCO 6500 MHz  
5:1  
R/W  
Program to Register Map default values  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
BIT  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-25. R30 Register Field Descriptions (continued)  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
0
VCO_2X_EN  
R/W  
0
Enable VCO doubler  
1: enable  
0: disable  
7-26. R31 Register Field Descriptions  
BIT  
15:11  
10  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
VCO_DISTB_PD  
R/W  
1
Power down buffer between VCO and output B  
1: power down  
0: power up  
9
VCO_DISTA_PD  
CHDIV_DIST_PD  
R/W  
0
0
Power down buffer between VCO and output A  
1: power down  
0: power up  
8
7
R/W  
R/W  
R/W  
Program to Register Map default values  
Power down buffer between VCO and channel divider  
Program to Register Map default values  
6:0  
7-27. R32 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-28. R33 Register Field Descriptions  
BIT  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-29. R34 Register Field Descriptions  
BIT  
15:6  
5
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
CHDIV_EN  
R/W  
1
Enable entire channel divider  
1: enable  
0: power down  
4:0  
R/W  
Program to Register Map default values  
7-30. R35 Register Field Descriptions  
BIT  
15:13  
12:9  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
CHDIV_SEG2  
R/W  
1
Channel divider segment 2  
8: divide-by-8  
4: divide-by-6  
2: divide-by-4  
1: divide-by-2  
0: PD  
8
7
CHDIV_SEG3_EN  
CHDIV_SEG2_EN  
R/W  
R/W  
0
0
Channel divider segment 3  
1: enable  
0: power down (power down if not needed)  
Channel divider segment 2  
1: enable  
0: power down (power down if not needed)  
6:3  
2
R/W  
R/W  
Program to Register Map default values  
CHDIV_SEG1  
1
Channel divider segment 1  
1: divide-by-3  
0: divide-by-2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-30. R35 Register Field Descriptions (continued)  
BIT  
FIELD  
CHDIV_SEG1_EN  
TYPE  
DEFAULT  
DESCRIPTION  
1
R/W  
0
Channel divider segment 1  
1: enable  
0: power down (power down if not needed)  
0
R/W  
Program to Register Map default values  
7-31. R36 Register Field Descriptions  
BIT  
15:12  
11  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
CHDIV_DISTB_EN  
R/W  
0
Enable buffer between channel divider and output B  
1: enable  
0: disable  
10  
CHDIV_DISTA_EN  
CHDIV_SEG_SEL  
R/W  
1
1
Enable buffer between channel divider and output A  
1: enable  
0: disable  
9:7  
6:4  
R/W  
R/W  
Program to Register Map default values  
Channel divider segment select  
4: includes channel divider segment 1,2 and 3  
2: includes channel divider segment 1 and 2  
1: includes channel divider segment 1  
0: PD  
3:0  
CHDIV_SEG3  
R/W  
1
Channel divider segment 3  
8: divide-by-8  
4: divide-by-6  
2: divide-by-4  
1: divide-by-2  
0: PD  
7-32. R37 Register Field Descriptions  
BIT  
15:13  
12  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
PLL_N_PRE  
R/W  
0
N-divider pre-scalar  
1: divide-by-4  
0: divide-by-2  
11:0  
R/W  
Program to Register Map default values  
7-33. R38 Register Field Descriptions  
BIT  
15:13  
12:1  
0
FIELD  
FIELD  
TYPE  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
Program to Register Map default values  
Integer part of N-divider  
PLL_N  
27  
Program to Register Map default values  
7-34. R39 Register Field Descriptions  
BIT  
15:14  
13:8  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
PFD_DLY  
R/W  
2
PFD Delay  
32: Not used  
16: 16 clock cycle delay  
8: 12 clock cycle delay  
4: 8 clock cycle delay  
2: 6 clock cycle delay  
1: 4 clock cycle delay  
7:0  
R/W  
Program to Register Map default values  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
BIT  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-35. R40 Register Field Descriptions  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
PLL_DEN[31:16]  
R/W  
1000  
Denominator MSB of N-divider fraction  
7-36. R41 Register Field Descriptions  
BIT  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
PLL_DEN[15:0]  
R/W  
1000  
Denominator LSB of N-divider fraction  
7-37. R42 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
DESCRIPTION  
15:0  
MASH_SEED[31:16]  
R/W  
0
MASH seed MSB  
7-38. R43 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
15:0  
MASH_SEED[15:0]  
R/W  
0
MASH seed LSB  
7-39. R44 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
PLL_NUM[31:16]  
R/W  
0
Numerator MSB of N-divider fraction  
7-40. R45 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
PLL_NUM[15:0]  
R/W  
0
Numerator LSB of N-divider fraction  
7-41. R46 Register Field Descriptions  
BIT  
15  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
13:8  
OUTA_POW  
R/W  
15  
Output buffer A power  
increase power from 0 to 31  
extra boost from 48 to 63  
7
6
OUTB_PD  
OUTA_PD  
R/W  
R/W  
1
0
Output buffer B power down  
1: power down  
0: power up  
Output buffer A power down  
1: power down  
0: power up  
5:3  
2:0  
R/W  
R/W  
Program to Register Map default values  
MASH_ORDER  
3
Sigma-delta modulator order  
