LMX2594 [TI]

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器;
LMX2594
型号: LMX2594
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器

射频
文件: 总77页 (文件大小:2189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
LMX2594 15GHz 宽带 PLLATINUM™ 射频合成器  
1 特性  
3 说明  
1
10MHz 15GHz 输出频率  
LMX2594 是一款高性能宽带合成器,可在不使用内部  
加倍器的情况下生成 10MHz 15GHz 范围内的任何  
频率,因而无需使用分谐波滤波器。品质因数为  
-236dBc/Hz 的高性能 PLL 和高相位检测器频率可实现  
非常低的带内噪声和集成抖动。高速 N 分频器没有预  
分频器,从而显著减少了杂散的振幅和数量。还有一个  
可减轻整数边界杂散的可编程输入乘法器。  
100KHz 偏频和 15GHz 载波的情况下具有  
-110dBc/Hz 的相位噪声  
7.5GHz 时,具有 45fs rms 抖动(100Hz 至  
100MHz)  
可编程输出功率  
PLL 主要规格  
品质因数:-236dBc/Hz  
标称 1/f 噪声:-129dBc/Hz  
最高相位检测器频率  
LMX2594 允许用户同步多个器件的输出,并可在 输入  
和输出之间确定需要延迟的情况下 应用。频率斜升发  
生器可在自动斜坡生成选项或手动选项中最多合成 2  
段斜坡,以实现最大的灵活性。通过快速校准算法可将  
频率加快至 20μs 以上。LMX2594 增添了对生成或重  
SYSREF(符合 JESD204B 标准)的支持,此  
SYSREF 是高速数据转换器的理想低噪声时钟源。此  
配置中提供了精细的延迟调节(9ps 分辨率),以解决  
板迹线的延迟差异。  
400MHz 整数模式  
300MHz 分数模式  
32 位分数 N 分频器  
用可编程输入乘法器消除整数边界杂散  
跨多个设备实现输出相位同步  
支持具有 9ps 分辨率可编程延迟的 SYSREF  
用于 FMCW 应用的频率斜升和线性调频脉冲生成  
能力  
LMX2594 中的输出驱动器在载波频率为 15GHz 时提  
供高达 7dBm 的输出功率。该器件采用单个 3.3V 电源  
供电,并具有集成的 LDO,无需板载低噪声 LDO。  
小于 20µs VCO 校准速度  
3.3V 单电源运行  
器件信息(1)  
2 应用  
器件型号  
LMX2594  
封装  
VQFN (40)  
封装尺寸(标称值)  
5G 和毫米波无线基础设施  
6.00mm × 6.00mm  
测试和测量设备  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
雷达  
MIMO  
相控阵天线和波束形成  
高速数据转换器时钟(支持 JESD204B)  
简化原理图  
Loop Filter  
RFoutAP  
CPout  
Vtune  
Phase  
Detector  
OSCinP  
Input  
signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Multiplier  
Charge  
Pump  
ϕ
MUX  
MUX  
Vcc  
OSCinM  
RFoutAM  
RFoutBM  
Channel  
Divider  
Sigma-Delta  
Modulator  
CSB  
SCK  
SDI  
Vcc  
Serial Interface  
Control  
RFoutBP  
N Divider  
SYSREF  
MUXout  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS696  
 
