LMX2615-MKT-MS [TI]

具有相位同步功能且 JESD204B 支持的航天级 40MHz 至 15GHz 宽带合成器 | HBD | 64 | 25 to 25;
LMX2615-MKT-MS
型号: LMX2615-MKT-MS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有相位同步功能且 JESD204B 支持的航天级 40MHz 至 15GHz 宽带合成器 | HBD | 64 | 25 to 25

信息通信管理
文件: 总71页 (文件大小:1448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
具有相位同步功能且支持 JESD204B LMX2615-SP 航空级 40MHz 至  
15GHz 宽带合成器  
1 特性  
2 应用  
1
辐射规范  
航空通信  
单粒子闩锁 > 120MeV-cm2/mg  
天基雷达系统  
相控阵天线和波束形成  
电离辐射总剂量达 100 krad(Si)  
高速数据转换器时钟(支持 JESD204B)  
40MHz 15GHz 输出频率  
100KHz 偏频和 15GHz 载波的情况下具有  
-110dBc/Hz 的相位噪声  
3 说明  
LMX2615-SP 是一款集成有电压控制振荡器 (VCO) 和  
稳压器的高性能宽带锁相环 (PLL),在无倍频器的情  
况,可输出 40MHz 15GHz 范围内的任意频率,从  
而无需使用 ½ 谐波滤波器。此器件上的 VCO 涵盖了  
整个倍频区间,因而频率覆盖度可完全低至 40MHz。  
品质因数为 -236dBc/Hz 的高性能 PLL 和高相位检测  
器频率可实现非常低的带内噪声和集成抖动。  
458 GHz 时,具有 45fs RMS 抖动(100Hz 至  
100MHz)  
可编程输出功率  
PLL 主要规格  
品质因数:–236dBc/Hz  
标称 1/f 噪声:–129dBc/Hz  
相位检测器频率高达 200MHz  
跨多个设备实现输出相位同步  
支持具有 9ps 分辨率可编程延迟的 SYSREF  
3.3V 单电源运行  
LMX2615-SP 允许用户同步多个器件实例的输出。这  
意味着我们可从任意应用情形下的器件中获得确定性相  
位,包括采用分数引擎或启用输出分频器的情形。该器  
件还可支持生成或重复 SYSREF(符合 JESD204B 标  
准),使其成为高速数据转换器的理想低噪声时钟源。  
71 种预选引脚模式  
11 x 11 mm² 64 引线 CQFP 陶瓷封装  
工作温度范围为 -55°C +125°C  
PLLatinum Sim 设计工具提供支持  
该器件采用德州仪器 (TI) 先进的 BiCMOS 工艺制造,  
可提供 64 引线 CQFP 陶瓷封装。  
器件信息  
器件编号  
等级  
封装  
LMX2615W-MPR 非飞行用工程样片  
LMX2615W-MLS 飞行用生产器件  
64 引线 CQFP  
64 引线 CQFP  
简化原理图  
External loop filter  
Vtune  
CPout  
OSCin  
OSCinP  
Phase  
Detector  
RFoutAP  
Vcc  
Buffer  
MUX  
MUX  
Input  
signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Charge  
Pump  
RFoutAM  
Channel  
Divider  
f
OSCinM  
RFoutBM  
Vcc  
Sigma-Delta  
Modulator  
RFoutBP  
SYSREF  
Synchronization  
and Delay  
Output  
Buffer  
CSB)  
SCK  
SDI  
Serial Interface  
Control  
N Divider  
MUXout  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS739  
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 38  
Application and Implementation ........................ 56  
8.1 Application Information............................................ 56  
8.2 Typical Application .................................................. 60  
Power Supply Recommendations...................... 62  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Timing Requirements.............................................. 10  
6.7 Typical Characteristics............................................ 12  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 18  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 36  
7.5 Programming........................................................... 37  
8
9
10 Layout................................................................... 62  
10.1 Layout Guidelines ................................................. 62  
10.2 Layout Example .................................................... 63  
10.3 Footprint Example on PCB Layout........................ 64  
10.4 Radiation Environments ....................................... 64  
11 器件和文档支持 ..................................................... 65  
11.1 器件支持................................................................ 65  
11.2 文档支持................................................................ 65  
11.3 ....................................................................... 65  
11.4 静电放电警告......................................................... 65  
11.5 术语表 ................................................................... 65  
12 机械、封装和可订购信息....................................... 65  
12.1 工程样片 ............................................................... 65  
12.2 封装机械信息......................................................... 66  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (June 2018) to Revision C  
Page  
将器件状态从预告信息更改成了生产数据” ......................................................................................................................... 1  
已更改 output power, VCO Calibration time, and harmonics. ............................................................................................... 7  
已添加 Typical Performance Characteristics ....................................................................................................................... 12  
已更改 Updated Max Frequencies for higher divides to be based on 11.5 GHz, not 15.2 GHz ......................................... 24  
已添加 FS7 Pin description .................................................................................................................................................. 34  
已添加 Typical Application.................................................................................................................................................... 60  
已添加 more details including capacitor requirements for Vtune pin.................................................................................... 62  
已添加 Layout Example ........................................................................................................................................................ 63  
Changes from Revision A (June 2018) to Revision B  
Page  
已更改 将典型抖动更改为 45 fs .............................................................................................................................................. 1  
Added Max Digital pin and OSCin Voltage............................................................................................................................. 7  
Changed Typical VCO Gain ................................................................................................................................................... 9  
已更改 readback timing diagram and added tCD. ............................................................................................................... 11  
已更改 VCO Frequency range to 7600 to 15200 MHz ........................................................................................................ 17  
已更改 VCO calibration updated to new VCO range of 7600 to 15200 MHz ...................................................................... 21  
已更改 Ordering of VCOs in calibration time table .............................................................................................................. 22  
已添加 Watchdog feature description................................................................................................................................... 22  
已更改 RECAL feature description ...................................................................................................................................... 23  
已更改 VCO Gain table ........................................................................................................................................................ 23  
已更改 Channel divider description and picture .................................................................................................................. 23  
已更改 Channel Divider usage for VCO frequency ............................................................................................................. 23  
已更改 5 GHz, not 5 MHz .................................................................................................................................................... 24  
2
版权 © 2018, Texas Instruments Incorporated  
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
已添加 information on what to do with unused pins ............................................................................................................ 25  
已更改 Case of Fosc%Fout=0 is now category 2 ................................................................................................................ 28  
已更改 Recommendation for CAL and RECAL_EN ............................................................................................................ 34  
已更改 RECAL_EN to CAL pin ............................................................................................................................................ 34  
已更改 pin mode 17 to not be used...................................................................................................................................... 34  
已添加 10 ms delay to recommended initial power up sequence and more details on what registers to program. ............ 37  
已添加 Register Map Table ................................................................................................................................................. 38  
Changes from Original (May 2017) to Revision A  
Page  
Changed the //ESD Ratings// table ....................................................................................................................................... 7  
Changed ambient temperature parameter to case temperature in the //Recommended Operating Conditions// table......... 7  
Deleted the junction temperature parameter from the //Recommended Operating Conditions// table .................................. 7  
Changed the supply voltage minimum value from: 3.15 V to: 3.2 V ...................................................................................... 8  
Changed the test conditions to the supply current parameter................................................................................................ 8  
Changed the power on reset current typical value for the RESET=1 test condition from: 270 mA to: 289 mA..................... 8  
Changed the power on reset current typical value for the POWERDOWN=1 test condition from: 5 mA to: 6 mA................ 8  
Changed the test conditions and added minimum values to the reference input voltage parameter .................................... 8  
Added phase detector frequency test conditions ................................................................................................................... 8  
Changed the text toclarify that output power assumes that load is matched and losses are de-embedded......................... 8  
Changed VCO phase noise test conditions and typical values.............................................................................................. 9  
Changed the Assisting the VCO Calibration Speed and the MINIMUM VCO_SEL for Partial Assist tables....................... 22  
已添加 Typical Calibration times for fOSC = fPD = 100 MHz based on VCO_SEL table ....................................................... 22  
Changed the MASH_SEED considerations in the Phase Adjust section............................................................................. 29  
Copyright © 2018, Texas Instruments Incorporated  
3
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
64-Pin CQFP  
Top View  
1
2
NC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
NC  
NC  
3
FS0  
NC  
RECAL_EN  
VrefVCO2  
SysRefReq  
VbiasVCO2  
VccVCO2  
GND  
4
FS1  
5
CAL  
6
GND  
VbiasVCO  
GND  
SYNC  
GND  
VccDIG  
OSCinP  
OSCinM  
VregIN  
FS2  
7
8
DAP  
(Die Attach Pad)  
9
10  
11  
12  
13  
14  
15  
16  
CSB  
GND  
RFoutAP  
RFoutAM  
GND  
VccBUF  
NC  
FS3  
4
Copyright © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Pin Functions  
CQFP Package (QFN) Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
NC  
I
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
Parallel pin control. This is the LSB.  
2
NC  
3
FS0  
FS1  
4
I
Parallel pin control  
Chip enable. In Pin Mode (not SPI Mode), rising edges presented to this pin activate  
the VCO calibration.  
5
CAL  
I
6
GND  
VbiasVCO  
GND  
I
Ground  
7
VCO bias. Requires connecting 10uF capacitor to ground. Place close to pin.  
8
Ground  
9
SYNC  
Phase synchronization input pin.  
10  
11  
GND  
Ground  
VccDIG  
Digital supply. Recommend connecting 0.1uF capacitor to ground.  
Complimentary Reference input clock pins. High input impedance. Requires connecting  
series capacitor (0.1 uF recommended).  
12  
13  
14  
OSCinP  
OSCinM  
VregIN  
I
I
Complimentary pin to OSCinP.  
Input reference path regulator decoupling. Requires connecting 1uF capacitor to  
ground. Place close to pin.  
15  
16  
17  
18  
19  
FS2  
FS3  
FS4  
FS5  
FS6  
I
I
I
I
I
Parallel pin control  
Parallel pin control  
Parallel pin control  
Parallel pin control  
Parallel pin control  
Parallel pin control. This is the MSB. Controls output state in pin mode. When this pin  
is low, only RFoutA is active, otherwise both outputs are active.  
20  
21  
22  
FS7  
I
VccCP  
CPout  
O
Charge pump supply. Recommend connecting 0.1uF capacitor to ground.  
Charge pump output. Recommend connecting C1 of loop filter close to charge pump  
pin.  
23  
24  
25  
26  
27  
28  
29  
GND  
GND  
I
Ground  
Ground  
Ground  
Ground  
VccMASH  
SCK  
Digital supply. Recommend connecting 0.1uF and 10uF capacitor to ground.  
SPI input clock. High impedance CMOS input. 1.8 – 3.3V logic.  
SPI input data. High impedance CMOS input. 1.8 – 3.3V logic.  
Ground  
SDI  
I
GND  
O
Ground  
RFoutBM  
Complementary pin for RFoutBP  
Differential output B Pair. Requires connecting a 50-Ω resistor pull-up to Vcc as close  
as possible to pin. Can be used as a synthesizer output or SYSREF output.  
30  
RFoutBP  
O
31  
32  
33  
34  
35  
36  
GND  
MUXout  
NC  
O
Ground  
Ground  
Multiplexed output pin. Can output: lock detect, SPI readback and diagnostics.  
No connection. Leave Unconnected  
O
VccBUF  
GND  
Output buffer supply. Requires connecting 0.1uF capacitor to ground.  
Ground  
Ground  
RFoutAM  
Complementary pin for RFoutAP  
Differential output B Pair. Requires connecting a 50-Ω resistor pull-up to Vcc as close  
as possible to pin.  
37  
RFoutAP  
O
38  
39  
40  
GND  
CSB  
GND  
I
Ground  
Ground  
SPI chip select bar. High impedance CMOS input. 1.8 – 3.3V logic.  
Ground  
Ground  
Copyright © 2018, Texas Instruments Incorporated  
5
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
CQFP Package (QFN) Pin Functions (continued)  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VccVCO2  
VbiasVCO2  
SysRefReq  
VrefVCO2  
RECAL_EN  
NC  
I
VCO supply. Recommend connecting 0.1uF and 10uF capacitor to ground.  
VCO bias. Requires connecting 1uF capacitor to ground.  
SYSREF request input for JESD204B support.  
VCO supply reference. Requires connecting 10uF capacitor to ground.  
Enables the automatic recalibration feature.  
I
I
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
Ground  
NC  
NC  
NC  
NC  
GND  
Ground  
NC  
No connection. Pin may be grounded or left unconnected.  
VCO Varactor bias. Requires connecting 10uF capacitor to ground.  
Ground  
VbiasVARAC  
GND  
Ground  
Vtune  
VCO tuning voltage input.  
VrefVCO  
VccVCO  
NC  
VCO supply reference. Requires connecting 10uF capacitor to ground.  
VCO supply. Recommend connecting 0.1uF and 10uF capacitor to ground.  
No connection. Leave Unconnected  
VregVCO  
GND  
VCO regulator node. Requires connecting 1uF capacitor to ground.  
Ground  
Ground  
Ground  
GND  
Ground  
NC  
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
No connection. Pin may be grounded or left unconnected.  
NC  
NC  
6
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
-0.3  
MAX  
3.6  
UNIT  
V
VCC  
VDIG  
|VOSCin  
TJ  
Power supply voltage(1)  
Digital pin voltage (FS0-FS7,SYNC, SysRefReq,RECAL_EN,CAL)  
Differential AC voltage between OSCinP and OSCinN  
Junction temperature  
VCC+0.3  
2.1  
V
|
Vpp  
°C  
–55  
–65  
150  
Tstg  
Storage temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safemanufacturing with a standard ESD control process. Manufacturing with  
less than 500 V HBM ispossible with the necessary precautions. Pins listed as ±XXX V may actually have higherperformance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.2  
NOM  
3.3  
MAX  
3.45  
125  
UNIT  
V
VCC  
Tc  
Power supply voltage  
Case temperature  
–55  
25  
°C  
6.4 Thermal Information  
CQFP  
THERMAL METRIC(1)  
UNIT  
64 PINS  
22.7  
7.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(2)  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
7.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ψJB  
7.4  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
(2) DAP  
Copyright © 2018, Texas Instruments Incorporated  
7
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
3.2 V VCC 3.45 V, –55°C TC +125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
Supply voltage  
3.2  
3.3  
3.45  
V
OUTA_PD = 0, OUTB_PD = 1  
OUTA_MUX = OUTB_MUX = 1  
OUTA_PWR = 31, CPG=7  
fOSC= fPD = 100 MHz, fVCO = fOUT = 14.5 GHz  
Supply current  
360  
ICC  
mA  
Power on reset current  
Power down current  
RESET=1  
289  
6
POWERDOWN=1  
OUTPUT CHARACTERISTICS  
fOUT = 8 GHz  
fOUT = 15 GHz  
6
4
50-Ω resistor pullup  
OUTx_PWR = 31  
pOUT  
Single-ended output power(1) (2)  
dBm  
MHz  
INPUT SIGNAL PATH  
OSC_2X = 0  
OSC_2X = 1  
5
5
1000  
200  
2
fOSCin  
Reference input frequency  
fOSCin20 MHz  
0.4  
Single-ended AC  
coupled sine wave input 10 MHz fOSCin <20  
with complementary side MHz  
AC coupled to ground  
5 MHz fOSCin <10  
with 50 Ω resistor  
MHz  
0.8  
1.6  
2
2
vOSCin  
Reference input voltage  
Vpp  
PHASE DETECTOR AND CHARGE PUMP  
MASH_ORDER=0  
MASH_ORDER>0  
CPG = 0  
0.125  
5
250  
200  
15  
fPD  
Phase detector frequency(3)  
Charge-pump leakage current  
MHz  
nA  
CPG = 4  
3
6
CPG = 1  
Effective charge pump current.  
This is the sum of the up and  
down currents  
ICPout  
CPG = 5  
9
mA  
CPG = 3  
12  
CPG = 7  
15  
PNPLL_1/f Normalized PLL 1/f noise  
–129  
dBc/Hz  
dBc/Hz  
fPD = 100 MHz, fVCO = 12 GHz(4)  
PNPLL_FO  
Normalized PLL noise floor  
–236  
M
(1) Single ended output power obtained after de-embeddingmicrostrip trace losses and matching with a manual tuner. Unused port  
terminated to 50-Ωload.  
(2) Output power, spurs, and harmonics can vary based on boardlayout and components.  
(3) For lower VCO frequencies, the N divider minimum value canlimit the phase-detector frequency.  
(4) The PLL noise contribution is measured using a clean referenceand a wide loop bandwidth and is composed into flicker and flat  
components. PLL_flat = PLL_FOM + 20× log(Fvco/Fpd) + 10 × log(Fpd / 1Hz). PLL_flicker (offset) = PLL_1/f + 20 × log(Fvco / 1GHz) –  
10× log(offset / 10kHz). Once these two components are found, the total PLL noise can be calculatedas PLL_Noise = 10 × log(10  
PLL_Flat / 10 + 10 PLL_flicker /10  
)
8
Copyright © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
3.2 V VCC 3.45 V, –55°C TC +125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCO CHARACTERISTICS  
100 kHz  
1 MHz  
-105  
-127  
-148  
-155  
-103  
-125  
-146  
-153  
-103  
-125  
-147  
-158  
-101  
-124  
-146  
-158  
-102  
-126  
-147  
-156  
-101  
-124  
-146  
-160  
-101  
-124  
-146  
-157  
VCO1  
fVCO = 8.1 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO2  
fVCO = 9.3 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO3  
fVCO = 10.4 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO4  
fVCO = 11.4 GHz  
PNVCO  
VCO phase noise  
dBc/Hz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO5  
fVCO = 12.5 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO6  
fVCO = 13.6 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO7  
fVCO = 14.7 GHz  
10 MHz  
100 MHz  
VCO calibration speed, switch  
across the entire frequency  
tVCOCAL  
band, fOSC = 100 MHz, fPD  
100 MHz, fVCO = 7.9  
GHz,VCO_SEL=7  
=
Partial assist  
650  
µs  
8.1 GHz  
94  
106  
122  
148  
185  
202  
233  
9.3 GHz  
10.4 GHz  
11.4 GHz  
12.5 GHz  
13.6 GHz  
14.7 GHz  
KVCO  
VCO Gain  
MHz/V  
Allowable temperature drift  
|ΔTCL  
|
125  
°C  
when VCO is not re-calibrated  
VCO second harmonic  
VCO third haromonic  
H2  
H3  
fVCO = 8 GHz, divider disabled  
fVCO = 8 GHz, divider disabled  
–30  
-25  
dBc  
DIGITAL INTERFACE  
Applies to SCLK, SDI, CSB, CAL, RECAL_EN, MUXout, SYNC, SysRefReq  
VIH High-level input voltage  
1.6  
V
Copyright © 2018, Texas Instruments Incorporated  
9
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
3.2 V VCC 3.45 V, –55°C TC +125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
0.4  
TYP  
MAX  
UNIT  
V
VIL  
IIH  
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
High-level output current  
–100  
100  
100  
µA  
µA  
V
IIL  
–100  
VOH  
VOL  
Load current = –5 mA  
Load current = 5 mA  
VCC – 0.6  
MUXout pin  
0.6  
V
6.6 Timing Requirements  
(3.2 V VCC 3.45 V, –55°C TA +125°C, except as specified. Nominal values are at VCC = 3.3 V,TA = 25°C)  
MIN  
NOM  
MAX  
UNIT  
DIGITAL INTERFACE WRITE SPECIFICATIONS  
fSPIWrite  
tCE  
SPI write speed  
2
MHz  
ns  
Clock to enable low time  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
50  
50  
tCS  
ns  
tCH  
50  
ns  
tCWH  
tCWL  
tCES  
tEWH  
See 1  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
10  
Copyright © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Timing Requirements (continued)  
(3.2 V VCC 3.45 V, –55°C TA +125°C, except as specified. Nominal values are at VCC = 3.3 V,TA = 25°C)  
MIN  
NOM  
MAX  
UNIT  
DIGITAL INTERFACE READBACK SPECIFICATIONS  
fSPIReadb  
SPI readback speed  
ack  
See 2  
2
MHz  
tCE  
Clock to enable low time  
Clock to data wait time  
See 2  
See 2  
See 2  
See 2  
See 2  
See 2  
See 2  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCS  
tCWH  
tCWL  
tCES  
tEWH  
tCD  
Clock pulse width high  
200  
200  
50  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
Falling clock edge to data wait time  
100  
200  
MSB  
LSB  
D0  
SDI  
R/W  
A5  
A0  
D15  
D14  
SDK  
CSB  
t
t
CWH  
CS  
t
CE  
t
CH  
t
CES  
t
CWL  
t
EWH  
1. Serial Data Input Timing Diagram  
There are several other considerations for writing on the SPI:  
The R/W bit must be set to 0.  
The data on SDI pin is clocked into a shift register on each rising edge on the SCK pin.  
The CSB must be held low for data to be clocked. Device will ignore clock pulses if CSB is held high.  
The CSB transition from high to low must occur when SCK is low.  
When SCK and SDI lines are shared between devices, TI recommends hold the CSB line high on the device  
that is not to be clocked.  
LSB  
MUXout  
RB15  
RB14  
RB0  
MSB  
R/W  
SDI  
A6  
A5  
A0  
SCK  
CSB  
t
CE  
t
CES  
t
EWH  
2. Serial Data Readback Timing Diagram  
There are several other considerations for SPI readback:  
The R/W bit must be set to 1.  
The MUXout pin will always be low for the address portion of the transaction.  
The data on MUXout becomes available momentarily after the falling edge of SCK and therefore should be  
read back on the rising edge of SCK.  
The data portion of the transition on the SDI line is always ignored.  
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
6.7 Typical Characteristics  
www.ti.com.cn  
-60  
-60  
-70  
100 Hz -90.0 dBc/Hz 1 MHz -123.5 dBc/Hz  
100 Hz -88.8 dBc/Hz 1 MHz -121.9 dBc/Hz  
-70  
-80  
1 kHz -96.5 dBc/Hz 10 MHz -147.6 dBc/Hz  
10 kHz -106.8 dBc/Hz 20 MHz -151.9 dBc/Hz  
100 kHz -113.6 dBc/Hz 95 MHz -154.1 dBc/Hz  
1 kHz -95.1 dBc/Hz 10 MHz -146.0 dBc/Hz  
10 kHz -104.9 dBc/Hz 20 MHz -150.9 dBc/Hz  
100 kHz -111.4 dBc/Hz 95 MHz -154.0 dBc/Hz  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
8.1 GHz  
1 kHz  
4.9 dBm  
9.3 GHz  
1 kHz  
3.6 dBm  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
Offset (Hz)  
Offset (Hz)  
tc_P  
tc_P  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 53.0 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 56.7 fs (100 Hz - 100 MHz)  
3. Closed Loop Phase Noise at 8.1 GHz  
4. Closed Loop Phase Noise at 9.3 GHz  
-60  
-70  
-60  
-70  
100 Hz -87.7 dBc/Hz 1 MHz -120.8 dBc/Hz  
1 kHz -94.2 dBc/Hz 10 MHz -145.1 dBc/Hz  
10 kHz -103.3 dBc/Hz 20 MHz -146.0 dBc/Hz  
100 kHz -110.4 dBc/Hz 95 MHz -154.8 dBc/Hz  
100 Hz -86.9 dBc/Hz 1 MHz -119.7 dBc/Hz  
1 kHz -93.2 dBc/Hz 10 MHz -144.4 dBc/Hz  
10 kHz -102.8 dBc/Hz 20 MHz -149.9 dBc/Hz  
100 kHz -109.7 dBc/Hz 95 MHz -157.0 dBc/Hz  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
10.4 GHz  
1 kHz  
4.9 dBm  
10.4 GHz  
1 kHz  
2.1 dBm  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
Offset (Hz)  
Offset (Hz)  
tc_P  
gtcr_aPp  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 57.6 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 57.8 fs (100 Hz - 100 MHz)  
5. Closed Loop Phase Noise at 10.4 GHz  
6. Closed Loop Phase Noise at 11.4 GHz  
-60  
-70  
-60  
-70  
100 Hz -86.5 dBc/Hz 1 MHz -115.9 dBc/Hz  
1 kHz -93.2 dBc/Hz 10 MHz -142.6 dBc/Hz  
10 kHz -102.4 dBc/Hz 20 MHz -148.7 dBc/Hz  
100 kHz -109.3 dBc/Hz 95 MHz -155.2 dBc/Hz  
100 Hz -85.5 dBc/Hz 1 MHz -115.4 dBc/Hz  
1 kHz -92.3 dBc/Hz 10 MHz -141.6 dBc/Hz  
10 kHz -100.9 dBc/Hz 20 MHz -147.7 dBc/Hz  
100 kHz -108.0 dBc/Hz 95 MHz -154.3 dBc/Hz  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
12.5 GHz  
1 kHz  
0.0 dBm  
13.6 GHz  
1 kHz  
-1.2 dBm  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
Offset (Hz)  
Offset (Hz)  
tc_P  
tc_P  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 62.4 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
fVCO = 14 GHz  
fOUT = 14 GHz/2 = 3.5 GHz  
Jitter = 64.2 fs (100 Hz - 100 MHz)  
7. Closed Loop Phase Noise at 12.5 GHz  
8. Closed Loop Phase Noise at 13.6 GHz  
版权 © 2018, Texas Instruments Incorporated  
12  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
-60  
100 Hz -84.9 dBc/Hz 1 MHz -114.3 dBc/Hz  
-70  
1 kHz -91.6 dBc/Hz 10 MHz -140.4 dBc/Hz  
10 kHz -100.8 dBc/Hz 20 MHz -146.7 dBc/Hz  
100 kHz -107.2 dBc/Hz 95 MHz -154.2 dBc/Hz  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
14.7 GHz  
1 kHz  
-3.6 dBm  
100 Hz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
Offset (Hz)  
tc_P  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 65.5 fs (100 Hz - 100 MHz)  
9. Closed Loop Phase Noise at 14.7 GHz  
-90  
-95  
8
Flicker Degrade  
FOM Degrade  
Measurement  
Flicker Noise  
Flat Noise  
Modeled Phase Noise  
7
6
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
5
4
3
2
1
0
-1  
100  
fOSC = 200 MHz  
11. PLL Phase Noise Metrics vs. Fosc Slew Rate  
200  
300  
400  
500  
600  
700  
800  
100 Hz  
1 kHz  
10 kHz  
Offset (Hz)  
100 kHz  
1 MHz  
Slew Rate (v/ms)  
tc_P  
tc_P  
fVCO = 14.8 GHz  
fVCO = 10 GHz  
FOM = -237.5  
fPD = 200 MHz  
Flicker = -130.5  
10. Calculation of PLL Noise Metrics  
版权 © 2018, Texas Instruments Incorporated  
13  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
7.5  
6
12  
10.5  
9
Ta=-55C  
Ta=25C  
Ta=85C  
Ta=125C  
TA=-55C, TLock=25C  
TA=-55C, TLock=-55C  
TA=125C, TLock=25C  
TA=125C, TLock=125C  
4.5  
3
7.5  
6
4.5  
3
1.5  
0
1.5  
0
-1.5  
-3  
-1.5  
-3  
-4.5  
-6  
-4.5  
-6  
-7.5  
-7.5  
-9  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
100 MHz  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
100 MHz  
Offset (Hz)  
Offset (Hz)  
tc_d  
tc_d  
fVCO = 10 GHz, Narrow Loop  
Bandwidth (<100 Hz)  
VCO Re-Calibrated at Final  
Frequency  
fVCO = 10 GHz,  
Narrow Loop  
Bandwidth (<100  
Hz)  
VCO Calibrated at  
25C and  
Temperature Drifted  
12. CHANGE in VCO Phase Noise Over Temperature  
13. CHANGE in 8 GHz VCO Phase Noise Over  
Temperature  
-70  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
FOUT=8 GHz  
FOUT=4 GHz  
FOUT=2 GHz  
FOUT= 1GHz  
FOUT=500 MHx  
FOUT=250 MHz  
FOUT=125 MHz  
FOUT=62.5 MHz  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
Raw Noise Floor  
Additive Divider Noise  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
100 MHz  
0
1000 2000 3000 4000 5000 6000 7000  
Frequency (MHz)  
Offset (Hz)  
tc_P  
tc_P  
This noise adds to the scaled VCO Noise when the channel  
divider is used.  
15. Additive VCO Divider Noise Floor  
14. Divided Output Frequency  
14  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
4
3.2  
2.4  
1.6  
0.8  
0
15  
12.5  
10  
Ta=-55  
Ta=-40  
Ta=25  
Ta=85  
Ta=125  
7.5  
5
2.5  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-2.5  
-5  
1 nH Pull-Up  
50 ohm Pull-Up  
-7.5  
-10  
0
2000 4000 6000 8000 10000 12000 14000 16000  
0
2000 4000 6000 8000 10000 12000 14000 16000  
Frequency (MHz)  
tc_P  
Frequency (MHz)  
tc_P  
Single-ended output OUTx_PWR=31  
Single-Ended  
Output  
OUTx_PWR = 31  
17. CHANGE in Output Power vs Temperature  
16. Output Power vs Pull-up  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
1 nH Pull-Up  
50 ohm Pull-Up  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
OUTx_PWR  
tc_P  
Single-Ended Output  
OUTx_PWR=31  
18. Impact of OUTx_PWR on Output Power  
15200  
14400  
13600  
12800  
12000  
11200  
10400  
9600  
15000  
CAL_CLK_DIV=3  
CAL_CLK_DIV=2  
CAL_CLK_DIV=1  
VCO7  
VCO6  
VCO5  
VCO4  
VCO3  
VCO2  
VCO1  
14500  
14000  
13500  
13000  
12500  
12000  
11500  
11000  
10500  
10000  
9500  
9000  
8500  
8800  
8000  
7500  
8000  
7200  
7000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
80 160 240 320 400 480 560 640 720 800  
Time (ms)  
Time (ms)  
tc_V  
tc_V  
fOSC = 100 MHz  
fPD = 200 MHz  
VCO_SEL = VCO7  
fOSC = 100 MHz  
fPD = 200 MHz  
FCAL_HPFD_ADJ=  
2
FCAL_HPFD_ADJ=  
3
CAL_CLK_DIV=2  
19. Impact of CAL_CLK_DIV on VCO Calibration Time  
版权 © 2018, Texas Instruments Incorporated  
20. Impact of VCO_SEL on VCO Calibration Time  
15  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
15200  
14400  
13600  
12800  
12000  
11200  
10400  
9600  
FCAL_HPFD_ADJ=0  
FCAL_HPFD_ADJ=1  
FCAL_HPFD_ADJ=2  
FCAL_HPFD_ADJ=3  
8800  
8000  
7200  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
tc_V  
fOSC = 100 MHz  
fPD = 500 MHz  
VCO_SEL=VCO7  
CAL_CLK_DIV=2  
21. Impact of FCAL_HPFD_ADJ on VCO Calibration Time  
16  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7 Detailed Description  
7.1 Overview  
The LMX2615 is a high-performance, wideband frequency synthesizer with integrated VCO and output divider.  
The VCO operates from 7600 to 15200 MHz and this can be combined with the output divider to produce any  
frequency in the range of 40 MHz to 15.2 GHz. Within the input path there are two dividers .  
The PLL is fractional-N PLL with programmable delta-sigma modulator up to 4th order. The fractional  
denominator is a programmable 32-bit long, which can provide fine frequency steps easily below 1-Hz resolution  
as well as be used to do exact fractions like 1/3, 7/1000, and many others.  
For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase  
relationship between the OSCin and RFout pins deterministic. Once this is done, the phase can be adjusted in  
very fine steps of the VCO period divided by the fractional denominator.  
The ultra-fast VCO calibration is ideal for applications where the frequency must be swept or abruptly changed.  
The frequency can be manually programmed.  
The JESD204B support includes using the RFoutB output to create a differential SYSREF output that can be  
either a single pulse or a series of pulses that occur at a programmable distance away from the rising edges of  
the output signal.  
The LMX2615 device requires only a single 3.3 V power supply. The internal power supplies are provided by  
integrated LDOs, eliminating the need for high performance external LDOs.  
1 shows the range of several of the doubler, dividers, and fractional settings.  
1. Range of Doubler, Divider, and Fractional Settings  
PARAMETER  
MIN  
MAX  
COMMENTS  
Outputs enabled  
0
2
The low noise doubler can be used to increase the  
phase detector frequency to improve phase noise and  
avoid spurs. This is in reference to the OSC_2X bit.  
OSCin doubler  
0 (1X)  
1 (2X)  
Only use the Pre R divider if the input frequency is too  
high for the Post R divider.  
Pre-R divider  
Post-R divider  
1 (bypass)  
1 (bypass)  
128  
255  
The maximum input frequency for the post-R divider is  
250 MHz. Use the Pre R divider if necessary.  
The minimum divide depends on modulator order and  
VCO frequency. See N Divider and Fractional Circuitry  
for more details.  
N divider  
28  
524287  
The fractional denominator is programmable and can  
assume any value between 1 and 232–1; it is not a  
fixed denominator.  
Fractional numerator/  
denominator  
1 (Integer mode)  
0
232 – 1 = 4294967295  
Order 0 is integer mode and the order can be  
programmed  
Fractional order  
Channel divider  
Output frequency  
4
This is the series of several dividers. Also, be aware  
that above 10 GHz, the maximum allowable channel  
divider value is 6.  
1 (bypass)  
40 MHz  
192  
This is implied by the minimum VCO frequency divided  
by the maximum channel divider value.  
15 GHz  
版权 © 2018, Texas Instruments Incorporated  
17  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.2 Functional Block Diagram  
www.ti.com.cn  
CPout  
Vtune  
OSCin  
OSCinP  
Phase  
Detector  
RFoutAP  
Buffer  
MUX  
MUX  
Vcc  
Input  
signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
Charge  
Pump  
RFoutAM  
f
Channel  
Divider  
OSCinM  
RFoutBM  
Vcc  
Sigma-Delta  
Modulator  
RFoutBP  
SYSREF  
Synchronization  
and Delay  
Output  
Buffers  
CSB  
SCK)  
SDI  
Serial Interface  
Control  
N Divider  
MUXout  
7.3 Feature Description  
7.3.1 Reference Oscillator Input  
The OSCin pins are used as a frequency reference input to the device. The input is high impedance and requires  
AC-coupling caps at the pin. The OSCin pins can be driven single-ended with a CMOS clock or XO. Differential  
clock input is also supported, making it easier to interface with high-performance system clock devices such as  
TI’s LMK series clock devices. As the OSCin signal is used as a clock for the VCO calibration, a proper  
reference signal must be applied at the OSCin pin at the time of programming FCAL_EN.  
7.3.2 Reference Path  
The reference path consists of an OSCin doubler (OSC_2X), Pre-R divider, and a Post-R divider.  
OSCin  
OSCinP  
Buffer  
Input  
signal  
OSCin  
Douber  
Pre-R  
Divider  
Post-R  
Divider  
OSCinM  
22. Reference Path Diagram  
The OSCin doubler (OSC_2X) can double up low OSCin frequencies. Pre-R (PLL_R_PRE) and Post-R (PLL_R)  
dividers both divide frequency down. The phase detector frequency, fPD, is calculated as follows:  
fPD = fOSC × OSC_2X / (PLL_R_PRE × PLL_R)  
(1)  
If the OSCin doubler is used, the OSCin signal should have a 50% duty cycle as both the rising and falling  
edges are used.  
If the OSCin doubler is not used, only rising edges of the OSCin signal are used and duty cycle is not critical.  
18  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Feature Description (接下页)  
7.3.2.1 OSCin Doubler (OSC_2X)  
The OSCin doubler allows one to double the input reference frequency up to 400 MHz while adding minimal  
noise. In some situations it may be advantageous to use the doubler to go to a higher frequency than the  
maximum phase detector frequency because the Pre-R divider may be able to divide down this frequency to  
phase detector frequency that is advantageous for fractional spurs.  
7.3.2.2 Pre-R Divider (PLL_R_PRE)  
The pre-R divider is useful for reducing the input frequency to help meet the maximum 250 MHz input frequency  
limitation to the PLL-R divider. Otherwise, it does not have to be used.  
7.3.2.3 Post-R Divider (PLL_R)  
The post-R divider can be used to further divide down the frequency to the phase detector frequency. When it is  
used (PLL_R > 1), the input frequency to this divider is limited to 250 MHz.  
7.3.3 State Machine Clock  
The state machine clock is a divided down version of the OSCin signal that is used internally in the device. This  
divide value 1,2,4, 8, or 16 and is determined by CAL_CLK_DIV programming word (described in the  
programming section). This state machine clock impacts various features like the VCO calibration and ramping.  
The state machine clock is calculated as fsmclk = fOSC / 2CAL_CLK_DIV  
.
7.3.4 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-R divider and N divider and generates a correction current  
corresponding to the phase error until the two signals are aligned in phase. This charge-pump current is software  
programmable to many different levels, allowing modification of the closed loop bandwidth of the PLL. See  
application section on phase noise due to the charge pump.  
7.3.5 N Divider and Fractional Circuitry  
The N divider includes fractional compensation and can achieve any fractional denominator from 1 to (232 – 1).  
The integer portion of N is the whole part of the N divider value, and the fractional portion, Nfrac = NUM / DEN, is  
the remaining fraction. In general, the total N divider value is determined by N + NUM / DEN. The N, NUM and  
DEN are software programmable. The higher the denominator, the finer the resolution step of the output. For  
example, even when using fPD = 200 MHz, the output can increment in steps of 200 MHz /( 232- 1) = 0.047 Hz. 公  
2 shows the relationship between the phase detector and VCO frequencies. Note that in SYNC mode, there is  
an extra divider that is not shown in 公式 2.  
NUM  
DEN  
fVCO = fpd ì N +  
÷
«
(2)  
The sigma-delta modulator that controls this fractional division is also programmable from integer mode to fourth  
order. To make the fractional spurs consistent, the modulator is reset any time that the R0 register is  
programmed.  
The N divider has minimum value restrictions based on the modulator order and VCO frequency. Furthermore,  
the PFD_DLY_SEL bit must be programmed in accordance to the 2. In SYNC mode, IncludedDivide may be  
larger than one, otherwise it is just one.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
2. Minimum N Divider Restrictions  
FRAC_ORDER  
fVCO / IncludedDivide (MHz)  
MINIMUM N  
PFD_DLY_SEL  
0
12500  
> 12500  
29  
33  
30  
34  
38  
31  
31  
32  
36  
33  
37  
41  
45  
45  
49  
53  
57  
1
2
1
2
3
1
2
2
3
1
2
3
4
3
4
5
6
1
2
10000  
10000-12500  
>12250  
4000 (SYNC Mode)  
4000-7500 (SYNC Mode)  
7500 - 10000  
>10000  
3
4
4000 (SYNC Mode)  
4000-7500 (SYNC Mode)  
7500 - 10000  
>10000  
4000 (SYNC Mode)  
4000-7500 (SYNC Mode)  
7500-10000  
>10000  
7.3.6 MUXout Pin  
The MUXout pin can be configured as lock detect indicator for the PLL or as an serial data output (SDO) for the  
SPI interface to readback registers. Field MUXOUT_LD_SEL (register R0[2]) configures this output  
3. MUXout Pin Configurations  
MUXOUT_LD_SEL  
FUNCTION  
0
1
Serial data output for readback  
Lock detect indicator  
When lock detect indicator is selected, there are two types of indicator and they can be selected with the field  
LD_TYPE (register R59[0]). The first indicator is called “VCOCal” (LD_TYPE=0) and the second indicator is  
called “Vtune and VCOCal” (LD_TYPE=1).  
7.3.6.1 Serial data output for readback  
In this mode, the MUXout pin become the serial data output of the SPI interface. This output cannot be tri-stated  
so no line sharing is possible. Details of this pin operation are described with the serial interface description.  
Readback is very useful when a device is used is full assist mode and VCO calibration data are retrieve and  
saved for future use. It can also be used to read back the lock detect status using the field  
rb_LD_VTUNE(register R110[10:9]).  
7.3.6.2 Lock detect indicator set as type “VCOCal”  
In this mode the MUXout pin is will be low when the VCO is being calibrated or the lock detect delay timer is  
running, otherwise it will be high. The programmable timer (LD_DLY, register R60[15:0]) adds an additional delay  
after the VCO calibration finishes before the lock detect indicator is asserted high. LD_DLY is a 16 bit unsigned  
quantity that corresponds to the number of phase detector cycles in absolute delay. For example, a phase  
detector frequency of 100 MHz and the LD_DLY=10000 will add a delay of 100 usec before the indicator is  
asserted. This indicator will remain in its current state (high or low) until register R0 is programmed with  
FCAL_EN=1 with a valid input reference. In other words, if the PLL goes out of lock or the input reference goes  
away when the current state is high, then the current state will remain high.  
20  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.6.3 Lock detect indicator set as type “Vtune and VCOCal”  
In this mode the MUXout pin is will be high when the VCO calibration has finished, the lock detect delay timer is  
finished running, and the PLL is locked. This indicator may remain in its current state (high or low) if the OSCin  
signal is lost. The true status of the indicator will be updated and resume its operation only when a valid input  
reference to the OSCin pin is returned. An alternative method to monitor the OSCin of the PLL is recommended.  
This indicator is reliable as long as the reference to OSCin is present.  
The output of the device can be automatically muted when lock detect indicator “Vtune and VCOCal” is low. This  
feature is enabled with the field OUT_MUTE (register R0[9]) asserted.  
7.3.7 VCO (Voltage Controlled Oscillator)  
The LMX2615 includes a fully integrated VCO. The VCO takes the voltage from the loop filter and converts this  
into a frequency. The VCO frequency is related to the other frequencies and as follows:  
fVCO = fPD × N divider × N Included Divide  
(3)  
7.3.7.1 VCO Calibration  
To reduce the VCO tuning gain and therefore improve the VCO phase-noise performance, the VCO frequency  
range is divided into several different frequency bands. The entire range, 7600 to 15200 MHz, covers an octave  
that allows the divider to take care of frequencies below the lower bound. This creates the need for frequency  
calibration to determine the correct frequency band given a desired output frequency. The frequency calibration  
routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. It is important that a  
valid OSCin signal must present before VCO calibration begins.  
The VCO also has an internal amplitude calibration algorithm to optimize the phase noise which is also activated  
any time the R0 register is programmed.  
The optimum internal settings for this are temperature dependent. If the temperature is allowed to drift too much  