4: fourth order  
3: third order  
2: second order  
1: first order  
0: integer mode  
7-42. R47 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:13  
12:11  
R/W  
Program to Register Map default values  
OUTA_MUX  
R/W  
0
Selects signal to the output buffer  
2,3: reserved  
1: Selects output from VCO  
0: Selects the channel divider output  
10:6  
5:0  
R/W  
R/W  
Program to Register Map default values  
OUTB_POW  
0
Output buffer B power  
increase power from 0 to 31  
extra boost from 48 to 63  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-43. R48 Register Field Descriptions  
BIT  
15:2  
1:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
OUTB_MUX  
R/W  
0
Selects signal to the output buffer  
2,3: reserved  
1: Selects output from VCO  
0: Selects the channel divider output  
7-44. R59 Register Field Descriptions  
BIT  
15:6  
5
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
MUXOUT_HDRV  
R/W  
0
This bit enables higher current output (approximately 3 mA) at  
MUXOUT pin if value is 1.  
4:0  
R/W  
Program to Register Map default values  
7-45. R61 Register Field Descriptions  
BIT  
15:1  
0
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
LD_TYPE  
R/W  
1
To use lock detect, set MUXOUT_SEL=1. Use this register to  
select type of lock detect:  
0: Calibration status detect (this indicates if the auto-calibration  
process has completed successfully and will output from  
MUXout pin a logic HIGH when successful). 1: vtune detect (this  
checks if vtune is in the expected range of voltages and outputs  
from MUXout pin a logic HIGH if device is locked and LOW if  
unlocked).  
7-46. R62 Register Field Descriptions  
BIT  
FIELD  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
15:0  
R/W  
Program to Register Map default values  
7-47. R64 Register Field Descriptions  
BIT  
15:10  
9
TYPE  
DEFAULT  
DESCRIPTION  
R/W  
Program to Register Map default values  
ACAL_FAST  
FCAL_FAST  
AJUMP_SIZE  
R/W  
0
Enable fast amplitude calibration  
1: enable  
0: disable  
8
R/W  
R/W  
0
3
Enable fast frequency calibration  
1: enable  
0: disable  
7:5  
When ACAL_FAST=1, use this register to select the jump  
increment  
4
R/W  
R/W  
Program to Register Map default values  
3:0  
FJUMP_SIZE  
rb_LD_VTUNE  
15  
When FCAL_FAST=1, use this register to select the jump  
increment  
7-48. R68 Register Field Descriptions  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
10:9  
R
Readback of Vtune detect (LD_TYPE = 1).  
0: Unlocked  
1: Invalid  
2: Locked  
3: Unlocked  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
BIT  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
7-48. R68 Register Field Descriptions (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
rb_VCO_SEL  
R
Reads back the actual VCO that the calibration has selected.  
1: VCO1  
2: VCO2  
……  
7: VCO7  
7-49. R69 Register Field Descriptions  
BIT  
FIELD  
rb_VCO_CAPCTRL  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
R
Reads back the actual CAPCTRL value that the VCO calibration  
has chosen.  
7-50. R70 Register Field Descriptions  
BIT  
FIELD  
rb_VCO_DACISET  
TYPE  
DEFAULT  
DESCRIPTION  
8:0  
R
-
Reads back the actual DACISET value that the VCO calibration  
has chosen.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Optimization of Spurs  
8.1.1.1 Understanding Spurs by Offsets  
The first step in optimizing spurs is to be able to identify them by offset. 8-1 gives a good example that can be  
used to isolate the following spur types.  
x6  
1/2  
Phase  
Detector  
f
f
OUT  
PD  
1/8  
606.25 MHz  
120 MHz  
f
OSC  
40 MHz  
f
VCO  
4850 MHz  
20 + 50/240  
1/2  
PLL_N_PRE = 2  
Fnum = 5  
Fden = 24  
8-1. Spur Offset Frequency Example  
Based on 8-1, the most common spurs can be calculated from the frequencies. Note that the % is the  
modulus operator and is meant to mean the difference to the closest integer multiple. Some examples of how to  
use this operator are: 36 % 11 = 3, 1000.1 % 50 = 0.1, and 5023.7 % 122.88 = 14.38. Applying this concept, the  
spurs at various offsets can be identified from 8-1.  
8-1. Spur Definition Table  
SPUR TYPE  
OFFSET  
fOSC  
COMMENTS  
OFFSET IN 8-1  
OSCin  
40 MHz  
This spur occurs at harmonics of the OSCin frequency.  
The phase detector spur has many possible mechanisms  
and occurs at multiples of the phase detector frequency.  
Fpd  
fPD  
fOUT % fOSC  
fVCO % fOSC  
120 MHz  
This spur is caused by mixing between the output and  
input frequencies.  
fOUT % fOSC  
fVCO% fOSC  
606.25 % 40 = 6.25 MHz  
4850 % 40 = 10 MHz  
This spur is caused by mixing between the VCO and input  
frequencies.  
This spur would be the same offset as the integer  
boundary spur if PLL_N_PRE=1, but can be different if  
this value is greater than one.  
fVCO% fPD  
fVCO % fPD  
4850 % 120 = 50 MHz  
Integer  
Boundary  
fPD *(Fnum%Fden)/  
Fden)  
120 × (5%24)/24 = 25 MHz  
120 / 24 = 5 MHz  
This is a single spur  
The primary fractional  
Primary  
Fractional  
fPD / Fden  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
 