 
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 40  
7.6 Register Maps......................................................... 41  
Application and Implementation ........................ 59  
8.1 Application Information............................................ 59  
8.2 Typical Application .................................................. 61  
Power Supply Recommendations...................... 64  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 6  
Specifications......................................................... 8  
6.1 Absolute Maximum Ratings ...................................... 8  
6.2 ESD Ratings.............................................................. 8  
6.3 Recommended Operating Conditions....................... 8  
6.4 Thermal Information.................................................. 8  
6.5 Electrical Characteristics........................................... 9  
6.6 Timing Requirements.............................................. 11  
6.7 Typical Characteristics............................................ 14  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 39  
8
9
10 Layout................................................................... 65  
10.1 Layout Guidelines ................................................. 65  
10.2 Layout Example .................................................... 66  
11 器件和文档支持 ..................................................... 67  
11.1 器件支持................................................................ 67  
11.2 文档支持................................................................ 67  
11.3 接收文档更新通知 ................................................. 67  
11.4 社区资源................................................................ 67  
11.5 ....................................................................... 67  
11.6 静电放电警告......................................................... 67  
11.7 术语表 ................................................................... 67  
12 机械、封装和可订购信息....................................... 68  
7
4 修订历史记录  
Changes from Revision B (March 2018) to Revision C  
Page  
Deleted the recommended bypass capacitor values for Vcc pins 7, 11, 15, 21, 26 and 37, as these capacitor values  
are not mandatory and the power supply filtering design is up to the user............................................................................ 7  
Changed all the 'FRAC_ORDER' to 'MASH_ORDER' to avoid confusion ............................................................................. 9  
Changed the names of timing specs to align with timing diagram: changed tCE to tES, tCS to tDCS, tCH to tCDH, and tCES  
to tECS.................................................................................................................................................................................... 11  
Changed the names of timing specs to align with timing diagram: changed tES to tCE, tCES to tECS, added tDCS and  
tCDH, and changed tCS to tCR.................................................................................................................................................. 12  
Changed the serial data input timing diagram and corrected the typo for 'SCK'.................................................................. 12  
Deleted the note 'The CSB transition from high to low must occur when SCK is low' from the serial data input timing  
diagram, because SPI mode 4 (CPOL = 1, CPHA = 1) is also supported, and SCK is held high when idle in mode 4 ..... 12  
Added note for the serial data input timing diagram to explain the tCE requirement for mode 4 (CPOL = 1, CPHA = 1)  
of SPI, because the diagram only indicated SPI mode 1 (CPOL = 0, CPHA = 0) ............................................................... 12  
Changed the serial data readback timing diagram............................................................................................................... 13  
Changed the note about MUXout clocking out and emphasized the effect of tCR on the readback data available time ..... 13  
Changed the fOUT test conditions in the Closed-Loop Phase Noise at 3.5 GHz graph from: 14 GHz / 2 = 3.5 GHz to:  
to 14 GHz / 4 = 3.5 GHz ...................................................................................................................................................... 15  
Added Normalized Output Power Across OUTA_PWR With Resistor Pullup graph............................................................ 15  
Changed "Vtune" to "Indirect Vtune" when LD_TYPE = 1 ................................................................................................... 21  
Changed description for LD_TYPE. .................................................................................................................................... 21  
Added description of Indirect Vtune. ................................................................................................................................... 22  
Added description for the 'no assist' mode, mphasized the effect of VCO_SEL, VCO_DACISET_STRT and  
VCO_CAPCTRL_STRT under 'no assist' mode, and added recommended values for these registers.............................. 23  
Added description for the 'full assist' mode to allow the user to set VCO amplitude and capcode using linear  
interpolation under certain conditions................................................................................................................................... 23  
Changed OUTx_PWR Recommendations for Resistor Pullup table ................................................................................... 25  
Added description for category 3 of SYNC feature stating that FCAL_EN needs to be 1. .................................................. 29  
Changed description of MASH_SEED ................................................................................................................................ 29  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
修订历史记录 (接下页)  
Added 10-ms wait time before re-programming register R0 in recommended initial power-up sequence ......................... 40  
Added the General Programming Requirements section based on frequently asked questions......................................... 40  
Changed register R4 in the register map to: exposed ACAL_CMP_DLY ........................................................................... 41  
Changed the register R20[14] value from 0 to 1 in the full register map to match the R20 register description ................ 41  
Changed the default value of R25 to align with register map of LMX2595. This change has no impact on the LMX2594. 42  
Changed the R0[14] register field name in the register map from VCO_PHASE_SYNC_EN to VCO_PHASE_SYNC.  
to align with the rest of the data sheet ................................................................................................................................. 46  
Added recommended value for register CAL_CLK_DIV when lock time is not of concern.................................................. 46  
Changed the typo for register 'VCO_DACISET' in the register map. Bit 0 of this register was not included in the  
map. The full register map and register description were correct ........................................................................................ 48  
Added description to the R4[15:8]: ACAL_CMP_DLY register............................................................................................. 48  
Deleted the bit description '0: disabled; 1: enabled' for register 'PLL_N' ............................................................................. 49  
Added description to the R60[15:0] LD_DLY register .......................................................................................................... 51  
Changed the R31[14] register name from CHDIV_DIV2 to SEG1_EN to align with the naming in the TICS Pro GUI ....... 53  
Changed the R105[1:0] field name from RAMP_NEXT_TRIG to RAMP1_NEXT_TRIG..................................................... 58  
Added the Bias Levels of Pins table..................................................................................................................................... 64  
Changes from Revision A (August 2017) to Revision B  
Page  
Changed all the VCO Gain typical values in the Electrical Characteristics table. This is due to improved  
measurement methods and NOT a change in the device itself ........................................................................................... 11  
Moved the high-level output voltage parameter VCC – 0.4 value from the MAX column to the MIN.................................... 11  
Moved the high-level output current parameter 0.4 value from the MIN column to the MAX .............................................. 11  
Changed bulleted text: data is clocked out on MUXout, not SDI pin ................................................................................... 13  
Added comment that OSCin is clocked on rising edges of the signal. and reformatted with bulleted list ........................... 19  
Added description of the state machine clock ..................................................................................................................... 20  
Changed example from: 200 MHz / 232 to: 200 MHz / (232 – 1) .......................................................................................... 21  
Changed LD_DLY description in Table 4 and removed duplicated text in the Lock Detect section.................................... 21  
Changed name from VCO_AMPCAL to VCO_DACISET_STRT ........................................................................................ 23  
Added more programmable settings to Table 5 ................................................................................................................... 23  
Changed VCO Gain table..................................................................................................................................................... 24  
Added that OUTx_PWR states 32 to 47 are redundant and reworded section ................................................................... 25  
Added term "IncludedDivide" for clarity ............................................................................................................................... 26  
Changed Fixed Diagram to show SEG0, SEG1, SEG2, and SEG3 ................................................................................... 27  
Changed included channel divide to IncludedDivide and 2 X SEG0 to 2 X SEG1. Also clarified IncludedDivide  
calculations........................................................................................................................................................................... 29  
Added more description on conditions for phase adust ....................................................................................................... 29  
Changed text from: (VCO_PHASE_SYNC = 1) to: (VCO_PHASE_SYNC = 0) ................................................................. 29  
Changed text so the user does not incorrectly assume that MASH_SEED varies from part ot part ................................... 30  
Changed the RAMP_THRESH programming from: 0 to ± 232 to: 0 to ± 233 – 1 .................................................................. 30  
Removed comment that RAMP_TRIG_CAL only applies in automatic ramping mode........................................................ 30  
Changed the RAMP_LOW and _HIGH programming from: 0 to ± 231 to: 0 to ± 233 – 1...................................................... 30  
Changed description to be in terms of state machine cycles............................................................................................... 31  
Changed RAMP_MODE to RAMP_MANUAL in the Manual Pin Ramping and Automatic Ramping sections.................... 31  
Added that the RampCLK pin input is reclocked to the phase detector frequency.............................................................. 31  
Added that RampDir rising edges should be targeted away from rising edges of RampCLK pin........................................ 31  
Changed programming enumerations for RAMP0_INC and RAMP1_INC .......................................................................... 33  
版权 © 2017–2019, Texas Instruments Incorporated  
3
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Changed programming enumerations for RAMP_THRESH, RAMPx_LEN, and RAMP1_INC............................................ 34  
Changed Figure 29 .............................................................................................................................................................. 34  
Changed SysRef description ................................................................................................................................................ 35  
Added divide by 2 to figure................................................................................................................................................... 35  
Changed some entries in the table ...................................................................................................................................... 35  
Changed fINTERPOLATOR SYSREF setup equation in Table 18 .............................................................................................. 35  
Changed SysRef delay from: 224 and 225 to: 225 and 226................................................................................................ 36  
Changed "generator" mode to "master" mode. They mean the same thing ........................................................................ 36  
Changed description for SYSREF_DIV................................................................................................................................ 36  
Changed Figure 31 .............................................................................................................................................................. 37  
Changed wording for repeater mode and master mode....................................................................................................... 38  
Changed description of a few of the steps ........................................................................................................................... 39  
Changed typo in R17 and R19 ............................................................................................................................................ 48  
Deleted reference to VCO_SEL_STRT_EN. This is always 1 ............................................................................................. 48  
Added VCO_SEL_STRT_EN reference. This is always 1 ................................................................................................... 48  
Changed the enumerations 0-3 and added content to the INPIN_LVL field description ..................................................... 50  
Added Divide by 1' to SYSREF_DIV_PRE register description. Also fixed the name misspelling ...................................... 52  
Deleted redundant formula for Fout and also clarified SYSREF_DIV starts at 4 and counts by 2 ...................................... 52  
Deleted reference to VCO_CAPCTRL_EN, which is always 1, and clarified....................................................................... 54  
Changed text from: fMAX to: fHIGH........................................................................................................................................... 55  
Changed text from: RAMP_LIMIT_LOW=232 - (fLOW - fVCO) / fPD × 16777216 to: RAMP_LIMIT_LOW=233 - 16777216  
x (fVCO - fLOW) / fPD ................................................................................................................................................................ 55  
Removed the OSCin Configuration table and added content to the OSCin Configuration section...................................... 59  
Changed pin 27 recommendation from 10 µF to 1 µF in Figure 51..................................................................................... 61  
Changes from Original (March 2017) to Revision A  
Page  
Added DAP pin described as "Die Attach Pad"...................................................................................................................... 7  
Added H2 Spec for 11 GHz ................................................................................................................................................... 9  
Clarified that output power assumes that load is matched and losses are de-embedded..................................................... 9  
Changed "SDA" pin name mispelled. Should be "SDI". Also fixed in timing diagrams. Also added CE Pin ...................... 11  
Swapped SDI and SCK in diagram ..................................................................................................................................... 12  
Added graphs and reordered ............................................................................................................................................... 14  
Added 12-GHz VCO frequency for PLL Noise Metrics Plot ................................................................................................ 14  
Added Phase Noise plots vs. Temperature ......................................................................................................................... 15  
Added Phase noise vs. Fpd Graph ..................................................................................................................................... 16  
Moved second paragraph of Readback into Lock Detect section; deleted last paragraph of Readback (was in wrong  
place).................................................................................................................................................................................... 22  
Changed table to allow 11.5 GHz max frequency for divides >6 ......................................................................................... 24  
Added Recommendations table .......................................................................................................................................... 25  
Changed the IncludedDivide table........................................................................................................................................ 26  
Added section on fine tune adjustments ............................................................................................................................. 30  
Changed graphic and description......................................................................................................................................... 35  
Added SYSREF_EN = 1 if and only if OUTB_MUX=2 ........................................................................................................ 36  
Changed SysRef Example Description and Pictures .......................................................................................................... 38  
Added recommendation to make fInterpolator a multiple of fOSC .............................................................................................. 39  
Added SEG1_EN.................................................................................................................................................................. 42  
Added INPIN_IGNORE, INPIN_LVL, and INPIN_HYST ...................................................................................................... 43  
4
版权 © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Removed RAMP0_FL from register map ............................................................................................................................. 45  
Changed address for VCO_DACISET_STRT and VCO_CAPCTRL .................................................................................. 48  
Clarified MASH_RESET_N. 0 = RESET (integer mode), 1 = Fractional mode .................................................................. 49  
Changed OUT_ISEL to OUTI_SET ..................................................................................................................................... 50  
Added SYSREF_EN=1 when OUTB_MUX=2 ..................................................................................................................... 50  
Added section for input register descriptions ...................................................................................................................... 50  
Added description for SEG1_EN ......................................................................................................................................... 53  
Fixed TYPO table to match main register map. ................................................................................................................... 53  
Added SEG1_EN.................................................................................................................................................................. 53  
Corrected RAMP_BURST_TRIG description to match other place in data sheet................................................................ 56  
Removed duplicate error in R101[2] .................................................................................................................................... 57  
Changed RAMP1_INC from RAMP0 to RAMP1 .................................................................................................................. 57  
Clarified that the delay was in state machine cycles............................................................................................................ 57  
Swapped 1 and 3 in the R110[10:9] description .................................................................................................................. 58  
Fixed pin names in schematic ............................................................................................................................................. 61  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
RHA Package  
40-Pin VQFN  
Top View  
CE  
GND  
RampClk  
VrefVCO2  
VbiasVCO  
GND  
SysRefReq  
VbiasVCO2  
VccVCO2  
GND  
SYNC  
GND  
GND  
VccDIG  
OSCinP  
OSCinM  
VregIN  
CSB  
RFoutAP  
RFoutAM  
VccBUF  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
CE  
Input  
Chip enable input. Active HIGH powers on the device.  
VCO ground.  
2, 4, 25, 31,  
34, 39, 40  
GND  
Ground  
3
VbiasVCO  
SYNC  
Bypass  
Input  
VCO bias. Requires a 10-µF capacitor connected to VCO ground. Place close to pin.  
Phase synchronization pin. Has programmable threshold.  
Digital ground.  
5
6, 14  
7
GND  
Ground  
Supply  
VccDIG  
Digital supply. TI recommends bypassing with decoupling capacitor to digital ground.  
Reference input clock (+). High-impedance self-biasing pin. Requires AC-coupling capacitor.  
(0.1 µF recommended)  
8
OSCinP  
OSCinM  
VregIN  
VccCP  
Input  
Input  
Reference input clock (–). High impedance self-biasing pin. Requires AC-coupling capacitor.  
(0.1 µF recommended)  
9
Input reference path regulator output. Requires a 1-µF capacitor connected to ground. Place  
close to pin.  
10  
11  
Bypass  
Supply  
Charge pump supply. TI recommends bypassing with decoupling capacitor to charge pump  
ground.  
12  
13  
15  
16  
17  
CPout  
GND  
Output  
Ground  
Supply  
Input  
Charge pump output. TI recommends connecting C1 of loop filter close to pin.  
Charge pump ground.  
VccMASH  
SCK  
Digital supply. TI recommends bypassing with decoupling capacitor to digital ground.  
SPI clock. High impedance CMOS input. 1.8-V to 3.3-V logic.  
SPI data. High impedance CMOS input. 1.8-V to 3.3-V logic.  
SDI  
Input  
Differential output B (–). Requires a pullup (typically 50-Ω resistor) connected to Vcc as close  
to the pin as possible. Can be used as an output signal or SYSREF output.  
18  
19  
RFoutBM  
RFoutBP  
Output  
Output  
Differential output B (+). Requires a pullup (typically 50-Ω resistor) connected to Vcc as close  
to the pin as possible. Can be used as an output signal or SYSREF output.  
20  
21  
MUXout  
VccBUF  
Output  
Supply  
Multiplexed output pin — lock detect, readback, diagnostics, ramp status.  
Output buffer supply. TI recommends bypassing with decoupling capacitor to RFout ground.  
Differential output A (–). Requires connecting a 50-Ω resistor pullup to Vcc as close to the  
pin as possible.  
22  
23  
RFoutAM  
RFoutAP  
Output  
Output  
Differential output A (+). Requires connecting a 50-Ω resistor pullup to Vcc as close to the  
pin as possible.  
24  
26  
27  
28  
29  
CSB  
Input  
Supply  
Bypass  
Input  
SPI latch. Chip Select Bar. High-impedance CMOS input. 1.8-V to 3.3-V logic.  
VCO supply. TI recommends bypassing with decoupling capacitor to VCO ground.  
VCO bias. Requires a 1-µF capacitor connected to VCO ground.  
SYSREF request input for JESD204B support.  
VccVCO2  
VbiasVCO2  
SysRefReq  
VrefVCO2  
Bypass  
VCO supply reference. Requires a 10-µF capacitor connected to VCO ground.  
Input pin for ramping mode that can be used to clock the ramp in manual ramping mode or  
as a trigger input.  
30  
32  
RampClk  
RampDir  
Input  
Input  
Input pin for ramping mode that can be used to change ramp direction in manual ramping  
mode or as a trigger input.  
33  
VbiasVARAC  
Vtune  
Bypass  
Input  
VCO Varactor bias. Requires a 10-µF capacitor connected to VCO ground.  
VCO tuning voltage input.  
35  
36  
VrefVCO  
VccVCO  
VregVCO  
GND  
Bypass  
Supply  
Bypass  
Ground  
VCO supply reference. Requires a 10-µF capacitor connected to VCO ground.  
VCO supply. Recommend bypassing with decoupling capacitor to ground.  
VCO regulator node. Requires a 1-µF capacitor connected to ground.  
Die Attached Pad. Used for RFout ground.  
37  
38  
DAP  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
–65  
MAX  
3.6  
UNIT  
V
VCC  
TJ  
Power supply voltage  
Junction temperature  
Storage temperature  
150  
150  
°C  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500 V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250 V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