without being re-calibrated, some minor phase noise degradation could result. The maximum allowable drift for  
continuous lock, ΔTCL, is stated in the electrical specifications. For this device, a number of 125°C means the  
device never loses lock if the device is operated under recommended operating conditions.  
版权 © 2018, Texas Instruments Incorporated  
21  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
The LMX2615 allows the user to assist the VCO calibration. In general, there are three kinds of assistance, as  
shown in 4:  
4. Assisting the VCO Calibration Speed  
VCO_SEL_FORCE  
ASSIST  
ANCE  
LEVEL  
VCO_CAPCTRL_FO  
RCE  
VCO_DACISET_FOR  
CE  
VCO_CAPCTRL  
VCO_DACISET  
DESCRIPTION  
VCO_SEL  
No  
assist  
User does nothing to improve VCO calibration speed.  
7
0
0
Dont Care  
Don't Care  
Partial Upon every frequency change, before the FCAL_EN bit is  
assist checked, the user provides the initial starting VCO_SEL  
Choose by table  
The user forces the VCO core (VCO_SEL), amplitude  
settings (VCO_DACISET), and frequency band  
(VCO_CAPCTRL) and manually sets the value.  
Full  
assist  
Choose by  
readback  
1
Choose by readback  
For the no assist method, just set VCO_SEL=7 and this is done. For partial assist, the VCO calibration speed  
can be improved by changing the VCO_SEL bit according to the frequency. Note that the frequency is not the  
actual VCO core range, but actually favors choosing the VCO. This is not only optimal for VCO calibration speed,  
but required for reliable locking.  
5. Minimum VCO_SEL for Partial Assist  
fVCO  
VCO Core (min)  
VCO1  
7600 - 8740 MHz  
8740 - 10000 MHz  
10000 - 10980 MHz  
10980 -12100 MHz  
12100 - 13080 MHz  
13080 - 14180 MHz  
14180 - 15200 MHz  
VCO2  
VCO3  
VCO4  
VCO5  
VCO6  
VCO7  
For fastest calibration time, it is ideal to use the minimum VCO core as recommended in the previous table. The  
following table shows typical VCO calibration times for this choice in bold as well as showing how long the  
calibration time is increased if a higher than necessary VCO core is chosen. Realize that these calibration times  
are specific to these fOSC and fPD conditions specified and at the boundary of two cores, sometimes the  
calibration time can be increased.  
6. Typical Calibration times for fOSC = fPD = 100 MHz based on VCO_SEL  
VCO_SEL  
fVCO  
VCO7  
650  
610  
590  
340  
270  
240  
160  
VCO6  
540  
530  
520  
290  
170  
130  
VCO5  
550  
VCO4  
440  
VCO3  
360  
VCO2  
230  
VCO1  
110  
8.1 GHz  
9.3 GHz  
540  
430  
320  
220  
Invalid  
10.4 GHz  
11.4 GHz  
12.5 GHz  
13.6 GHz  
14.7 GHz  
530  
430  
240  
Invalid  
Invalid  
280  
180  
120  
Invalid  
Invalid  
Invalid  
7.3.7.2 Watchdog Feature  
The watchdog feature is used to the scenario when radiation during VCO calibration from causes the VCO  
calibration to fail. When this feature is enabled, the watchdog timer will run during VCO calibration. If this timer  
runs out before the VCO calibration is finished, then the VCO calibration will be re-started. The WD_DLY word  
sets how many times this calibration may be restarted by the watchdog feature.  
22  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.7.3 RECAL Feature  
The RECAL feature is used to mitigate the scenario when the VCO is in lock, but then radiation causes it to go  
out of lock. When the RECAL_EN pin is high, if the PLL loses lock and stays out of lock for a time specified by  
the LD_DLY word, then it will trigger a VCO re-calibration.  
7.3.7.4 Determining the VCO Gain  
The VCO gain varies between the seven cores and is the lowest at the lowest end of the band and highest at the  
highest end of each band. For a more accurate estimation, use 7:  
7. VCO Gain  
f1  
f2  
Kvco1  
78  
Kvco2  
114  
125  
136  
168  
206  
218  
248  
7600  
8740  
8740  
10000  
10980  
12100  
13080  
14180  
15200  
91  
10000  
10980  
12100  
13080  
14180  
112  
136  
171  
188  
218  
Based in this table, the VCO gain can be estimated for an arbitrary VCO frequency of fVCO as:  
Kvco = Kvco1 + (Kvco2-Kvco1) × (fVCO – f1) / (f2 – f1)  
(4)  
7.3.8 Channel Divider  
To go below the VCO lower bound of 7600 MHz, the channel divider can be used. The channel divider consists  
of four segments, and the total division value is equal to the multiplication of them. Therefore, not all values are  
valid.  
MUX  
RFoutA  
Divide by  
2 or 3  
Divide by  
2 or 4  
Divide by  
2,4, or 8  
1/2  
MUX  
VCO  
MUX  
RFoutB  
23. Channel Divider  
When the channel divider is used, there are limitations on the values. 8 shows how these values are  
implemented and which segments are used.  
版权 © 2018, Texas Instruments Incorporated  
23  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8. Channel Divider Segments  
EQUIVALENT  
FREQUENCY  
DIVISION  
VALUE  
OutMin (MHz)  
OutMax (MHz)  
CHDIV[4:0]  
SEG0  
SEG1  
SEG2  
SEG3  
LIMITATION  
2
4
3800  
1900  
7600  
3800  
0
1
2
2
1
2
1
1
1
1
None  
6
1266.667  
950  
2533.333  
1437.5  
958.333  
718.75  
469.167  
359.375  
239.583  
179.688  
159.722  
119.792  
89.844  
59.896  
n/a  
2
2
3
1
1
8
3
2
2
2
1
12  
633.333  
475  
4
2
3
2
1
16  
5
2
2
4
1
24  
316.667  
237.5  
6
2
3
4
1
32  
7
2
2
8
1
48  
fVCO 11.5 GHz  
158.333  
118.75  
105.556  
79.167  
59.375  
39.583  
n/a  
8
2
3
8
1
64  
9
2
2
8
2
72  
10  
11  
12  
13  
14-31  
2
3
6
2
96  
2
3
8
2
128  
192  
Invalid  
2
2
8
4
2
3
8
4
n/a  
n/a  
n/a  
n/a  
n/a  
The channel divider is powered up whenever an output (OUTx_MUX) is selected to the channel divider or  
SysRef, regardless of whether it is powered down or not. When an output is not used, TI recommends selecting  
the VCO output to ensure that the channel divider is not unnecessarily powered up.  
9. Channel Divider  
OUTA MUX  
Channel Divider  
X
OUTB MUX  
CHANNEL DIVIDER  
Powered up  
X
Channel Divider or SYSREF  
Powered up  
All Other Cases  
Powered down  
7.3.9 Output Buffer  
The RF output buffer type is open collector and requires an external pull-up to Vcc. This component may be a  
50-Ω resistor or an inductor. The inductor has less controlled impedance, but higher power. For the inductor  
case, it is often helpful to follow this with a resistive pad. The output power can be programmed to various levels  
or disabled while still keeping the PLL in lock. If using a resistor, limit OUTx_PWR setting to 31; higher than this  
tends to actually reduce power. Note that states 32 through 47 are redundant and should be ignored. In other  
words, after state 31, the next higher power setting is 48.  
10. OUTx_PWR Recommendations  
fOUT  
Restrictions  
Comments  
At lower frequencies, the output buffer impedance is high, so the 50-Ω pull-up will  
make the output impedance look somewhat like 50-Ω. Typically, maximum output  
power is near a setting of OUTx_PWR=50.  
10 MHz fOUT 5 GHz None  
In this range, parasitic inductances have some impact, so the output setting is  
restricted.  
5 GHz < fOUT 10 GHz  
OUTx_PWR 31  
OUTx_PWR 20  
At these higher frequency ranges, it is best to keep below 20 for highest power and  
optimal noise floor.  
10 GHz < fOUT  
7.3.10 Powerdown Modes  
The LMX2615 can be powered up and down using the CAL Pin or the POWERDOWN bit. When the device  
comes out of the powered down state, either by resuming the POWERDOWN bit to zero or by pulling back CAL  
Pin HIGH (if it was powered down by CAL Pin), register R0 must be programmed with FCAL_EN high again to  
re-calibrate the device.  
24  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.11 Treatment of Unused Pins  
This device has several pins for many features and there is a preferred way to treat these pins if not needed. For  
the input pins, a series resistor is recommend, but they can be directly shorted.  
11. Recommended Treatment of Pins  
Pins  
SPI Mode  
Pin Mode  
Recommended Treatment if NOT Used  
FS0,FS1,FS2,FS3,F Never Used Always Used GND with 1 kΩ.  
S4,FS5,FS6,FS7  
CAL  
Never Used Sometimes  
Used  
VCC with 1 kΩ  
GND with 1 kΩ  
SYNC, SysRefReq  
OSCinP,OSCinM  
Sometimes Never Used  
Used  
Always  
Used  
Always Used GND with 50 Ω to ground after AC coupling Cap. If one side of complimentary side is  
used and other side is not, impedance looking out should be similar for both of these  
pins.  
SCK, SDI  
CSB  
Always  
Used  
Never Used  
Never Used  
GND with 1 kΩ  
Always  
Used  
VCC with 1 kΩ  
RECAL_EN  
RFoutXX  
MUXOUT  
Sometimes Sometimes  
Used Used  
Internally pulled to VCC with 200 kΩ  
Sometimes Sometimes  
Used Used  
VCC with 50 Ω. If one side of complimentary side is used and the other side is not,  
impedance looking out should be similar for both of these pins.  
Sometimes Sometimes  
Used Used  
GND with 10 kΩ  
7.3.12 Phase Synchronization  
7.3.12.1 General Concept  
The SYNC pin allows one to synchronize the LMX2615 such that the delay from the rising edge of the OSCin  
signal to the output signal is deterministic. Initially, the devices are locked to the input, but are not synchronized.  
The user sends a synchronization pulse that is reclocked to the next rising edge of the OSCin pulse. After a  
given time, t1, the phase relationship from OSCin to fOUT will be deterministic. This time is dominated by the sum  
of the VCO calibration time, the analog setting time of the PLL loop, and the MASH_RST_CNT if used in  
fractional mode.  
版权 © 2018, Texas Instruments Incorporated  
25  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
...  
Device 1  
SYNC  
...  
Device 2  
...  
...  
fOSC  
t2  
t1  
24. Devices Are Now Synchronized to OSCin Signal  
When the SYNC feature is enabled, part of the channel divide may be included in the feedback path.  
12. IncludedDivide with VCO_PHASE_SYNC = 1  
OUTx_MUX  
CHANNEL DIVIDER  
Don't Care  
IncludedDivide  
1
OUTA_MUX = OUTB_MUX = 1 ("VCO")  
Divisible by 3, but NOT 24 or 192  
All other values  
SEG0 × SEG1 = 6  
SEG0 × SEG1 = 4  
All Other Valid Conditions  
External loop filter  
RFoutA  
RFoutB  
MUX  
MUX  
Pre-R  
Divider  
R
OSCin  
Doubler  
X M  
Divider  
Charge  
Pump  
SEG0  
f
SEG2  
SEG1  
SEG3  
N Divider  
25. Phase SYNC Diagram  
7.3.12.2 Categories of Applications for SYNC  
The requirements for SYNC depend on certain setup conditions. In cases that the SYNC is not timing critical, it  
can be done through software by toggling the VCO_PHASE_SYNC bit from 0 to 1. The 26 gives the different  
categories. When it is timing critical, then it must be done through the pin and the setup and hold times for the  
OSCin pin are critical. For timing critical sync (Category 3) ONLY, adhere to the following guidelines.  
26  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
13. SYNC Pin Timing Characteristics for Category 3 SYNC  
Parameter  
fOSC  
Description  
Min  
Max  
Unit  
MHz  
ns  
Input reference Frequency  
40  
tSETUP  
tHOLD  
Setup time between SYNC and OSCin rising edges  
Hold time between SYNC and OSCin rising edges  
2.5  
2.5  
ns  
版权 © 2018, Texas Instruments Incorporated  
27  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Start  
NO  
/I5Lë G 128  
?
CHDIV = 1,2,4,6  
This means the channel divider after the  
VCO is either bypassed,2,4, or 6. In this  
case, SYNC mode will put it in the loop.  
NO  
Category 4  
Device can NOT be reliably  
used in SYNC mode  
NO  
OSC_2X=0  
?
CHDIV = 1,2,4,6  
?
fOUT and fOSC related by integer multiple?  
This means that the output (fOUT) and  
input frequencies (fOSC) are related.  
In other words:  
NO  
(fOUT % fOSC=0) OR (fOSC % fOUT=0)  
fOUT%(2| (OSC)=0  
fOUT and fOSC  
related by integer  
NO  
fOSC G 50 MHz  
?
multiple  
?
Category 3  
ñ SYNC Required  
ñ SYNC Timing Critical  
ñ Limitations on fOSC  
CHDIV = 1,2,4,6  
This means the channel  
divider after the VCO is either  
bypassed,2,4, or 6. In this  
case, SYNC mode will put it in  
the loop.  
Category 2  
ñ SYNC Required  
ñ SYNC Timing NOT critical  
ñ No limitations on fOSC  
NO  
CHDIV = 1,2,4, 6  
?
Integer Mode  
This is asking if the device is  
in integer mode, which  
would mean the fractional  
numerator is zero.  
YES  
NO  
Integer Mode  
?
Category 1  
ñ SYNC Mode Required  
NO  
CHDIV=1?  
ñ No Software/Pin SYNC Pulse required  
Category 1  
ñ SYNC Mode Not required at all  
ñ No limitations on fOSC  
26. Determining the SYNC Category  
28  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.12.3 Procedure for Using SYNC  
This procedure must be used to put the device in SYNC mode.  
1. Use the flowchart to determine the SYNC category.  
2. Make determinations for OSCin and using SYNC based on the category  
1. If Category 4, SYNC cannot be performed in this setup.  
2. If category 3, ensure that the maximum fOSC frequency for SYNC is not violated and there are hardware  
accommodations to use the SYNC pin.  
3. If the channel divide is used, determine the included channel divide value which will be 2 × SEG1 of the  
channel divide:  
1. If OUTA_MUX is not channel divider and OUTB_MUX is not channel divider or SysRef, then  
IncludedDivide = 1.  
2. Otherwise, IncludedDivide = 2 × SEG1. In the case that the channel divider is 2, then IncludedDivide=4.  
4. If not done already, divide the N divider and fractional values by the included channel divide to account for  
the included channel divide.  
5. Program the device with the VCO_PHASE_SYNC = 1. Note that this does not count as applying a SYNC to  
device (for category 2).  
6. Apply the SYNC, if required  
1. If category 2, VCO_PHASE_SYNC can be toggled from 0 to 1. Alternatively, a rising edge can be sent to  
the SYNC pin and the timing of this is not critical.  
2. If category 3, the SYNC pin must be used, and the timing must be away from the rising edge of the  
OSCin signal.  
7.3.12.4 SYNC Input Pin  
The SYNC input pin can be driven either in CMOS. However, if not using SYNC mode (VCO_PHASE_SYNC =  
0), then the INPIN_IGNORE bit must be set to one, otherwise it causes issues with lock detect. If the pin is  
desired for to be used and VCO_PHASE_SYNC=1, then set INPIN_IGNORE = 0.  
7.3.13 Phase Adjust  
The MASH_SEED word can use the sigma-delta modulator to shift output signal phase with respect to the input  
reference. If a SYNC pulse is sent (software or pin) or the MASH is reset with MASH_RST_N, then this phase  
shift is from the initial phase of zero. If the MASH_SEED word is written to, then this phase is added. The phase  
shift is calculated as below.  
Phase shift in degrees = 360 × ( MASH_SEED / PLL_DEN) × ( IncludedDivide/CHDIV )  
(5)  
Example:  
Mash seed = 1  
Denominator = 12  
Channel divider = 16  
Phase shift ( VCO_PHASE_SYNC=0) = 360 × (1/12) × (1/16) = 1.875 degrees  
Phase Shift (VCO_PHASE_SYNC=1) = 360 × (1/12) × (4/16) = 7.5 degrees  
There are several considerations when using MASH_SEED  
Phase shift can be done with a FRAC_NUM=0, but FRAC_ORDER must be greater than zero. For  
FRAC_ORDER=1, the phase shifting only occurs when MASH_SEED is a multiple of PLL_DEN.  
For the 2nd order modulator, PLL_N45, for the 3rd order modulator, PLL_N49, and for the fourth order  
modulator, PLL_N54.  
When using MASH_SEED in the case where IncludedDivide>1, there are several additional considerations in  
order to get the phase shift to be monotonically increasing with MASH_SEED.  
It is recommended to use MASH_ORDER <=2.  
When using the 2nd order modulator for VCO frequencies below 10 GHz (when IncludedDivide=6) or 9 GHz  
(when IncludedDivide=4), it may be necessary to increase the PLL_N value much higher or change to first  
版权 © 2018, Texas Instruments Incorporated  
29  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
order modulator. When this is necessary depends on the VCO frequency, IncludedDivide, and PLL_N value.  
7.3.14 Fine Adjustments for Phase Adjust and Phase SYNC  
Phase SYNC refers to the process of getting the same phase relationship for every power up cycle and each  
time assuming that a given programming procedure is followed. However, there are some adjustments that can  
be made to get the most accurate results. As for the consistency of the phase SYNC, the only source of variation  
could be if the VCO calibration chooses a different VCO core and capacitor, which can introduce a bimodal  
distribution with about 10 ps of variation. If this 10 ps is not desirable, then it can be eliminated by reading back  
the VCO core, capcode, and DACISET values and forcing these values to ensure the same calibration settings  
every time. The delay through the device varies from part to part and can be on the order of 60 ps. This part to  
part variation can be calibrated out with the MASH_SEED. The variation in delay through the device also  
changes on the order of +2.5 ps/°C, but devices on the same board likely have similar temperatures, so this will  
somewhat track. In summary, the device can be made to have consistent delay through the part and there are  
means to adjust out any remaining errors with the MASH_SEED. This tends only to be an issue at higher output  
frequencies when the period is shorter.  
30  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.15 SYSREF  
The LMX2615 can generate a SYSREF output signal that is synchronized to fOUT with a programmable delay.  
This output can be a single pulse, series of pulses, or a continuous stream of pulses. To use the SYSREF  
capability, the PLL must first be placed in SYNC mode with VCO_PHASE_SYNC = 1.  
fOUT  
RFoutA  
MUX  
Rest of Channel  
Divider  
fVCO  
IncludedDivide  
N Divider  
To Phase  
Detector  
Divider  
(SYSREF_DIV_PRE)  
Divider  
(SYSREF_DIV)  
1/2  
fSYSREF  
Delay Circuit  
RFoutB  
Re-clocking  
Circuit  
SysRefReq Pin  
27. SYSREF Setup  
As 27 shows, the SYSREF feature uses IncludedDivide and SYSREF_DIV_PRE divider to generate  
fINTERPOLATOR. This frequency is used for re-clocking of the rising and falling edges at the SysRefReq pin. In  
master mode, the fINTERPOLATOR is further divided by 2×SYSREF_DIV to generate finite series or continuous  
stream of pulses.  
14. SYSREF Setup  
PARAMETER  
fVCO  
MIN  
7600  
0.8  
TYP  
MAX  
15200  
1.5  
UNIT  
MHz  
GHz  
fINTERPOLATOR  
IncludedDivide  
SYSREF_DIV_PRE  
SYSREF_DIV  
4 or 6  
1, 2, or 4  
4,6,8, ..., 4098  
fPRESYSREF = fVCO /(IncludedDivide ×  
SYSREF_DIV_PRE)  
fINTERPOLATOR  
fSYSREF  
Delay step size  
fSYSREF = fINTERPOLATOR / (2 × SYSREF_DIV)  
9
ps  
Pulses for pulsed mode (SYSREF_PULSE_CNT)  
0
15  
n/a  
The delay can be programmed using the JESD_DAC1_CTRL, JESD_DAC2_CTRL, JESD_DAC3_CTRL, and  
JESD_DAC4_CTRL words. By concatenating these words into a larger word called "SYSREFPHASESHIFT", the  
relative delay can be found. The sum of these words must always be 63.  
版权 © 2018, Texas Instruments Incorporated  
31  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
15. SysRef Delay  
SYSREFPHASESHIFT  
DELAY  
JESD_DAC1  
JESD_DAC2  
JESD_DAC3  
JESD_DAC4  
0
...  
Minimum  
36  
27  
0
0
0
0
0
0
0
0
36  
0
63  
1
37  
62  
...  
99  
0
0
0
0
63  
62  
0
1
100  
...  
161  
162  
163  
225  
226  
247  
> 247  
0
0
0
1
62  
0
0
63  
1
0
0
0
62  
63  
0
0
62  
1
0
0
0
0
Maximum  
Invalid  
41  
22  
Invalid  
Invalid  
Invalid  
Invalid  
7.3.15.1 Programmable Fields  
16 has the programmable fields for the SYSREF functionality.  
16. SYSREF Programming Fields  
FIELD  
PROGRAMMING  
DEFAULT  
DESCRIPTION  
Enables the SYSREF mode. SYSREF_EN  
must be 1 if and only if OUTB_MUX=2  
(SysRef)  
0 = Disabled  
1 = enabled  
SYSREF_EN  
0
1: DIV1  
2: DIV2  
4: DIV4  
Other states: invalid  
The output of this divider is the  
fINTERPOLATOR.  
SYSREF_DIV_PRE  
SYSREF_REPEAT  
In master mode, the device creates a series  
of SYSREF pulses. In repeater mode,  
SYSREF pulses are generated with the  
SysRefReq pin.  
0 = Master mode  
1 = Repeater mode  
0
Continuous mode continuously makes  
SYSREF pulses, where pulsed mode makes  
a series of SYSREF_PULSE_CNT pulses  
0 = Continuous mode  
1 = Pulsed mode  
SYSREF_PULSE  
0
4
In the case of using pulsed mode, this is the  
number of pulses. Setting this to zero is an  
allowable, but not practical state.  
SYSREF_PULSE_CNT  
0 to 15  
0: Divide by 4  
1: Divide by 6  
2: Divide by 8  
...  
The SYSREF frequency is at the VCO  
frequency divided by this value.  
SYSREF_DIV  
0
2047: Divide by 4098  
32  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.3.15.2 Input and Output Pin Formats  
7.3.15.2.1 SYSREF Output Format  
The SYSREF output comes in differential format through RFoutB. This will have a minimum voltage of about 2.3  
V and a maximum of 3.3 V. If DC coupling cannot be used, there are two strategies for AC coupling.  
3.3 V  
SysRefOutP  
Data  
Converter  
SysRefOutN  
LMX2594  
3.3 V  
Copyright © 2017, Texas Instruments Incorporated  
28. SYSREF Output  
1. Send a series of pulses to establish a DC-bias level across the AC-coupling capacitor.  
2. Establish a bias voltage at the data converter that is below the threshold voltage by using a resistive divider.  
7.3.15.3 Examples  
The SysRef can be used in a repeater mode, which just echos the input, after being re-clocked to the  
fINTERPOLATOR frequency and then RFout, or it can be used in a repeater. In repeater mode, it can repeat 1,2,4,8,  
or infinite (continuous) pulses. The frequency for repeater mode is equal to the RFout frequency divided by the  
SYSREF divider.  
RFoutAM  
OSCinM  
OSCinP  
RFoutAP  
RFoutBP  
RFoutBM  
SysRefReq  
t2  
t1  
t2  
f
t1  
f
29. SYSREF Out In Repeater Mode  
In master mode, the SysRefReq pin is pulled high to allow the SysRef output.  
RFoutAM  
OSCinM  
OSCinP  
RFoutAP  
RFoutBP  
RFoutBM  
SysRefReq  
f
f
30. Figure 1. SYSREF Out In Pulsed/Continuous Mode  
版权 © 2018, Texas Instruments Incorporated  
33  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.15.4 SYSREF Procedure  
To use SYSREF, do the these steps:  
1. Put the device in SYNC mode using the procedure already outlined.  
2. Figure out IncludedDivide the same way it is done for SYNC mode.  
3. Calculate the SYSREF_DIV_PRE value such that the interpolator frequency (fINTERPOLATOR) is in the range of  
800 to 1500 MHz. fINTERPOLATOR = fVCO/IncludedDivide/SYSREF_DIV_PRE. Make this frequency a multiple of  
fOSC if possible.  
4. If using master mode (SYSREF_REPEAT = 0), ensure SysRefReq pin is high, ensure the SysRefReq pin is  
high.  
5. If using repeater mode (SYSREF_REPEAT = 1), set up the pulse count if desired. Pulses are created by  
toggling the SysRefReq pin.  
6. Adjust the delay between the RFoutA and RFoutB signal using the JESD_DACx_CTL fields.  
7.3.16 Pin Modes  
The LMX2615-SP has 8 pins that can be used to program pre-selected modes. A few rules of operation for these  
pin modes are as folows:  
Set the pin mode as desired. Pin Mode 0 is SPI mode  
If a single frequency is desired, tie CAL should be tied to supply through 1 kohm resistance and and  
RECAL_EN shoudl be left open.  
The rise time for the supply needs to be <50 ms.  
Fractional denominator for all pin modes is 4250000  
Some words can be overwritten in pin mode including OUTx_PWR, OUTx_EN, RESET, and POWERDOWN  
When changing between pin modes, after the pins are changed, the CAL pin needs to be toggled  
If the FS7 pin is low, then only the RFoutA output is active. If the FS7 pin is high, then both the RFoutA and  
RFoutB outputs are active.  
The following table shows all the pin modes  
17. Pin Modes  
fOSC  
(MHz)  
fPD  
(MHz)  
CPG  
(mA)  
fOUT  
(MHz)  
fVCO  
CHDIV  
Mode  
N
Fraction  
(MHz)  
0
1
SPI Mode  
10  
10  
20  
10  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
160  
395  
48  
24  
12  
6
7680  
9480  
384  
948  
432  
384  
48  
0/4250000000  
0/4250000000  
2
3
10  
20  
720  
8640  
0/4250000000  
4
10  
20  
1280  
7680  
0/4250000000  
5
100  
100  
100  
20  
200  
200  
200  
40  
300  
32  
8
9600  
0/4250000000  
6
1000  
8000  
40  
0/4250000000  
7
1200  
8
9600  
48  
0/4250000000  
8
6199.855  
2000  
2
12399.71  
8000  
309  
40  
4219187500/4250000000  
0/4250000000  
9
100  
50  
200  
100  
100  
100  
40  
4
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
250  
32  
16  
12  
2
8000  
80  
0/4250000000  
50  
500  
8000  
80  
0/4250000000  
50  
850  
10200  
102  
282  
455  
512  
100  
0/4250000000  
20  
5654.912  
1517.867839  
1708.670653  
2500  
11309.824  
9107.207034  
10252.02392  
10000  
3168800000/4250000000  
1531494725/4250000000  
2555082575/4250000000  
0/4250000000  
10  
20  
6
10  
20  
6
50  
100  
4
Reserved. Do not use this pin mode.  
10  
50  
20  
15  
15  
3035.735678  
3200  
4
4
12142.94271  
12800  
607  
128  
625326300/4250000000  
0/4250000000  
100  
34  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
17. Pin Modes (接下页)  
fOSC  
(MHz)  
fPD  
(MHz)  
CPG  
(mA)  
fOUT  
(MHz)  
fVCO  
CHDIV  
Mode  
N
Fraction  
(MHz)  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
10  
20  
100  
100  
100  
100  
20  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
3417.341306  
4500  
4
2
13669.36522  
9000  
683  
90  
1990110100/4250000000  
0/4250000000  
50  
50  
4800  
2
9600  
96  
0/4250000000  
50  
5350  
2
10700  
107  
136  
683  
683  
683  
683  
96  
0/4250000000  
50  
6800  
2
13600  
0/4250000000  
10  
6834  
2
13668  
1700000000/4250000000  
1990109675/4250000000  
1992187500/4250000000  
2018750000/4250000000  
0/4250000000  
10  
20  
6834.682611  
6834.6875  
6834.75  
9600  
2
13669.36522  
13669.375  
13669.5  
9600  
10  
20  
2
10  
20  
2
50  
100  
100  
100  
100  
37.5  
37.5  
75  
1
50  
9650  
1
9650  
96  
2125000000/4250000000  
0/4250000000  
50  
13500  
1
13500  
135  
89  
100  
18.75  
18.75  
37.5  
20  
70  
128  
24  
24  
24  
2
8960  
2550000000/4250000000  
0/4250000000  
393.75  
422.4990441  
422.4990441  
6785.552  
2088.38  
2210  
9450  
252  
270  
135  
339  
208  
88  
10139.97706  
10139.97706  
13571.104  
8353.52  
8840  
1697399952/4250000000  
848699976/4250000000  
1179800000/4250000000  
3561500000/4250000000  
1700000000/4250000000  
2210000000/4250000000  
1848750000/4250000000  
0/4250000000  
40  
20  
40  
4
100  
100  
20  
100  
100  
40  
4
2238  
4
8952  
89  
2254.35  
2270  
4
9017.4  
9080  
225  
227  
228  
360  
180  
203  
204  
205  
205  
205  
206  
207  
210  
211  
211  
212  
212  
205  
643  
650  
651  
656  
661  
305  
669  
670  
317  
20  
40  
4
20  
40  
2280  
4
9120  
0/4250000000  
18.75  
37.5  
20  
37.5  
75  
6759.984705  
6759.984705  
8125  
2
13519.96941  
13519.96941  
8125  
2263199800/4250000000  
1131599900/4250000000  
531250000/4250000000  
1593750000/4250000000  
0/4250000000  
2
40  
1
20  
40  
8175  
1
8175  
20  
40  
8200  
1
8200  
20  
40  
8210  
1
8210  
1062500000/4250000000  
1328125000/4250000000  
3718750000/4250000000  
2125000000/4250000000  
0/4250000000  
20  
40  
8212.5  
8275  
1
8212.5  
8275  
20  
40  
1
20  
40  
8300  
1
8300  
20  
40  
8400  
1
8400  
20  
40  
8450  
1
8450  
1062500000/4250000000  
2125000000/4250000000  
425000000/4250000000  
1700000000/4250000000  
1275000000/4250000000  
0/4250000000  
20  
40  
8460  
1
8460  
20  
40  
8484  
1
8484  
20  
40  
8496  
1
8496  
20  
40  
8212  
1
8212  
10  
20  
12860  
1
12860  
10  
20  
13000  
1
13000  
0/4250000000  
10  
20  
13022.5  
13125  
1
13022.5  
13125  
531250000/4250000000  
1062500000/4250000000  
531250000/4250000000  
1030306250/4250000000  
2125000000/4250000000  
3718750000/4250000000  
1030412500/4250000000  
10  
20  
1
10  
20  
13222.5  
12209.697  
13390  
1
13222.5  
12209.697  
13390  
20  
40  
1
10  
20  
1
10  
20  
13417.5  
12689.697  
1
13417.5  
12689.697  
20  
40  
1
版权 © 2018, Texas Instruments Incorporated  
35  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
17. Pin Modes (接下页)  
fOSC  
(MHz)  
fPD  
(MHz)  
CPG  
(mA)  
fOUT  
(MHz)  
fVCO  
CHDIV  
Mode  
N
Fraction  
(MHz)  
67  
68  
69  
70  
71  
72  
20  
20  
40  
40  
15  
15  
15  
15  
15  
15  
13906.667  
14192.727  
8212.5  
1250  
1
1
1
8
8
6
13906.667  
14192.727  
8212.5  
347  
354  
410  
200  
100  
300  
2833368750/4250000000  
3477243750/4250000000  
2656250000/4250000000  
0/4250000000  
10  
20  
100  
50  
50  
10000  
100  
37.5  
1250  
10000  
0/4250000000  
18.75  
1875  
11250  
0/4250000000  
7.4 Device Functional Modes  
18. Device Functional Modes  
MODE  
DESCRIPTION  
SOFTWARE SETTINGS  
Registers are held in their reset state. This device does have a  
power on reset, but it is good practice to also do a software reset if  
there is any possibility of noise on the programming lines, especially  
if there is sharing with other devices. Also realize that there are  
registers not disclosed in the data sheet that are reset as well.  
RESET = 1  
POWERDOWN = 0  
RESET  
POWERDOWN = 1  
or  
POWERDOWN  
Device is powered down.  
CAL Pin = Low  
One of FS0, FS1, ... FS7 pins is  
NOT low  
Pin Mode  
Normal operating mode  
SYNC mode  
Device settings are determined by pin states.  
This is used with at least one output on as a frequency synthesizer  
and the device can be controlled through the SPI interface  
ALL of FS0, FS1, ... FS7 pins are  
low  
This is used where part of the channel divider is in the feedback path  
to ensure deterministic phase.  
VCO_PHASE_SYNC = 1  
VCO_PHASE_SYNC =1,  
SYSREF_EN = 1  
SYSREF mode  
In this mode, RFoutB is used to generate pulses for SYSREF.  
36  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.5 Programming  
When not in pin mode, the LMX2615 is programmed using 24-bit shift registers. The shift register consists of a  
R/W bit (MSB), followed by a 7-bit address field and a 16-bit data field. For the R/W bit, 0 is for write, and 1 is for  
read. The address field ADDRESS[6:0] is used to decode the internal register address. The remaining 16 bits  
form the data field DATA[15:0]. While CSB is low, serial data is clocked into the shift register upon the rising  
edge of clock (data is programmed MSB first). When CSB goes high, data is transferred from the data field into  
the selected register bank. See 1 for timing details.  
7.5.1 Recommended Initial Power-Up Sequence  
For the most reliable programming, TI recommends this procedure:  
1. Apply power to device.  
2. Program RESET = 1 to reset registers.  
3. Program RESET = 0 to remove reset.  
4. Program registers as shown in the register map in REVERSE order from highest to lowest.  
Programming of register R114 is only needed one wants to change the default states for WD_CNTRL or  
WD_DLY.  
Programming of registers R113 down to R76 is not required, but if they are programmed, they should be  
done so as the register map shows.  
Programming of registers R75 down to R0 is required. Registers in this range that only 1's and 0's should  
also be programmed in accordance to the register map. Do NOT assume that the power on reset state  
and the recommended value are the same. Also, in the register descriptions, it lists a "Reset" value. This  
is actually the recommended value that should match the main register map table; it is not necessarily the  
power on reset value.  
5. Wait 10 ms  
6. Program register R0 one additional time with FCAL_EN = 1 to ensure that the VCO calibration runs from a  
stable state.  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies is as follows:  
1. Change the N divider value.  
2. Program the PLL numerator and denominator.  
3. Program FCAL_EN (R0[3]) = 1.  
版权 © 2018, Texas Instruments Incorporated  
37  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
7.6 Register Maps  
7.6.1 Register Map  
www.ti.com.cn  
19. Complete Register Map Table  
REG  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VCO_  
PHAS  
E_  
MUX  
POW  
ERDO  
WN  
OUT_  
MUTE  
FCAL_  
HPFD_ADJ  
FCAL OUT_ RESE  
_EN LD_S  
EL  
R0  
0
1
0
0
0
0
0
1
T
SYNC  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
1
0
0
CAL_CLK_DIV  
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
VCO_  
DACI  
SET_  
FORC  
E
VCO_  
CAPC  
TRL_  
FORC  
E
R8  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
OSC_  
2X  
R9  
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
0
0
1
0
0
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
PLL_R  
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
1
0
0
0
1
0
0
0
0
PLL_R_PRE  
0
0
0
0
1
0
CPG  
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
VCO_DACISET  
1
0
1
0
0
0
1
1
0
0
1
1
1
0
0
0
0
1
0
0
VCO_CAPCTRL  
VCO_  
SEL_  
FORC  
E
R20  
1
1
VCO_SEL  
0
0
0
1
0
1
0
0
0
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
SEG1  
_EN  
R31  
0
0
0
0
0
1
1
1
1
1
0
1
1
0
0
R32  
R33  
R34  
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
1
1
0
PLL_N[18:16]  
38  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Register Maps (接下页)  
19. Complete Register Map Table (接下页)  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
PLL_N[15:0]  
0
PFD_DLY_SEL  
0
0
PLL_DEN[31:16]  
PLL_DEN[15:0]  
MASH_SEED[31:16]  
MASH_SEED[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
MASH  
_RES  
ET_N  
OUTB OUTA  
R44  
0
0
OUTA_PWR  
0
0
MASH_ORDER  
_PD  
_PD  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OUTA_MUX  
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
OUTB_PWR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
OUTB_MUX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INPIN  
_
IGNO  
RE  
R58  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
LD_  
TYPE  
R59  
0
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
LD_DLY  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
SYSR  
EF_R  
EPEA  
T
SYSR SYSR  
EF_P EF  
ULSE _EN  
R71  
0
0
0
0
0
0
0
0
0
SYSREF_DIV_PRE  
0
0
0
0
R72  
R73  
R74  
R75  
0
0
0
0
0
0
0
0
SYSREF_DIV  
JESD_DAC2_CTRL  
JESD_DAC4_CTRL  
CHDIV  
JESD_DAC1_CTRL  
JESD_DAC3_CTRL  
SYSREF_PULSE_CNT  
0
0
0
0
1
0
0
0
0
版权 © 2018, Texas Instruments Incorporated  
39  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Register Maps (接下页)  
19. Complete Register Map Table (接下页)  
R76  
R77  
R78  
R79  
R80  
R81  
R82  
R83  
R84  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
R93  
R94  
R95  
R96  
R97  
R98  
R99  
R100  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R108  
R109  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
rb_LD  
_VTUNE  
R110  
0
0
0
0
0
0
0
rb_VCO_SEL  
0
0
0
0
0
R111  
R112  
R113  
R114  
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
0
0
rb_IO_STATUS  
WD_DLY  
0
0
0
0
0
WD_CNTRL  
Table 20 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in  
Table 20 should be considered as reserved locations and the register contents should not be modified.  
Table 20. Device Registers  
Address  
0x0  
Acronym  
R0  
Register Name  
Section  
Go  
0x1  
R1  
Go  
40  
Copyright © 2018, Texas Instruments Incorporated  
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Table 20. Device Registers (continued)  
Address  
0x8  
Acronym  
R8  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0x9  
R9  
0xB  
R11  
R12  
R14  
R16  
R19  
R20  
R31  
R34  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R58  
R59  
R60  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R110  
R111  
R112  
R113  
R114  
0xC  
0xE  
0x10  
0x13  
0x14  
0x1F  
0x22  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x3A  
0x3B  
0x3C  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x6E  
0x6F  
0x70  
0x71  
0x72  
Complex bit access types are encoded to fit into small table cells. Table 21 shows the codes that are used for  
access types in this section.  
Table 21. Device Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
Copyright © 2018, Texas Instruments Incorporated  
41  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 21. Device Access Type Codes (continued)  
Access Type  
Code  
Description  
-n  
Value after reset or the default  
value  
7.6.1.1 R0 Register (Address = 0x0) [reset = X]  
R0 is shown in Figure 31 and described in Table 22.  
Return to Summary Table.  
Figure 31. R0 Register  
7
6
5
4
3
2
1
0
FCAL_HPFD_A  
DJ  
RESERVED  
FCAL_EN  
MUXOUT_LD_  
SEL  
RESET  
POWERDOWN  
R/W-0x0  
R-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
R/W-0x0  
Table 22. R0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
14  
VCO_PHASE_SYNC  
R/W  
X
Phase Sync Mode Enable. In this state, part of the channel divider is  
put in the feedback path to ensure determinisic phase. The action of  
toggling this bit from 0 to 1 also sends an asynchronous SYNC  
pulse.  
0x0 = Phase SYNC disabled  
0x1 = Phase SYNC enabled  
13-10  
9
RESERVED  
OUT_MUTE  
R
X
X
R/W  
0x1 = Mute output (RFOUTA/B) during FCAL  
8-7  
FCAL_HPFD_ADJ  
R/W  
0x0  
Adjustment to decrease the state machine clock for the VCO  
calibration speed based on phase detector frequency.  
6-4  
3
RESERVED  
FCAL_EN  
R
0x0  
0x1  
R/W  
Writing register R0 with this bit set to a '1' enables and triggers the  
VCO frequency calibration.  
2
MUXOUT_LD_SEL  
R/W  
R/W  
0x1  
Selects the functionality of the MUXout Pin  
0x0 = Readback  
0x1 = Lock Detect  
1
RESET  
0x0  
Register Reset. This resets all registers and state machines. After  
writing a '1', you must write a '0' to remove the reset.It is  
recommended to toggle the RESET bit before programming the part  
to ensure consistent performance.  
0x0 = Normal Operation  
0x1 = Reset  
0
POWERDOWN  
R/W  
0x0  
Powers down device.  
0x0 = Normal Operation  
0x1 = Powered Down  
7.6.1.2 R1 Register (Address = 0x1) [reset = 0x4]  
R1 is shown in Figure 32 and described in Table 23.  
Return to Summary Table.  
Figure 32. R1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CAL_CLK_DIV  
R/W-0x4  
42  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Table 23. R1 Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
CAL_CLK_DIV  
R/W  
0x4  
Divides down the Fosc frequency to the state machine clock  
(SM_CLK) frequency. SM_CLK = Fosc/(2CAL_CLK_DIV). Ensure that  
the state machine clock frequency 50 MHz or less.  
0x0 = Up to 50 MHz  
0x1 = Up to 100 MHz  
0x2 = Up to 200 MHz  
0x3 = Up to 400 MHz  
0x4 = Up to 800 MHz  
0x5 = Greater than 800 MHz  
7.6.1.3 R8 Register (Address = 0x8) [reset = X]  
R8 is shown in Figure 33 and described in Table 24.  
Return to Summary Table.  
Figure 33. R8 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 24. R8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
14  
VCO_DACISET_FORCE R/W  
X
Forces VCO_DACISET Value. Useful for fully assisted VCO  
calibration and debugging purposes.  
13-12  
11  
RESERVED  
R
X
X
VCO_CAPCTRL_FORCE R/W  
Forces VCO_CAPCTRL value. Useful for fully assisted VCO  
calibration and debugging purposes.  
10-0  
RESERVED  
R
0x0  
7.6.1.4 R9 Register (Address = 0x9) [reset = X]  
R9 is shown in Figure 34 and described in Table 25.  
Return to Summary Table.  
Figure 34. R9 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 25. R9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12  
OSC_2X  
R/W  
X
Reference Path Doubler  
0x0 = Disabled  
0x1 = Enable  
11-0  
RESERVED  
R
0x0  
Copyright © 2018, Texas Instruments Incorporated  
43  
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.6.1.5 R11 Register (Address = 0xB) [reset = 0x10]  
R11 is shown in Figure 35 and described in Table 26.  
Return to Summary Table.  
Figure 35. R11 Register  
7
6
5
4
3
2
1
0
PLL_R  
RESERVED  
R-0x0  
R/W-0x1  
Table 26. R11 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
0x1  
Description  
11-4  
3-0  
PLL_R  
PLL R divider Value  
RESERVED  
0x0  
7.6.1.6 R12 Register (Address = 0xC) [reset = 0x1]  
R12 is shown in Figure 36 and described in Table 27.  
Return to Summary Table.  
Figure 36. R12 Register  
7
6
5
4
3
2
1
0
PLL_R_PRE  
R/W-0x1  
Table 27. R12 Register Field Descriptions  
Bit  
7-0  
Field  
PLL_R_PRE  
Type  
Reset  
Description  
R/W  
0x1  
PLL Pre-R divider value  
7.6.1.7 R14 Register (Address = 0xE) [reset = 0x70]  
R14 is shown in Figure 37 and described in Table 28.  
Return to Summary Table.  
Figure 37. R14 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CPG  
RESERVED  
R-0x0  
R/W-0x7  
Table 28. R14 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
CPG  
6-4  
R/W  
0x7  
Effective charge pump gain . This is the sum of the up and down  
currents.  
3-0  
RESERVED  
R
0x0  
7.6.1.8 R16 Register (Address = 0x10) [reset = 0x80]  
R16 is shown in Figure 38 and described in Table 29.  
Return to Summary Table.  
44  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Figure 38. R16 Register  
7
6
5
4
3
2
1
0
VCO_DACISET  
R/W-0x80  
Table 29. R16 Register Field Descriptions  
Bit  
Field  
VCO_DACISET  
Type  
Reset  
Description  
8-0  
R/W  
0x80  
Programmable current setting for the VCO that is applied when  
VCO_DACISET_FORCE=1.  
7.6.1.9 R19 Register (Address = 0x13) [reset = 0xB7]  
R19 is shown in Figure 39 and described in Table 30.  
Return to Summary Table.  
Figure 39. R19 Register  
7
6
5
4
3
2
1
0
VCO_CAPCTRL  
R/W-0xB7  
Table 30. R19 Register Field Descriptions  
Bit  
7-0  
Field  
VCO_CAPCTRL  
Type  
Reset  
Description  
R/W  
0xB7  
Programmable band within VCO core that applies when  
VCO_CAPCTRL_FORCE=1. Valid values are 183 to 0, where the  
higher number is a lower frequency.  
7.6.1.10 R20 Register (Address = 0x14) [reset = X]  
R20 is shown in Figure 40 and described in Table 31.  
Return to Summary Table.  
Figure 40. R20 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 31. R20 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
13-11  
VCO_SEL  
R/W  
X
User specified start VCO for calibration. Also is the VCO core that is  
forced by VCO_SEL_FORCE  
10  
VCO_SEL_FORCE  
RESERVED  
R/W  
R
X
Force the VCO_SEL Value  
9-0  
0x0  
7.6.1.11 R31 Register (Address = 0x1F) [reset = X]  
R31 is shown in Figure 41 and described in Table 32.  
Return to Summary Table.  
Figure 41. R31 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Copyright © 2018, Texas Instruments Incorporated  
45  
 