 
LMX2592  
www.ti.com.cn  
SPUR TYPE  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8-1. Spur Definition Table (continued)  
OFFSET  
COMMENTS  
OFFSET IN 8-1  
To Calculate k:  
1st Order Modulator: k=1  
First Order Modulator: None  
2nd Order Modulator: 120/24/2 = 2.5  
MHz  
3rd Order Modulator: 120/24/6 =  
0.83333 MHz  
2nd Order Modulator: k=1 if Fden is odd, k=2 if Fden is  
even  
3rd Order Modulator: k=1 if Fden not divisible by 2 or 3,  
k=2 if Fden divisible by 2 not 3, k=3 if Fden divisible by 3  
but not 2, Fden = 6 if Fden divisible by 2 and 3  
4th Order Modulator: k=1 if Fden not divisible by 2 or 3.  
k=3 if Fden divisible by 3 but not 2, k=4 if Fden divisible by  
2 but not 3, k=12 if Fden divisible by 2 and 3  
Sub-Fractional Spurs exist if k>1  
fPD / Fden / k  
k=2,3, or 6  
Sub-Fractional  
4th Order Modulator: 120/24/12 =  
0.416666 MHz  
In the case that two different spur types occur at the same offset, either name would be correct. Some may  
name this by the more dominant cause, while others would simply name by choosing the name that is near the  
top of 8-1.  
8.1.1.2 Spur Mitigation Techniques  
Once the spur is identified and understood, there will likely be a desire to try to minimize them. Spurs and  
Mitigation Techniques gives some common methods.  
Spurs and Mitigation Techniques  
SPUR TYPE  
WAYS TO REDUCE  
TRADE-OFF  
1. Use PLL_N_PRE = 2  
2. Use an OSCin signal with low amplitude and high slew rate (like  
LVDS).  
OSCin  
1. Decrease PFD_DLY  
2. To pin 11, use a series ferrite bead and a shunt 0.1-µF  
capacitor.  
Phase Detector  
fOUT % fOSC  
Use an OSCin signal with low amplitude and high slew rate (like  
LVDS)  
1. To pin 7, use a series ferrite bead and a shunt 0.1-µF capacitor.  
2. Increase the offset of this spur by shifting the VCO frequency  
3. If multiple VCO frequencies are possible that yield the same  
spur offset, choose the higher VCO frequency.  
fVCO% fOSC  
.
Avoid this spur by shifting the phase detector frequency (with the  
programmable input multiplier or R divider) or shifting the VCO  
frequency. This spur is better at higher VCO frequency.  
fVCO% fPD  
Methods for PLL Dominated Spurs  
1. Avoid the worst case VCO frequencies if possible.  
2. Strategically choose which VCO core to use if possible.  
3. Ensure good slew rate and signal integrity at the OSCin pin  
4. Reduce the loop bandwidth or add more filter poles for out of  
band spurs  
Reducing the loop bandwidth may degrade  
the total integrated noise if the bandwidth is  
too narrow.  
5. Experiment with modulator order and PFD_DLY  
Integer Boundary  
Methods for VCO Dominated Spurs  
1. Avoid the worst case VCO frequencies if possible.  
2. Reduce Phase Detector Frequency  
Reducing the phase detector may degrade  
the phase noise and also reduce the  
capacitance at the Vtune pin.  
3. Ensure good slew rate and signal integrity at the OSCin pin  
4. Make the impedance looking outwards from the OSCin pin  
close to 50 Ω.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
Spurs and Mitigation Techniques (continued)  
SPUR TYPE  
WAYS TO REDUCE  
TRADE-OFF  
Decreasing the loop bandwidth too much  
may degrade in-band phase noise. Also,  
larger unequivalent fractions only sometimes  
work  
1. Decrease Loop Bandwidth  
2. Change Modulator Order  
Primary Fractional  
3. Use Larger Unequivalent Fractions  
1. Use Dithering  
Dithering and larger fractions may increase  
phase noise. MASH_SEED can be set  
between values 0 and Fden, which changes  
the sub-fractional spur behavior. This is a  
deterministic relationship and there will be  
one seed value that will give best result for  
this spur.  
2. Use MASH seed  
3. Use Larger Equivalent Fractions  
4. Use Larger Unequivalent Fractions  
5. Reduce Modulator Order  
Sub-Fractional  
6. Eliminate factors of 2 or 3 in denominator (see AN-1879  
Fractional N Frequency Synthesis (SNAA062)  
8.1.2 Configuring the Input Signal Path  
The input path is considered the portion of the device between the OSCin pin and the phase detector, which  