–40  
NOM  
3.3  
MAX  
3.45  
85  
UNIT  
V
VCC  
TA  
Power supply voltage  
Ambient temperature  
Junction temperature  
25  
°C  
TJ  
125  
°C  
6.4 Thermal Information  
LMX2594  
THERMAL METRIC(1)  
RHA (VQFN)  
40 PINS  
30.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(2)  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
15.3  
Junction-to-board thermal resistance  
5.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.3  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) DAP  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
6.5 Electrical Characteristics  
3.15 V VCC 3.45 V, –40°C TA +85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
Supply voltage  
3.15  
3.3  
3.45  
V
OUTA_PD = 0, OUTB_PD = 1  
OUTA_MUX = OUTB_MUX = 1  
Supply current  
OUTA_PWR = 31, CPG=7  
340  
fOSC= fPD = 100 MHz, fVCO = fOUT = 14 GHz  
pOUT = 3 dBm with 50-Ω resistor pullup  
ICC  
mA  
Power-on reset current  
Power-down current  
RESET=1  
170  
5
POWERDOWN=1  
OUTPUT CHARACTERISTICS  
fOUT = 8 GHz  
fOUT = 15 GHz  
fOUT = 8 GHz  
fOUT = 15 GHz  
5
2
50-Ω resistor pullup  
OUTx_PWR = 50  
pOUT  
Single-ended output power(1)(2)  
dBm  
10  
7
1-nH inductor pullup  
OUTx_PWR = 50  
Isolation between outputs A and OUTA_MUX = VCO  
Xtalk  
H2  
–50  
–20  
–30  
–50  
dBc  
dBc  
B. Measured on output A  
OUTB_MUX = channel divider  
OUTA_MUX = VCO  
fVCO = 8 GHz  
Second harmonic(2)  
OUTA_MUX = VCO  
fVCO = 11 GHz  
OUTA_MUX = VCO  
fVCO = 8 GHz  
H3  
Third harmonic(2)  
dBc  
INPUT SIGNAL PATH  
fOSCin Reference input frequency  
vOSCin  
OSC_2X = 0  
5
5
1400  
200  
2
MHz  
OSC_2X = 1  
(3)  
Reference input voltage  
AC-coupled required  
Input range  
0.2  
30  
Vpp  
Multiplier frequency (only  
applies when multiplier is  
enabled)  
70  
fMULT  
MHz  
Output range  
180  
250  
PHASE DETECTOR AND CHARGE PUMP  
Integer mode  
MASH_ORDER = 0  
0.125  
400  
300  
240  
MASH_ORDER= 1, 2,  
3
fPD  
Phase detector frequency(3)  
Charge-pump leakage current  
5
5
MHz  
nA  
Fractional mode  
MASH_ORDER = 4  
CPG = 0  
CPG = 4  
CPG = 1  
CPG = 5  
CPG = 3  
CPG = 7  
15  
3
6
Effective charge pump current.  
This is the sum of the up and  
down currents  
ICPout  
9
mA  
12  
15  
PNPLL_1/f Normalized PLL 1/f noise  
PNPLL_flat Normalized PLL noise floor  
–129  
–236  
dBc/Hz  
dBc/Hz  
fPD = 100 MHz, fVCO = 12 GHz(4)(4)(4)(4)  
(1) Single ended output power obtained after de-embedding microstrip trace losses and matching with a manual tuner. Unused port  
terminated to 50 ohm load.  
(2) Output power, spurs, and harmonics can vary based on board layout and components.  
(3) For lower VCO frequencies, the N divider minimum value can limit the phase-detector frequency.  
(4) The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into flicker and flat  
components. PLL_flat = PLL_FOM + 20 × log(Fvco/Fpd) + 10 × log(Fpd / 1Hz). PLL_flicker (offset) = PLL_flicker_Norm + 20 × log(Fvco  
/ 1GHz) – 10 × log(offset / 10kHz). Once these two components are found, the total PLL noise can be calculated as PLL_Noise = 10 ×  
log(10 PLL_Flat / 10 + 10 PLL_flicker / 10  
)
Copyright © 2017–2019, Texas Instruments Incorporated  
9
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
3.15 V VCC 3.45 V, –40°C TA +85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCO CHARACTERISTICS  
10 kHz  
100 kHz  
1 MHz  
–80  
–107  
–128  
–148  
–157  
–79  
VCO1  
fVCO = 8 GHz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–105  
–127  
–147  
–157  
–77  
VCO2  
fVCO = 9.2 GHz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–104  
–126  
–147  
–157  
–76  
VCO3  
fVCO = 10.3 GHz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–103  
–125  
–145  
–158  
–74  
VCO4  
fVCO = 11.3 GHz  
PNVCO  
VCO phase noise  
dBc/Hz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–100  
–123  
–144  
–157  
–73  
VCO5  
fVCO = 12.5 GHz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–100  
–122  
–143  
–155  
–73  
VCO6  
fVCO = 13.3 GHz  
10 MHz  
90 MHz  
10 kHz  
100 kHz  
1 MHz  
–99  
VCO7  
fVCO = 14.5 GHz  
–121  
–143  
–152  
50  
10 MHz  
90 MHz  
No assist  
Partial assist  
Close frequency  
Full assist  
Switch across the entire  
frequency band  
35  
tVCOCAL  
VCO calibration speed  
µs  
fOSC = 200 MHz, fPD  
=
20  
100 MHz(5)  
5
(5) See Application and Implementation for more details on the different VCO calibration modes.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Electrical Characteristics (continued)  
3.15 V VCC 3.45 V, –40°C TA +85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
92  
MAX  
UNIT  
8 GHz  
9.2 GHz  
10.3 GHz  
11.3 GHz  
12.5 GHz  
13.3 GHz  
14.5 GHz  
91  
115  
121  
195  
190  
213  
KVCO  
VCO gain  
MHz/V  
Allowable temperature drift  
when VCO is not recalibrated  
|ΔTCL  
|
RAMP_EN = 0 or RAMP_MANUAL= 1  
125  
°C  
H2  
H3  
VCO second harmonic  
VCO third haromonic  
fVCO = 8 GHz, divider disabled  
fVCO = 8 GHz, divider disabled  
–20  
–50  
dBc  
SYNC PIN AND PHASE ALIGNMENT  
Category 3  
0
0
100  
fOSCinSY Maximum usable OSCin with  
MHz  
NC  
sync pin (Figure 27)  
Categories1 and 2  
1400  
DIGITAL INTERFACE  
Applies to SLK, SDI, CSB, CE, RampDir, RampClk, MUXout, SYNC (CMOS Mode), SysRefReq (CMOS Mode)  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
Low-level output voltage  
1.4  
0
Vcc  
0.4  
25  
V
V
–25  
µA  
µA  
V
IIL  
–25  
25  
VOH  
VOL  
Load current = –10 mA  
Load current = 10 mA  
VCC – 0.4  
MUXout pin  
0.4  
V
6.6 Timing Requirements  
(3.15 V VCC 3.45 V, –40°C TA +85°C, except as specified. Nominal values are at VCC = 3.3 V, TA = 25°C)  
MIN  
NOM  
MAX  
UNIT  
SYNC, SYSRefReq, RampClk, and RampDIR Pins  
SYNC pin  
2.5  
2.5  
2
Setup time for pin relative to  
OSCin rising edge  
tSETUP  
ns  
ns  
SysRefReq pin  
SYNC pin  
Hold time for SYNC pin  
relative to OSCin rising edge  
tHOLD  
SysRefReq pin  
2
DIGITAL INTERFACE WRITE SPECIFICATIONS  
fSPIWrite  
tCE  
SPI write speed  
tCWL + tCWH > 13.333 ns  
75  
MHz  
ns  
Clock to enable low time  
Data to clock setup time  
Clock to data hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
5
2
2
5
5
5
2
tDCS  
ns  
tCDH  
ns  
tCWH  
tCWL  
tECS  
See Figure 1  
ns  
ns  
ns  
tEWH  
ns  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Timing Requirements (continued)  
(3.15 V VCC 3.45 V, –40°C TA +85°C, except as specified. Nominal values are at VCC = 3.3 V, TA = 25°C)  
MIN  
NOM  
MAX  
UNIT  
DIGITAL INTERFACE READBACK SPECIFICATIONS  
fSPIReadback  
SPI readback speed  
50  
MHz  
ns  
tCE  
Clock to enable low time  
Data to clock setup time  
Clock to data hold time  
10  
2
tDCS  
tCDH  
ns  
2
ns  
Clock falling edge to  
tCR  
available readback data wait See Figure 2  
time.  
0
10  
ns  
tCWH  
tCWL  
tECS  
tEWH  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
SCK  
tCWL  
tCWH  
tCDH  
SDI  
R/W  
A6  
A5 ~ A1  
A0  
D15  
D14 ~ D2  
D1  
D0  
tDCS  
tCE  
tEWH  
tECS  
CSB  
Figure 1. Serial Data Input Timing Diagram  
There are several other considerations for writing on the SPI:  
The R/W bit must be set to 0.  
The data on SDI pin is clocked into a shift register on each rising edge on the SCK pin.  
The CSB must be held low for data to be clocked. Device will ignore clock pulses if CSB is held high.  
When SCK and SDI lines are shared between devices, TI recommends to hold the CSB line high on the  
device that is not to be clocked.  
Note that tCE is only a valid spec if CPOL (Clock Polarity) = 0 and CPHA (Clock Phase) = 0 is used for SPI  
protocol. For SPI mode (CPOL = 1 and CPHA = 1), the minimum distance required between the last rising  
edge of clock and the rising edge of CSB is tCE + clock_period/2.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
SCK  
tCWL  
tCWH  
tCDH  
SDI  
R/W  
A6  
A5 ~ A1  
A0  
tDCS  
tCR  
MUXout  
D15  
D14 ~ D2  
D1  
D0  
tECS  
tCE  
tEWH  
CSB  
Figure 2. Serial Data Readback Timing Diagram  
There are several other considerations for SPI readback:  
The R/W bit must be set to 1.  
The MUXout pin will always be low for the address portion of the transaction.  
The data on MUXout is clocked out at tCR after the falling edge of SCK. In other words, the readback data will  
be available at the MUXout pin tCR after the clock falling edge.  
The data portion of the transition on the SDI line is always ignored.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
-30  
-30  
-40  
1: 100 Hz -84.0 dBc/Hz 6: 10 MHz -141.8 dBc/Hz  
2: 1 kHz -94.5 dBc/Hz 7: 40 MHz -150.2 dBc/Hz  
3: 10 kHz -104.8 dBc/Hz 8: 95 MHz -148.6 dBc/Hz  
4: 100 kHz -107.5 dBc/Hz 9: 100 MHz -147.6 dBc/Hz  
5: 1 MHz -114.7 dBc/Hz  
1: 100 Hz -85.5 dBc/Hz 6: 10 MHz -143.2 dBc/Hz  
2: 1 kHz -95.6 dBc/Hz 7: 40 MHz -151.5 dBc/Hz  
3: 10 kHz -105.6 dBc/Hz 8: 95 MHz -153.8 dBc/Hz  
4: 100 kHz -108.7 dBc/Hz 9: 100 MHz -153.8 dBc/Hz  
5: 1 MHz -117.3 dBc/Hz  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
15.0 GHz  
-4.1 dBm  
13.0 GHz  
0.1 dBm  
1*10^2  
1*10^3  
1*10^4  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
1*10^2  
1*10^3  
1*10^4  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
Offset (Hz)  
Offset (Hz)  
D002  
D003  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 55.8 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 52.6 fs (100 Hz - 100 MHz)  
Figure 3. Closed-Loop Phase Noise at 15 GHz  
Figure 4. Closed-Loop Phase Noise at 13 GHz  
-30  
-40  
-30  
-40  
1: 100 Hz -87.1 dBc/Hz 6: 10 MHz -145.6 dBc/Hz  
2: 1 kHz -97.2 dBc/Hz 7: 40 MHz -154.5 dBc/Hz  
3: 10 kHz -107.2 dBc/Hz 8: 95 MHz -158.8 dBc/Hz  
4: 100 kHz -109.4 dBc/Hz 9: 100 MHz -159.1 dBc/Hz  
5: 1 MHz -121.8 dBc/Hz  
1: 100 Hz -88.3 dBc/Hz 6: 10 MHz -147.4 dBc/Hz  
2: 1 kHz  
-98.5 dBc/Hz 7: 40 MHz -154.7 dBc/Hz  
-50  
-50  
3: 10 kHz -108.9 dBc/Hz 8: 95 MHz -155.2 dBc/Hz  
4: 100 kHz -111.4 dBc/Hz 9: 100 MHz -155.0 dBc/Hz  
5: 1 MHz -123.1 dBc/Hz  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
11.0 GHz  
-0.3 dBm  
1*10^4  
9.0 GHz  
1.6 dBm  
1*10^2  
1*10^3  
1*10^4  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
1*10^2  
1*10^3  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
Offset (Hz)  
Offset (Hz)  
D004  
D005  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 46.8 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 46.9 fs (100 Hz - 100 MHz)  
Figure 5. Closed-Loop Phase Noise at 11 GHz  
Figure 6. Closed-Loop Phase Noise at 9 GHz  
-30  
-40  
-30  
-40  
1: 100 Hz -89.6 dBc/Hz 6: 10 MHz -148.3 dBc/Hz  
1: 100 Hz -90.1 dBc/Hz 6: 10 MHz -149.3 dBc/Hz  
2: 1 kHz -100.4 dBc/Hz 7: 40 MHz -154.8 dBc/Hz  
3: 10 kHz -110.6 dBc/Hz 8: 95 MHz -155.1 dBc/Hz  
4: 100 kHz -113.7 dBc/Hz 9: 100 MHz -148.5 dBc/Hz  
5: 1 MHz -125.1 dBc/Hz  
2: 1 kHz  
-99.8 dBc/Hz  
7: 40 MHz -155.2 dBc/Hz  
-50  
-50  
3: 10 kHz -110.1 dBc/Hz 8: 95 MHz -157.1 dBc/Hz  
4: 100 kHz -113.4 dBc/Hz 9: 100 MHz -148.2 dBc/Hz  
5: 1 MHz -123.1 dBc/Hz  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
8.0 GHz  
5.0 dBm  
7.5 GHz  
5.3 dBm  
1*10^4  
1*10^2  
1*10^3  
1*10^4  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
1*10^2  
1*10^3  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
Offset (Hz)  
Offset (Hz)  
D001  
D011  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 46.87 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 44.1 fs (100 Hz - 100 MHz)  
Figure 7. Closed-Loop Phase Noise at 8 GHz  
Figure 8. Closed-Loop Phase Noise at 7.5 GHz  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Typical Characteristics (continued)  
-30  
12.16  
12.14  
12.12  
12.1  
1: 100 Hz -96.7 dBc/Hz 6: 10 MHz -149.5 dBc/Hz  
-40  
-50  
1: -95.988 ns 12.0006 GHz 2: 2 ms 12.1255 GHz  
2: 1 kHz -106.8 dBc/Hz 7: 40 MHz -150.9 dBc/Hz  
3: 10 kHz -117.0 dBc/Hz 8: 95 MHz -151.1 dBc/Hz  
4: 100 kHz -119.7 dBc/Hz 9: 100 MHz -127.8 dBc/Hz  
5: 1 MHz -130.6 dBc/Hz  
-60  
-70  
-80  
-90  
12.08  
12.06  
12.04  
12.02  
12  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
11.98  
11.96  
3.5 GHz  
1.3 dBm  
1*10^2  
1*10^3  
1*10^4  
1*10^5  
1*10^6  
1*10^7  
1*10^8  
-500 -400 -300 -200 -100  
0
100 200 300 400 500  
Offset (Hz)  
D012  
Time (ms)  
D010  
fOSC = 100 MHz  
fPD = 200 MHz  
fVCO = 14 GHz  
fOUT = 14 GHz / 4 = 3.5 GHz  
Jitter = 49.4 fs (100 Hz - 100 MHz)  
Figure 10. VCO Ramping 12-GHz to 12.125-GHz Calibration  
Free  
Figure 9. Closed-Loop Phase Noise at 3.5 GHz  
15  
14.5  
14  
8.5  
8
13.5  
13  
12.5  
12  
11.5  
11  
7.5  
7
6.5  
6
10.5  
10  
9.5  
9
8.5  
8
7.5  
7
5.5  
1: -2.1 ms 3.7177 GHz  
2: 2.9 ms 7.5832 GHz  
3: 3.7 ms 7.5845 GHz  
4: 17.7 ms 6.9996 GHz  
5: 31.5 ms 6.9991 GHz  
5
4.5  
4
3.5  
0
1
2
3
4
5
6
7
8
9
10  
-10  
-5  
0
5
10  
15  
20  
25  
30  
35  
40  
Time (ms)  
Time (ms)  
D013  
D008  
The glitches in the plot are due to the inability of the measurement  
equipment to track the VCO while calibrating.  
CalTime = 33.6 µs = 5.8 µs (Core) + 14 µs (Fcal) + 13.8 µs  
(Ampcal)  
fOSC = 200 MHz, fPD = 100 MHz, fVCO = 7.5 - 14 GHz, CHDIV = 2  
Figure 11. VCO Ramping 7.5-GHz to 15-GHz Triangle Wave  
With VCO Calibration  
Figure 12. VCO Unassisted Calibration  
-80  
8.5  
8
Flicker (PLL 1/f =-129.2 dBc/Hz)  
Flat (FOM = -236.2 dBc/Hz)  
-84  
Modeled Phase Noise  
Measurement  
-88  
7.5  
7
-92  
-96  
-100  
-104  
-108  
-112  
-116  
-120  
6.5  
6
5.5  
1: -200 ns 3.4745 GHz  
2: 400 ns 7.4476 GHz  
3: 1.1 ms 7.4437 GHz  
4: 10.2 ms 7.0531 GHz  
5: 25 ms 7.0382 GHz  
5
4.5  
4
3.5  
-10  
100  
1000  
10000  
100000  
D014  
-5  
0
5
10  
15  
20  
25  
30  
35  
40  
Offset (Hz)  
Time (ms)  
D009  
fVCO = 12 GHz  
fPD = 100 MHz  
CalTime = 25.2 µs = 1.3 µs (Core) + 9.1 µs (Fcal) +14.8 µs  
(Ampcal)  
fOSC = 200 MHz, fPD = 100 MHz, fVCO = 7.5 GHz - 14 GHz, CHDIV  
= 2  
Figure 13. VCO Calibration With Partial Assist  
Figure 14. Calculation of PLL Noise Metrics  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
-80  
-88  
-80  
Fpd=100 MHz  
Fpd=200 MHz  
Fpd=400 MHz  
Ta=25  
Ta=-40  
Ta=85  
-88  
-96  
-96  
-104  
-112  
-120  
-128  
-136  
-144  
-152  
-160  
-104  
-112  
-120  
-128  
-136  
-144  
-152  
-160  
10000  
100000  
1000000  
Offset (Hz)  
1E+72E+7 5E+71E+8  
D016  
100  
1000  
10000  
100000 1000000  
Offset (Hz)  
1E+7 5E+7  
D015  
fVCO = 8 GHz, Narrow Loop Bandwidth (<100 Hz)  
fOSC = 200 MHz  
fVCO = 14.8 GHz  
Figure 16. VCO Phase Noise Over Temperature  
Figure 15. PLL Phase Noise Variation vs. fPD  
2
1.6  
1.2  
0.8  
0.4  
0
14  
Ta=25  
Ta=-40  
Ta=85  
Resistor Pull-up  
Inductor Pull-Up  
13  
12  
11  
10  
9
8
7
6
-0.4  
-0.8  
-1.2  
-1.6  
-2  
5
4
3
2
1
0
10000  
100000  
1000000  
Offset (Hz)  
1E+72E+7 5E+71E+8  
D017  
3
4
5
6
7
8
9
10 11 12 13 14 15  
Output Frequency (GHz)  
D018  
Single-Ended Output  
OUTx_PWR = 50  
Figure 17. CHANGE in 8-GHz VCO Phase Noise Over  
Temperature  
Figure 18. Output Power Across Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
14  
Ta=-40  
Ta=25  
Ta=85  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RF_out = 8 GHz  
0
-10  
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
OUTA_PWR  
Frequency (GHz)  
D019  
D030  
Single-ended output with resistor pullup and OUTx_PWR = 50.  
Note that Near 13.3 to 14.3 GHz, output power can be impacted at  
hot temperature. See the Application Information section for more  
information.  
Resistor pullup  
Normalized to maximum output power.  
Figure 20. Output Power Normalized To Maximum Across  
OUTA_PWR With Resistor Pullup  
Figure 19. Output Power vs Temperature  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Typical Characteristics (continued)  
-145  
-147.5  
-150  
-152.5  
-155  
-157.5  
-160  
-162.5  
-165  
-167.5  
-170  
-172.5  
-175  
0.02  
0.1  
1
10  
Output Frequency (GHz)  
D020  
This noise adds to the scaled VCO Noise when the channel divider is used.  
Figure 21. Additive VCO Divider Noise Floor  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX2594 is a high-performance, wideband frequency synthesizer with integrated VCO and output divider.  
The VCO operates from 7.5 GHz to 15 GHz, and this can be combined with the output divider to produce any  
frequency in the range of 10 MHz to 15 GHz. Within the input path, there are two dividers and a multiplier for  
flexible frequency planning. The multiplier also allows the reduction of spurs by moving the frequencies away  
from the integer boundary.  
The PLL is fractional-N PLL with a programmable delta-sigma modulator up to 4th order. The fractional  
denominator is a programmable 32-bit long, which can easily provide fine frequency steps below 1-Hz resolution,  
or be used to do exact fractions like 1/3, 7/1000, and many others. The phase frequency detector goes up to 300  
MHz in fractional mode or 400 MHz in integer mode, although minimum N-divider values must also be taken into  
account.  
For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase  
relationship between the OSCin and RFout pins deterministic. When this is done, the phase can be adjusted in  
very fine steps of the VCO period divided by the fractional denominator.  
The ultra-fast VCO calibration is designed for applications where the frequency must be swept or abruptly  
changed. The frequency can be manually programmed, or the device can be set up to do ramps and chirps.  
The JESD204B support includes using the RFoutB output to create a differential SYSREF output that can be  
either a single pulse or a series of pulses that occur at a programmable distance away from the rising edges of  
the output signal.  
The LMX2594 device requires only a single 3.3-V power supply. The internal power supplies are provided by  
integrated LDOs, eliminating the need for high-performance external LDOs.  
The digital logic for the SPI interface and is compatible with voltage levels from 1.8 V to 3.3 V.  
Table 1 shows the range of several of the dividers, multipliers, and fractional settings.  
Table 1. Range of Dividers, Multipliers, and Fractional Settings  
PARAMETER  
MIN  
MAX  
COMMENTS  
Outputs enabled  
0
2
The low noise doubler can be used to increase the  
phase detector frequency to improve phase noise and  
avoid spurs. This is in reference to the OSC_2X bit.  
OSCin doubler  
0 (1X)  
1 (2X)  
Only use the Pre-R divider if the multiplier is used and  
the input frequency is too high for the multiplier.  
Pre-R divider  
Multiplier  
1 (bypass)  
3
128  
7
This is in reference to the MULT word.  
The maximum input frequency for the Post-R divider is  
250 MHz. Use the Pre-R divider if necessary.  
Post-R divider  
1 (bypass)  
255  
The minimum divide depends on modulator order and  
VCO frequency. See N-Divider and Fractional Circuitry  
for more details.  
N divider  
28  
524287  
The fractional denominator is programmable and can  
assume any value between 1 and 232–1; it is not a  
fixed denominator.  
Fractional numerator/  
denominator  
1 (Integer mode)  
0
232 – 1 = 4294967295  
Fractional order  
(MASH_ORDER)  
Order 0 is integer mode and the order can be  
programmed  
4
This is the series of several dividers. Also, be aware  
that above 10 GHz, the maximum allowable channel  
divider value is 6.  
Channel divider  
1 (bypass)  
10 MHz  
768  
This is implied by the minimum VCO frequency divided  
by the maximum channel divider value.  
Output frequency  
15 GHz  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.2 Functional Block Diagram  
Loop Filter  
CPout  
Phase  
Detector  
OSCinP  
Vtune  
Input  
signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Multiplier  
Charge  
Pump  
RFoutAP  
ϕ
MUX  
MUX  
Vcc  
Vcc  
OSCinM  
RFoutAM  
RFoutBM  
Channel  
Divider  
Sigma-Delta  
Modulator  
CSB  
SCK  
SDI  
Serial Interface  
Control  
RFoutBP  
N Divider  
SYSREF  
MUXout  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Reference Oscillator Input  
The OSCin pins are used as a frequency reference input to the device. The input is high impedance and requires  
AC-coupling caps at the pin. A CMOS clock or XO can drive the single-ended OSCin pins. Differential clock input  
is also supported, making it easier to interface with high-performance system clock devices such as TI’s LMK  
series clock devices. As the OSCin signal is used as a clock for the VCO calibration, a proper reference signal  
must be applied at the OSCin pin at the time of programming FCAL_EN.  
7.3.2 Reference Path  
The reference path consists of an OSCin doubler (OSC_2X), Pre-R divider, multiplier (MULT) and a Post-R  
divider.  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
OSCin  
Multiplier  
Phase Frequency Detector  
Figure 22. Reference Path Diagram  
The OSCin doubler (OSC_2X) can double up low OSCin frequencies. Pre-R (PLL_R_PRE) and Post-R (PLL_R)  
dividers both divide frequency down while the multiplier (MULT) multiplies frequency up. The purposes of adding  
a multiplier is to reduce integer boundary spurs or to increase the phase detector frequency. Use Equation 1 to  
calculate the phase detector frequency, fPD  
:
fPD = fOSC × OSC_2X × MULT / (PLL_R_PRE × PLL_R)  
(1)  
In the OSCin doubler or input multiplier is used, the OSCin signal should have a 50% duty cycle as both the  
rising and falling edges are used.  
If neither the OSCin doubler nor the input multiplier are used, only rising edges of the OSCin signal are used  
and duty cycle is not critical.  
The input multiplier and OSCin doubler should not both be used at the same time.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (continued)  
7.3.2.1 OSCin Doubler (OSC_2X)  
The OSCin doubler allows one to double the input reference frequency up to 400 MHz. This doubler adds  
minimal noise and is useful for raising the phase detector frequency for better phase noise and also to avoid  
spurs. When the phase-detector frequency is increased, the flat portion of the PLL phase noise improves.  
-80  
Doubler Disabled, Fpd=100 MHz  
Doubler Enabled, Fpd=200 MHz  
-84  
-88  
-92  
-96  
-100  
-104  
-108  
-112  
-116  
-120  
-124  
-128  
-132  
-136  
-140  
1x102  
2x102  
5x102  
1x103  
2x103  
5x103  
1x104  
2x104  
5x104  
1x105  
2x105  
5x105  
1x106  
Offset (Hz)  
tc_O  
Figure 23. Benefit of Using the OSC_2X Doubler at 14 GHz  
7.3.2.2 Pre-R Divider (PLL_R_PRE)  
The Pre-R divider is useful for reducing the input frequency so that the programmable multiplier (MULT) can be  
used to help meet the maximum 250-MHz input frequency limitation to the PLL-R divider. Otherwise, it does not  
have to be used.  
7.3.2.3 Programmable Multiplier (MULT)  
The MULT is useful for shifting the phase-detector frequency to avoid integer boundary spurs. The multiplier  
allows a multiplication of 3, 4, 5, 6, or 7. Be aware that unlike the doubler, the programmable multiplier degrades  
the PLL figure of merit. This only would matter, however, for a clean reference and if the loop bandwidth was  
wide.  
7.3.2.4 Post-R Divider (PLL_R)  
The Post-R divider can be used to further divide down the frequency to the phase detector frequency. When it is  
used (PLL_R > 1), the input frequency to this divider is limited to 250 MHz.  
7.3.2.5 State Machine Clock  
The state machine clock is a divided down version of the OSCin signal that is used internally in the device. This  
divide value is 1, 2, 4, or 8, and is determined by CAL_CLK_DIV programming word (described in the  
Programming section). This state machine clock impacts various features like the lock detect delay, VCO  
calibration, and ramping. The state machine clock is calculated as fsmclk = fOSC / 2CAL_CLK_DIV  
.
7.3.3 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-R divider and N-divider, and generates a correction current  
corresponding to the phase error until the two signals are aligned in-phase. This charge-pump current is software  
programmable to many different levels, allowing modification of the closed-loop bandwidth of the PLL. See the  
Application Information section for more information.  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Feature Description (continued)  
7.3.4 N-Divider and Fractional Circuitry  
The N-divider includes fractional compensation and can achieve any fractional denominator from 1 to (232 – 1).  
The integer portion of N is the whole part of the N-divider value, and the fractional portion, Nfrac = NUM / DEN, is  
the remaining fraction. In general, the total N-divider value is determined by N + NUM / DEN. The N, NUM and  
DEN are software programmable. The higher the denominator, the finer the resolution step of the output. For  
example, even when using fPD = 200 MHz, the output can increment in steps of 200 MHz / (232 – 1) = 0.047 Hz.  
Equation 2 shows the relationship between the phase detector and VCO frequencies. Note that in SYNC mode,  
there is an extra divider that is not shown in Equation 2.  
NUM  
DEN  
fVCO = fpd ì N +  
÷
«
(2)  
The sigma-delta modulator that controls this fractional division is also programmable from integer mode to fourth  
order. To make the fractional spurs consistent, the modulator is reset any time that the R0 register is  
programmed.  
The N-divider has minimum value restrictions based on the modulator order and VCO frequency. Furthermore,  
the PFD_DLY_SEL bit must be programmed in accordance to the Table 2.  
Table 2. Minimum N-Divider Restrictions  
MASH_ORDER  
fVCO (MHz)  
12500  
> 12500  
10000  
10000-12500  
>12250  
MINIMUM N  
PFD_DLY_SEL  
0
28  
32  
28  
32  
36  
32  
36  
36  
40  
44  
48  
1
2
1
2
3
2
3
3
4
5
6
1
2
3
4
10000  
>10000  
10000  
>10000  
10000  
>10000  
7.3.5 MUXout Pin  
The MUXout pin can be used to readback programmable states of the device or for lock detect.  
Table 3. MUXout Pin Configurations  
MUXOUT_SEL  
FUNCTION  
Readback  
0
1
Lock Detect  
7.3.5.1 Lock Detect  
The MUXout pin can be configured for lock detect done in by reading back the rb_LD_VTUNE field or using the  
pin as shown in the Table 4.  
Table 4. Configuring the MUXout Pin for Lock Detect  
FIELD  
PROGRAMMING  
DESCRIPTION  
0 = VCO Calibration Status  
1 = Indirect Vtune  
LD_TYPE  
LD_DLY  
OUT_MUTE  
Select Lock Detect Type.  
0 to 65535  
Only valid for Vtune lock detect. This is a delay in state machine cycles.  
Turns off outputs when lock detect is low.  
0 = Disabled  
1 = Enabled  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
 