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 32. R31 Register Field Descriptions  
Bit  
14  
Field  
Type  
R/W  
R
Reset  
X
Description  
SEG1_EN  
RESERVED  
Enables first divide by 2 in channel divider.  
13-0  
0x0  
7.6.1.12 R34 Register (Address = 0x22) [reset = 0x0]  
R34 is shown in Figure 42 and described in Table 33.  
Return to Summary Table.  
Figure 42. R34 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
PLL_N_18:16  
R/W-0x0  
Table 33. R34 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
7-3  
2-0  
RESERVED  
PLL_N_18:16  
R/W  
0x0  
Upper 3 bits of N mash, total 19 bits, split as 16 + 3  
7.6.1.13 R36 Register (Address = 0x24) [reset = 0x46]  
R36 is shown in Figure 43 and described in Table 34.  
Return to Summary Table.  
Figure 43. R36 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
R/W-0x46  
Table 34. R36 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_N  
Type  
Reset  
Description  
R/W  
0x46  
PLL N divider value  
7.6.1.14 R37 Register (Address = 0x25) [reset = 0x400]  
R37 is shown in Figure 44 and described in Table 35.  
Return to Summary Table.  
Figure 44. R37 Register  
15  
7
14  
6
13  
5
12  
4
11  
PFD_DLY_SEL  
R/W-0x4  
10  
9
1
8
0
RESERVED  
R-0x0  
3
2
RESERVED  
R-0x0  
46  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Table 35. R37 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-14  
13-8  
RESERVED  
PFD_DLY_SEL  
R/W  
0x4  
Programmable phase detector delay. This should be programmed  
based on VCO frequency, fractional order, and N divider value. DLY  
= (PFD_DLY_SEL + 3)*4*VCO_cycle.  
7-0  
RESERVED  
R
0x0  
7.6.1.15 R38 Register (Address = 0x26) [reset = 0xFD51]  
R38 is shown in Figure 45 and described in Table 36.  
Return to Summary Table.  
Figure 45. R38 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
3
3
2
2
2
1
1
1
0
0
0
PLL_DEN_31:16  
R/W-0xFD51  
Table 36. R38 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN_31:16  
Type  
Reset  
Description  
Fractional Denominator(MSB)  
R/W  
0xFD51  
7.6.1.16 R39 Register (Address = 0x27) [reset = 0xDA80]  
R39 is shown in Figure 46 and described in Table 37.  
Return to Summary Table.  
Figure 46. R39 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
PLL_DEN  
R/W-0xDA80  
Table 37. R39 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN  
Type  
Reset  
Description  
R/W  
0xDA80  
Fractional Denominator  
7.6.1.17 R40 Register (Address = 0x28) [reset = 0x0]  
R40 is shown in Figure 47 and described in Table 38.  
Return to Summary Table.  
Figure 47. R40 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
MASH_SEED_31:16  
R/W-0x0  
Table 38. R40 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_SEED_31:16  
Type  
Reset  
Description  
R/W  
0x0  
MASH_SEED(MSB)  
Copyright © 2018, Texas Instruments Incorporated  
47  
 