includes the input buffer, R dividers, and programmable multipliers. The way that these are configured can have  
a large impact on phase noise and fractional spurs.  
8.1.2.1 Input Signal Noise Scaling  
The input signal noise scales by 20 × log(output frequency / input signal frequency), so always check this to see  
if the noise of the input signal scaled to the output frequency is close to the PLL in-band noise level. When that  
happens, the input signal noise is the dominant noise source, not the PLL noise floor.  
0
-20  
0
-20  
5400 MHz output phase noise  
100 MHz input signal phase noise  
100 MHz input signal phase noise  
scaled to 5400 MHz  
5400 MHz output phase noise  
100 MHz input signal phase noise  
100 MHz input signal phase noise  
scaled to 5400 MHz  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
100  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
100  
1k  
10k  
100k  
Offset (Hz)  
1M  
10M  
D002  
D001  
8-3. Phase Noise of 5.4-GHz Output With High-  
8-2. Phase Noise of 5.4-GHz Output With Low-  
Noise Input Signal  
Noise Input Signal  
8.1.3 Input Pin Configuration  
The OSCinM and OSCinP can be used to support both a single-ended or differential clock. In either  
configuration, the termination on both sides should match for best common-mode noise rejection. The slew rate  
and signal integrity of this signal can have an impact on both the phase noise and fractional spurs. Standard  
clocking types, LVDS, LVPECL, HCSL, and CMOS can all be used.  
8.1.4 Using the OSCin Doubler  
The lowest PLL flat noise is achieved with a low-noise 200-MHz input signal. If only a low-noise input signal with  
lower frequency is available (for example a 100-MHz source), you can use the low noise OSCin doubler to attain  
200-MHz phase detector frequency. Because PLL_flat = PLL_FOM + 20 × log(Fvco/Fpd) + 10 × log(Fpd / 1Hz),  
doubling Fpd theoretically gets 6 dB from the 20 × log(Fvco/Fpd) component, +3 dB from the 10 × log(Fpd /  
1Hz) component, and cumulatively a 3-dB improvement.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMX2592  
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
-80  
-85  
Input = 100M_PFD = 100M_VCO = 6000M  
Input = 100M_osc2x = 2_PFD = 200M  
_VCO = 6000M  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
100  
1k  
10k  
Offset (Hz)  
100k  
1M  
D008  
8-4. 100-MHz Input With OSCin Doubler  
8.1.5 Using the Input Signal Path Components  
The ideal input is a low-noise, 200-MHz (or multiples of it) signal and 200-MHz phase detector frequency  
(highest dual PFD frequency). However, if spur mechanisms are understood, certain combinations of the R-  
divider and Multiplier can help. Refer to the Optimization of Spurs section for understanding spur types and their  
mechanisms first, then try this section for these specific spurs.  
8.1.5.1 Moving Phase Detector Frequency  
Engaging the multiplier in the reference path allows more flexibility in setting the PFD frequency. One example  
use case of this is if Fvco % Fpd is the dominant spur. This method can move the PFD frequency and thus the  
Fvco % Fpd.  
Example: Fvco = 3720.12 MHz, Fosc = 300 MHz, Pre-R divider = 5, Fpd = 60 MHz, Fvco%Fosc = 120.12 MHz  
(Far out), Fvco%Fpd = 120 kHz (dominant). There is a Fvco%Fpd spur at 120 kHz (refer to 8-5).  
8-5. Fvco % Fpd Spur  
Then second case, using divider and multiplier, is Fpd = 53.57 MHz away from 120-kHz spur. Fvco =  
3720.12MHz, Fosc = 300MHz, Pre-R divider = 7, Multiplier = 5, Post-R divider = 4, Fpd = 53.57 MHz,  
Fvco%Fosc = 120.12 MHz (Far out). Fvco % Fpd = 23.79 MHz (far out). There is a 20dB reduction for the  
Fvco % Fpd spur at 120 kHz (refer to 8-6).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8-6. Moving Away From Fvco % Fpd Spur  
8.1.5.2 Multiplying and Dividing by the Same Value  
Although it may not seem like the first thing to try, the Fvco%Fosc and Fout%Fosc spur can sometimes be  
improved engaging the OSC_2X bit and then dividing by 2. Although this gives the same phase detector  