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
VCO calibration status lock detect works by indicating a low signal on the MUXout pin whenever the VCO is  
calibrating or the LD_DLY counter is running. The delay from the LD_DLY is added to the true VCO calibration  
time (tVCOCAL), so it can be used to account for the analog lock time of the PLL.  
Indirect Vtune lock detect is based on internally generated voltage that is related to (but not the same as) the  
Vtune voltage of the charge pump. It indicates a high signal on MUXout pin or reads back state 2 of  
rb_LD_VTUNE when the device is locked.  
7.3.5.2 Readback  
The MUXout pin can be configured to read back useful information from the device. Common uses for readback  
are:  
1. Read back registers to ensure that they have been programmed to the correct value.  
2. Read back the lock detect status to determine if the PLL is in lock.  
3. Read back VCO calibration information so that it can be used to improve the lock time.  
4. Read back information to help troubleshoot.  
7.3.6 VCO (Voltage-Controlled Oscillator)  
The LMX2594 includes a fully integrated VCO. The VCO takes the voltage from the loop filter and converts this  
into a frequency. The VCO frequency is related to the other frequencies is shown in Equation 3:  
fVCO = fPD × N divider  
(3)  
7.3.6.1 VCO Calibration  
To reduce the VCO tuning gain and therefore improve the VCO phase-noise performance, the VCO frequency  
range is divided into several different frequency bands. The entire range, 7.5 to 15 GHz, covers an octave that  
allows the divider to take care of frequencies below the lower bound. This creates the need for frequency  
calibration to determine the correct frequency band given a desired output frequency. The frequency calibration  
routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. It is important that a  
valid OSCin signal must present before VCO calibration begins.  
The VCO also has an internal amplitude calibration algorithm to optimize the phase noise which is also activated  
any time the R0 register is programmed.  
The optimum internal settings for this are temperature dependent. If the temperature is allowed to drift too much  
without being recalibrated, some minor phase noise degradation could result. The maximum allowable drift for  
continuous lock, ΔTCL, is stated in the electrical specifications. For this device, a number of 125°C means the  
device never loses lock if the device is operated under the Recommended Operating Conditions.  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
The LMX2594 allows the user to assist the VCO calibration. In general, there are three kinds of assistance, as  
shown in Table 5:  
Table 5. Assisting the VCO Calibration Speed  
ASSISTANCE LEVEL  
DESCRIPTION  
PROGRAMMABLE SETTINGS  
User does nothing to improve VCO calibration speed, but the user-specified  
VCO_SEL, VCO_DACISET_STRT and VCO_CAPCTRL_STRT values do  
affect the starting point of VCO calibration. For oscillation to start up  
properly and for VCO to calibrate correctly, TI recommends setting  
VCO_SEL = 7, VCO_DACISET_STRT = 300 and VCO_CAPCTRL_STRT =  
183 for all frequencies except 11.9 GHz ~ 12.1 GHz. For frequencies within  
11.9 ~ 12.1 GHz, user must use VCO_SEL = 4 for proper VCO calibration.  
QUICK_RECAL_EN=0  
VCO_SEL_FORCE=0  
VCO_DACISET_FORCE=0  
VCO_CAPCTRL_FORCE=0  
No assist  
QUICK_RECAL_EN=0  
VCO_SEL_FORCE=0  
VCO_DACISET_FORCE=0  
VCO_CAPCTRL_FORCE=0  
Upon every frequency change, before the FCAL_EN bit is checked, the  
user provides the initial starting point for the VCO core (VCO_SEL), band  
(VCO_CAPCTRL_STRT), and amplitude (VCO_DACISET_STRT) based on  
Table 6.  
Partial assist  
QUICK_RECAL_EN=1  
VCO_SEL_FORCE=0  
VCO_DACISET_FORCE=0  
VCO_CAPCTRL_FORCE=0  
Upon initialization of the device, user enables QUICK_RECAL_EN bit.  
Close Frequency Assist The VCO uses the current VCO_CAPCTRL and VCO_DACISET_STRT  
settings as the initial starting point.  
The user forces the VCO core (VCO_SEL), amplitude settings  
(VCO_DACISET), and frequency band (VCO_CAPCTRL) and manually  
sets the value. If the two frequency points are no more than 5MHz apart  
QUICK_RECAL_EN=0  
VCO_SEL_FORCE=1  
Full assist  
and on the same VCO core, the user can set the VCO amplitude and  
capcode for any frequency between those two points using linear  
interpolation.  
VCO_DACISET_FORCE=1  
VCO_CAPCTRL_FORCE=1  
To do the partial assist for the VCO calibration, follow this procedure:  
1. Determine the VCO Core  
Find a VCO Core that includes the desired VCO frequency. If at the boundary of two cores, choose one  
based on phase noise or performance.  
2. Calculate the VCO CapCode as follows:  
VCO_CAPCTRL_STRT = round (CCoreMin – (CCoreMin – CCoreMax) × (fVCO – fCoreMin) / (fCoreMax – fCoreMin))  
3. Get the VCO amplitude setting from Table 6.  
VCO_DACISET_STRT = round (ACoreMin + (ACoreMax – ACoreMin) × (fVCO – fCoreMin)/(fCoreMax – fCoreMin))  
Table 6. VCO Core Ranges  
VCO CORE  
VCO1  
fCoreMin  
7500  
fCoreMax  
8600  
CCoreMin  
164  
CCoreMax  
ACoreMin  
299  
ACoreMax  
240  
12  
16  
19  
0
VCO2  
8600  
9800  
165  
356  
247  
VCO3  
9800  
10800  
12000  
12900  
13900  
15000  
158  
324  
224  
VCO4  
10800  
12000  
12900  
13900  
140  
383  
244  
VCO5  
183  
36  
6
205  
146  
VCO6  
155  
242  
163  
VCO7  
175  
19  
323  
244  
SPACE  
NOTE  
In the range of 11900 MHz to 12100 MHz, VCO assistance cannot be used, and the  
settings must be: VCO_SEL 4, VCO_DACISET_STRT 300, and  
=
=
VCO_CAPCTRL_STRT = 1. Outside this range, in the partial assist for the VCO  
calibration, the VCO calibration runs. This means that if the settings are incorrect, the  
VCO still locks with the correct settings. The only consequence is that the calibration time  
might be a little longer. The closer the calibration settings are to the true final settings, the  
faster the VCO calibration will be.  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
 