 
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.6.1.18 R41 Register (Address = 0x29) [reset = 0x0]  
R41 is shown in Figure 48 and described in Table 39.  
Return to Summary Table.  
Figure 48. R41 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_SEED  
R/W-0x0  
Table 39. R41 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_SEED  
Type  
Reset  
Description  
R/W  
0x0  
Sets the initial state of the fractional engine. Useful for producing a  
phase shift and fractional spur optimization.  
7.6.1.19 R42 Register (Address = 0x2A) [reset = 0x0]  
R42 is shown in Figure 49 and described in Table 40.  
Return to Summary Table.  
Figure 49. R42 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_31:16  
R/W-0x0  
Table 40. R42 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM_31:16  
Type  
Reset  
Description  
R/W  
0x0  
Fractional Numerator (MSB)  
7.6.1.20 R43 Register (Address = 0x2B) [reset = 0x0]  
R43 is shown in Figure 50 and described in Table 41.  
Return to Summary Table.  
Figure 50. R43 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM  
R/W-0x0  
Table 41. R43 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM  
Type  
Reset  
Description  
R/W  
0x0  
Fractional Numerator  
7.6.1.21 R44 Register (Address = 0x2C) [reset = 0x1FA3]  
R44 is shown in Figure 51 and described in Table 42.  
Return to Summary Table.  
Figure 51. R44 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
OUTA_PWR  
R/W-0x1F  
3
48  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
MASH_ORDER  
www.ti.com.cn  
OUTB_PD  
R/W-0x1  
OUTA_PD  
R/W-0x0  
MASH_RESET  
_N  
RESERVED  
R-0x0  
R/W-0x1  
R/W-0x3  
Table 42. R44 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-14  
13-8  
RESERVED  
OUTA_PWR  
R/W  
0x1F  
Sets current that controls output power for output A. 0 is minimum  
current, 63 is maximum current.  
7
6
OUTB_PD  
R/W  
R/W  
R/W  
R
0x1  
0x0  
0x1  
0x0  
0x3  
\nPowers down output B  
Powers down output A  
Active low reset for MASH  
OUTA_PD  
5
MASH_RESET_N  
RESERVED  
MASH_ORDER  
4-3  
2-0  
R/W  
MASH Order  
7.6.1.22 R45 Register (Address = 0x2D) [reset = X]  
R45 is shown in Figure 52 and described in Table 43.  
Return to Summary Table.  
Figure 52. R45 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
OUTB_PWR  
R/W-0x1F  
Table 43. R45 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
X
Description  
12-11  
10-6  
5-0  
OUTA_MUX  
RESERVED  
OUTB_PWR  
\nSelects input to OUTA output  
0x0  
R/W  
0x1F  
Sets current that controls output power for output B. 0 is minimum  
current, 63 is maximum current.  
7.6.1.23 R46 Register (Address = 0x2E) [reset = 0x1]  
R46 is shown in Figure 53 and described in Table 44.  
Return to Summary Table.  
Figure 53. R46 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
OUTB_MUX  
R/W-0x1  
Table 44. R46 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
7-2  
1-0  
RESERVED  
OUTB_MUX  
R/W  
0x1  
\nSelects input to the OUTB output  
7.6.1.24 R58 Register (Address = 0x3A) [reset = X]  
R58 is shown in Figure 54 and described in Table 45.  
Return to Summary Table.  
Copyright © 2018, Texas Instruments Incorporated  
49  
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Figure 54. R58 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 45. R58 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
INPIN_IGNORE  
R/W  
X
Ignore SYNC and SYSREF pins when VCO_PHASE_SYNC=0. This  
bit should be set to 1 unless VCO_PHASE_SYNC=1  
14-0  
RESERVED  
R
0x0  
7.6.1.25 R59 Register (Address = 0x3B) [reset = 0x1]  
R59 is shown in Figure 55 and described in Table 46.  
Return to Summary Table.  
Figure 55. R59 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
LD_TYPE  
R/W-0x1  
Table 46. R59 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
7-1  
0
RESERVED  
LD_TYPE  
R/W  
0x1  
Lock Detect Type. VCOCal lock detect asserts a high output after  
the VCO has finished calibration and the LD_DLY timout counter is  
finished. Vtune and VCOCal lock detect asserts a high output when  
VCOCal lock detect would assert a signal and the tuning voltage to  
the VCO is within acceptable limits.  
0x0 = VCOCal Lock Detect  
0x1 = VCOCal and Vtune Lock Detect  
7.6.1.26 R60 Register (Address = 0x3C) [reset = 0x9C4]  
R60 is shown in Figure 56 and described in Table 47.  
Return to Summary Table.  
Figure 56. R60 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LD_DLY  
R/W-0x9C4  
Table 47. R60 Register Field Descriptions  
Bit  
15-0  
Field  
LD_DLY  
Type  
Reset  
Description  
R/W  
0x9C4  
For the VCOCal lock detect, this is the delay in phase detector  
cycles that is added after the calibration is finished before the  
VCOCal lock detect is asserted high.  
7.6.1.27 R69 Register (Address = 0x45) [reset = 0x0]  
R69 is shown in Figure 57 and described in Table 48.  
Return to Summary Table.  
50  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Figure 57. R69 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT_31:16  
R/W-0x0  
Table 48. R69 Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
Upper 16 bits of MASH_RST_CNT.  
MASH_RST_COUNT_31: R/W  
16  
0x0  
7.6.1.28 R70 Register (Address = 0x46) [reset = 0xC350]  
R70 is shown in Figure 58 and described in Table 49.  
Return to Summary Table.  
Figure 58. R70 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT  
R/W-0xC350  
Table 49. R70 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_RST_COUNT  
Type  
Reset  
Description  
R/W  
0xC350  
MASH reset count is used to add a delay when using phase SYNC.  
The delay should be set at least four times the PLL lock time. This  
delay is expressed in state machine clock periods.\nOne of these  
periods is equal to 2CAL_CLK_DIV/Fosc  
7.6.1.29 R71 Register (Address = 0x47) [reset = 0x80]  
R71 is shown in Figure 59 and described in Table 50.  
Return to Summary Table.  
Figure 59. R71 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
6
4
3
SYSREF_DIV_PRE  
SYSREF_PUL  
SE  
SYSREF_EN  
SYSREF_REP  
EAT  
RESERVED  
R-0x0  
R/W-0x4  
R/W-0x0  
R/W-0x0  
R/W-0x0  
Table 50. R71 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-8  
7-5  
RESERVED  
SYSREF_DIV_PRE  
R/W  
0x4  
This divider is used to get the frequency input to the SYSREF  
interpolater within accetable limits  
4
3
SYSREF_PULSE  
SYSREF_EN  
R/W  
R/W  
0x0  
0x0  
When in master mode (SYSREF_REPEAT=0), this allows multiple  
pulses (as determined by SYSREF_PULSE_CNT) to be sent out  
whenever the SysRefReq pin goes high.  
Enable SYREF mode.  
0x0 = Disabled  
0x1 = Enabled  
Copyright © 2018, Texas Instruments Incorporated  
51  
 