frequency, the spur can be improved.  
8.1.6 Designing for Output Power  
If there is a desired frequency for highest power, use an inductor pullup and design for the value so that the  
resonance is at that frequency. Use the formula SRF = 1 / (2π× sqrt[L × C]).  
Example: C = 1.4 pF (characteristic). If maximum power is targeted at 1 GHz, L = 18 nH. If maximum power is  
targeted at 3.3 GHz, L = 1.6 nH  
25  
1.6 nH pull-up  
18 nH pull-up  
50 W pull-up  
20  
15  
10  
5
0
-5  
-10  
100  
200  
500  
1000  
2000  
Output Frequency (MHz)  
5000  
9500  
D006  
8-7. Output Power vs Pullup Type  
8.1.7 Current Consumption Management  
The starting point is the typical total current consumption of 250 mA: 100-MHz input frequency, OSCin doubler  
bypassed, Pre-R divider bypassed, multiplier bypassed, post-R divider bypassed, 100-MHz phase detector  
frequency, 0.468-mA charge pump current, channel divider off, one output on, 6000-MHz output frequency, 50-  
Ωoutput pullup, 0-dBm output power (differential). To understand current consumption changes due to engaging  
different functional blocks , refer to 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8-2. Typical Current Consumption Impact By Function  
ACTION  
STEPS  
PROGRAMMING  
INCREASE IN CURRENT (mA)  
Use input signal path  
Enable OSCin doubler  
Enable multiplier  
OSC_2X = 1  
7
MULT = 3,4,5, or 6  
VCO_DISTB_PD = 0  
OUTB_PD = 0  
10  
8
Add an output  
Route VCO to output B  
Enable output B buffer  
54  
53  
Increase output power from 0 to Set highest output buffer current  
+10dBm (differential)  
OUTA_POW = 63  
Use channel divider  
Route channel divider to output  
Enable channel divider  
Enable chdiv_seg1  
CHDIV_DISTA_EN = 1  
CHDIV_EN = 1  
5
18  
2
CHDIV_SEG1_EN = 1  
CHDIV_SEG2_EN = 1  
CHDIV_SEG3_EN = 1  
VCO2X_EN  
Enable chdiv_seg2  
5
Enable chdiv_seg3  
5
Using VCO doubler  
Enable VCO doubler  
16  
8.1.8 Decreasing Lock Time  
A calibration time of 590 µs typically to lock to 7-GHz VCO can be achieved with default settings as specified in  
the Electrical Characteristics table. There are several registers that can be programmed to speed up this time.  
Lock time consists of the calibration time (time required to calibrate the VCO to the correct frequency range) plus  
the analog settling time (time lock the PLL in phase and frequency). For fast calibration set registers  
FCAL_FAST = 1 and ACAL_FAST = 1. Also set the calibration clock frequency [input reference frequency] /  
2^CAL_CLK_DIV) to 200 MHz. The 20-µs range lock time can be achieved if the amplitude comparator delay is  
low, set by register ACAL_CMP_DLY (5 in this example). If this is too low there is not enough time to make the  
decision of VCO amplitude to use and may result in non-optimal phase noise. The other approach is to turn off  
amplitude calibration with ACAL_EN=0, then manually choose the amplitude with VCO_IDAC (350 for example).  
This will also result in 20-µs range calibration time. There are many other registers that can aid calibration time,  
for example ACAL_VCO_IDAC_STRT lets the user choose what VCO amplitude to start with during amplitude  
calibration. Setting this value to around 350 will give faster times because it is close to the final amplitude for  
most final frequencies. FCAL_VCO_SEL_START allows you to choose the VCO core to start with for the  
calibration instead of starting from core 7 by default. If you know you are locking to a frequency around VCO  
core 1, you can start from VCO 2 by setting VCO_SEL=2, which should give faster lock times. Go to the Register  
Maps section for detailed information of these registers and their related registers. For fast analog settling time,  
design loop filter for very wide loop bandwidth (MHz range).  
8-8. Lock Time Screenshot  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMX2592  
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
The calibration example as shown in 8-8 sweeps from the top of the VCO frequency range to the bottom. This  