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.3.6.2 Determining the VCO Gain  
The VCO gain varies between the seven cores and is the lowest at the lowest end of the band and highest at the  
highest end of each band. For a more accurate estimation, use Table 7:  
Table 7. VCO Gain  
CORE  
VCO1  
VCO2  
VCO3  
VCO4  
VCO5  
VCO6  
VCO7  
f1  
f2  
Kvco1  
73  
Kvco2  
114  
121  
132  
141  
215  
218  
239  
7500  
8600  
8600  
9800  
61  
9800  
10800  
12000  
12900  
13900  
15000  
98  
10800  
12000  
12900  
13900  
106  
170  
172  
182  
Based on Table 7, Equation 4 can estimate the VCO gain for an arbitrary VCO frequency of fVCO  
:
Kvco = Kvco1 + (Kvco2 – Kvco1) × (fVCO – f1) / (f2 – f1)  
(4)  
7.3.7 Channel Divider  
To go below the VCO lower bound of 7.5 GHz, the channel divider can be used. The channel divider consists of  
four segments, and the total division value is equal to the multiplication of them. Therefore, not all values are  
valid.  
MUX  
RFoutA  
Divide by  
2 or 3  
Divide by  
2,4,6,8  
Divide by  
2,4,6,8,16  
1/2  
MUX  
VCO  
MUX  
RFoutB  
Figure 24. Channel Divider  
When the channel divider is used, there are limitations on the values. Table 8 shows how these values are  
implemented and which segments are used.  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Table 8. Channel Divider Segments  
EQUIVALENT  
DIVISION  
VALUE  
FREQUENCY  
LIMITATION  
OutMin (MHz)  
OutMax (MHz)  
CHDIV[4:0]  
SEG0  
SEG1  
SEG2  
SEG3  
2
4
3750  
1875  
7500  
3750  
0
1
2
2
1
2
1
1
1
1
None  
6
1250  
2500  
2
2
3
1
1
8
937.5  
1437.5  
958.333  
718.75  
479.167  
359.375  
239.583  
179.6875  
159.722  
119.792  
89.844  
59.896  
44.922  
29.948  
22.461  
14.974  
n/a  
3
2
2
2
1
12  
625  
4
2
3
2
1
16  
468.75  
312.5  
5
2
2
4
1
24  
6
2
2
6
1
32  
234.375  
156.25  
117.1875  
104.167  
78.125  
58.594  
39.0625  
29.297  
19.531  
14.648  
9.766  
7
2
2
8
1
48  
8
2
3
8
1
64  
9
2
2
8
2
72  
fVCO 11.5 GHz  
10  
11  
12  
13  
14  
15  
16  
17  
18-31  
2
3
6
2
96  
2
3
8
2
128  
192  
256  
384  
512  
768  
Invalid  
2
2
8
4
2
2
8
6
2
2
8
8
2
3
8
8
2
2
8
16  
16  
n/a  
2
3
8
n/a  
n/a  
n/a  
n/a  
n/a  
The channel divider is powered up whenever an output (OUTx_MUX) is selected to the channel divider or  
SysRef, regardless of whether it is powered down or not. When an output is not used, TI recommends selecting  
the VCO output to ensure that the channel divider is not unnecessarily powered up.  
Table 9. Channel Divider  
OUTA MUX  
Channel Divider  
X
OUTB MUX  
CHANNEL DIVIDER  
Powered up  
X
Channel Divider or SYSREF  
Powered up  
All Other Cases  
Powered down  
7.3.8 Output Buffer  
The RF output buffer type is open collector and requires an external pullup to Vcc. This component may be a 50-  
Ω resistor to target 50-Ω output impedance match, or an inductor for higher output power at the expense of the  
output impedance being far from 50 Ω. If inductor is used, it is recommended to follow with resistive pad for  
better impedance matching. The current to the output buffer increases for states 0 to 31 and then again from  
states 48 to 63. States 32 to 47 are redundant and mimic states 16 to 31. If using a resistor, limit the  
OUTx_PWR setting to 50. Higher settings may actually reduce power due to the voltage drop across the resistor.  
Table 10. OUTx_PWR Recommendations for Resistor Pullup  
RECOMMENDATION  
fOUT  
COMMENTS  
LOWEST NOISE  
FLOOR  
HIGHEST POWER  
OUTx_PWR = 50  
OUTx_PWR = 15  
OUTx_PWR = 31  
10 MHz fOUT < 13.3 GHz  
13.3 GHz fOUT 14.3 GHz  
14.3 GHz < fOUT 15 GHz  
OUTx_PWR = 50  
OUTx_PWR = 15  
OUTx_PWR = 20  
-
TI recommends to set OUTx_PWR 15 to avoid  
the power drop at hot temperature.  
-
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.3.9 Power-Down Modes  
The LMX2594 can be powered up and down using the CE pin or the POWERDOWN bit. When the device comes  
out of the powered down state, either by resuming the POWERDOWN bit to zero or by pulling back CE pin  
HIGH, register R0 must be programmed with FCAL_EN high again to re-calibrate the device.  
7.3.10 Phase Synchronization  
7.3.10.1 General Concept  
The SYNC pin allows one to synchronize the LMX2594 such that the delay from the rising edge of the OSCin  
signal to the output signal is deterministic. Initially, the devices are locked to the input, but are not synchronized.  
The user sends a synchronization pulse that is reclocked to the next rising edge of the OSCin pulse. After a  
given time, t1, the phase relationship from OSCin to fOUT will be deterministic. This time is dominated by the sum  
of the VCO calibration time, the analog setting time of the PLL loop, and the MASH_RST_CNT if used in  
fractional mode.  
...  
Device 1  
SYNC  
...  
Device 2  
...  
...  
fOSC  
t2  
t1  
Figure 25. Devices Are Now Synchronized to OSCin Signal  
When the SYNC feature is enabled, part of the channel divide may be included in the feedback path. This will be  
referred to as IncludedDivide  
Table 11. IncludedDivide With VCO_PHASE_SYNC = 1  
OUTx_MUX  
CHANNEL DIVIDER  
Don't Care  
INCLUDEDDIVIDE  
1
OUTA_MUX = OUTB_MUX = 1 ("VCO")  
Divisible by 3, but NOT 24 or 192  
All other values  
SEG0 × SEG1 = 6  
SEG0 × SEG1 = 4  
All Other Valid Conditions  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
External loop filter  
RFoutA  
RFoutB  
MUX  
MUX  
Pre-R  
Divider  
R
OSCin  
Doubler  
X M  
Divider  
Charge  
Pump  
SEG0  
f
SEG2  
SEG1  
SEG3  
N Divider  
Figure 26. Phase SYNC Diagram  
7.3.10.2 Categories of Applications for SYNC  
The requirements for SYNC depend on certain setup conditions. In cases that the SYNC is not timing critical, it  
can be done through software by toggling the VCO_PHASE_SYNC bit from 0 to 1. When it is timing critical, then  
it must be done through the pin and the setup and hold times for the OSCin pin are critical. Figure 27 gives the  
different categories.  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Start  
NO  
CHDIV<512  
This means the Channel divider  
after the VCO is less than 512  
CHDIV <512  
?
CHDIV = 1,2,4,6  
This means the channel divider after the  
VCO is either bypassed,2,4, or 6. In this  
case, SYNC mode will put it in the loop.  
M = 1  
M is the product of any input  
path multiplication due to the  
OSC_2X bit and MULT word.  
If neither of these are used,  
M=1.  
Category 4  
Device can NOT be reliably  
used in SYNC mode  
NO  
NO  
M = 1  
?
CHDIV = 1,2,4,6  
?
NO  
fOUT%(M‡ fOSC)=0  
fOUT % (M‡ fOSC)= 0  
fOUT % fOSC = 0  
Category 3  
ñ SYNC Required  
ñ SYNC Timing Critical  
ñ Limitations on fOSC  
M is the product of any  
input multiplication. This  
requirement is testing if  
the output frequency is a  
multiple of the highest  
frequency in the input  
path.  
This means that the output  
frequency (fOUT) is an integer  
multiple of the input frequency  
NO  
fOUT % fOSC = 0  
?
(fOSC  
)
CHDIV = 1,2,4,6  
This means the channel  
divider after the VCO is  
either bypassed,2,4, or 6. In  
this case, SYNC mode will  
put it in the loop.  
Category 2  
ñ SYNC Required  
ñ SYNC Timing NOT critical  
ñ No limitations on fOSC  
NO  
CHDIV = 1,2,4, 6  
?
Integer Mode  
This is asking if the device  
is in integer mode, which  
would mean the fractional  
numerator is zero.  
YES  
NO  
Integer Mode  
?
Category 1  
NO  
ñ SYNC Mode Required  
ñ No Software/Pin SYNC Pulse  
required  
CHDIV=1?  
Category 1  
ñ SYNC Mode Not required at all  
ñ No limitations on fOSC  
Figure 27. Determining the SYNC Category  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.3.10.3 Procedure for Using SYNC  
This procedure must be used to put the device in SYNC mode.  
1. Use the flowchart to determine the SYNC category.  
2. Make determinations for OSCin and using SYNC based on the category.  
1. If Category 4, SYNC cannot be performed in this setup.  
2. If category 3, ensure that the maximum fOSC frequency for SYNC is not violated and there are hardware  
accommodations to use the SYNC pin.  
3. Determine the value of IncludedDivide:  
1. If OUTA_MUX is not channel divider and OUTB_MUX is not channel divider or SysRef, then  
IncludedDivide = 1.  
2. Otherwise, IncludedDivide = 2 × SEG1. In the case that the channel divider is 2, then IncludedDivide=4.  
4. If not done already, divide the N-divider and fractional values by IncludedDivide to account for the  
IncludedDivide.  
5. Program the device with the VCO_PHASE_SYNC = 1. Note that this does not count as applying a SYNC to  
device (for category 2).  
6. Apply the SYNC, if required:  
1. If category 2, VCO_PHASE_SYNC can be toggled from 0 to 1. Alternatively, a rising edge can be sent to  
the SYNC pin and the timing of this is not critical.  
2. If category 3, the SYNC pin must be used, and the timing must be away from the rising edge of the  
OSCin signal. Toggling the SYNC pin runs VCO calibration when FCAL_EN = 1. If FCAL_EN = 0 then  
SYNC pin does not function.  
7.3.10.4 SYNC Input Pin  
The SYNC input pin can be driven either in CMOS or LVDS mode. However, if not using SYNC mode  
(VCO_PHASE_SYNC = 0), then the INPIN_IGNORE bit must be set to one, otherwise it causes issues with lock  
detect. If the pin is desired for to be used and VCO_PHASE_SYNC = 1, then set INPIN_IGNORE = 0. LVDS or  
CMOS mode may be used. LVDS works to 250 mVPP, but is not ensured in production.  
7.3.11 Phase Adjust  
The MASH_SEED word can use the sigma-delta modulator to shift output signal phase with respect to the input  
reference. If a SYNC pulse is sent (software or pin) or the MASH is reset with MASH_RST_N, then this phase  
shift is from the initial phase of zero. If the MASH_SEED word is written to, then this phase is added. Use  
Equation 5 to calculate the phase shift.  
Phase shift in degrees = 360 × ( MASH_SEED / PLL_DEN) × ( IncludedDivide / CHDIV )  
(5)  
Example:  
Mash seed = 1  
Denominator = 12  
Channel divider = 16  
Phase shift (VCO_PHASE_SYNC = 0) = 360 × (1/12) × (1/16) = 1.875 degrees  
Phase Shift (VCO_PHASE_SYNC = 1) = 360 × (1/12) × (4/16) = 7.5 degrees  
There are several considerations with phase shift with MASH_SEED:  
Phase shift can be done with a FRAC_NUM = 0, but MASH_ORDER must be greater than zero. For  
MASH_ORDER = 1, the phase shifting only occurs when MASH_SEED is a multiple of PLL_DEN.  
For the phase adjust, the condition PLL_DEN > PLL_NUM + MASH_SEED must be satisfied.  
When MASH_SEED and Phase SYNC are used together with IncludedDivide > 1, additional constraints may  
be necessary to produce a monotonic relationship between MASH_SEED and the phase shift, especially  
when the VCO frequency is below 10 GHz. These constraints are application specific, but some general  
guidelines are to reduce modulator order and increase the N divider. One possible guideline is for PLL_N  
45 (2nd order modulator), PLL_N 49 (3rd Order modulator), PLL_N 54 (4th Order Modulator).  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.3.12 Fine Adjustments for Phase Adjust and Phase SYNC  
Phase SYNC refers to the process of getting the same phase relationship for every power-up cycle and each  
time assuming that a given programming procedure is followed. However, there are some adjustments that can  
be made to get the most accurate results. As for the consistency of the phase SYNC, the only source of variation  
could be if the VCO calibration chooses a different VCO core and capacitor, which can introduce a bimodal  
distribution with about 10 ps of variation. If this 10 ps is not desirable, then it can be eliminated by reading back  
the VCO core, capcode, and DACISET values and forcing these values to ensure the same calibration settings  
every time. The delay through the device varies from part to part and can be on the order of 60 ps. This part to  
part variation can be calibrated out with the MASH_SEED. The variation in delay through the device also  
changes on the order of +2.5 ps/°C, but devices on the same board likely have similar temperatures, so this will  
somewhat track. In summary, the device can be made to have consistent delay through the part and there are  
means to adjust out any remaining errors with the MASH_SEED. This tends only to be an issue at higher output  
frequencies when the period is shorter.  
7.3.13 Ramping Function  
The LMX2594 supports the ability to make ramping waveforms using manual mode or automatic mode. In  
manual mode, the user defines a step and uses the RampClk and RampDir pins to create the ramp. In automatic  
mode, the user sets up the ramp with up to two linear segments in advance and the device automatically creates  
this ramp. Table 12 fields apply in both automatic mode and manual pin mode.  
Table 12. Ramping Field Descriptions  
FIELD  
PROGRAMMING  
GENERAL COMMANDS  
DESCRIPTION  
0 = Disabled  
1 = Enabled  
RAMP_EN  
RAMP_EN must be 1 for any ramping functions to work.  
In automatic ramping mode, the ramping is automatic and the  
clock is based on the phase detector. In manual pin ramping  
mode, the clock is based on rising edges on the RampClk  
pin.  
0 = Automatic ramping mode  
1 = Manual pin ramping mode  
RAMP_MANUAL  
This is the amount the fractional numerator is increased for  
each phase detector cycle in the ramp.  
RAMPx_INC  
RAMPx_DLY  
0 to 230 – 1  
0 to 65535  
This is the length of the ramp in phase detector cycles.  
DEALING WITH VCO CALIBRATION  
Whenever the fractional numerator changes this much (either  
positive or negative) because the VCO was last calibrated,  
the VCO is forced to recalibrate.  
RAMP_THRESH  
0 to ± 233 – 1  
0 = Disabled  
1 = Enabled  
When enabled, the VCO is forced to recalibrate at the  
beginning each ramp.  
RAMP_TRIG_CAL  
In ramping mode, the denominator must be fixed to this  
PLL_DEN  
LD_DLY  
4294967295  
0
forced value of 232 – 1. However, the effective denominator in  
ramping mode is 224  
.
This must be zero to avoid interfering with calibration.  
RAMP LIMITS  
2’s complement of the total value of the ramp low and high  
limits can never go beyond. If this value is exceeded, then the  
frequency is limited.  
RAMP_LIMIT_LOW  
RAMP_LIMIT_HIGH  
0 to ± 233 – 1  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Table 13. General Restrictions for Ramping  
RULE  
RESTRICTION  
EXPLANATION  
Minimum Phase Detector Frequency when Ramping  
The phase detector frequency cannot be less than the state machine clock  
frequency, which is calculated from expression on the left-hand side of the  
inequality. This is satisfied provided there is no division in the input path.  
However, if the PLL R-divider is used, it is necessary to adjust CAL_CLK_DIV  
to adjust the state machine clock frequency. This also implies a maximum R  
fOSC/2CAL_CLK_DIV  
fPD  
125 MHz  
Phase Detector  
Frequency  
divide of 8 this is the maximum value of 2CAL_CLK_DIV  
.
Maximum Phase Detector Frequency  
TI recommends to set the phase-detector frequency 125 MHz because, if  
the phase detector frequency is too high, it can lead to distortion in the ramp.  
Higher phase-detector frequency may be possible, but this distortion is  
application specific.  
7.3.13.1 Manual Pin Ramping  
Manual pin ramping is enabled by setting RAMP_EN = 1 and RAMP_MANUAL = 1. The rising edges are applied  
to the RampClk pin are reclocked to the phase detector frequency. The RampDir pin controls the size of the  
change. If a rising edge is seen on the RampClk pin while the VCO is calibrating, then this rising edge is ignored.  
The frequency for the RampClk must be limited to a frequency of 250 kHz or less, and the rising edge of the  
RampDir signal must be targeted away from the rising edges of the RampCLK pin.  
Table 14. RAMP_INC  
RampDir PIN  
Low  
STEP SIZE  
Add RAMP0_INC  
Add RAMP1_INC  
High  
7.3.13.1.1 Manual Pin Ramping Example  
In this ramping example, assume that we want to use the pins for UP/Down control of the ramp for 10-MHz steps  
and the phase detector is 100 MHz.  
Table 15. Step Ramping Example  
FIELD  
PROGRAMMING  
1 = Enabled  
DESCRIPTION  
RAMP_EN  
RAMP_MANUAL  
1 = Manual pin ramping mode  
(10 MHz )/ (100 MHz) × 16777216 = 1677722  
2’s complement = 1677722  
RAMP0_INC  
1677722  
(–10 MHz )/ (100 MHz) × 16777216 = –1677722  
2’s complement = 230 – 1677722 = 1072064102  
RAMP1_INC  
1072064102  
1
RAMP_TRIG_CAL  
Recalibrate at every clock cycle  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
time  
time  
time  
Figure 28. Step Ramping Example  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.3.13.2 Automatic Ramping  
Automatic ramping is enabled when RAMP_EN = 1 and RAMP_MANUAL = 0. The action of programming FCAL  
= 1 starts the ramping. In this mode, there are two ramps that one can use to set the length and frequency  
change. In addition to this, there are ramp limits that can be used to create more complicated waveforms.  
Automatic ramping can really be divided into two classes depending on if the VCO must calibrate in the middle of  
the ramping waveform or not. If the VCO can go the entire range without calibrating, this is calibration-free  
ramping, which is shown in Typical Characteristics. Note that this range is less at hot temperatures and for lower  
frequency VCOs. This range is not ensured, so margin must be built into the design.  
For waveforms that are NOT calibration free, the slew rate of the ramp must be kept less than 250 kHz/µs. Also,  
for all automatic ramping waveforms, be aware that there is a very small phase disturbance as the VCO crosses  
over the integer boundary, so one might consider using the input multiplier to avoid these or timing the VCO  
calibrations at integer boundaries.  
Table 16. Automatic Ramping Field Descriptions  
FIELD  
PROGRAMMING  
DESCRIPTION  
Normally, the ramp clock is equal to the phase detector frequency.  
When this feature is enabled, it reduces the ramp clock by a factor of  
2.  
0 = One clock cycle  
RAMP_DLY  
1 = Two clock cycles  
0 to 65535  
RAMP0_LEN  
RAMP1_LEN  
This is the length of the ramp in clock cycles. Note that the VCO  
calibration time is added to this time.  
RAMP0_INC  
RAMP1_INC  
0 to 230 – 1  
2’s complement of the value for the ramp increment.  
Defines which ramp comes after the current ramp.  
RAMP0_NEXT  
RAMP1_NEXT  
0 = RAMP0  
1 = RAMP1  
0 = Timeout counter  
1 = Trigger A  
2 = Trigger B  
RAMP0_NEXT_TRIG  
RAMP1_NEXT_TRIG  
Determines what triggers the action of the next ramp occurrence.  
3 = Reserved  
0 = Disabled  
1 = RampClk rising edge  
2 = RampDir rising edge  
4 = Always triggered  
9 = RampClk falling edge  
10 = RampDir falling edge  
All other States = invalid  
RAMP_TRIG_A  
RAMP_TRIG_B  
This field defines the ramp trigger.  
RAMP0_RST  
RAMP1_RST  
0 = Disabled  
1 = Enabled  
Enabling this bit causes the ramp to reset to the original value when  
the ramping started. This is useful for roundoff errors.  
This is the number the ramping pattern repeats and only applies for a  
terminating ramping pattern.  
RAMP_BURST_COUNT  
0 to 8191  
0 = Ramp Transition  
1 = Trigger A  
2 = Trigger B  
RAMP_BURST_TRIG  
This defines what causes the RAMP_COUNT to increment.  
3 = Reserved  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.3.13.2.1 Automatic Ramping Example (Triangle Wave)  
Suppose user wants to generate a sawtooth ramp that goes from 8 to 10 GHz in 2 ms (including calibration  
breaks) with a phase-detector frequency of 50 MHz. Divide this into segments of 50 MHz where the VCO ramps  
for 25 µs, then calibrates for 25 µs, for a total of 50 µs. There would therefore be 40 such segments which span  
over a 2-GHz range and would take 2 ms, including calibration time.  
Table 17. Sawtooth Ramping Example  
FIELD  
PROGRAMMING  
1 = Enabled  
DESCRIPTION  
RAMP_EN  
0 = Automatic ramping  
mode  
RAMP_MANUAL  
RAMP_TRIG_CAL  
RAMP_THRESH  
0 = Disabled  
16777216 (= 50-MHz  
ramp_thresh)  
50 MHz / 50 MHz × 224 = 16777216  
RAMP_DLY  
RAMPx_LEN  
RAMP0_INC  
0 = 1 clock cycle  
50000  
1000 µs × 50 MHz = 50000  
(2000 MHz) / (50 MHz) × 224 / 50000 = 13422  
13422  
(–2000 MHz) / (50 MHz) × 224 / 50000 = –13422  
RAMP1_INC  
1073728402  
2’s complement = 230 – 13422 = 1073728402  
RAMP0_NEXT  
RAMP1_NEXT  
1 = RAMP1  
0 = RAMP0  
RAMPx_NEXT_TRIG  
RAMP_TRIG_x  
0 = Timeout counter  
0 = Disabled  
1 = Enabled  
0 = Disabled  
0
RAMP0_RST  
Not necessary, but good practice to reset.  
Do not reset this, or ramp does not work.  
RAMP1_RST  
RAMP_BURST_COUNT  
RAMP_BURST_TRIG  
0 = Ramp Transition  
NOTE  
To calculate ramp_scale_count and ramp_dly_cnt, remember that the desired calibration  
time is 25 µs.  
10  
GHz  
8 GHz  
2 ms  
time  
4 ms  
Figure 29. Triangle Waveform Example  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.3.14 SYSREF  
The LMX2594 can generate a SYSREF output signal that is synchronized to fOUT with a programmable delay.  
This output can be a single pulse, series of pulses, or a continuous stream of pulses. To use the SYSREF  
capability, the PLL must first be placed in SYNC mode with VCO_PHASE_SYNC = 1.  
fOUT  
RFoutA  
MUX  
Rest of Channel  
Divider  
fVCO  
IncludedDivide  
N Divider  
To Phase  
Detector  
Divider  
(SYSREF_DIV_PRE)  
Divider  
(SYSREF_DIV)  
1/2  
fSYSREF  
Delay Circuit  
RFoutB  
Re-clocking  
Circuit  
SysRefReq Pin  
Figure 30. SYSREF Setup  
As Figure 30 shows, the SYSREF feature uses IncludedDivide and SYSREF_DIV_PRE divider to generate  
fINTERPOLATOR. This frequency is used for reclocking of the rising and falling edges at the SysRefReq pin. In  
master mode, the fINTERPOLATOR is further divided by 2 × SYSREF_DIV to generate finite series or continuous  
stream of pulses.  
Table 18. SYSREF Setup  
PARAMETER  
fVCO  
MIN  
7.5  
TYP  
MAX  
15  
UNIT  
GHz  
GHz  
fINTERPOLATOR  
IncludedDivide  
SYSREF_DIV_PRE  
SYSREF_DIV  
0.8  
1.5  
4 or 6  
1, 2, or 4  
4,6,8, ... , 4098  
fINTERPOLATOR = fVCO / (IncludedDivide ×  
SYSREF_DIV_PRE)  
fINTERPOLATOR  
fSYSREF  
Delay step size  
fSYSREF = fINTERPOLATOR / (2 × SYSREF_DIV)  
9
ps  
Pulses for pulsed mode (SYSREF_PULSE_CNT)  
0
15  
n/a  
The delay can be programmed using the JESD_DAC1_CTRL, JESD_DAC2_CTRL, JESD_DAC3_CTRL, and  
JESD_DAC4_CTRL words. By concatenating these words into a larger word called "SYSREFPHASESHIFT", the  
relative delay can be found. The sum of these words should always be 63.  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Table 19. SysRef Delay  
SYSREFPHASESHIFT  
DELAY  
JESD_DAC1  
JESD_DAC2  
JESD_DAC3  
JESD_DAC4  
0
...  
Minimum  
36  
27  
0
0
0
0
0
0
0
0
36  
0
63  
1
37  
62  
...  
99  
0
0
0
0
63  
62  
0
1
100  
...  
161  
162  
163  
225  
226  
247  
> 247  
0
0
0
1
62  
0
0
63  
1
0
0
0
62  
63  
0
0
62  
1
0
0
0
0
Maximum  
Invalid  
41  
22  
Invalid  
Invalid  
Invalid  
Invalid  
7.3.14.1 Programmable Fields  
Table 20 has the programmable fields for the SYSREF functionality.  
Table 20. SYSREF Programming Fields  
FIELD  
PROGRAMMING  
DEFAULT  
DESCRIPTION  
Enables the SYSREF mode. SYSREF_EN  
should be 1 if and only if OUTB_MUX = 2  
(SysRef).  
0: Disabled  
1: Enabled  
SYSREF_EN  
0
1: DIV1  
2: DIV2  
4: DIV4  
SYSREF_DIV_PRE  
SYSREF_REPEAT  
The output of this divider is fINTERPOLATOR.  
Other states: invalid  
In master mode, the device creates a series  
of SYSREF pulses. In repeater mode,  
SYSREF pulses are generated with the  
SysRefReq pin.  
0: Master mode  
1: Repeater mode  
0
Continuous mode continuously makes  
SYSREF pulses, where pulsed mode makes  
a series of SYSREF_PULSE_CNT pulses.  
0: Continuous mode  
1: Pulsed mode  
SYSREF_PULSE  
0
4
In the case of using pulsed mode, this is the  
number of pulses. Setting this to zero is an  
allowable, but not practical state.  
SYSREF_PULSE_CNT  
0 to 15  
0: Divide by 4  
1: Divide by 6  
2: Divide by 8  
...  
This is one of the dividers between the VCO  
and SysRef output used in master mode.  
SYSREF_DIV  
0
2047: Divide by 4098  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.3.14.2 Input and Output Pin Formats  
7.3.14.2.1 Input Format for SYNC and SysRefReq Pins  
These pins are single-ended, but a differential signal can be converted to drive them. In the LVDS mode, if the  
INPIN_FMT is set to LVDS mode, then the bias level can be adjusted with INPIN_LVL and the hysteresis can be  
adjusted with INPIN_HYST.  
VMIN  
SYNC / SysRefReq  
LMX2594  
VMAX  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Driving SYNC/SYSREF With Differential Signal  
7.3.14.2.2 SYSREF Output Format  
The SYSREF output comes in differential format through RFoutB. This will have a minimum voltage of about 2.3  
V and a maximum of 3.3 V. If DC coupling cannot be used, there are two strategies for AC coupling.  
3.3 V  
SysRefOutP  
Data  
Converter  
SysRefOutN  
LMX2594  
3.3 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 32. SYSREF Output  
1. Send a series of pulses to establish a DC-bias level across the AC-coupling capacitor.  
2. Establish a bias voltage at the data converter that is below the threshold voltage by using a resistive divider.  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.3.14.3 Examples  
The SysRef can be used in a repeater mode (SYSREF_REPEAT = 1), which just echos the SysRefReq pin, after  
being reclocked to the fINTERPOLATOR frequency and then fOUT (from RFoutA).  
RFoutAM  
OSCinM  
OSCinP  
RFoutAP  
RFoutBP  
RFoutBM  
SysRefReq  
t2  
t1  
t2  
f
t1  
f
Figure 33. SYSREF Out In Repeater Mode  
In master mode (SYSREF_REPEAT = 0), rising and falling edges at the SysRefReq pin are first reclocked to the  
fOSC, then fINTERPOLATOR, and finally to fOUT. A programmable number of pulses is generated with a frequency  
equal to fVCO  
/ (2 × IncludedDivide × SYSREF_DIV_PRE × SYSREF_DIV). In continuous mode  
(SYSREF_PULSE = 0), the SysRefReq pin is held high to generate a continuous stream of pulses. In pulse  
mode (SYSREF_PULSE = 1), a finite number of pulses determined by SYSREF_PULSE_CNT is sent for each  
rising edge of the SysRefReq pin.  
RFoutAM  
OSCinM  
OSCinP  
RFoutAP  
RFoutBP  
RFoutBM  
SysRefReq  
f
f
Figure 34. Figure 1. SYSREF Out In Pulsed/Continuous Mode  
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.3.14.4 SYSREF Procedure  
To use SYSREF, do the these steps:  
1. Put the device in SYNC mode using the procedure already outlined.  
2. Figure out IncludedDivide the same way it is done for SYNC mode.  
3. Calculate the SYSREF_DIV_PRE value such that the interpolator frequency (fINTERPOLATOR) is in the range of  
800 to 1500 MHz. fINTERPOLATOR = fVCO/IncludedDivide/SYSREF_DIV_PRE. Make this frequency a multiple of  
fOSC if possible.  
4. If using continuous mode (SYSREF_PULSE = 0), ensure the SysRefReq pin is high.  
5. If using pulse mode (SYSREF_PULSE = 1), set up the pulse count as desired. Pulses are created by  
toggling the SysRefReq pin.  
6. Adjust the delay between the RFoutA and RFoutB signal using the JESD_DACx_CTL fields.  
7.3.15 SysRefReq Pin  
The SysRefReq pin can be used in CMOS all the time, or LVDS mode is also optional if SYSREF_REPEAT = 1.  
LVDS mode cannot be used in master mode.  
7.4 Device Functional Modes  
Although there are a vast number of ways to configure this device, only one is really functional.  
Table 21. Device Functional Modes  
MODE  
DESCRIPTION  
SOFTWARE SETTINGS  
Registers are held in their reset state. This device does have a  
power on reset, but it is good practice to also do a software reset if  
RESET  
there is any possibility of noise on the programming lines, especially RESET = 1, POWERDOWN = 0  
if there is sharing with other devices. Also realize that there are  
registers not disclosed in the data sheet that are reset as well.  
POWERDOWN = 1  
POWERDOWN  
Normal operating mode  
SYNC mode  
Device is powered down.  
or CE Pin = Low  
This is used with at least one output on as a frequency synthesizer.  
This is used where part of the channel divider is in the feedback path  
VCO_PHASE_SYNC = 1  
to ensure deterministic phase.  
VCO_PHASE_SYNC =1,  
In this mode, RFoutB is used to generate pulses for SYSREF.  
SYSREF_EN = 1  
SYSREF mode  
Copyright © 2017–2019, Texas Instruments Incorporated  
39  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.5 Programming  
The LMX2594 is programmed using 24-bit shift registers. The shift register consists of a R/W bit (MSB), followed  
by a 7-bit address field and a 16-bit data field. For the R/W bit, 0 is for write, and 1 is for read. The address field  
ADDRESS[6:0] is used to decode the internal register address. The remaining 16 bits form the data field  
DATA[15:0]. While CSB is low, serial data is clocked into the shift register upon the rising edge of clock (data is  
programmed MSB first). When CSB goes high, data is transferred from the data field into the selected register  
bank. See Figure 1 for timing details.  
7.5.1 Recommended Initial Power-Up Sequence  
For the most reliable programming, TI recommends this procedure::  
1. Apply power to device.  
2. Program RESET = 1 to reset registers.  
3. Program RESET = 0 to remove reset.  
4. Program registers as shown in the register map in REVERSE order from highest to lowest.  
5. Wait 10 ms.  
6. Program register R0 one additional time with FCAL_EN = 1 to ensure that the VCO calibration runs from a  
stable state.  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies is as follows:  
1. Change the N-divider value.  
2. Program the PLL numerator and denominator.  
3. Program FCAL_EN (R0[3]) = 1.  
7.5.3 General Programming Requirements  
Follow these requirements when programming the device:  
1. For register bits that do not have field names in Table 23, it is necessary to program these values just as  
shown in the register map.  
2. Not all registers need to be programmed. Refer to Table 22 for details.  
3. Power-on-reset register values may not be optimal, so it is always necessary to program all of the required  
registers after powering on the device. Note that the 'Reset' column in register descriptions is the power-on-  
reset value.  
Table 22. Programming Requirement  
Registers  
Function  
Comment  
R107 – R112  
Readback  
These registers are for readback only and do not need to be programmed.  
If ramping function is not used (RAMP_EN = 0), then these registers do not need to be  
programmed.  
R79 – R106  
R0 – R78  
Ramping  
General  
These registers need to be programmed for all scenarios.  
40  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6 Register Maps  
Table 23. Full Register Map  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VCO  
_PH  
ASE  
_SY  
NC  
MUX  
OUT  
_MU  
TE  
FCA  
L
_EN  
POW  
ERD  
OWN  
RAMP  
_EN  
FCAL_HPF FCAL_LPFD  
D_ADJ _ADJ  
OUT RES  
_LD_ ET  
SEL  
R0  
0
0
0
0
0
0
0
0
1
0
0
1
1
R1  
R2  
R3  
R4  
R5  
R6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
0
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
CAL_CLK_DIV  
1
0
0
0
1
1
0
1
0
0
0
0
0
0
1
0
0
ACAL_CMP_DLY  
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
OUT  
_FO  
RCE  
R7  
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
0
1
1
0
0
1
0
VCO  
_DA  
CISE  
T_F  
ORC  
E
VCO  
_CA  
PCT  
RL_F  
ORC  
E
R8  
R9  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
OSC  
_2X  
0
0
1
0
1
0
0
0
1
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
MULT  
1
1
0
0
0
0
0
0
PLL_R  
PLL_R_PRE  
0
1
0
0
0
0
0
0
1
1
0
0
0
1
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
CPG  
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
1
VCO_DACISET  
VCO_DACISET_STRT  
0
1
0
1
1
0
0
1
0
0
VCO_CAPCTRL  
VCO  
_SEL  
_FO  
R20  
R21  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
VCO_SEL  
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
RCE  
0
0
1
Copyright © 2017–2019, Texas Instruments Incorporated  
41  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 23. Full Register Map (continued)  
R/W  
0
A6  
0
A5  
0
A4  
1
A3  
0
A2  
1
A1  
1
A0  
0
D15  
0
D14 D13 D12 D11 D10  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
0
1
0
1
0
1
1
0
0
0
1
1
0
1
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
0
1
0
0
1
1
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1
1
0
0
CHDI  
V
_DIV  
2
R31  
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
1
1
0
0
R32  
R33  
R34  
R35  
R36  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
PLL_N[18:16]  
1
0
0
PLL_N  
MASH  
_SEED  
_EN  
R37  
0
0
1
0
0
1
0
1
0
PFD_DLY_SEL  
0
0
0
0
0
1
0
0
R38  
R39  
R40  
R41  
R42  
R43  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
PLL_DEN[31:16]  
PLL_DEN[15:0]  
[31:16]  
[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
MAS  
H_R  
ESE  
T_N  
OUT OUT  
B_P A_P  
R44  
0
0
1
0
1
1
0
0
0
0
OUTA_PWR  
0
0
MASH_ORDER  
D
D
R45  
R46  
R47  
R48  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
OUTA_MUX OUT_ISET  
0
1
1
1
1
1
0
0
1
1
0
0
OUTB_PWR  
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
OUTB_MUX  
0
0
0
0
42  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Register Maps (continued)  
Table 23. Full Register Map (continued)  
R/W  
0
A6  
0
A5  
1
A4  
1
A3  
0
A2  
0
A1  
0
A0  
1
D15  
0
D14 D13 D12 D11 D10  
D9  
0
D8  
1
D7  
1
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
INPI  
INPIN_IGNO  
RE  
R58  
0
0
1
1
1
0
1
0
N_H INPIN_LVL  
YST  
INPIN_FMT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
LD_T  
YPE  
R59  
0
0
1
1
1
0
1
1
0
0
0
0
0
0
0
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
LD_DLY  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
SYS  
SYS  
REF  
_PUL  
SE  
SYS REF  
REF _RE  
_EN PEA  
T
R71  
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
SYSREF_DIV_PRE  
0
1
0
R72  
R73  
R74  
R75  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
SYSREF_DIV  
JESD_DAC2_CTRL  
JESD_DAC4_CTRL  
CHDIV  
JESD_DAC1_CTRL  
JESD_DAC3_CTRL  
SYSREF_PULSE_CNT  
0
0
0
0
1
0
0
0
0
0
Copyright © 2017–2019, Texas Instruments Incorporated  
43  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 23. Full Register Map (continued)  
R/W  
0
A6  
1
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0  
0
D15  
0
D14 D13 D12 D11 D10  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
0
D0  
0
R76  
R77  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
RAM  
P_T  
HRE  
SH[3  
2]  
QUIC  
K_R  
ECA  
L_EN  
R78  
0
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VCO_CAPCTRL_STRT  
1
R79  
R80  
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
RAMP_THRESH[31:16]  
RAMP_THRESH[15:0]  
RAM  
P_LI  
MIT_  
HIGH  
[32]  
R81  
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R82  
R83  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
1
RAMP_LIMIT_HIGH[31:16]  
RAMP_LIMIT_HIGH[15:0]  
RAM  
P_LI  
MIT_  
LOW  
[32]  
R84  
0
1
0
1
0
1
0
0
0
0
0
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
R93  
R94  
R95  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
RAMP_LIMIT_LOW[31:16]  
RAMP_LIMIT_LOW[15:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RAMP_BUR  
ST_EN  
R96  
R97  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
RAMP_BURST_COUNT  
RAMP_TRIGB  
0
0
RAMP0_RS  
T
RAMP_BUR  
ST_TRIG  
0
0
0
1
RAMP_TRIGA  
0
44  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
Register Maps (continued)  
Table 23. Full Register Map (continued)  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RAM  
P0_D  
LY  
R98  
0
1
1
0
0
0
1
0
RAMP0_INC[29:16]  
0
R99  
0
0
1
1
1
1
0
0
0
0
0
1
1
0
1
0
RAMP0_INC[15:0]  
RAMP0_LEN  
R100  
RAM RAM  
P1 P0  
_RS _NE  
RAM  
P1  
_DLY  
RAMP0  
_NEXT  
_TRIG  
R101  
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
XT  
R102  
R103  
R104  
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
RAMP1_INC[29:16]  
RAMP1_INC[15:0]  
RAMP1_LEN  
RAM  
P_M  
ANU  
AL  
RAM  
P1_N  
EXT  
RAMP1_NE  
XT_TRIG  
R105  
R106  
0
0
1
1
1
1
0
0
1
1
0
0
0
1
1
0
RAMP_DLY_CNT  
0
0
RAM  
P_T  
RIG_  
CAL  
RAMP_SCALE_CO  
UNT  
0
0
0
0
0
0
0
0
0
0
0
R107  
R108  
R109  
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_LD_VTU  
NE  
R110  
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
rb_VCO_SEL  
0
0
0
0
0
R111  
R112  
0
0
1
1
1
1
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
Copyright © 2017–2019, Texas Instruments Incorporated  
45  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.6.1 General Registers R0, R1, & R7  
Figure 35. Registers Excluding Address  
Addre  
ss  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VCO_  
PHAS  
E_SY  
NC_E  
N
MUX  
POW  
ERDO  
WN  
RAMP  
_EN  
OUT_ FCAL_HPFD_ FCAL_LPFD_  
FCAL OUT_ RESE  
_EN LD_S  
EL  
R0  
1
0
0
1
1
MUTE  
ADJ  
ADJ  
T
R1  
R7  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
0
CAL_CLK_DIV  
1
OUT_  
FORC  
E
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R0[15]  
R0[14]  
R0[9]  
RAMP_EN  
R/W  
0
0: Disable frequency ramping mode  
1: Enable frequency ramping mode  
VCO_PHASE_SYNC  
OUT_MUTE  
R/W  
R/W  
0
0
0: Disable phase SYNC mode  
1: Enable phase SYNC mode  
Mute the outputs when the VCO is calibrating.  
0: Disabled. If disabled, also be sure to enable OUT_FORCE  
1: Enabled. If enabled, also be sure to disable OUT_FORCE  
R0[8:7]  
FCAL_HPFD_ADJ  
R/W  
Set this field in accordance to the phase-detector frequency for  
optimal VCO calibration.  
0: fPD 100 MHz  
1: 100 MHz < fPD 150 MHz  
2: 150 MHz < fPD 200 MHz  
3: fPD >200 MHz  
R0[6:5]  
FCAL_LPFD_ADJ  
R/W  
0
Set this field in accordance to the phase detector frequency for  
optimal VCO calibration.  
0: fPD 10 MHz  
1: 10 MHz > fPD 5 MHz  
2: 5 MHz > fPD 2.5 MHz  
3: fPD < 2.5 MHz  
R0[3]  
R0[2]  
FCAL_EN  
R/W  
R/W  
0
0
Enable the VCO frequency calibration. Also note that the action  
of programming this bit to a 1 activates the VCO calibration  
MUXOUT_LD_SEL  
Selects the state of the function of the MUXout pin  
0: Readback  
1: Lock detect  
R0[1]  
RESET  
R/W  
0
Resets and holds all state machines and registers to default  
value.  
0: Normal operation  
1: Reset  
R0[0]  
POWERDOWN  
CAL_CLK_DIV  
R/W  
R/W  
0
3
Powers down entire device  
0: Normal operation  
1: Powered down  
R1[2:0]  
Sets divider for VCO calibration state machine clock based on  
input frequency.  
0: Divide by 1. Use for fOSC 200 MHz  
1: Divide by 2. Use for fOSC 400 MHz  
2: Divide by 4. Use for fOSC 800 MHz  
3: Divide by 8. All fOSC  
If user is not concerned with lock time, it is recommended to set  
this value to 3. By slowing down the VCO calibration, the best  
and most repeatable VCO phase noise can be attained  
R7[14]  
OUT_FORCE  
R/W  
0
Works with OUT_MUTE in disabling outputs when VCO  
calibrating.  
46  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.2 Input Path Registers  
Figure 36. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
1
D8  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
OSC_  
2X  
R9  
0
0
0
0
1
0
0
0
1
0
0
R10  
R11  
R12  
0
0
0
0
0
1
0
0
0
1
0
1
MULT  
1
0
1
1
1
0
0
0
0
0
0
PLL_R  
PLL_R_PRE  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R9[12]  
OSC_2X  
R/W  
0
Low=noise OSCin frequency doubler.  
0: Disabled  
1: Enabled  
R10[11:7] MULT  
R/W  
1
Programmable input frequency multiplier  
0,2,,8-31: Reserved  
1: Byapss  
3: 3X  
...  
7: 7X  
R11[11:4] PLL_R  
R/W  
R/W  
1
1
Programmable input path divider after the programmable input  
frequency multiplier.  
R12[11:0] PLL_R_PRE  
Programmable input path divider before the programmable input  
frequency multiplier.  
7.6.3 Charge Pump Registers (R13, R14)  
Figure 37. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R14  
0
0
0
1
1
1
1
0
0
CPG  
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R14[6:4] CPG  
R/W  
7
Effective charge-pump current. This is the sum of up and down  
currents.  
0: 0 mA  
1: 6 mA  
2: Reserved  
3: 12 mA  
4: 3 mA  
5: 9 mA  
6: Reserved  
7: 15 mA  
Copyright © 2017–2019, Texas Instruments Incorporated  
47  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.6.4 VCO Calibration Registers  
Figure 38. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R4  
R8  
ACAL_CMP_DLY  
0
1
0
0
0
0
1
1
VCO_  
DACI  
SET_  
FORC  
E
VCO_  
CAPC  
0
1
0
TRL_  
FORC  
E
0
0
0
0
0
0
0
0
0
0
0
R16  
R17  
R19  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
VCO_DACISET  
VCO_DACISET_STRT  
VCO_CAPCTRL  
1
0
VCO_  
SEL_  
FORC  
E
R20  
1
1
VCO_SEL  
0
0
1
0
0
1
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R4[15:8] ACAL_CMP_DELAY  
R/W  
10  
VCO amplitude calibration delay. Lowering this value can speed  
up VCO calibration, but lowering it too much may degrade VCO  
phase noise. The minimum allowable value for this field is 10  
and this allows the VCO to calibrate to the correct frequency for  
all scenarios. To yield the best and most repeatable VCO phase  
noise, this relationship should be met: ACAL_CMP_DLY >  
Fsmclk / 10 MHz, where Fsmclk = Fosc / 2CAL_CLK_DIV and Fosc  
is the input reference frequency. If calibration time is of concern,  
then it is recommended to set this register to 25.  
R8[14]  
R8[11]  
VCO_DACISET_FORCE  
VCO_CAPCTRL_FORCE  
R/W  
R/W  
R/W  
0
This forces the VCO_DACISET value  
This forces the VCO_CAPCTRL value  
0
R16[8:0] VCO_DACISET  
128  
This sets the final amplitude for the VCO calibration in the case  
that amplitude calibration is forced.  
R17[8:0] VCO_DACISET_STRT  
R/W  
250  
This sets the initial starting point for the VCO amplitude  
calibration.  
R19[7:0] VCO_CAPCTRL  
R20[13:11] VCO_SEL  
R/W  
R/W  
183  
7
This sets the final VCO band when VCO_CAPCTRL is forced.  
This sets VCO start core for calibration and the VCO when it is  
forced.  
0: Not Used  
1: VCO1  
2: VCO2  
3: VCO3  
4: VCO4  
5: VCO5  
6: VCO6  
7: VCO7  
R20[10] VCO_SEL_FORCE  
R/W  
0
This forces the VCO to use the core specified by VCO_SEL. It is  
intended mainly for diagnostic purposes.  
0: Disabled (recommended)  
1: Enabled  
48  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.5 N Divider, MASH, and Output Registers  
Figure 39. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R34  
R36  
0
0
0
0
0
0
0
0
0
0
0
0
0
PLL_N[18:16]  
PLL_N  
MASH  
_SEE  
D
R37  
0
PFD_DLY_SEL  
0
0
0
0
0
1
0
0
_EN  
R38  
R39  
R40  
R41  
R42  
R43  
PLL_DEN[31:16]  
PLL_DEN[15:0]  
[31:16]  
[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
MASH  
_RES  
ET_N  
OUTB OUTA  
R44  
0
0
OUTA_PWR  
0
1
0
MASH_ORDER  
_PD  
_PD  
R45  
R46  
1
0
1
0
0
0
OUTA_MUX  
OUT_ISET  
0
1
1
1
1
1
OUTB_PWR  
0
0
1
1
1
1
1
OUTB_MUX  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R34[2:0] PLL_N  
R36[15:0]  
R/W  
100  
The PLL_N divider value is in the feedback path and divides the  
VCO frequency.  
R37[15] MASH_SEED_EN  
R/W  
R/W  
0
2
Enabling this bit allows the to be applied to shift the phase at the  
output or optimize spurs.  
R37[13:8] PFD_DLY_SEL  
The PFD_DLY_SEL must be adjusted in accordance to the N-  
divider value. This is with the functional description for the N-  
divider.  
R38[15:0] PLL_DEN  
R39[15:0]  
R/W  
R/W  
42949672 The fractional denominator.  
95  
R40[15:0] MASH_SEED  
R41[15:0]  
0
The initial state of the MASH engine first accumulator. Can be  
used to shift phase or optimize fractional spurs. Every time the  
field is programmed, it ADDS this MASH seed to the existing  
one. To reset it, use the MASH_RESET_N bit.  
R42[15:0] PLL_NUM  
R43[15:0]  
R/W  
R/W  
R/W  
0
The fractional numerator  
R44[13:8] OUTA_PWR  
31  
1
Adjusts output power. Higher numbers give more output power  
to a point, depending on the pullup component used.  
R44[7]  
R44[6]  
R44[5]  
OUTB_PD  
Powers down output B  
0: Output B active  
1: Output B powered down  
OUTA_PD  
R/W  
R/W  
R/W  
0
1
0
Powers down output A  
0: Output A Active  
1: Output A powered down  
MASH_RESET_N  
Resets MASH circuitry to an initial state  
0: MASH held in reset. All fractions are ignored  
1: Fractional mode enabled. MASH is NOT held in reset.  
R44[2:0] MASH_ORDER  
Sets the MASH order  
0: Integer mode  
1: First order modulator  
2: Second order modulator  
3: Third order modulator  
4: Fourth order modulator  
5-7: Reserved  
Copyright © 2017–2019, Texas Instruments Incorporated  
49  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Table 28. Field Descriptions (continued)  
Location Field  
Type  
Reset  
Description  
R45[12:11] OUTA_MUX  
R/W  
1
Selects what signal goes to RFoutA  
0: Channel divider  
1: VCO  
2: Reserved  
3: High impedance  
R45[10:9] OUT_ISET  
R/W  
0
Setting to a lower value allows slightly higher output power at  
higher frequencies at the expense of higher current  
consumption.  
0: Maximum output power boost  
...  
3: No output power boost  
R45[5:0] OUTB_PWR  
R46[1:0] OUTB_MUX  
R/W  
R/W  
31  
1
Output power setting for RFoutB.  
Selects what signal goes to RFoutB  
0: Channel divider  
1: VCO  
2: SysRef (also ensure SYSREF_EN=1)  
3: High impedance  
7.6.6 SYNC and SysRefReq Input Pin Register  
Figure 40. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INPIN INPIN  
_IGN _HYS  
R58  
INPIN_LVL  
INPIN_FMT  
0
0
0
0
0
0
0
0
1
ORE  
T
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R58[15] INPIN_IGNORE  
R/W  
1
Ignore SYNC and SysRefReq Pins  
0: Pins are used. Only valid for VCO_PHASE_SYNC = 1  
1: Pin is ignored  
R58[14] INPIN_HYST  
R58[13:12] INPIN_LVL  
R/W  
R/W  
0
0
High Hysteresis for LVDS mode  
0: Disabled  
1: Enabled  
Sets bias level for LVDS mode. In LVDS mode, a voltage divider  
can be inserted to reduce susceptibility to common-mode noise  
of an LVDS line because the input is single-ended. With a  
reasonable setup, TI recommends using INPIN_LVL = 1 (Vin) to  
use the entire signal swing of an LVDS line.  
0: Vin/4  
1: Vin  
2: Vin/2  
3: Invalid  
R58[11:9] INPIN_FMT  
R/W  
0
0: SYNC = SysRefReq = CMOS  
1: SYNC = LVDS, SysRefReq=CMOS  
2: SYNC = CMOS, SysRefReq = LVDS  
3: SYNC = SysRefReq = LVDS  
4: Invalid  
5: Invalid  
6: Invalid  
7: Invalid  
50  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.7 Lock Detect Registers  
Figure 41. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LD_T  
YPE  
R59  
R60  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD_DLY  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R59[0]  
LD_TYPE  
R/W  
1
Lock detect type  
0: VCO calibration status  
1: VCO calibration status and Indirect Vtune  
R60[15:0] LD_DLY  
R/W  
1000  
Lock Detect Delay. This is the delay added to the lock detect  
after the VCO calibration is successful and before the lock  
detect is asserted high. The delay added is in phase-detector  
cycles. If set to 0, the lock detect immediately becomes high  
after the VCO calibration is successful.  
7.6.8 MASH_RESET  
Figure 42. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R69  
R70  
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R69[15:0] MASH_RST_COUNT  
R70[15:0]  
R/W  
50000  
If the designer does not use this device in fractional mode with  
VCO_PHASE_SYNC = 1, then this field can be set to 0. In  
phase-sync mode with fractions, this bit is used so that there is a  
delay for the VCO divider after the MASH is reset. This delay  
must be set to greater than the lock time of the PLL. It does  
impact the latency time of the SYNC feature.  
Copyright © 2017–2019, Texas Instruments Incorporated  
51  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.6.9 SysREF Registers  
Figure 43. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SYSR  
EF_R  
EPEA  
T
SYSR SYSR  
EF_P EF_E  
R71  
0
0
0
0
0
0
0
0
SYSREF_DIV_PRE  
0
1
ULSE  
N
R72  
R73  
R74  
0
0
0
0
0
0
0
0
0
SYSREF_DIV  
JESD_DAC2_CTRL  
JESD_DAC4_CTRL  
JESD_DAC1_CTRL  
JESD_DAC3_CTRL  
SYSREF_PULSE_CNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R71[7:5] SYSREF_DIV_PRE  
R/W  
4
Pre-divider for SYSREF  
1: Divide by 1  
2: Divide by 2  
4: Divide by 4  
All other states: invalid  
R71[4]  
SYSREF_PULSE  
R/W  
0
Enable pulser mode in master mode  
0: Disabled  
1: Enabled  
R71[3]  
R71[2]  
SYSREF_EN  
R/W  
R/W  
0
0
Enable SYSREF  
SYSREF_REPEAT  
Enable repeater mode  
0: Master mode  
1: Repeater mode  
R72[10:0] SYSREF_DIV  
R/W  
0
Divider for the SYSREF  
0: Divide by 4  
1: Divide by 6  
2: Divide by 8  
...  
2047: Divide by 4098  
R73[5:0] JESD_DAC1_CTRL  
R73[11:6] JESD_DAC2_CTRL  
R74[5:0] JESD_DAC3_CTRL  
R74[11:6] JESD_DAC4_CTRL  
R74[15:12] SYSREF_PULSE_CNT  
R/W  
R/W  
R/W  
R/W  
R/W  
63  
0
These are the adjustments for the delay for the SYSREF. Two of  
these must be zero and the other two values must sum to 63.  
0
0
0
Number of pulses in pulse mode in master mode  
52  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.10 CHANNEL Divider Registers  
Figure 44. Registers Excluding Address  
Reg  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
1
8
1
7
1
6
1
5
1
4
0
3
1
2
1
1
0
0
0
R31  
R75  
CHDIV  
_DIV2  
0
0
0
0
1
CHDIV  
0
0
0
0
0
0
Table 33. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R31[14] SEG1_EN  
R/W  
0
Enable driver buffer for CHDIV > 2  
0: Disabled (only valid for CHDIV = 2)  
1: Enabled (use for CHDIV > 2)  
R75[10:6] CHDIV  
R/W  
0
VCO divider value  
0: 2  
1: 4  
2: 6  
3: 8  
4: 12  
5: 16  
6: 24  
7: 32  
8: 48  
9: 64  
10: 72  
11: 96  
12: 128  
13: 192  
14: 256  
15: 384  
16: 512  
17: 768  
18-31: Reserved  
Copyright © 2017–2019, Texas Instruments Incorporated  
53  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.6.11 Ramping and Calibration Fields  
Figure 45. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RAMP  
_THR  
ESH[3  
2]  
QUIC  
K_RE  
CAL_  
EN  
R78  
0
0
0
0
0
VCO_CAPCTRL_STRT  
1
R79  
R80  
RAMP_THRESH[31:16]  
RAMP_THRESH[15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R78[11] RAMP_THRESH  
R79[15:0]  
R80[15:0]  
R/W  
0
This sets how much the ramp can change the VCO frequency  
before calibrating. If this frequency is chosen to be Δf, then it is  
calculated as follows:  
RAMP_THRESH = (Δf / fPD) × 16777216  
R78[9]  
QUICK_RECAL_EN  
R/W  
R/W  
0
0
Causes the initial VCO_CORE, VCO_CAPCTRL, and  
VCO_DACISET to be based on the last value. Useful if the  
frequency change is small, as is often the case for ramping.  
0: Disabled  
1: Enabled  
R78[8:1] VCO_CAPCTRL_STRT  
This sets the initial value for VCO_CAPCTRL if not overridden  
by other settings. Smaller values yield a higher frequency band  
within a VCO core. Valid number range is 0 to 183.  
54  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.12 Ramping Registers  
These registers are only relevant for ramping functions and are enabled if and only if RAMP_EN (R0[15]) = 1.  
7.6.12.1 Ramp Limits  
Figure 46. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RAMP  
_LIMI  
T_HIG  
H[32]  
R81  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R82  
R83  
RAMP_LIMIT_HIGH[31:16]  
RAMP_LIMIT_HIGH[15:0]  
RAMP  
_LIMI  
T_LO  
W[32]  
R84  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R85  
R86  
RAMP_LIMIT_LOW[31:16]  
RAMP_LIMIT_LOW[15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R81[0]  
R82[15:0]  
R83[15:0]  
RAMP_LIMIT_HIGH  
R/W  
0
This sets a maximum frequency that the ramp can not exceed  
so that the VCO does not get set beyond a valid frequency  
range. Suppose fHIGH is this frequency and fVCO is the starting  
VCO frequency then:  
For fHIGH fVCO  
:
RAMP_LIMIT_HIGH = (fHIGH – fVCO)/fPD × 16777216  
For fHIGH < fVCO this is not a valid condition to choose.  
R84[0]  
R85[15:0]  
R86[15:0]  
RAMP_LIMIT_LOW  
R/W  
0
This sets a minimum frequency that the ramp can not exceed so  
that the VCO does not get set beyond a valid frequency range.  
Suppose fLOW is this frequency and fVCO is the starting VCO  
frequency then:  
For fLOW fVCO  
:
RAMP_LIMIT_LOW = 233 – 16777216 x (fVCO – fLOW) / fPD  
For fLOW > fVCO, this is not a valid condition to choose.  
Copyright © 2017–2019, Texas Instruments Incorporated  
55  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
7.6.12.2 Ramping Triggers, Burst Mode, and RAMP0_RST  
Figure 47. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RAMP  
_BUR  
ST_E  
N
R96  
R97  
RAMP_BURST_COUNT  
0
0
RAMP  
0_RS  
T
RAMP_BURS  
T_TRIG  
0
0
0
1
RAMP_TRIGB  
RAMP_TRIGA  
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R96[15] RAMP_BURST_EN  
R/W  
0
Enables burst ramping mode. In this mode, a  
RAMP_BURST_COUNT ramps are sent out when RAMP_EN is  
set from 0 to 1.  
0: Disabled  
1: Enabled  
RAMP96[1 RAMP_BURST_COUNT  
4:2]  
R/W  
R/W  
0
0
Sets how many ramps are run in burst ramping mode.  
R97[15] RAMP0_RST  
Resets RAMP0 at start of ramp to eliminate round-off errors.  
Must only be used in automatic ramping mode.  
0: Disabled  
1: Enabled  
R97[6:3] RAMP_TRIGA  
R/W  
R/W  
R/W  
0
0
0
Multipurpose Trigger A definition:  
0: Disabled  
1: RampClk pin rising edge  
2: RampDir pin rising edge  
4: Always triggered  
9: RampClk pin falling edge  
10: RampDir pin falling edge  
All other states: reserved  
R97[10:7] RAMP_TRIGB  
Multipurpose trigger B definition:  
0: Disabled  
1: RampClk pin Rising Edge  
2: RampDir pin Rising Edge  
4: Always Triggered  
9: RampClk pin Falling Edge  
10: RampDir pin Falling Edge  
All other states: Reserved  
R97[1:0] RAMP_BURST_TRIG  
Ramp burst trigger definition that triggers the next ramp in the  
count. Note that RAMP_EN starts the count, not this word.  
0: Ramp Transition  
1: Trigger A  
2: Trigger B  
3: Reserved  
56  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
7.6.12.3 Ramping Configuration  
Figure 48. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RAMP  
0_DL  
Y
R98  
RAMP0_INC[29:16]  
0
R99  
RAMP0_INC[15:0]  
RAMP0_LEN  
R100  
RAMP  
RAMP RAMP  
0
_NEX  
T
RAMP0_  
NEXT_TRIG  
R101  
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
_DLY _RST  
R102  
R103  
R104  
RAMP1_INC[29:16]  
RAMP1_INC[15:0]  
RAMP1_LEN  
RAMP  
RAMP  
_MAN  
UAL  
1
_NEX  
T
RAMP1_  
NEXT_TRIG  
R105  
RAMP_DLY_CNT  
0
0
RAMP  
_TRIG  
_CAL  
RAMP_SCALE_COUN  
T
R106  
0
0
0
0
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R98[15:2] RAMP0_INC  
R99[15:0]  
R/W  
0
2's complement of the amount the RAMP0 is incremented in  
phase detector cycles.  
R98[0]  
RAMP0_DLY  
R/W  
0
Enabling this bit uses two clocks instead of one to clock the  
ramp. Effectively doubling the length.  
0: Normal ramp length  
1: Double ramp length  
R100[15:0] RAMP0_LEN  
R101[6] RAMP1_DLY  
R/W  
R/W  
0
0
Length of RAMP0 in phase detector cycles  
Enabling this bit uses two clocks instead of one to clock the  
ramp. Effectively doubling the length.  
0: Normal ramp length  
1: Double ramp length  
R101[5] RAMP1_RST  
R/W  
0
Resets RAMP1 to eliminate rounding errors. Must be used in  
automatic ramping mode.  
0: Disabled  
1: Enabled  
R101[4] RAMP0_NEXT  
R/W  
R/W  
0
0
Defines what ramp comes after RAMP0  
0: RAMP0  
1: RAMP1  
R101[1:0] RAMP0_NEXT_TRIG  
Defines what triggers the next ramp  
0: RAMP0_LEN timeout counter  
1: Trigger A  
2: Trigger B  
3: Reserved  
R102[13:0] RAMP1_INC  
R103[15:0]  
R/W  
0
2's complement of the amount the RAMP1 is incremented in  
phase detector cycles.  
R104[15:0] RAMP1_LEN  
R/W  
R/W  
0
0
Length of RAMP1 in phase detector cycles  
R105[15:6] RAMP_DLY_CNT  
This is the number of state machine clock cycles for the VCO  
calibration in automatic mode. If the VCO calibration is less, then  
it is this time. If it is more, then the time is the VCO calibration  
time.  
R105[5] RAMP_MANUAL  
R/W  
0
Enables manual ramping mode, or otherwise automatic mode  
0: Automatic ramping mode  
1: Manual ramping mode  
Copyright © 2017–2019, Texas Instruments Incorporated  
57  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Table 37. Field Descriptions (continued)  
Location Field  
Type  
Reset  
Description  
R105[4] RAMP1_NEXT  
R/W  
0
Determines what ramp comes after RAMP1:  
0: RAMP0  
1: RAMP1  
R105[1:0] RAMP1_NEXT_TRIG  
R/W  
0
Defines what triggers the next ramp  
0: RAMP1_LEN timeout counter  
1: Trigger A  
2: Trigger B  
3: Reserved  
R106[4] RAMP_TRIG_CAL  
R/W  
R/W  
0
7
Enabling this bit forces the VCO to calibrate after the ramp.  
Multiplies RAMP_DLY count by 2RAMP_SCALE_COUNT  
R106[2:0] RAMP_SCALE_COUNT  
7.6.13 Readback Registers  
Figure 49. Registers Excluding Address  
D15  
D14  
D13  
D12  
D11  
D10  
rb_LD_  
VTUNE  
D9  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R110  
0
0
0
0
0
rb_VCO_SEL  
0
0
0
0
0
R111  
R112  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. Field Descriptions  
Location Field  
Type  
Reset  
Description  
R110[10:9] rb_LD_VTUNE  
R
0
Readback of Vtune lock detect  
0: Unlocked (Vtune low)  
1: Invalid State  
2: Locked  
3: Unlocked (Vtune High)  
R110[7:5] rb_VCO_SEL  
R
0
Reads back the actual VCO that the calibration has selected.  
0: Invalid  
1: VCO1  
...  
7: VCO7  
R111[7:0] rb_VCO_CAPCTRL  
R112[8:0] rb_VCO_DACISET  
R
R
183  
170  
Reads back the actual CAPCTRL capcode value the VCO  
calibration has chosen.  
Reads back the actual amplitude (DACISET) value that the VCO  
calibration has chosen.  
58  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 OSCin Configuration  
The OSCin supports single-ended or differential clocks. There must be a AC-coupling capacitor in series before  
the device pin. The OSCin inputs are high-impedance CMOS with internal bias voltage. TI recommends putting  
termination shunt resistors to terminate the differential traces (if there are 50-Ω characteristic traces, place 50-Ω  
resistors). The OSCin and OSCin* side should be matched in layout. A series AC-coupling capacitors should  
immediately follow OSCin pins in the board layout, then the shunt termination resistors to ground should be  
placed after.  
Input clock definitions are shown in Figure 50:  
VOSCin  
VOSCin  
VOSCin  
CMOS  
Sine wave  
Differential  
Figure 50. Input Clock Definitions  
8.1.2 OSCin Slew Rate  
The slew rate of the OSCin signal can impact the spurs and phase noise of the LMX2594 if it is too low. In  
general, a high slew rate and a lower amplitude signal, such as LVDS, can give best performance.  
8.1.3 RF Output Buffer Power Control  
The OUTA_PWR and OUTB_PWR registers can be used to control the output power of the output buffers. The  
setting for optimal power may depend on the pullup component, but is typically around 50. The higher the setting,  
the higher the current consumption of the output buffer.  
8.1.4 RF Output Buffer Pullup  
The choice of output buffer components is very important and can have a profound impact on the output power.  
Table 39 shows how to treat each pin. If using a single-ended output, a pullup is required, and the user can put a  
50-Ω resistor after the capacitor.  
Copyright © 2017–2019, Texas Instruments Incorporated  
59  
 
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
Application Information (continued)  
Table 39. Different Methods for Pullup on Outputs  
PULLUP STYLE  
DIAGRAM  
COMMENTS  
+vcc  
Potentially higher output power,  
but output impedance is far from  
50 Ω. Consider also using with a  
resistive pad.  
L
Inductor  
C
RFoutAP  
+vcc  
R
Resistor  
More consistent matching  
C
RFoutAP  
Table 40. Output Pullup Configuration  
COMPONENT  
Inductor  
VALUE  
Varies with frequency  
50 Ω  
PART NUMBER  
Resistor  
Vishay FC0402E50R0BST1  
ATC 520L103KT16T  
ATC 504L50R0FTNCFT  
Capacitor  
Varies with frequency  
60  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
8.2 Typical Application  
C5  
RFoutAP  
R37  
50  
0.01µF  
VccRF  
C30  
C6  
0.01µF  
L1  
0.1µF  
VccRF  
U1  
18nH  
R38  
50  
21  
23  
22  
VCCBUF  
VCCDIG  
VCCCP  
RFOUTAP  
RFOUTAM  
Vcc  
C27  
C7  
7
11  
15  
26  
37  
1
RFoutAM  
RFoutBM  
C26  
1µF  
C29  
0.01µF  
C12  
1µF  
C18  
18  
19  
20  
12  
35  
5
VCCMASH  
VCCVCO2  
VCCVCO  
CE  
RFOUTBM  
RFOUTBP  
MUXOUT  
CPOUT  
1µF  
C23  
0.01µF  
1µF  
R40  
50  
MUXout  
1µF  
VccRF  
18nH  
CE  
L2  
R4_LF  
R3_LF  
0
C3_LF  
Open  
24  
17  
16  
CSB  
SDI  
SCK  
VTUNE  
CSB  
18  
SDI  
C4_LF  
1800pF  
C2_LF  
0.068µF  
C11  
SYNC  
SCK  
SYNC  
C28  
1µF  
C1_LF  
390pF  
10  
36  
38  
29  
3
28  
VREGIN  
SYSREFREQ  
SysRefReq  
R2_LF  
68  
R39 0.01µF  
50  
C10  
C22  
30  
32  
VREFVCO  
VREGVCO  
VREFVCO2  
VBIASVCO  
VBIASVCO2  
VBIASVARAC  
OSCINP  
RAMPCLK  
RAMPDIR  
RampCLK  
RampDir  
C24  
10µF  
RFoutBP  
C20  
1µF  
0.01µF  
2
4
6
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C25  
10µF  
13  
14  
25  
31  
34  
39  
40  
41  
C19  
1 µF  
10 µF  
27  
33  
8
C21  
10µF  
C14  
9
OSCINM  
OSCinP  
OSCinN  
0.1µF  
R32  
100  
LMX2594RHAR  
C15  
0.1µF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 51. Typical Application Schematic  
Copyright © 2017–2019, Texas Instruments Incorporated  
61  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
8.2.1 Design Requirements  
The design of the loop filter is complex and is typically done with software. The PLLATINUM™ Sim software is  
an excellent resource for doing this and the design is shown in the Figure 52. For those interested in the  
equations involved, the PLL Performance, Simulation, and Design Handbook listed in the end of this document  
goes into great detail as to the theory and design of PLL loop filters.  
Figure 52. PLLATINUM™ Sim Design Screen  
8.2.2 Detailed Design Procedure  
The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates to  
signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise  
outside the loop bandwidth is dominated by the VCO. Generally, jitter is lowest if the loop bandwidth is designed  
to the point where the two intersect. A higher phase margin loop filter design has less peaking at the loop  
bandwidth and thus lower jitter. The tradeoff with this is that longer lock times and spurs must be considered in  
design as well.  
62  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
8.2.3 Application Curve  
Figure 53. Typical Jitter  
Copyright © 2017–2019, Texas Instruments Incorporated  
63  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can reduce spurs  
to a small degree. This device has integrated LDOs, which improves the resistance to power supply noise.  
However, the pullup components on the RFoutA and RFoutB pins on the outputs have a direct connection to the  
power supply, take extra care to ensure that the voltage is clean for these pins. Figure 54 is a typical application  
example.  
This device can be powered by an external DC-DC buck converter, such as the TPS62150. Note that although  
Rtps, Rtps1, and Rtps2 are 0 Ω in the schematic, they could be potentially replaced with a larger resistor value or  
inductor value for better power supply filtering.  
Figure 54. Using the TPS62150 as a Power Supply  
For DC bias levels, refer to .  
Table 41. Bias Levels of Pins  
(1)  
Pin Number  
Pin Name  
VBIASVCO  
VBIASVCO2  
VREFVCO2  
VBIASVARAC  
VREFVCO  
Bias Level  
3
1.3  
0.7  
2.9  
1.7  
2.9  
2.1  
27  
29  
33  
36  
38  
VREGVCO  
(1) The bias level is measured after following Recommended Initial Power-Up Sequence.  
64  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
10 Layout  
10.1 Layout Guidelines  
In general, the layout guidelines are similar to most other PLL devices. Here are some specific guidelines.  
GND pins may be routed on the package back to the DAP.  
The OSCin pins are internally biased and must be AC-coupled.  
If not used, RampClk, RampDir, and SysRefReq can be grounded to the DAP.  
For the Vtune pin, try to place a loop filter capacitor as close as possible to the pin. This may mean  
separating the capacitor from the rest of the loop filter.  
For the outputs, keep the pullup component as close as possible to the pin and use the same component on  
each side of the differential pair.  
If a single-ended output is needed, the other side must have the same loading and pullup. However, the  
routing for the used side can be optimized by routing the complementary side through a via to the other side  
of the board. On this side, use the same pullup and make the load look equivalent to the side that is used.  
Ensure that DAP on device is well-grounded with many vias, preferably copper filled.  
Have a thermal pad that is as large as the LMX2594 exposed pad. Add vias to the thermal pad to maximize  
thermal performance.  
Use a low loss dielectric material, such as Rogers 4003, for optimal output power.  
See instructions for the LMX2594EVM (LMX2594 EVM Instructions, 15 GHz Wideband Low Noise PLL With  
Integrated VCO) for more details on layout.  
版权 © 2017–2019, Texas Instruments Incorporated  
65  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
10.2 Layout Example  
Figure 55. LMX2594 PCB Layout  
66  
版权 © 2017–2019, Texas Instruments Incorporated  
LMX2594  
www.ti.com.cn  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
德州仪器 (TI) www.ti.com.cn 提供了多种辅助开发的软件工具。其中包括:  
EVM 软件,用于了解如何对器件和 EVM 板进行编程。  
EVM 板说明,用于了解典型测量数据、详细测量条件以及完整设计的信息。  
PLLatinum Sim 程序,用于设计回路滤波器以及对相位噪声和杂散进行仿真。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
AN-1879 分数 N 频率合成》(SNAA062)  
PLL 性能、仿真和设计手册》(SNAA106)  
LMX2594 EVM 说明 - 带集成 VCO 15GHz 宽带低噪声 PLL (SNAU210)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
PLLATINUM, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2019, Texas Instruments Incorporated  
67  
LMX2594  
ZHCSGL5C MARCH 2017REVISED APRIL 2019  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
68  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2594RHAR  
LMX2594RHAT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX2594  
LMX2594  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX2594RHAR  
LMX2594RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
178.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX2594RHAR  
LMX2594RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040H  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
6.1  
5.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 4.5  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
SEE SIDE WALL  
DETAIL  
2X  
41  
SYMM  
4.5  
4.5 0.1  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219055/B 08/22/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.5)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.27)  
(
0.2) TYP  
VIA  
(0.73)  
(5.8)  
TYP  
4X  
41  
SYMM  
(1.46)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.73) TYP  
4X (1.46)  
20  
4X (1.27)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219055/B 08/22/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
9X ( 1.26)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.46)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219055/B 08/22/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMX2594RHAR

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器 | RHA | 40 | -40 to 85
TI

LMX2594RHAT

具有相位同步功能且支持 JESD204B 的 15GHz 宽带 PLLatinum™ 射频合成器 | RHA | 40 | -40 to 85
TI

LMX2595

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器
TI

LMX2595RHAR

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2595RHAT

具有相位同步功能且支持 JESD204B 的 20GHz 宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2604

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC

LMX2604LQ

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC

LMX2604LQ

VCO, 880 MHz - 915 MHz, LLP-20
ROCHESTER

LMX2604LQ/NOPB

IC,VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR,2-CHANNEL,LLCC,20PIN,PLASTIC
NSC

LMX2604LQX

Triple-band VCO for GSM900/DCS1800/PCS1900
NSC

LMX2604LQX/NOPB

IC,VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR,2-CHANNEL,LLCC,20PIN,PLASTIC
TI

LMX2615-MKT-MS

具有相位同步功能且 JESD204B 支持的航天级 40MHz 至 15GHz 宽带合成器 | HBD | 64 | 25 to 25
TI