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 50. R71 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
SYSREF_REPEAT  
R/W  
0x0  
Defines the SYSREF mode.  
0x0 = Master mode. In this mode, SYSREF pulses are generated  
continuously at the output.  
0x1 = Repeater Mode. In this mode, SYSREF pulses are generated  
in respolse to the SysRefReq pin.  
1-0  
RESERVED  
R
0x0  
7.6.1.30 R72 Register (Address = 0x48) [reset = 0x1]  
R72 is shown in Figure 60 and described in Table 51.  
Return to Summary Table.  
Figure 60. R72 Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0x0  
SYSREF_DIV  
R/W-0x1  
5
4
3
1
SYSREF_DIV  
R/W-0x1  
Table 51. R72 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-11  
10-0  
RESERVED  
SYSREF_DIV  
R/W  
0x1  
This divider further divides the output frequency for the SYSREF.  
7.6.1.31 R73 Register (Address = 0x49) [reset = 0x3F]  
R73 is shown in Figure 61 and described in Table 52.  
Return to Summary Table.  
Figure 61. R73 Register  
15  
14  
13  
5
12  
11  
10  
9
8
0
RESERVED  
R-0x0  
JESD_DAC2_CTRL  
R/W-0x0  
7
6
4
3
2
1
JESD_DAC2_CTRL  
R/W-0x0  
JESD_DAC1_CTRL  
R/W-0x3F  
Table 52. R73 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-12  
11-6  
5-0  
RESERVED  
JESD_DAC2_CTRL  
JESD_DAC1_CTRL  
R/W  
R/W  
0x0  
Programmable delay adjustment for SysRef mode  
Programmable delay adjustment for SysRef mode  
0x3F  
7.6.1.32 R74 Register (Address = 0x4A) [reset = 0x0]  
R74 is shown in Figure 62 and described in Table 53.  
Return to Summary Table.  
52  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Figure 62. R74 Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
SYSREF_PULSE_CNT  
R/W-0x0  
JESD_DAC4_CTRL  
R/W-0x0  
6
5
4
3
2
1
JESD_DAC4_CTRL  
R/W-0x0  
JESD_DAC3_CTRL  
R/W-0x0  
Table 53. R74 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
SYSREF_PULSE_CNT  
R/W  
0x0  
Used in SYSREF_REPEAT mode to define how many pulses are  
sent.  
11-6  
5-0  
JESD_DAC4_CTRL  
JESD_DAC3_CTRL  
R/W  
R/W  
0x0  
0x0  
Programmable delay adjustment for SysRef mode  
Programmable delay adjustment for SysRef mode  
7.6.1.33 R75 Register (Address = 0x4B) [reset = 0x0]  
R75 is shown in Figure 63 and described in Table 54.  
Return to Summary Table.  
Figure 63. R75 Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0x0  
CHDIV  
R/W-0x0  
5
4
3
1
CHDIV  
RESERVED  
R-0x0  
R/W-0x0  
Table 54. R75 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-11  
10-6  
RESERVED  
CHDIV  
R/W  
0x0  
Channel divider (Equivalent Division) controls divider value of each  
segment of the channel divider  
5-0  
RESERVED  
R
0x0  
7.6.1.34 R110 Register (Address = 0x6E) [reset = 0x0]  
R110 is shown in Figure 64 and described in Table 55.  
Return to Summary Table.  
Figure 64. R110 Register  
15  
7
14  
13  
12  
11  
10  
2
9
1
8
RESERVED  
R-0x0  
rb_LD_VTUNE  
R-0x0  
RESERVED  
R-0x0  
6
5
4
3
0
rb_VCO_SEL  
R-0x0  
RESERVED  
R-0x0  
Copyright © 2018, Texas Instruments Incorporated  
53  
 
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 55. R110 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-11  
10-9  
RESERVED  
rb_LD_VTUNE  
R
0x0  
Readback field for the lock detect.  
0x0 = Unlocked (Fvco Low)  
0x1 = Invalid  
0x2 = Locked  
0x3 = Unlocked (Fvco High)  
8
RESERVED  
rb_VCO_SEL  
RESERVED  
R
R
R
0x0  
0x0  
0x0  
7-5  
4-0  
Readback  
7.6.1.35 R111 Register (Address = 0x6F) [reset = 0x0]  
R111 is shown in Figure 65 and described in Table 56.  
Return to Summary Table.  
Figure 65. R111 Register  
7
6
5
4
3
2
1
0
rb_VCO_CAPCTRL  
R-0x0  
Table 56. R111 Register Field Descriptions  
Bit  
7-0  
Field  
rb_VCO_CAPCTRL  
Type  
Reset  
Description  
R
0x0  
Readback field for the actual VCO_CAPCTRL value that is chosen  
by the VCO calibration.  
7.6.1.36 R112 Register (Address = 0x70) [reset = 0x0]  
R112 is shown in Figure 66 and described in Table 57.  
Return to Summary Table.  
Figure 66. R112 Register  
7
6
5
4
3
2
1
0
rb_VCO_DACISET  
R-0x0  
Table 57. R112 Register Field Descriptions  
Bit  
8-0  
Field  
rb_VCO_DACISET  
Type  
Reset  
Description  
R
0x0  
Readback field for the actual VCO_DACISET value that is chosen by  
the VCO calibration.  
7.6.1.37 R113 Register (Address = 0x71) [reset = 0x0]  
R113 is shown in Figure 67 and described in Table 58.  
Return to Summary Table.  
Figure 67. R113 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
rb_IO_STATUS  
R-0x0  
54  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Table 58. R113 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reads back status of mode pins. <0> RECAL_EN, <1-8> Pin Modes  
15-0  
rb_IO_STATUS  
R
0x0  
7.6.1.38 R114 Register (Address = 0x72) [reset = 0x26F]  
R114 is shown in Figure 68 and described in Table 59.  
Return to Summary Table.  
Figure 68. R114 Register  
15  
7
14  
6
13  
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
WD_DLY  
R/W-0x4D  
5
3
WD_DLY  
WD_CNTRL  
R/W-0x7  
R/W-0x4D  
Table 59. R114 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-10  
9-3  
RESERVED  
WD_DLY  
R/W  
0x4D  
Delay for the internal watchdog timer. It is internally multiplied by 214  
Default value is 25 ms with 50 MHz SM CLK.  
.
2-0  
WD_CNTRL  
R/W  
0x7  
Watchdog Control  
0x0 = Digital Watchdog disabled.  
0x1 = Watchdog triggers 1 time  
0x2 = Watchdog triggers up to 2 times  
0x3 = Watchdog triggers up to 3 times  
0x4 = Watchdog triggers up to 4 times  
0x5 = Watchdog triggers up to 5 times  
0x6 = Watchdog triggers up to 6 times  
0x7 = Watchdog retriggers as many times as necessary with no limit.  
版权 © 2018, Texas Instruments Incorporated  
55  
 
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 OSCin Configuration  
OSCin supports single or differential-ended clock. There must be a AC -coupling capacitor in series before the  
device pin. The OSCin inputs are high impedance CMOS with internal bias voltage. TI recommends putting  
termination shunt resistors to terminate the differential traces (if there are 50-Ω characteristic traces, place 50-Ω  
resistors). The OSCin and OSCin* side must be matched in layout. A series AC-coupling capacitors must  
immediately follow OSCin pins in the board layout, then the shunt termination resistors to ground must be placed  
after.  
Input clock definitions are shown in 69:  
VOSCin  
VOSCin  
VOSCin  
CMOS  
Sine wave  
Differential  
69. Input Clock Definitions  
8.1.2 OSCin Slew Rate  
The slew rate of the OSCin signal can have an impact on the spurs and phase noise of the LMX2615 if it is too  
low. In general, the best performance is for a high slew rate, but lower amplitude signal, such as LVDS.  
8.1.3 RF Output Buffer Power Control  
The OUTA_PWR and OUTB_PWR registers control the amount of drive current for the output. This current  
creates a voltage accross the pull-up component and load. It is generally recommended to keep the OUTx_PWR  
setting at 31 or less as higher settings consume more current consumption and can also lead to higher output  
power. Optimal noise floor is typically obtained by setting OUTx_PWR in the range of 15 to 25.  
8.1.4 RF Output Buffer Pullup  
The choice of output buffer components is very important and can have a profound impact on the output power.  
The pull-up component can be a resistor or inductor or combination thereof. The signal swing is created is  
created by a current this pull-up, so a higher impedance implies a higher signal swing. However, as this pull-up  
component can be treated as if it is in parallel with the load impedance, there are diminishing returns as the  
impedance gets much larger than the load impedance. The output impedance of the device varies as a function  
of frequency and is a complex number, but typically has a magnitude on the order of 100 ohms, but this  
decreases with frequency.  
The output can be used differentially or single-ended. If using single-ended, the pullup is still needed, and user  
needs to terminate the unused complimentary side such that the impedance as seen from the pin looking out is  
similar to the pin that is being used. Following are some typical components that might be useful.  
56  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Application Information (接下页)  
60. Output Pullup Configuration  
COMPONENT  
VALUE  
PART NUMBER  
Toko LL1005-FH1N0S  
Toko LL1005-FH3N3S  
Toko LL1005-FH10NU  
Vishay FC0402E50R0BST1  
1 nH, 13.6 GHz SRF  
3.3 nH, 6.8 GHz SRF  
10 nH, 3.8 GHz SRF  
50 Ω  
Inductor  
Resistor  
ATC 520L103KT16T  
ATC 504L50R0FTNCFT  
Capacitor  
Varies with frequency  
8.1.4.1 Resistor Pullup  
One strategy for the choice of the pull-up component is to a resistor (R). This is typically chosen to be 50-Ω and  
under the assumption that the part output impedance is high, then the output impedance will theoretically be 50  
ohms, regardless of output frequency. As the output impedance of the device is not infinite, the output  
impedance when the pull-up resistor is used will be less than 50 ohms, but reasonably close. There will be some  
drop across the resistor, but this does not seem to have a large impact on signal swing for a 50-Ω resistor  
provided that OUTx_PWR31.  
+vcc  
R
C
RFoutAP  
70. Resistor Pullup  
8.1.4.2 Inductor Pullup  
Another strategy is to choose an inductor pull-up (L). This allows a higher impedance without any concern of  
creating any DC drop across the component. Ideally, the inductor should be chosen large enough so that the  
impedance is high relative to the load impedance and also be operating away from its self-resonant frequency.  
For instance, consider a 3.3 nH pull-up inductor with a self-resonant frequency of 7 GHz driving a 25-Ω spectrum  
analyzer input. This inductor theoretically has j50-Ω input impedance around 2.4 GHz. At this frequency, this in  
parallel with load is about j35-Ω, which is a 3 dB power reduction. At 1.4 GHz, this inductor has impedance of  
about 29-Ω. This in parallel with the 50-Ω load has a magnitude of 25-Ω, which is the same as you would get  
with the 50-Ω pull-up. The main issue with the inductor pull-up is the impedance does not look nicely matched to  
the load.  
+vcc  
L
C
RFoutAP  
71. Inductor Pullup  
版权 © 2018, Texas Instruments Incorporated  
57  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
As the output impedance is not so nicely matched, but there is higher output power, it makes sense to use a  
resistive pad to get the best impedance control. A 6 dB pad (R1 =18-Ω, R2=68-Ω) is likely more attenuation than  
necessary; 3 dB or even 1 dB might suffice. Two AC coupling capacitor is required before the pad. In the  
configuration below, one of them is placed by the resistor to ground to minimize the number of components in the  
high frequency path for lower loss.  
+vcc  
L
C
R1  
R1  
RFoutAP  
R2  
72. Inductor Pullup With Pad  
For the resistive pad, here are some common values:  
61. Resitive T-Pad Values  
Attenuation  
1 dB  
R1  
R2  
2.7 Ω  
5.6 Ω  
6.8 Ω  
12 Ω  
15 Ω  
18 Ω  
420 Ω  
220 Ω  
150 Ω  
100 Ω  
82 Ω  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
68 Ω  
8.1.4.3 Combination Pullup  
The resistor gives a good low frequency response, while the inductor gives a good high frequency response with  
worse matching. It is desirable to have the impedance of the pull-up to be high, but if a resistor is used, then  
there could be too much DC drop. If an inductor is used, it is hard to find one good at low frequencies and  
around its self-resonant frequency. One approach to address this is to use a series resistor and inductor followed  
by resistive pad.  
58  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
+vcc  
R
L
R1  
R1  
RFoutAP  
C
R2  
73. Inductor and Resistor Pullup  
8.1.5 RF Output Treatment for the Complimentary Side  
Regardless of whether both sides of the differential outputs are used, both sides should see a similar load.  
8.1.5.1 Single-Ended Termination of Unused Output  
The unused output should see a roughly the same impedance as looking out of the pin to minimize harmonics  
and get the best output power. As placement of the pull-up components is critical for the best output power, the  
routing does not need to be perfectly symmetrical; it makes sense to give highest priority routing to the used  
output (RFoutA in this case).  
+vcc  
R
L
R1  
R1  
RFoutAP  
C
+vcc  
R2  
R
L
RFoutAP  
RL  
C
74. Termination of Unused Output  
版权 © 2018, Texas Instruments Incorporated  
59  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.1.5.2 Differential Termination  
For differential termination this can be done by doing the same termination to both sides, or it is also possible to  
connect the grounds together. This approach can also be accompanied by a differential to single-ended balun for  
the highest possible output power.  
R1  
R1  
RFoutAP  
C
L
R
+vcc  
2xR2  
R
L
R1  
R1  
RFoutAM  
C
75. Termination of Unused Output  
8.2 Typical Application  
C5  
RFoutAP  
Vcc  
R37  
50  
Vcc  
C30  
U1  
VCCBUF  
L1  
34  
11  
21  
25  
41  
57  
5
3
4
FS1  
FS2  
FS3  
FS4  
FS5  
FS6  
FS7  
FS8  
FS1  
FS2  
FS3  
FS4  
FS5  
FS6  
FS7  
FS8  
C27  
1uF  
18nH  
C6  
15  
16  
17  
18  
19  
20  
VCCDIG  
VCCCP  
C26  
1uF  
C29  
1uF  
0.01uF  
VCCMASH  
VCCVCO2  
VCCVCO  
CE  
C18  
1uF  
R38  
50  
C23  
1uF  
37  
36  
RFOUTAP  
RFOUTAM  
C7  
RFoutAM  
RFoutBM  
CE  
39  
27  
26  
C12  
CSB  
SDI  
SCK  
CSB  
SDI  
SCK  
29  
30  
32  
22  
55  
9
RFOUTBN/SYSREFOUTN  
RFOUTBO/SYSREFOUTP  
MUXOUT  
C28  
14  
56  
59  
44  
7
VREGIN  
C22  
1uF  
C24  
R40  
50  
MUXout  
VREFVCO  
VREGVCO  
VREFVCO2  
VBIASVCO  
VBIASVCO2  
VBIASVARAC  
OSCINP  
Vcc  
CPOUT  
L2  
10uF  
R4_LF  
R3_LF  
C20  
1uF  
C25  
VTUNE  
18nH  
C11  
C2_LF  
R2_LF  
SYNC  
SYNC  
10uF  
C4_LF  
C3_LF  
C1_LF  
43  
C19  
SYSREFREQ  
SysRefReq  
10uF  
C21  
0.01uF  
C10  
42  
53  
12  
13  
R39  
50  
45  
52  
RAMPCLK/TRIG1  
RAMPDIR/TRIG2  
RECAL_EN  
RampDir  
10uF  
C14  
RFoutBP  
10uF  
6
8
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
OSCINP  
0.1uF  
10  
23  
24  
28  
31  
35  
38  
40  
51  
54  
60  
61  
OSCINM  
1
2
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
R32  
100  
33  
46  
47  
48  
49  
50  
58  
62  
63  
64  
C15  
OSCINM  
0.1uF  
65  
PAD  
LMX2615W-MLS  
76. Typical Application Schematic  
60  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
The design of the loop filter is complex and is typically done with software. The PLLatinum Sim software is an  
excellent resource for doing this and the design is shown in77. For those interested in the equations involved,  
the PLL Performance, Simulation, and Design Handbook (SNAA106) goes into great detail as to theory and  
design of PLL loop filters.  
77. PLLatinum Sim Tool  
8.2.2 Detailed Design Procedure  
The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates to  
signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise  
outside the loop bandwidth is dominated by the VCO. Generally, jitter is lowest if loop bandwidth is designed to  
the point where the two intersect. A higher phase margin loop filter design has less peaking at the loop  
bandwidth and thus lower jitter. The tradeoff with this is that longer lock times and spurs must be considered in  
design as well.  
版权 © 2018, Texas Instruments Incorporated  
61  
 
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.3 Application Curve  
Using the settings described, the performance measured using a clean 100-MHz input reference is shown. Note  
the loop bandwidth is about 350 kHz, as simulations predict.  
-60  
100 Hz -87.7 dBc/Hz 1 MHz -120.8 dBc/Hz  
1 kHz -94.2 dBc/Hz 10 MHz -145.1 dBc/Hz  
-70  
10 kHz -103.3 dBc/Hz 20 MHz -146.0 dBc/Hz  
100 kHz -110.4 dBc/Hz 95 MHz -154.8 dBc/Hz  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
10.4 GHz  
4.9 dBm  
-160  
100 Hz  
1 kHz  
10 kHz 100 kHz 1 MHz 10 MHz 100 MHz  
Offset (Hz)  
tc_P  
78. Results for Loop Filter Design  
9 Power Supply Recommendations  
TI recommends placement of bypass capacitors close to the pins. Consult the EVM instructions for layout  
examples. If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can  
reduce spurs to a small degree. This device has integrated LDOs, which improves the resistance to power supply  
noise. However, the pullup components on the RFoutA and RFoutB pins on the outputs have a direct connection  
to the power supply, so extra care must be made to ensure that the voltage is clean for these pins.  
10 Layout  
10.1 Layout Guidelines  
In general, the layout guidelines are similar to most other PLL devices. Here are some specific guidelines.  
GND pins may be routed on the package back to the DAP.  
The OSCin pins, these are internally biased and must be AC coupled.  
If not used, the SysRefReq may be grounded to the DAP.  
For optimal VCO phase noise in the 200kHz - 1 MHz range, it is ideal that the capacitor closest to the Vtune  
pin be at least 3.3 nF. As requiring this larger capacitor may restrict the loop bandwidth, this value can be  
reduced (to say 1.5 nF) at the expense of VCO phase noise.  
For the outputs, keep the pullup component as close as possible to the pin and use the same component on  
each side of the differential pair.  
If a single-ended output is needed, the other side must have the same loading and pullup. However, the  
routing for the used side can be optimized by routing the complementary side through a via to the other side  
of the board. On this side, use the same pullup and make the load look equivalent to the side that is used.  
Ensure DAP on device is well-grounded with many vias, preferably copper filled.  
Have a thermal pad that is as large as the LMX2615 exposed pad. Add vias to the thermal pad to maximize  
thermal performance.  
Use a low loss dielectric material, such as Rogers 4350B, for optimal output power.  
62  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
10.2 Layout Example  
In addition to the layout guidelines already given, here are some additional comments for this specific layout  
example  
The most critical part of the layout that the placement of the pull-up components (R37, R38, R39, and R40) is  
close to the pin for optimal output power.  
For this layout, most of the loop filter (C1_LF, C2_LF, C3_LF, R2_LF, R3_LF, and R4_LF) are on the back  
side of the board. However note that C4_LF is on the top side right next to the Vtune pin. In the event that  
this C4_LF capacitor would be open, it is recommended to move one of loop capacitors in this spot. For  
instance, if a 3rd order loop filter was used, technically C3_LF would be non-zero and C4_LF would be open.  
However, for this layout example that is designed for a 4th order loop filter, it would be optimal to make  
R3_LF = 0 ohm, C3_LF = open, and C4_LF to be whatever C3_LF would have been.  
79. LMX2615 Layout Example  
版权 © 2018, Texas Instruments Incorporated  
63  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
10.3 Footprint Example on PCB Layout  
64  
49  
8.00  
1
48  
0.5  
8.00  
0.30  
7.175  
Thermal pad  
16  
33  
Device outline  
2.15  
17  
32  
1. All dimensions in millimeters.  
2. Top view  
80. LMX2615 PCB Layout  
10.4 Radiation Environments  
Careful consideration must be given to environmental conditions when using a product in a radiation  
environment.  
10.4.1 Total Ionizing Dose  
Radiation Hardness assured (RHA) products are those part numbers with a total ionizing dose (TID) level  
specified in the ordering information. Testing and qualification of these product is done on a wafer level according  
to MIL-STD-883, test method 1019. Wafer level TID data are available with lot shipments.  
10.4.2 Single Event Effect  
One time single event effect (SEE), including single event latch-up (SEL), single event functional interrupt (SEFI)  
and single event upset (SEU), testing was performed according to EIA/JEDEC Standard, EIA/JEDEC57. A test  
report is available upon request.  
64  
版权 © 2018, Texas Instruments Incorporated  
LMX2615-SP  
www.ti.com.cn  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
德州仪器 (TI) www.ti.com.cn 提供了多种辅助开发的软件工具。其中包括:  
EVM 软件,用于了解如何对器件和 EVM 板进行编程。  
EVM 板说明,用于了解典型测量数据、详细测量条件以及完整设计的信息。  
PLLatinum Sim 程序,用于设计回路滤波器以及对相位噪声和杂散进行仿真。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
AN-1879 分数 N 频率合成》(SNAA062)  
PLL 性能、仿真和设计手册》(SNAA106)  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
12.1 工程样片  
工程样片 (LMX2615W-MPR) 具有与运行器件 (LMX2615W-MLS) 相同的封装、引脚、编程和典型性能。这些器件  
在室温下经过测试,符合电气规范,但尚未经历或通过全面的生产流程或测试。工程样片可能被 QCI 拒绝,无法通  
过全面的生产测试(如辐射或可靠性测试)。  
版权 © 2018, Texas Instruments Incorporated  
65  
LMX2615-SP  
ZHCSIC4C JUNE 2018REVISED NOVEMBER 2018  
12.2 封装机械信息  
www.ti.com.cn  
81. 封装机械信息  
66  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
14  
1
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R1723601VXC  
LMX2615-MKT-MS  
LMX2615W-MPR  
ACTIVE  
CFP  
CFP  
CFP  
HBD  
64  
64  
64  
RoHS & Green  
TBD  
NIAU  
Level-1-NA-UNLIM  
Call TI  
-55 to 125  
25 to 25  
25 to 25  
5962R1723601VXC  
LMX2615WRQMLV  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
HBD  
Call TI  
NIAU  
LMX2615-MKT-MS  
MECHANICAL  
HBD  
14  
RoHS & Green  
Level-1-NA-UNLIM  
LMX2615W-MPR  
ENG SAMPLE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962R1723601VXC  
LMX2615W-MPR  
HBD  
HBD  
CFP (HSL)  
CFP (HSL)  
64  
64  
14  
14  
495  
495  
33  
33  
11176  
11176  
16.51  
16.51  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HBD0064A  
CFP - 2.31 mm max height  
S
C
A
L
E
1
.
0
0
0
CERAMIC FLATPACK  
11.03  
10.77  
49  
64  
SEAL RING  
4X  
(R0.75)  
0.27  
0.17  
64X  
1
48  
10.16  
0.08  
4X 7.5 0.13  
16  
33  
60X 0.5 0.05  
4X (45 X 0.3)  
3.99 0.25  
TYP  
32  
17  
1.25 0.13  
(0.3)  
(0.2) TYP  
2.31 MAX  
(0.73) TYP  
0.5 0.1  
64X 0.15 0.05  
(
8)  
HEAT SINK  
17  
32  
16  
33  
SYMM  
8
0.13  
HEAT SINK  
1
48  
PIN 1 ID  
64  
49  
SYMM  
BOTTOM VIEW  
4223243/A 01/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid.  
4. Ground pad to be electronic connected to heat sink and seal ring.  
5. The leads are gold plated and can be solder dipped.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMX2615-SP

具有相位同步功能且 JESD204B 支持的航天级 40MHz 至 15GHz 宽带合成器
TI

LMX2615W-MPR

具有相位同步功能且 JESD204B 支持的航天级 40MHz 至 15GHz 宽带合成器 | HBD | 64 | 25 to 25
TI

LMX2694-EP

具有相位同步功能的增强型产品 15GHz 射频合成器
TI

LMX2694-SEP

耐辐射 15GHz 宽带 PLLatinum™ 射频合成器
TI

LMX2694SRTCTEP

具有相位同步功能的增强型产品 15GHz 射频合成器 | RTC | 48 | -55 to 125
TI

LMX2694SRTCTSEP

耐辐射 15GHz 宽带 PLLatinum™ 射频合成器 | RTC | 48 | -55 to 125
TI

LMX2820

LMX2820 22.4-GHz Wideband PLLatinum™ RF Synthesizer With Phase Synchronization and JESD204B Support
TI

LMX2820RTCR

LMX2820 22.4-GHz Wideband PLLatinum™ RF Synthesizer With Phase Synchronization and JESD204B Support
TI

LMX2820RTCT

LMX2820 22.4-GHz Wideband PLLatinum™ RF Synthesizer With Phase Synchronization and JESD204B Support
TI

LMX2820_V01

LMX2820 22.4-GHz Wideband PLLatinum™ RF Synthesizer With Phase Synchronization and JESD204B Support
TI

LMX3111TM

2000 MHz RF/MICROWAVE UP/DOWN CONVERTER
TI

LMX3111TMX

2000 MHz RF/MICROWAVE UP/DOWN CONVERTER
TI