example does a calibration to lock at 3.7 GHz (which is longest lock time scenario). For the left screenshot  
(Wideband Frequency view), see the sweeping from top to bottom of the VCO range. On the right screenshot  
(Narrowband Frequency view), see the analog settling time to the precise target frequency.  
8.1.9 Modeling and Understanding PLL FOM and Flicker Noise  
Follow these recommended settings to design for wide loop bandwidth and extract FOM and flicker noise. The  
flat model is the PLL noise floor modeled by: PLL_flat = PLL_FOM + 20 × log(Fvco/Fpd) + 10 × log(Fpd / 1 Hz).  
The flicker noise (also known as 1/f noise) which changes by 10dB / decade, is modeled by: PLL_flicker  
(offset) = PLL_flicker_Norm + 20 × log(Fvco / 1 GHz) 10 × log(offset / 10k Hz). The cumulative model is the  
addition of both components: PLL_Noise = 10*log(10PLL_Flat / 10 + 10PLL_flicker / 10). This is adjusted to fit  
the measured data to extract the PLL_FOM and PLL_flicker_Norm spec numbers.  
8-3. Wide Loop Filter Design  
PARAMETER  
VALUE  
PFD (MHz)  
200  
12  
Charge pump (mA)  
VCO frequency (MHz)  
Loop bandwidth (kHz)  
Phase margin (degrees)  
Gamma  
5400  
2000  
30  
1.4  
Loop filter (2nd order)  
C1 (nF)  
0.01  
0.022  
4.7  
C2 (nF)  
R2 (kΩ)  
-90  
-95  
Data  
Flicker  
Flat  
Model  
-100  
-105  
-110  
-115  
-120  
-125  
1k  
10k  
100k  
1M  
Offset (Hz)  
D003  
8-9. FOM and Flicker Noise Modeling  
8.1.10 External Loop Filter  
The LMX2592 requires an external loop filter that is application-specific and can be configured by the PLLatinum  
simulation tool found here. For the LMX2592, it matters what impedance is seen from the Vtune pin looking  
outwards. This impedance is dominated by the component C3 for a third order filter or C1 for a second order  
filter. If there is at least 3.3 nF for the capacitance that is shunt with this pin, the VCO phase noise will be close to  
the best it can be. If there is less, the VCO phase noise in the 100-kHz to 1-MHz region will degrade. This  
capacitor should be placed close to the Vtune pin.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
C3  
3
0
1
2
3
4
5
6
7
8
9
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
1
0
2
1
R3  
C1  
R2  
C2  
8-10. External Loop Filter  
8.2 Typical Application  
8.2.1 Design for Low Jitter  
8-11. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMX2592  
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8.2.1.1 Design Requirements  
Refer to the design parameters shown in 8-4.  
8-4. Design Information  
PARAMETER  
VALUE  
200  
20  
PFD (MHz)  
Charge pump (mA)  
VCO frequency (MHz)  
Loop bandwidth (kHz)  
Phase margin (degrees)  
Gamma  
6000  
210  
70  
3.8  
Loop filter (2nd order)  
C1 (nF)  
4.7  
100  
68  
C2 (nF)  
R2 (Ω)  
8.2.1.2 Detailed Design Procedure  
The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates to  
signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise  
outside the loop bandwidth is dominated by the VCO. As a rule of thumb, jitter is lowest if loop bandwidth is  
designed to the point where the two intersect. A higher phase margin loop filter design has less peaking at the  
loop bandwidth and thus lower jitter. The tradeoff with this as longer lock times and spurs should be considered  
in design as well.  
8.2.1.3 Application Curve  
8-12. Typical Jitter  
8.3 Power Supply Recommendations  
TI recommends placing 100-nF spurs close to each of the power supply pins. If fractional spurs are a large  
concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
8.4 Layout  
8.4.1 Layout Guidelines  
See EVM instructions for details. In general, the layout guidelines are similar to most other PLL devices. The  
followings are some outstanding guidelines.  
Place output pull up components close to the pin.  
Place capacitors close to the pins.  
Make sure input signal trace is well matched.  
Do not route any traces that carrying switching signal close to the charge pump traces and external VCO.  
8.4.2 Layout Example  
8-13. Recommended Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMX2592  
 
LMX2592  
www.ti.com.cn  
ZHCSEK3G DECEMBER 2015 REVISED AUGUST 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
Texas Instruments has several software tools to aid in the development at www.ti.com. Among these tools are:  
Codeloader to understand how to program the EVM board.  
Clock Design Tool for designing loop filters, simulating phase noise, and simulating spurs.  
EVM board instructions for seeing typical measured data with detailed measurement conditions and a  
complete design.  
Clock Architect for designing and simulating the device and understanding how it might work with other  
devices.  
9.2 Documentation Support  
9.2.1 Related Documentation  
The following are recommended reading.  
AN-1879 Fractional N Frequency Synthesis (SNAA062)  
PLL Performance, Simulation, and Design Handbook (SNAA106)  
9.8 GHz RF High Performance Synthesizer Operating From a Buck Converter Reference Design (TIDUC22)  
RF Sampling S-Band Radar Receiver Reference Design (TIDUBS6)  
9.8GHz RF CW Signal Generator Using Integrated Synthesizer With Spur Reduction Reference Design  
(TIDUBM1)  
2-GHz Complex Bandwidth DC-Coupled 14-bit Digitizer Reference Design (TIDRLM6)  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
PLLatinumand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LMX2592  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2592RHAR  
LMX2592RHAT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX2592  
LMX2592  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX2592RHAR  
LMX2592RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
178.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX2592RHAR  
LMX2592RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040H  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
6.1  
5.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 4.5  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
SEE SIDE WALL  
DETAIL  
2X  
41  
SYMM  
4.5  
4.5 0.1  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219055/B 08/22/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.5)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.27)  
(
0.2) TYP  
VIA  
(0.73)  
(5.8)  
TYP  
4X  
41  
SYMM  
(1.46)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.73) TYP  
4X (1.46)  
20  
4X (1.27)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219055/B 08/22/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
9X ( 1.26)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.46)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219055/B 08/22/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMX2592RHAT

具有集成 VCO 的 9.8GHz 宽带频率合成器 | RHA | 40 | -40 to 85
TI

LMX2594

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器
TI

LMX2594RHAR

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器 | RHA | 40 | -40 to 85
TI

LMX2594RHAT

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器 | RHA | 40 | -40 to 85
TI

LMX2595

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器
TI

LMX2595RHAR

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2595RHAT

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2604

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC

LMX2604LQ

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC

LMX2604LQ

VCO, 880 MHz - 915 MHz, LLP-20
ROCHESTER

LMX2604LQ/NOPB

IC,VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR,2-CHANNEL,LLCC,20PIN,PLASTIC
NSC

LMX2604LQX

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC