LMX8410RGZR [TI]

带集成式合成器的高性能混合器 | RGZ | 48 | -40 to 85;
LMX8410RGZR
型号: LMX8410RGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带集成式合成器的高性能混合器 | RGZ | 48 | -40 to 85

文件: 总70页 (文件大小:2814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
带集成式合成器的 LMX8410L 高性能混合器  
1 特性  
3 说明  
1
宽带射频输入:4 10GHz  
LMX8410L 是一款具有集成 LO IF 放大器的高性能  
宽带(射频输入为 4 10GHzI/Q 解调器。在 IIP3  
28dBm NF 15dB(频率均为 5GHz)的情况  
下,该器件可提供出色的动态范围,适用于高性能 应  
用中使用 DP83869。该器件可提供 2.7GHz 的大型复  
杂带宽,适用于高数据速率 应用。  
大型中频带宽:直流至 1350MHz  
输入 IP35GHz 射频输入时为 28dBm  
噪声系数:5GHz 射频输入时为 15dB  
高电压转换增益:5GHz 射频输入时为 11dB  
集成宽带射频输入平衡-非平衡变压器  
自动离线直流失调电压校正为 ±2mV  
可编程 IMRR 校准  
LMX8410L 提供自动直流失调电压校正算法,可将失  
调电压降至 ±2mV 以下。使用 SPI 接口可以精确控制 I  
Q 通道的增益和相位,从而实现高镜像抑制。  
针对多个器件的同步功能  
高性能集成 LO 合成器:5GHz 载波条件下具有  
56.5dBc DSB 集成噪声  
LMX8410L 具有高度集成度,可提供高性能,同时还  
能节省布板空间并降低复杂性。它集成了宽带射频输入  
平衡-非平衡变压器,因此无需外部平衡-非平衡变压  
器。它集成了高性能 PLL VCO,因此无需外部 LO  
LO 驱动器。该器件还集成了一个 IF 放大器和几个  
低噪声 LDO,进一步简化了电路板。  
外部 LO 模式:可旁路绕开集成 LO 合成器;支持  
外部 LO 注入  
集成低噪声 LDO  
7mm × 7mm 48 引脚 QFN 封装  
2 应用  
LMX8410L 集成了一个极低噪声的合成器,PLL FOM  
–236dBc/Hz,在 5GHz 载波条件下提供高达  
56.5dBc DSB 集成噪声。LO 允许跨多个器件进行  
相位同步。高性能合成器输出可用于驱动另一级或数据  
转换器。对于共享外部 LO 的 应用 ,可以旁路掉集成  
LO。  
测试和测量设备  
无线基础设施  
相控阵雷达  
微波回程  
卫星通信  
软件定义无线电  
器件信息(1)  
器件型号  
LMX8410L  
封装  
VQFN (48)  
封装尺寸(标称值)  
7.00mm × 7.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
简化方框图  
IF I Output  
SYNC  
OSCin  
Synthesizer  
IQ LO  
generator  
RF input  
LO output  
External LO input  
MUX  
IF Q Output  
SPI  
Interface  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS730  
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 29  
7.6 Register Map........................................................... 30  
Application and Implementation ........................ 53  
8.1 Application Information............................................ 53  
8.2 Typical Application ................................................. 53  
Power Supply Recommendations...................... 56  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements.............................................. 12  
6.7 Typical Characteristics............................................ 14  
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
7.2 Functional Block Diagram ....................................... 22  
7.3 Feature Description................................................. 23  
7.4 Device Functional Modes........................................ 28  
8
9
10 Layout................................................................... 56  
10.1 Layout Guidelines ................................................. 56  
10.2 Layout Examples................................................... 57  
11 器件和文档支持 ..................................................... 61  
11.1 文档支持................................................................ 61  
11.2 接收文档更新通知 ................................................. 61  
11.3 社区资源................................................................ 61  
11.4 ....................................................................... 61  
11.5 静电放电警告......................................................... 61  
11.6 术语表 ................................................................... 61  
12 机械、封装和可订购信息....................................... 61  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2018) to Revision A  
Page  
首次发布生产数据产品说明书 ................................................................................................................................................ 1  
Changed many numbers in electrical specifications table. .................................................................................................... 6  
已添加 typical performance characteristics section. ............................................................................................................ 14  
已更改 and added significant details in detailed descriptions sections. Added sections, changed several portions of  
the register map.................................................................................................................................................................... 22  
2
Copyright © 2018, Texas Instruments Incorporated  
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
5 Pin Configuration and Functions  
RGZ Package  
48-Pin QFN  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CE  
VBIAS_VCO2  
VBIAS_VCO1  
GND  
VCM_IN  
VCC_IFI  
NC  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
VCC_RF  
GND  
4
5
SYNC  
GND  
RF  
6
49  
VCC_DIG  
GND  
7
8
OSCINP  
OSCINM  
VCC_RF  
NC  
9
VREG_OSCIN  
MUXOUT  
VCC_IFQ  
CSB  
10  
11  
12  
DAP  
15  
VCC_CP  
SDI  
13  
14  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NAME  
1
CE  
Input  
Chip Enable input. Active HIGH powers on the device. 1.8V to 3.3V logic.  
VCO bias. Requires connecting 10-µF capacitor to VCO ground. Place close to pin. If using  
external LO, this pin should either be floated or configured the same way as internal LO mode.  
2
3
VBIAS_VCO2  
Bypass  
VCO bias. Requires connecting 10-µF capacitor to VCO ground. Place close to pin. If using  
external LO, this pin should either be floated or configured the same way as internal LO mode.  
VBIAS_VCO1  
Bypass  
4
5
6
7
GND  
SYNC  
Ground  
Input  
VCO ground. VBIAS pin capacitors must bypass to this point.  
Trigger pin for synchronizing multiple devices. If using external LO, tie this pin to GND.  
Digital ground. VCC_DIG bypass capacitors must bypass to this point.  
Digital supply. TI recommends connecting 0.1-µF capacitor to digital ground.  
GND  
Ground  
Supply  
VCC_DIG  
Reference input clock (+). High input impedance. Requires connecting series capacitor (0.1 µF  
recommended). If using external LO, tie this pin to GND.  
8
9
OSCINP  
OSCINM  
Input  
Input  
Reference input clock (–). High input impedance. Requires connecting series capacitor (0.1 µF  
recommended). If using external LO, tie this pin to GND.  
Internal LDO output. Requires connecting 1-µF capacitor to digital ground. Place close to pin. If  
using external LO, this pin should either be floated or configured the same way as internal LO  
mode.  
10  
VREG_OSCIN  
Bypass  
Copyright © 2018, Texas Instruments Incorporated  
3
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NAME  
11  
MUXOUT  
Output  
Supply  
Readback or lock detect output. Pin mode configured by internal register settings.  
Charge pump supply. TI recommends connecting 0.1 µF and 100 pF to charge pump ground.  
Place close to pin. This pin must be connected to VCC, even if using external LO.  
12  
13  
VCC_CP  
CP  
Charge pump output. TI recommends connecting C1 of loop filter close to pin. If using external  
LO, this pin should either be floated or configured the same way as internal LO mode.  
Output  
14  
15  
GND  
GND  
Ground  
Ground  
Charge pump ground. VCC_CP bypass capacitors must bypass to this point.  
MASH engine ground. VCC_MASH bypass capacitors must bypass to this point.  
MASH engine supply. TI recommends connecting 0.1 µF and 100 pF to MASH engine ground.  
Place close to pin. This pin must be connected to VCC, even if using external LO.  
16  
VCC_MASH  
Supply  
Internal LO differential output (–) or external LO differential input (–). In differential output mode,  
requires connecting 50-Ω resistor pullup to VCC as close as possible to pin. In differential input  
mode, remove the pull up resistors or inductors. The input should be capacitively coupled with  
internal biasing. See LO Interface for more information.  
17  
LO_M  
Input/Output  
Internal LO differential output (+) or external LO differential input (+). In differential output mode,  
requires connecting 50-Ω resistor pullup to VCC as close as possible to pin. In differential input  
mode, remove the pull up resistors or inductors. The input should be capacitively coupled with  
internal biasing. See LO Interface for more information.  
18  
LO_P  
Input/Output  
LO buffer supply. TI recommends connecting 0.1 µF and 100 pF to VCO ground. This pin must  
be connected to VCC, even if using external LO.  
19  
20  
21  
VCC_BUF  
GND  
Supply  
Ground  
Output  
IF amplifier Q-channel ground. Q-channel VCC5 bypass capacitors must bypass to this point.  
IF amplifier Q-channel differential output (–). TI recommends connecting series 50-Ω resistor  
close to pin.  
IF_QM  
IF amplifier Q-channel differential output (+). TI recommends connecting series 50-Ω resistor  
close to pin.  
22  
23  
IF_QP  
Output  
Supply  
IF amplifier Q-channel 5-V supply. TI recommends connecting 0.1 µF and 100 pF to IF amplifier  
Q-channel ground. Place close to pin.  
VCC5_IFQ  
24  
25  
26  
27  
28  
29  
32  
31  
32  
33  
34  
35  
SCK  
SDI  
Input  
Input  
SPI clock signal. High impedance CMOS input. 1.8-V to 3.3-V logic.  
SPI data signal. High impedance CMOS input. 1.8-V to 3.3-V logic.  
SPI chip select signal. High impedance CMOS input. 1.8-V to 3.3-V logic.  
IF mixer Q-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground.  
No connect. Pin is not internally connected and may be floated or shorted to other nodes.  
RF Q-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground.  
RF input path ground.  
CSB  
Input  
VCC_IFQ  
NC  
Supply  
N/A  
VCC_RFQ  
GND  
Supply  
Ground  
Input  
RF  
RF input. Single-ended. Must be AC coupled.  
GND  
Ground  
Supply  
Ground  
Supply  
RF input path ground.  
VCC_RFI  
GND  
RF I-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground.  
Should be connected IF ground.  
VCC_IFI  
IF mixer I-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground.  
Common-mode voltage input. When the VCM_CONFIG register is set to external (0xF), the  
voltage on this pin sets the common-mode voltage of the IF amplifiers.  
36  
37  
38  
VCM_IN  
NC  
Input  
Ground  
Supply  
Connect this pin to IF ground.  
IF amplifier I-channel 5-V supply. TI recommends connecting 0.1 µF and 100 pF to IF amplifier I-  
channel ground. Place close to pin.  
VCC5_IFI  
IF amplifier I-channel differential output (+). TI recommends connecting series 50-Ω resistor close  
to pin.  
39  
IF_IP  
Output  
IF amplifier I-channel differential output (–). TI recommends connecting series 50-Ω resistor close  
to pin.  
40  
41  
42  
43  
IF_IM  
GND  
Output  
Ground  
Bypass  
Ground  
IF amplifier I-channel ground. I-channel VCC5 bypass capacitors should bypass to this point.  
VCO varactor bias. Requires connecting 10µF capacitor to VCO ground. If using external LO, this  
pin should either be floated or configured the same way as internal LO mode.  
VBIAS_VARAC  
GND  
VCO ground. Varactor bias bypass capacitor should bypass to this point.  
Copyright © 2018, Texas Instruments Incorporated  
4
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NAME  
VCO tuning voltage input. If using internal LO, connect the output of the loop filter to this point. If  
using external LO, tie this pin to GND.  
44  
VTUNE  
Input  
Bypass  
Supply  
VCO LDO output node. Requires connecting 10-µF capacitor to VCO ground. Place close to pin.  
This capacitor must be present even if used in external LO mode.  
45  
46  
VREG_VCO  
VCC_VCO  
VCO supply. TI recommends connecting 0.1-µF and 100-pF capacitors to VCO ground. This pin  
must be connected to VCC, even if using external LO.  
VCO LDO reference node. Requires connecting 1-µF capacitor to VCO ground. If using external  
LO, this pin should either be floated or configured the same way as internal LO mode.  
47  
48  
49  
VREF_VCO  
GND  
Bypass  
Ground  
Ground  
VCO ground. VCO LDO, LDO reference, and supply bypass capacitors must bypass to this point.  
Die attach pad. Internally connected to ground. TI recommends shorting ground pins to this pad  
on the same plane, if possible.  
PAD  
Copyright © 2018, Texas Instruments Incorporated  
5
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
3.6  
5.3  
5
UNIT  
V
VCC  
VCC5  
PD  
Power supply voltage, 3.3-V rail  
Power supply voltage, 5-V rail  
Power dissipation  
V
W
TJ  
Junction temperature  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001, all pins  
2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins  
500  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
4.75  
–40  
NOM  
3.3  
5
MAX  
UNIT  
V
VCC  
VCC5  
TA  
Power supply voltage, 3.3V rail  
Power supply voltage, 5V rail  
Ambient temperature  
3.45  
5.25  
85  
V
25  
°C  
°C  
TJ  
Junction temperature  
125  
6.4 Thermal Information  
LMX8410L  
THERMAL METRIC(1) (2)  
RGZ (VQFN)  
UNIT  
48 PINS  
21.9  
9.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
5.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJB  
5.6  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal model based on JEDEC standard coupon, 50.8 mm × 50.8 mm × 1.6 mm, six-layer Cu, 0.5 oz top layer, 2 oz else. 6 × 6  
thermal vias in DAP, 0.2 mm diameter.  
6
Copyright © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
6.5 Electrical Characteristics  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VCC  
Power supply voltage, 3.3-V rail  
Power supply current, 3.3-V rail  
Power supply voltage, 5-V rail  
3.15  
3.3  
650  
330  
5
3.45  
V
Internal LO  
ICC  
mA  
External LO  
VCC5  
ICC5  
4.75  
5.25  
V
Power supply current both channels I  
and Q, 5-V rail  
130  
mA  
FREQUENCY RANGES  
FRF  
FLO  
RF port frequency range  
4000  
4000  
10000  
10000  
MHz  
MHz  
LO port frequency range  
IF port frequency range (3dB  
bandwidth)  
FIF  
DC  
1350  
MHz  
DYNAMIC PERFORMANCE  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
15  
15  
16  
17  
18  
19  
19  
11  
11  
10.5  
9.5  
9
NF  
Noise figure  
dB  
G
Voltage gain(1)  
dB  
8
7
28  
28  
26.5  
27  
26.5  
27  
27  
48  
48  
46  
44  
45  
44  
42  
IIP3  
Input intercept point, 3rd order(2)  
dBm  
Input intercept point, 2nd order  
(uncalibrated)  
IIP2  
dBm  
(1) For measurements that require RF input, RF input power is -10dBm unless otherwise specified.  
(2) For two-tone measurements, tone separation is 17MHz.  
Copyright © 2018, Texas Instruments Incorporated  
7
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
TEST CONDITIONS  
RF = 4 GHz  
MIN  
TYP  
-58  
-58  
-58  
-54  
-52  
-50  
-48  
-75  
-75  
-75  
-75  
-75  
-75  
-75  
12  
MAX  
UNIT  
RF = 5 GHz  
RF = 6 GHz  
SP2x2  
2×2 spur [RF input power at –10 dBm] RF = 7 GHz  
dBc  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
SP3x3  
3×3 spur [RF input power at –10 dBm] RF = 7 GHz  
dBc  
dBm  
dB  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
12  
12  
OP1dB  
Output 1-dB compression point  
Image rejection ratio [calibrated]  
RF to IF isolation  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
LO = 4 GHz  
LO = 5 GHz  
LO = 6 GHz  
LO = 7 GHz  
LO = 8 GHz  
LO = 9 GHz  
LO = 10 GHz  
12  
12  
12  
12  
43  
43  
44  
IRR  
44  
43  
42  
36  
40  
40  
40  
ISORFxIF  
40  
dB  
40  
40  
40  
-35  
-35  
-35  
-35  
-35  
-35  
-35  
LEAKRFxIF  
LO to IF leakage  
dBm  
8
Copyright © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
TEST CONDITIONS  
LO = 4 GHz  
MIN  
TYP  
-60  
-60  
-52  
-50  
-50  
-45  
–40  
MAX  
UNIT  
LO = 5 GHz  
LO = 6 GHz  
LO = 7 GHz  
LO = 8 GHz  
LO = 9 GHz  
LO = 10 GHz  
LEAKLOxRF  
LO to RF leakage (internal Lo mode)  
dBm  
PERFORMANCE TUNING  
GIQ_CAL  
I/Q gain calibration range  
IMRR_GCAL register full range  
IMRR_PCAL register full range  
±0.5  
0.05  
±20  
dB  
dB  
GIQ_STEP  
PHIQ_CAL  
I/Q gain calibration step size  
I/Q phase calibration range  
Deg  
Step size can be made reduced  
to 0.25 deg in fine accuracy  
mode  
PHIQ_STEP  
I/Q phase calibration step size  
calibrated differential DC offset  
0.45  
+/- 2  
Deg  
mV  
VDCOC  
PORTS  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
RF = 4 GHz  
RF = 5 GHz  
RF = 6 GHz  
RF = 7 GHz  
RF = 8 GHz  
RF = 9 GHz  
RF = 10 GHz  
8 GHz RFIN  
<7 GHz RFout  
<10 GHz RFout  
8
19  
21  
16  
10  
9
dB  
dB  
dB  
S11RF  
RF return loss  
dB  
dB  
dB  
9
dB  
15  
15  
20  
17  
18  
17  
12  
6
dB  
dB  
dB  
LO return loss (differential  
measurement)  
S11LO  
dB  
dB  
dB  
dB  
PLO_IN  
External LO input power  
dBm  
dBm  
dBm  
VPP  
2
PLO_OUT  
External LO output power(3)  
-1  
2
VIF_RANGE  
VCM  
IF output voltage swing (differential)  
IF common mode voltage, internal or  
external source  
1.2  
1.7  
2
5
V
PinRF  
RF input power  
dBm  
LO SYNTHESIZER INPUT SIGNAL PATH  
OSC_2X = 0  
5
5
1400  
200  
2
Reference oscillator port frequency  
range  
FOSCIN  
VOSCIN  
FMULT  
MHz  
Vpp  
OSC_2X = 1  
AC-coupled required(4)  
Reference input voltage  
0.2  
30  
Input range  
70  
Multiplier frequency (when multiplier  
enabled)  
MHz  
Output range  
180  
250  
(3) Output power, spurs, and harmonics can vary based on board layout and components.  
(4) For lower VCO frequencies, the N divider minimum value can limit the phase detector frequency.  
Copyright © 2018, Texas Instruments Incorporated  
9
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LO SYNTHESIZER PHASE DETECTOR AND CHARGE PUMP  
Integer Mode (FRAC_ORDER =  
0)  
0.125  
400  
300  
240  
Fractional Mode (FRAC_ORDER  
= 1,2,3)  
FPD  
Phase detector frequency  
5
5
MHz  
nA  
Fractional Mode (FRAC_ORDER  
= 4)  
Charge pump leakage current  
CPG = 0  
CPG = 4  
CPG = 1  
CPG = 5  
CPG = 3  
CPG = 7  
15  
3
6
ICPOUT  
Effective charge pump current (sum of  
up and down currents)  
9
mA  
12  
15  
PN1/F  
Normalized PLL flicker noise  
–129  
–236  
dBc/Hz  
dBc/Hz  
FPD = 100 MHz, FVCO = 12  
GHz(5)  
PNFLAT  
Normalized PLL thermal noise floor  
(5) The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into flicker and flat  
components. PLLFLAT = PLLFOM + 20log(FVCO / FPD) + 10log(FPD / 1Hz). PLLFLICKER (offset) = PLLFLICKER_NORM + 20log(FVCO / 1GHz) -  
10log(offset frequency / 10kHz). Once these two components are found, the total PLL noise can be calculated as PLLNOISE  
=
10log(10PLLFLAT / 10 + 10PLLFLICKER / 10).  
10  
Copyright © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
LO SYNTHESIZER VCO  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
8 GHz VCO, 10 kHz offset  
–80  
–107  
–128  
–148  
–157  
–79  
8 GHz VCO, 100 kHz offset  
8 GHz VCO, 1 MHz offset  
8 GHz VCO, 10 MHz offset  
8 GHz VCO, 90 MHz offset  
9.2 GHz VCO, 10 kHz offset  
9.2 GHz VCO, 100 kHz offset  
9.2 GHz VCO, 1 MHz offset  
9.2 GHz VCO, 10 MHz offset  
9.2 GHz VCO, 90 MHz offset  
10.3 GHz VCO, 10 kHz offset  
10.3 GHz VCO, 100 kHz offset  
10.3 GHz VCO, 1 MHz offset  
10.3 GHz VCO, 10 MHz offset  
10.3 GHz VCO, 90 MHz offset  
11.3 GHz VCO, 10 kHz offset  
11.3 GHz VCO, 100 kHz offset  
11.3 GHz VCO, 1 MHz offset  
11.3 GHz VCO, 10 MHz offset  
11.3 GHz VCO, 90 MHz offset  
12.5 GHz VCO, 10 kHz offset  
12.5 GHz VCO, 100 kHz offset  
12.5 GHz VCO, 1 MHz offset  
12.5 GHz VCO, 10 MHz offset  
12.5 GHz VCO, 90 MHz offset  
13.3 GHz VCO, 10 kHz offset  
13.3 GHz VCO, 100 kHz offset  
13.3 GHz VCO, 1 MHz offset  
13.3 GHz VCO, 10 MHz offset  
13.3 GHz VCO, 90 MHz offset  
14.5 GHz VCO, 10 kHz offset  
14.5 GHz VCO, 100 kHz offset  
14.5 GHz VCO, 1 MHz offset  
14.5 GHz VCO, 10 MHz offset  
14.5 GHz VCO, 90 MHz offset  
–105  
–127  
–147  
–157  
–77  
–104  
–126  
–147  
–157  
–76  
–103  
–125  
–145  
–158  
–74  
PNvco  
Open loop VCO phase noise  
dBc/Hz  
–100  
–123  
–144  
–157  
–73  
–100  
–122  
–143  
–155  
–73  
–99  
–121  
–143  
–152  
50  
VCO calibration speed, switch across No assist  
the entire frequency band, FOSC = 200  
tVCO_CAL  
µs  
MHz, FPD = 100 MHz(6)  
Close frequency  
20  
(6) See Application and Implementation for more details on the different VCO calibration modes.  
Copyright © 2018, Texas Instruments Incorporated  
11  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Measurements are done at 25 degree C. Parameters are measured at IF = 65MHz with high side injection, unless otherwise  
noted. Measurements are done with external VCM = 1.7V.  
PARAMETER  
TEST CONDITIONS  
8 GHz  
MIN  
TYP  
89  
MAX  
UNIT  
9.2 GHz  
93  
10.3 GHz  
11.3 GHz  
12.5 GHz  
13.3 GHz  
14.5 GHz  
110  
124  
189  
182  
205  
KVCO  
VCO gain  
MHz/V  
Allowable temperature drift when VCO  
is not re-calibrated  
|ΔTCL  
|
125  
°C  
H2  
H3  
VCO second harmonic  
VCO third harmonic  
FVCO = 8 GHz, divider disabled  
FVCO = 8 GHz, divider disabled  
-30  
-40  
dBc  
SYNC PIN AND PHASE ALIGNMENT  
Category 3 (int LO mode)  
Category 1 or 2  
0
0
100  
Maximum usable OSCIN frequency  
FOSCIN_SYNC  
MHz  
with SYNC pin  
DIGITAL INTERFACE (SCK, SDI, CSB, MUXOUT, SYNC, CE)  
1400  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
1.4  
0
VCC  
0.4  
50  
V
V
-50  
-50  
µA  
µA  
IIL  
50  
VCC –  
0.55  
VOH  
VOL  
High level output voltage  
High level output current  
IL = –5 mA  
IL = 5 mA  
V
V
0.55  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
SYNC  
tSETUP  
Setup time for pin relative to OSCIN rising edge  
Hold time for pin relative to OSCIN rising edge  
2.5  
2
ns  
ns  
tHOLD  
DIGITAL WRITE INTERFACE(1)  
FSPI_WRITE SPI write speed  
50  
MHz  
ns  
tES  
Clock to enable low time  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
5
2
tCS  
ns  
tCH  
2
ns  
tCWH  
tCWL  
tCES  
tEWH  
5
ns  
10  
10  
10  
ns  
ns  
ns  
DIGITAL READBACK INTERFACE(2)  
FSPI_READ SPI readback speed  
50  
10  
MHz  
ns  
tES  
Clock to enable low time  
Clock to data wait time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
10  
tCS  
ns  
tCWH  
tCWL  
tCES  
10  
10  
10  
ns  
ns  
ns  
(1) See Figure 1  
(2) See Figure 2  
12  
Copyright © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Timing Requirements (continued)  
MIN  
NOM  
MAX  
UNIT  
tEWH  
Enable pulse width high  
10  
ns  
MSB  
LSB  
D0  
SDI  
R/W  
A5  
A0  
D15  
D14  
SCK  
CSB  
t
t
CWH  
CS  
tES  
t
t
CH  
CES  
t
CWL  
t
EWH  
1. Serial Data Input Timing Diagram  
There are several other considerations for writing on the SPI:  
The R/W bit must be set to 0.  
The signal on the SDI pin is clocked into a shift register on each rising edge of the SCK pin.  
The CSB must be held low for data to be clocked. Device ignores clock pulses if CSB is held high.  
The CSB transition from high to low must occur when SCK is low.  
When SCK and SDI lines are shared between devices, TI recommends holding the CSB line high on any  
devices besides the intended programming target.  
LSB  
MUXout  
SDI  
RB15  
RB14  
RB0  
MSB  
R/W  
A6  
A5  
A0  
SCK  
CSB  
t
t
CS  
CWH  
tES  
t
CES  
t
CWL  
t
EWH  
2. Serial Data Readback Timing Diagram  
There are several other considerations for SPI readback:  
The R/W bit must be set to 1.  
The MUXOUT pin is always for the address portion of the transaction.  
The address on the SDI pin is clocked into a shift register on each rising edge of the SCK pin.  
The data portion of the transaction on the SDI line is always ignored.  
The data on the MUXOUT pin should be considered valid on each rising edge of the SCK pin, provided all  
timing requirements are met.  
All CSB considerations for SPI writing also apply to SPI readback.  
版权 © 2018, Texas Instruments Incorporated  
13  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
12  
12  
10  
8
10  
8
6
6
4
4
Temperature = -40  
Temperature = 25  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = 85  
2
2
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D001  
D002  
3. Voltage Gain Across LO Frequency for Internal LO  
4. Voltage Gain Across LO frequency for External LO  
Mode  
Mode  
14  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
0
0
-2  
-2  
-2000 -1500 -1000 -500  
0
500 1000 1500 2000  
-2000 -1500 -1000 -500  
0
500 1000 1500 2000  
IF Frequency  
IF Frequency  
D003  
D004  
5. Voltage Gain Across IF Frequency for Internal LO  
6. Voltage Gain Across IF Frequency for External LO  
Mode  
Mode  
40  
40  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D005  
D006  
7. IIP3 Across LO Frequency for Internal LO Mode  
8. IIP3 Across LO Frequency for External LO Mode  
14  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
10  
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
5
0
0
-1500  
-1000  
-500  
0
500  
1000  
1500  
-1500  
-1000  
-500  
0
500  
1000  
1500  
IF Frequency (MHz)  
IF Frequency (MHz)  
D007  
D008  
9. IIP3 Across IF Frequency for Internal LO Mode  
10. IIP3 Across IF Frequency for External LO Mode  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D009  
D010  
11. IIP2: F1-F2 Across LO Frequency for Internal LO  
12. IIP2: F1-F2 Across LO Frequency for External LO  
Mode  
Mode  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
LO Frequency = 4000MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000MHz  
LO Frequency = 4000MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000MHz  
0
0
-1500  
-1000  
-500  
0
500  
1000  
1500  
-1500  
-1000  
-500  
0
500  
1000  
1500  
IF Frequency (MHz)  
IF Frequency (MHz)  
D011  
D012  
13. IIP2: F1-F2 Across IF Frequency for Internal LO Mode  
14. IIP2: F1-F2 Across IF Frequency for External LO Mode  
版权 © 2018, Texas Instruments Incorporated  
15  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
10  
0
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D013  
D014  
15. IIP2: F1+F2 Across LO Frequency for Internal LO  
16. IIP2: F1+F2 Across LO Frequency for External LO  
Mode  
Mode  
70  
70  
60  
50  
40  
30  
60  
50  
40  
30  
20  
10  
20  
LO Frequency = 4000MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000MHz  
LO Frequency = 4000MHz  
LO Frequency = 8000 MHz  
10  
LO Frequency = 12000MHz  
0
0
-1500  
-1000  
-500  
0
500  
1000  
1500  
-1500  
-1000  
-500  
0
500  
1000  
1500  
IF Frequency (MHz)  
IF Frequency (MHz)  
D015  
D016  
17. IIP2: F1+F2 Across IF Frequency for Internal LO Mode  
18. IIP2: F1+F2 Across IF Frequency for External LO  
Mode  
24  
22  
20  
18  
16  
27  
Temperature = -40  
Temperature = 25  
Temperature = 85  
25  
23  
21  
19  
17  
15  
13  
11  
Temperature = -40  
Temperature = 25  
Temperature = 85  
14  
12  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D017  
D018  
19. Noise Figure Across LO Frequency for Internal LO  
20. Noise Figure Across LO Frequency for External LO  
Mode  
Mode  
16  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
24  
24  
22  
20  
18  
16  
14  
12  
10  
22  
20  
18  
16  
LO Frequency = 4000 MHz  
LO Frequency = 4000 MHz  
LO Frequency = 6000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 10000 MHz  
LO Frequency = 12000 MHz  
14  
12  
10  
LO Frequency = 6000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 10000 MHz  
LO Frequency = 12000 MHz  
0
200  
400  
600  
800 1000 1200 1400 1600  
0
200  
400  
600  
800 1000 1200 1400 1600  
IF Frequency (MHz)  
IF Frequency (MHz)  
D019  
D020  
21. Noise Figure Across IF Frequency for Internal LO  
22. Noise Figure Across IF Frequency for External LO  
Mode  
Mode  
-80  
-80  
Temperature = -40  
Temperature = 25  
Temperature = -40  
Temperature = 25  
-82  
-82  
Temperature = 85  
-84  
Temperature = 85  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
4000  
-100  
4000  
6000  
8000  
10000  
12000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D022  
D024  
23. Uncalibrated IQ Phase Difference for Internal LO  
24. Uncalibrated IQ Phase Difference for External LO  
Mode  
Mode  
0.5  
0.5  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D025  
D026  
25. Uncalibrated IQ Gain Imbalance for Internal LO Mode  
26. Uncalibrated IQ Gain Imbalance for External LO Mode  
版权 © 2018, Texas Instruments Incorporated  
17  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Uncalibrated IMRR  
Calibrated IMRR  
Uncalibrated IMRR  
Calibrated IMRR  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D027  
D028  
27. IMRR for Internal LO Mode: Calibrated and  
28. IMRR for External LO Mode: Calibrated and  
Uncalibrated  
Uncalibrated  
15  
10  
5
30  
20  
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
LO Frequency = 4000 MHz  
LO Frequency = 8000 MHz  
LO Frequency = 12000 MHz  
10  
0
0
-5  
-10  
-20  
-30  
-10  
-15  
-63 -54 -45 -36 -27 -18 -9  
0
9
18 27 36 45 54 63  
-63 -54 -45 -36 -27 -18 -9  
0
9
18 27 36 45 54 63  
code  
code  
D040  
D041  
Minus sign on x-axis means polarity is set to '1'.  
30. IMRR Phase Calibration: Extended Range Mode  
29. IMRR Phase Calibration: Fine Accuracy Mode  
1.25  
0
Temperature = -40  
Temperature = 25  
Temperature = 85  
1
0.75  
0.5  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
IMRR_GCAL_ICH  
IMRR_GCAL_QCH  
-1.25  
0
51  
102  
153  
204  
255  
4000  
6000  
8000  
10000  
12000  
Code  
LO Frequency (MHz)  
D045  
D029  
31. IMRR Gain Calibration  
32. 2x2 Spur for Internal LO Mode  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D030  
D032  
D034  
D031  
33. 2x2 Spur for External LO Mode  
34. 3x3 Spur for Internal LO Mode  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Temperature = -40  
Temperature = 25  
Temperature = 85  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Temperature = -40  
Temperature = 25  
Temperature = 85  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D033  
35. 3x3 Spur for External LO Mode  
36. RF to IF Isolation  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Temperature = -40  
Temperature = 25  
Temperature = 85  
Temperature = -40  
Temperature = 25  
Temperature = 85  
4000  
6000  
8000  
10000  
12000  
4000  
6000  
8000  
10000  
12000  
LO Frequency (MHz)  
LO Frequency (MHz)  
D035  
37. LO to IF Leakage Level  
38. LO to RF Leakage Level: Internal LO Mode  
版权 © 2018, Texas Instruments Incorporated  
19  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
0
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
Temperature = -40  
Temperature = 25  
Temperature = 85  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
External 6dBm LO  
Internal LO  
4000  
6000  
8000  
10000  
12000  
3900  
4400  
4900  
5400  
5900  
6400  
LO Frequency (MHz)  
LO Frequency (MHz)  
D036  
D037  
1. The LO frequency is capped at 6600MHz because IP1dB  
exceeds +10dBm when LO frequency goes beyond 6600MHz;  
The device can be damaged when input power is more than  
+10dBm.  
40. OP1dB Across LO Frequency  
39. LO to RF Leakage Level: External LO Mode  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0
NF Measured; Temperature = -40  
NF Calculated; Temperature = -40  
NF Measured; Temperature = 25  
NF Calculated; Temperature = 25  
NF Measured; temperature = 85  
NF Calculated; Temperature = 85  
-5  
-10  
-15  
-20  
-25  
-25 -22.5 -20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5  
Jammer Power (dBm)  
0
4000  
6000  
8000  
LO Frequency  
10000  
12000  
D039  
D042  
1. Jammer frequency = 8.8GHz, LO = 7.8GHz, IF = 100MHz.  
2. Internal LO phase noise values used for calculation at -40, 25,  
and 85 degrees  
separately.  
C are –155, –154.5 and –154 dBc/Hz,  
42. RF Port S11  
41. Noise Figure with Jammer  
20  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
-5  
6
4
Ta=25  
Ta=-40  
Ta=85  
-10  
-15  
-20  
-25  
-30  
-35  
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
0
2000  
4000  
6000  
8000 10000 12000 14000  
0
2000 4000 6000 8000 10000 12000 14000 16000  
Frequency (MHz)  
Output Frequency (MHz)  
D043  
D044  
1. Board losses and mismatch are not subtracted out. True output  
power may be higher. This plot shows single-ended LO output  
power only. Differential output power can be higher.  
44. LO Output Power  
43. LO Port Mixed Modes S11  
Measurements are done at 25 degree C unless temperature is specified in the plots.  
For measurements across LO frequency, IF = 65MHz, and LO injection type is high side injection. For measurements  
across IF frequency, high side injection is applied  
For all measurements that require RF input, RF input power = -10 dBm unless otherwise specified.  
For two-tone measurements, the separation between two tones is 17MHz.  
For all measurements, internal 1.7V VCM is applied.  
For all external LO mode measurements, LO power = +6 dBm.  
IF baluns used for measurements are: ADT2-18+ from Mini-Circuits™.  
LO balun used for measurements is: BIB-100G from PPM-Test™.  
RF combiner used for measurements of IP2, IP3 and NF with jammer is: 4426-2 from Narda-MITEQ™.  
All path losses are calibrated out.  
版权 © 2018, Texas Instruments Incorporated  
21  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX8410L is a high-performance I/Q demodulator with an RF input range of 4 to 10 GHz and an IF output  
range of DC to 1350 MHz. This device integrates many components to allow high system performance as well as  
simplified design. There is an integrated synthesizer that generates wide-band frequencies at very low phase  
noise, with signal carefully conditioned for driving the mixer LO port. The RF input is single ended, enabled by an  
integrated wide-band RF balun at the front end. The two mixers on each I/Q channel are highly linear with  
optimized filtering and interfacing with components on each port. The IF amplifier is a high gain and high linearity  
component, saving users from matching discrete amplifiers and being restricted by common mode voltages  
typically encountered when interfacing mixers and ADC’s. In addition to high linearity and low noise performance,  
the LMX8410L comes equipped with many features to further optimize certain parameters. The automatic DC  
offset calibration is run by an internal automatic algorithm which will sense and tune the DC offset between the N  
and P sides of the differential signal of each IF amplifier, thus ensuring optimal performance when directly DC  
coupled to the ADC. The I/Q calibration knob allows tuning blocks within the mixer and IF amplifier to balance  
both the gain and the phase of the I/Q output signals, thus giving the user capability to adjust and achieve high  
image rejection. The internal synthesizer also has a feature of synchronization, which allows multiple LMX8410L  
designed in parallel to have synchronized LO signal phase.  
7.2 Functional Block Diagram  
VCC_  
MASH  
VCC_DIG VCC_CP  
12  
VCC_BUF VCC_IFQ VCC_RFQ VCC_RFI  
19 27 29 33  
VCC_IFI VCC_VCO  
VCC5_IFQ VCC5_IFI  
23 38  
7
16  
35  
46  
VBIAS_VCO2  
2
39  
40  
8
IF_IP  
I-CH DCOC  
MIXDAC  
IFA  
I-CHANNEL  
I-CH DCOC  
AMPDAC  
VCM_IN  
3
VBIAS_VCO1  
VREG_OSCIN  
IF_IM  
IMRR GAIN  
CAL I-CH  
INTEGRATED SYNTHESIZER  
10  
42  
45  
47  
INTEGRATED  
LDO/VCO  
BYPASSING  
OSCINP  
OSCINM  
CP  
POST-R  
÷
PRE-R  
MULT  
÷
OSC_2X  
VBIAS_VARAC  
VREG_VCO  
9
PHASE  
DETECTOR  
I/Q GENERATION  
CHARGE  
PUMP  
13  
IMRR  
PHASE  
CAL  
SYNC  
I
N ÷  
SYNC  
I-CH  
VREF_VCO  
LOGEN ÷2  
CHDIV  
VCO  
44  
36  
VTUNE  
Q
I
I/Q  
SEL  
RF  
31  
5
LNA  
VCM_IN  
LOGEN  
POLYPHASE  
SYNC  
CE  
IMRR  
PHASE  
CAL  
Q
LO OUT SEL  
LO I/O SEL  
I/Q  
SEL  
Q-CH  
1
SCK  
SDI  
24  
25  
26  
11  
18  
17  
21  
22  
LO_P  
LO_M  
SPI  
INTERFACE  
IMRR GAIN  
CAL Q-CH  
CONTROL  
REGISTERS  
CSB  
IF_QM  
IF_QP  
Q-CH DCOC  
MIXDAC  
IFA  
Q-CHANNEL  
Q-CH DCOC  
AMPDAC  
VCM_IN  
MUXOUT  
4
6
14  
GND  
15  
GND  
20  
GND  
30  
GND  
32  
41  
GND  
43  
48  
49  
34  
37  
GND  
GND  
GND  
GND  
GND  
PAD  
N/C  
N/C  
22  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
7.3 Feature Description  
7.3.1 Device Configurations and Feature Description  
7.3.1.1 RF, LO and IF Interfaces  
7.3.1.1.1 RF Interface  
LMX8410 RF input stage provides a wideband input matching in complete RF frequency range. The RF interface  
requires an external DC block capacitor.  
RF  
C
50 W  
45. RF Interface  
7.3.1.1.2 LO Interface  
LO interface for LMX8410 serves dual functionality:  
1. Drive the VCO or channel divider output to pin LO_M and LO_P.  
2. Inject external LO signal in external LO mode where on-chip synthesizer needs to be bypassed.  
7.3.1.1.2.1 LO Interface as Output Port  
When LO interface operates as output port, it drives either VCO or Channel Divider output to the port. The device  
provides open collector output. Therefore, a pair of off-chip load resistors or inductors are needed in order to  
have LO output power.  
C
LO_P  
+3.3 V  
LO_M  
C
46. LO Port Operating In Output Mode Requires Load Resistors Or Inductors  
7.3.1.1.2.2 LO Interface as Input Port  
When LO interface operates as input port, the pull-up resistors or inductors must be removed. Device pins must  
be AC coupled with DC block. LO pins offer wideband differential 100 Ohm termination to enable port matching.  
The value of termination can be set to 100Ohm, 200Ohm or high impedance through register  
EXTLO_INT_MATCH_RES (R123<1:0>). It is recommended to keep the termination setting to 100 ohm during  
external LO injection and to high impedance mode while LO is brought out from the device.  
版权 © 2018, Texas Instruments Incorporated  
23  
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
LO_P  
C
C
R
LO_M  
47. LO Port Operating In Input Mode  
7.3.1.1.3 Baseband Interface  
LMX8410 has a low impedance output driver capable of driving the resistive as well as capacitive loads.  
Therefore, a pair of 50 ohm off-chip resistors can be placed in both IF_P and IF_M paths to provide 100Ohm  
differential matching if IF port matching is required.  
IF_P  
50 W  
50 W  
IF_M  
48. IF Interface Requires External Resistors for 100Ohm Differential Matching  
7.3.1.2 Device Configurations Overview  
Follow below steps to configure the device successfully.  
7.3.1.2.1 Initialize the Device  
After the device is powered on, follow below setups in sequence.  
1. Set R127 = 0x0003  
2. Set R6 = 0x0100  
3. Set R127 = 0x0000  
4. Load device configuration bits.  
7.3.1.2.2 Configure LO Modes  
Refer to 5 to set up correct LO modes. After LO mode is configured, In case of internal LO mode, lock the  
integrated synthesizer and jump to Perform DCOC (DC Offset Correction). In case of external LO mode, go to  
Set Up External LO Clock.  
24  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Feature Description (接下页)  
7.3.1.2.3 Set Up External LO Clock  
Follow below steps to set up external LO clock:  
1. Set external LO divider. Refer to State Machine Clock  
2. Provide external LO signal on the pin.  
3. Enable the divider by setting EXTLO_CLK_DIV_EN (R81<7:6>) to 3. This step should be done only after  
valid external LO signal is driven on the pin.  
4. Select SM clock source towards external LO driven SM clock by setting SM_CLK_SEL (R81<0>) = 1.  
5. Wait for 100 usec before performing DCOC.  
7.3.1.2.4 Perform DCOC (DC Offset Correction)  
Perform DCOC for both I and Q channels. Refer to DCOC (DC Offset Correction) for detailed instructions.  
7.3.1.2.5 Turn Off SM Clock  
Turn off SM clock after DCOC to remove coupling spurs from clock signals.  
1. In internal LO mode, set SM_CLK_EN (R2<10>) to 0.  
2. In external LO mode, set EXTLO_CLK_DIV_EN (R81<7:6>) to 0.  
7.3.1.2.6 Perform IMRR (Image Rejection Ratio) Calibration  
Refer to Image Rejection Calibration for detailed instructions.  
7.3.1.3 State Machine Clock  
The State machine clock can be derived, through a MUX, from division of OSCin frequency in internal LO mode  
or from division of external LO frequency in external LO mode. The upper bound for State machine clock is  
200MHz while lower bound is 1MHz/10MHZ in internal/external LO modes. In external LO mode, two sets of  
dividers need to be programmed to set the right SM clock frequency. DIV_A is an 8-state divider which drives  
DIV_B. Input frequency to DIV_B must be kept less than 1.4GHz. Recommended SM_CLK frequency is  
100MHz.  
2CAL_CLK_DIV  
fOSCin  
MUX  
fSMCLK  
DIV_A  
DIV_B  
fLO  
49. Block Diagram of SM Clock  
7.3.1.3.1 Set Divider Values For Internal LO Mode  
The value of divider in internal LO mode is 2^(value of CAL_CLK_DIV).  
版权 © 2018, Texas Instruments Incorporated  
25  
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.1.3.2 Set Divider Values For External LO Mode  
The divider for external LO mode is EXTLO_DIV (R82<5:0>), where R82<5:3> sets DIV_A and R82<2:0> sets  
DIV_B. The value of DIV_A should be set according to 1. The value of DIV_B is 2^(value of R82<2:0>).  
1. DIV_A Encoding  
EXTLO_DIV (R82<5:3>)  
Division Value  
000  
001  
010  
011  
100  
101  
110  
111  
/1  
/2  
/16  
/4  
/16  
/16  
/16  
/8  
7.3.1.4 DCOC (DC Offset Correction)  
The DC offset of IF output can be automatically corrected by checking EN_DCOC_ICH_LUT and  
EN_DCOC_QCH_LUT  
8b DAC in each mixer  
for offset fine tuning  
8b DAC in each IFA  
for offset coarse tuning  
IF output (I Channel)  
ADC CH1  
Synthesizer  
OSCin  
IQ LO  
generator  
LO output  
RF input  
VCM from  
RF ADC  
MUX  
External LO input  
ADC CH2  
IF output (Q Channel)  
8b DAC in each mixer  
for offset fine tuning  
8b DAC in each IFA  
for offset coarse tuning  
GND  
50. DC Offset Correction Diagram  
7.3.1.4.1 RF Input Power Restriction During DCOC  
For best accuracy, power at the RF input of the LMX8410 should be kept below -50dBm during DCOC  
calibration. Additional isolation (~15dB) can be obtained by turning of LNA_PD and LNA_BIAS_OFF.  
7.3.1.4.2 Set Up DCOC Clock Divider  
DCOC state machine clock can operate from 0.5MHz to 2MHz, preferably set to 1MHz. Calculation of clock  
frequency: DCOC clock Frequency = (SM_CLK frequency)/(2*DCOC_CLK_DIV value). Refer to State Machine  
Clock for SM_CLK setup. It is recommended to set and reset DCOC_FSM_RESET (R126<8>) every time the LO  
frequency is changed.  
7.3.1.5 Image Rejection Calibration  
LMX8410 provides registers to vary the gain and phase of the I and Q channel individually to improve image  
rejection.  
26  
版权 © 2018, Texas Instruments Incorporated  
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
IF output (I Channel)  
Synthesizer  
OSCin  
IQ LO  
generator  
LO output  
M
U
X
External LO input  
IF output (Q Channel)  
51. Image Reject Calibration Example  
7.3.1.5.1 Phase Calibration  
Phase magnitude can be tuned using IMRR_PHCAL (R95<14:9>), polarity of phase calibration can be set by  
IMRR_PHCAL_POL (R95<15>). If Q channel leads I by > 90 deg. Set polarity to ‘0’, otherwise set it to ‘1’.  
Typical step size of magnitude tuning is 0.2 deg for fine accuracy mode and 0.45 deg for extended range mode.  
The fine accuracy mode and extended range mode can be set by IMRR_PHCAL_EXTEND (R126<15>). Refer to  
29 and 30 for details of the two modes.  
7.3.1.5.2 Gain Calibration  
The voltage magnitude of  
I and Q channel can be tuned by IMRR_GCAL_ICH (R94<7:0>) and  
IMRR_GCAL_QCH (R94<15:8>). The recommended code range is 128 to 255. In this code range, gain tuning  
range is 0.5dB. Extended code range is 0 to 127. In this range, step size is higher and gain tuning range is 1dB.  
Refer to 31 for details of the two code ranges. Re-calibration may be needed with temperature drift.  
7.3.1.6 IF Amplifier Common Mode Configurations  
IF amplifier common mode voltage can be set by VCM_CONFIG (R83<12:9>). Additional setups are needed  
depending on VCM magnitude. Refer to 2 for more details. For best common mode voltage accuracy, supply  
external VCM and choose "External" in VCM_CONFIG.  
2. IF Amplifier Common Mode Configurations  
IFA common mode(V)  
IFA_PULLUP_EN (R79<6>)  
IFA_PULLUP (R83<15:13>)  
IFA_CONFIG (R88<1:0>)  
1.2  
1
1
1
0
0
7
3
1
0
0
0
0
0
0
3
1.3  
1.4  
1.5  
>= 1.6  
7.3.1.7 Synchronization Mode (Internal LO Mode Only)  
7.3.1.7.1 Synchronization of the LO_OUT Output to the Fosc Input  
The LO_OUT pin can be synchronized to the Fosc input in exactly the same way that the LMX2594 can. For  
cases where the output frequency is not a multiple of the input frequency, the SYNC pin an be used.  
7.3.1.7.2 Synchronization of I/Q Outputs to Fosc Inputs Using Internal LO  
When the internal LO is used, IF outputs of two devices can be synchronized to the Fosc input if and only if the  
VCO frequency is a multiple of the Fosc frequency and there is no multiplication in the input path (OSC_2X = 0  
and MULT=1). The device is inherently in SYNC all the time in this condition so therefore there is no need to use  
the SYNC pin or to toggle the SYNC_PHASE_PLL bit.  
版权 © 2018, Texas Instruments Incorporated  
27  
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
The LMX8410L can be programmed for two functional modes: internal LO mode (using the integrated  
synthesizer) or external LO mode (bypassing the integrated synthesizer). In internal LO mode, when 4GHz <=  
LO frequency <=7.5 GHz, use divide-by-2 (Div 2) mode; when 7.5 GHz <= LO frequency <= 10 GHz, use  
polyphase filter mode (Poly). Refer to 3 to set up registers correctly. Under special circumstances where  
integrated synthesizer fails to lock at 7.5 ~ 7.7GHz, refer to VCO Range Uncertainty for 7.5 to 7.7 GHz for more  
instructions.  
3. Internal LO Mode and External LO Mode Register Configurations  
FIELD NAME  
PLL_PD  
ADDRESS  
R0[0]  
INTERNAL LO/DIV2 INTERNAL LO/Poly  
EXTERNAL LO  
0
1
0
1
1
1
LO_OUT_PD  
R44[7]  
SIGCHAIN_PD  
R79[0]  
0
0
0
LO_PATH_EN  
R79[14:12]  
R80[5:0]  
R81[0]  
0
7
7
LO_MUX  
9
10  
0
34  
1
SM_CLK_SEL  
0
EXTLO_CLK_DRV_EN  
LO_DRVR_MODE  
EXTLO_CLK_DIV_EN  
LO_POLY_MODE1  
LO_POLY_MODE2  
EXTLO_INT_MATCH_RES  
R81[2:1]  
R81[5:4]  
R81[7:6]  
R81[11:8]  
R103[13:10]  
R123[1:0]  
0
0
3
1
0
3
0
0
3
3
0
15  
0
11  
0
0
0
3
7.4.1 Internal LO Mode  
When using internal LO mode, the integrated synthesizer is activated to generate the desired LO frequency. The  
OSCINP and OSCINM pins are used to provide a reference frequency to the PLL and are required to generate  
the internal state machine clock. The CP pin generates the phase detector output for use with an external loop  
filter. The filtered phase detector output is fed into the VTUNE pin to control the internal VCO, generating  
frequencies between 7.5 GHz and 15 GHz. The VCO output is divided down to close the loop into the phase  
detector. The VCO output may be fed directly into the I/Q generation circuitry.  
The I/Q generation circuitry has two paths: a divide-by-2 path, and a polyphase filter path. Depending on the  
frequency of the LO, the I/Q generation circuitry used will differ. The divide-by-2 path requires the VCO frequency  
to be double that of the LO frequency. When the LO frequency is between 4 GHz and 7.5 GHz, the VCO can be  
programmed to between 8 GHz and 15 GHz, and the VCO output can be fed into the divide-by-2 path. When the  
LO frequency is greater than 7.5 GHz, the VCO can be programmed to between 7.5 GHz and 15 GHz, and the  
VCO output can be fed into the polyphase filter path.  
In Internal LO mode, the LO pins may be used as outputs (refer to LO Interface as Output Port) for three  
separate signals internal to the device:  
1. The VCO output may be fed directly to the LO pins.  
2. The VCO may be divided by any possible combination using the channel divider, and the divided output may  
be fed to the LO pins. Refer to the datasheet of LMX2594 for more details.  
28  
版权 © 2018, Texas Instruments Incorporated  
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
7.4.1.1 VCO Range Uncertainty for 7.5 to 7.7 GHz  
Although the majority of devices have a VCO range of 7.5 to 15 GHz, this is NOT ensured. In reality, the VCO is  
tested for sure to cover 7.7 to 15 GHz. In the range of 7.5 to 7.7 GHz and 15 to 15.4 GHz, the VCO will cover at  
least enough frequency to cover a factor of two in frequency. What this means if using the internal mixer is that if  
one wants a LO frequency of 7.6 GHz, then first try this using the poly mode and VCO frequency of 7.6 GHz.  
However, if the VCO can not do 7.6 GHz, then one has to try DIV2 Mode with the VCO at 15.2 GHz.  
4. VCO Ensured Frequency  
Parameter  
Symbol  
fVCOMin  
fVCOMax  
Ensured Condition  
fVCOMin <= 7.7 GHz  
Minimum VCO Frequency  
Maximum VCO Frequency  
fVCOMax >= Max{ 15 GHz , 2 × f VCOMin }  
7.4.2 External LO Mode  
When using External LO mode, the integrated synthesizer may be powered down and bypassed. The internal  
state machine clock is derived by dividing down the LO input. Since the frequency range of the LO circuit is  
bounded below the operational frequency of the divide-by-2 path, I/Q generation must be done using the  
polyphase filter path.  
In External LO mode, some pins must be configured differently than in Internal LO mode. Even when the  
synthesizer circuitry is bypassed, VCC should be applied to all power pins (though bypass capacitors are no  
longer required). 5 contains a summary of the External LO requirements.  
5. External LO Pin Configuration  
PIN NO.  
NAME  
I/O  
EXTERNAL LO REQUIREMENTS  
Floating (no connection) or same  
configuration with internal LO mode  
2
VBIAS_VCO2  
Bypass  
Floating (no connection) or same  
configuration with internal LO mode  
3
VBIAS_VCO1  
Bypass  
5
8
9
SYNC  
Input  
input  
input  
Grounded  
Grounded  
Grounded  
OSCINP  
OSCINM  
Floating (no connection) or same  
configuration with internal LO mode  
10  
13  
17  
18  
VREG_OSCIN  
CP  
Bypass  
Output  
Input  
Floating (no connection) or same  
configuration with internal LO mode  
Matching network recommended. No pull-up  
LO_M  
(1)  
resisters / inductors.  
Matching network recommended. No pull-up  
LO_P  
Input  
(1)  
resisters / inductors.  
Floating (no connection) or same  
configuration with internal LO mode  
42  
44  
47  
VBIAS_VARAC  
VTUNE  
Bypass  
Input  
Grounded  
Floating (no connection) or same  
configuration with internal LO mode  
VREF_VCO  
Bypass  
(1) Refer to LO Interface as Input Port for LO interfacing.  
7.5 Programming  
7.5.1 General Comments Regarding Programming  
This device is programmed using 24-bit shift registers. The shift register consists of a R/W bit (MSB), followed by  
a 7-bit address field and a 16-bit data field. For the R/W bit, 0 is for write, and 1 is for read. The address field  
ADDRESS[6:0] is used to decode the internal register address. The remaining 16 bits form the data field  
DATA[15:0]. While CSB is low, serial data is clocked into the shift register upon the rising edge of clock (data is  
programmed MSB first). When CSB goes  
版权 © 2018, Texas Instruments Incorporated  
29  
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Programming (接下页)  
7.5.2 Recommended Initial Power Up Sequence  
For the most reliable programming, TI recommends this procedure: 1. 2. Program RESET = 1 to reset registers.  
3. Program RESET = 0 to remove reset. 4. Program registers as shown in the register map in REVERSE order  
from highest to lowest. 5. Program register R0 one additional time with FCAL_EN = 1 to ensure that the VCO  
calibration runs from a stable state.  
1. Apply power to device.  
2. Program Register R127 to value 0x7F0003  
3. Program Register R6 to value 0x060100  
4. Program registers R127 to R0 in REVERSE Order  
5. If using internal LO, wait 10 ms and then Program register R0 again  
7.5.3 Recommended and Power on Reset Bit Values  
There a few points of clarification for power on reset values and recommended values.  
1. Whenever power is cycled on the chip, the registers are reset to their power on reset (not necessarily  
recommended) state.  
2. In the main register map, there are several registers with only 1's and 0's and no defined words. DO NOT  
ASSUME that these registers do not need to be programmed. In many cases, these 1's and 0's are different  
than the power on reset values.  
3. In the register description, the word 'RESET" is used, but what is really meant is "Recommended" State  
7.6 Register Map  
This device has 128 registers from R0 to R127. They must be programmed in REVERSE order. Note that there  
are several registers that have no description, but they still need to be programmed as the power on reset value  
is not always the correct value. The complete listing for all registers, including those not described in this  
datasheet are available on the Registers tab on the TI TICSPro software.  
30  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
6. Full Register Map  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R0  
0
SYNC_P  
HASE_P  
LL  
1
0
0
0
OUT_MU  
TE  
FCAL_HPFD_ADJ 0  
0
1
FCAL_E MUXOU RESET_ PLL_PD  
N
T_SEL  
PLL  
R1  
R2  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
1
0
0
1
0
0
1
1
0
0
0
1
1
1
1
CAL_CLK_DIV  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
R3  
0
1
R4  
1
0
R5  
0
0
R6  
0
0
R7  
0
0
R8  
0
0
1
R9  
OSC_2X  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
MULT  
PLL_R  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
1
1
1
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
0
1
0
0
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
0
CPG  
0
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
1
0
0
0
1
1
0
1
0
0
0
0
0
0
1
1
1
0
0
0
1
0
1
1
0
0
0
0
1
版权 © 2018, Texas Instruments Incorporated  
31  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6. Full Register Map (接下页)  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
1
D8  
1
D7  
1
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
1
D0  
1
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
PLL_N  
1
0
PFD_DLY_SEL  
0
0
0
0
0
1
0
0
PLL_DEN[31:16]  
PLL_DEN[15:0]  
MASH_SEED[31:16]  
MASH_SEED[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
0
0
0
1
1
1
1
1
LO_OUT  
_PD  
0
MASH_R  
ESET_N  
0
0
MASH_ORDER  
1
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
LO_OUT_MUX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SYNC_PI  
N_IGNO  
RE  
R59  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD_TYP  
E
R60  
R61  
R62  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
32  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
6. Full Register Map (接下页)  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R76  
R77  
R78  
0
0
0
1
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
0
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
CHDIV  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
VCO_CA  
LSTART  
_CLOSE  
R79  
R80  
0
0
LO_PATH_EN  
0
0
0
0
0
0
0
0
IFA_PUL  
LUP_EN  
0
0
0
LNA_PD SIGPAT SIGCHAI  
H_RST N_PD  
0
0
SYNC_P SYNC_D SYNC_D  
HASE_M RV2_EN RV1_EN  
IXLO  
0
LO_MUX  
R81  
0
0
0
0
0
0
0
0
LO_POLY_MODE1  
EXTLO_CLK_DIV_E LO_DRVR_MODE  
N
0
EXTLO_CLK_DRV_ SM_CLK  
EN  
_SEL  
R82  
R83  
R84  
1
0
1
0
0
0
0
0
0
EXTLO_DIV  
IFA_PULLUP  
VCM_CONFIG  
1
0
0
0
0
0
0
0
0
1
DCOC_CLK_DIV  
EN_DCO EN_DCO  
C_QCH_ C_ICH_L  
LUT  
UT  
R85  
R86  
R87  
R88  
R89  
R90  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_DCOC_CAL  
1
1
0
0
0
0
0
0
0
0
版权 © 2018, Texas Instruments Incorporated  
33  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6. Full Register Map (接下页)  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
R91  
R92  
R93  
R94  
R95  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IMRR_GCAL_QCH  
IMRR_PHCAL  
IMRR_GCAL_ICH  
IMRR_P  
HCAL_P  
OL  
0
0
0
0
0
0
0
0
0
R96  
R97  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R98  
0
R99  
0
R100  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R108  
R109  
R110  
R111  
R112  
R113  
R114  
R115  
R116  
R117  
R118  
R119  
R120  
R121  
0
0
0
LO_POLY_MODE2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rb_LD_VTUNE  
rb_VCO_SEL  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
BIAS_LNA_CUR_C  
ONFIG  
R122  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
34  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
6. Full Register Map (接下页)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R123  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EXTLO_INT_MATC  
H_RES  
R124  
R125  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R126  
IMRR_P  
HCAL_E  
XTEND  
R127  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
版权 © 2018, Texas Instruments Incorporated  
35  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 7 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in  
Table 7 should be considered as reserved locations and the register contents should not be modified.  
Table 7. Device Registers  
Address  
0x0  
Acronym  
R0  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0x1  
R1  
0x2  
R2  
0x9  
R9  
0xA  
R10  
R11  
R14  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R46  
R58  
R59  
R69  
R70  
R75  
R78  
R79  
R80  
R81  
R82  
R83  
R84  
R88  
R94  
R95  
R103  
R110  
R111  
R112  
R121  
R123  
R126  
0xB  
0xE  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2E  
0x3A  
0x3B  
0x45  
0x46  
0x4B  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x58  
0x5E  
0x5F  
0x67  
0x6E  
0x6F  
0x70  
0x79  
0x7B  
0x7E  
Complex bit access types are encoded to fit into small table cells. Table 8 shows the codes that are used for  
access types in this section.  
36  
Copyright © 2018, Texas Instruments Incorporated  
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Table 8. Device Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1 R0 Register (Address = 0x0) [reset = X]  
R0 is shown in Figure 52 and described in Table 9.  
Return to Summary Table.  
Figure 52. R0 Register  
7
6
5
4
3
2
1
0
FCAL_HPFD_A  
DJ  
RESERVED  
FCAL_EN  
MUXOUT_SEL  
RESET_PLL  
PLL_PD  
R/W-0x0  
R-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
R/W-0x0  
Table 9. R0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
14  
SYNC_PHASE_PLL  
R/W  
X
Puts PLL in SYNC mode so that the channel divider can be  
synchronized  
13-10  
9
RESERVED  
OUT_MUTE  
R
X
X
R/W  
Output buffer automute.  
0x0 = Disabled  
0x1 = Mutes output buffer during FCAL and when PLL not locked  
VCO calibration adjust for higher phase detector frequencies  
0x0 = Fpd < 100 MHz  
8-7  
FCAL_HPFD_ADJ  
R/W  
0x0  
0x1 = Fpd 100 - 150 MHz  
0x2 = Fpd 150 - 200 MHz  
0x3 = Fpd > 200 MHz  
6-4  
3
RESERVED  
FCAL_EN  
R
0x0  
0x1  
R/W  
Enables frequency calibration. When this bit is high, the VCO  
frequency calibration will be triggered whenever the R0 register is  
written to.  
2
MUXOUT_SEL  
R/W  
0x1  
Selects to route readback serial data output or lock detect output at  
the MUXout pin  
0x0 = Readback  
0x1 = Lock Detect  
1
0
RESET_PLL  
PLL_PD  
R/W  
R/W  
0x0  
0x0  
Reset registers to default values. This bit is self-clearing.  
0x0 = No Reset  
0x1 = Trigger Reset  
PLL power down.  
0x0 = Powerd Up  
0x1 = Powered Down  
7.6.2 R1 Register (Address = 0x1) [reset = 0x3]  
R1 is shown in Figure 53 and described in Table 10.  
Return to Summary Table.  
Copyright © 2018, Texas Instruments Incorporated  
37  
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Figure 53. R1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CAL_CLK_DIV  
R/W-0x3  
Table 10. R1 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
7-3  
2-0  
RESERVED  
CAL_CLK_DIV  
R/W  
0x3  
Divides down for state machine clock [SM clock =  
Fosc/2CAL_CLK_DIV]. Maximum state machine clock frequency is  
200MHz. For fastest calibration speed, choose value which will make  
state machine clock closest to 200 MHz.  
7.6.3 R2 Register (Address = 0x2) [reset = X]  
R2 is shown in Figure 54 and described in Table 11.  
Return to Summary Table.  
Figure 54. R2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 11. R2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
X
Description  
10  
SM_CLK_EN  
RESERVED  
Enables state machine clock  
9-0  
0x0  
7.6.4 R9 Register (Address = 0x9) [reset = X]  
R9 is shown in Figure 55 and described in Table 12.  
Return to Summary Table.  
Figure 55. R9 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 12. R9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12  
OSC_2X  
R/W  
X
Enables the frequency doubler after the input reference signal.  
0x0 = Bypass  
0x1 = Enable doubler  
11-0  
RESERVED  
R
0x0  
7.6.5 R10 Register (Address = 0xA) [reset = 0x80]  
R10 is shown in Figure 56 and described in Table 13.  
Return to Summary Table.  
38  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Figure 56. R10 Register  
7
6
5
4
3
2
1
0
MULT  
R/W-0x1  
RESERVED  
R-0x0  
Table 13. R10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-7  
MULT  
R/W  
0x1  
Input signal multiplier. When not in bypass, input range is 40-70MHz,  
output range is 180-250MHz. 1,3,4,5,6, and 7 are the only valid  
values.  
0x1 = Bypass  
0x3 = x3  
0x4 = x4  
0x5 = x5  
0x6 = x6  
6-0  
RESERVED  
R
0x0  
7.6.6 R11 Register (Address = 0xB) [reset = 0x10]  
R11 is shown in Figure 57 and described in Table 14.  
Return to Summary Table.  
Figure 57. R11 Register  
7
6
5
4
3
2
1
0
PLL_R  
RESERVED  
R-0x0  
R/W-0x1  
Table 14. R11 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
0x1  
Description  
PLL R dividerthat is after the input mulitplier.  
11-4  
3-0  
PLL_R  
RESERVED  
0x0  
7.6.7 R14 Register (Address = 0xE) [reset = 0x70]  
R14 is shown in Figure 58 and described in Table 15.  
Return to Summary Table.  
Figure 58. R14 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CPG  
RESERVED  
R-0x0  
R/W-0x7  
Copyright © 2018, Texas Instruments Incorporated  
39  
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 15. R14 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
CPG  
6-4  
R/W  
0x7  
Charge pump gain  
0x0 = 0 mA  
0x1 = 6 mA  
0x2 = 6 mA  
0x3 = 12 mA  
0x4 = 3 mA  
0x5 = 9 mA  
0x6 = 9 mA  
0x7 = 15 mA  
3-0  
RESERVED  
R
0x0  
7.6.8 R36 Register (Address = 0x24) [reset = 0x64]  
R36 is shown in Figure 59 and described in Table 16.  
Return to Summary Table.  
Figure 59. R36 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
R/W-0x64  
Table 16. R36 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_N  
Type  
Reset  
Description  
R/W  
0x64  
Integer part of N divider  
7.6.9 R37 Register (Address = 0x25) [reset = 0x200]  
R37 is shown in Figure 60 and described in Table 17.  
Return to Summary Table.  
Figure 60. R37 Register  
15  
7
14  
6
13  
5
12  
4
11  
PFD_DLY_SEL  
R/W-0x2  
10  
9
1
8
0
RESERVED  
R-0x0  
3
2
RESERVED  
R-0x0  
Table 17. R37 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-14  
13-8  
RESERVED  
PFD_DLY_SEL  
R/W  
0x2  
Sets the appropriate delay adjustment for the phase detector based  
on PLL_N, MASH_ORDER, and phase detector frequency.  
7-0  
RESERVED  
R
0x0  
40  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
7.6.10 R38 Register (Address = 0x26) [reset = 0x0]  
R38 is shown in Figure 61 and described in Table 18.  
Return to Summary Table.  
Figure 61. R38 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_31:16  
R/W-0x0  
Table 18. R38 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN_31:16  
Type  
Reset  
Description  
Denominator of N divider fraction (MSB)  
R/W  
0x0  
7.6.11 R39 Register (Address = 0x27) [reset = 0x2710]  
R39 is shown in Figure 62 and described in Table 19.  
Return to Summary Table.  
Figure 62. R39 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN  
R/W-0x2710  
Table 19. R39 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN  
Type  
Reset  
Description  
Denominator of N divider fraction (LSB)  
R/W  
0x2710  
7.6.12 R40 Register (Address = 0x28) [reset = 0x0]  
R40 is shown in Figure 63 and described in Table 20.  
Return to Summary Table.  
Figure 63. R40 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_SEED_31:16  
R/W-0x0  
Table 20. R40 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_SEED_31:16  
Type  
Reset  
Description  
R/W  
0x0  
MSB bit of MASH_SEED  
7.6.13 R41 Register (Address = 0x29) [reset = 0x0]  
R41 is shown in Figure 64 and described in Table 21.  
Return to Summary Table.  
Figure 64. R41 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_SEED  
R/W-0x0  
Copyright © 2018, Texas Instruments Incorporated  
41  
 
 
 
 
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 21. R41 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
MASH_SEED  
R/W  
0x0  
The MASH_SEED can be used for optimizing fractional mode (see  
simulation tool) and also phase adjustment feature. Phase  
adjustment writing to this register will trigger a phase shift (in  
degrees) = 360 x [MASH_SEED] x [PLL_N_PRE] / [N-divider  
denominator] / [Channel divider]. MASH_SEED must be less than N-  
divider denominator For example, for MASH_SEED = 100,  
PLL_N_PRE=2, PLL_DEN = 200, CHDIV=3, Phase Shift = 360 * 100  
* 2 / 200 / 3 = 120 degrees  
7.6.14 R42 Register (Address = 0x2A) [reset = 0x0]  
R42 is shown in Figure 65 and described in Table 22.  
Return to Summary Table.  
Figure 65. R42 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_31:16  
R/W-0x0  
Table 22. R42 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM_31:16  
Type  
Reset  
Description  
Numerator of N divider fraction (MSB)  
R/W  
0x0  
7.6.15 R43 Register (Address = 0x2B) [reset = 0x0]  
R43 is shown in Figure 66 and described in Table 23.  
Return to Summary Table.  
Figure 66. R43 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM  
R/W-0x0  
Table 23. R43 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM  
Type  
Reset  
Description  
Numerator of N divider fraction (LSB)  
R/W  
0x0  
7.6.16 R44 Register (Address = 0x2C) [reset = 0xA2]  
R44 is shown in Figure 67 and described in Table 24.  
Return to Summary Table.  
Figure 67. R44 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
7
6
5
4
3
LO_OUT_PD  
RESERVED  
MASH_RESET  
_N  
RESERVED  
R-0x0  
MASH_ORDER  
R/W-0x1  
R-0x0  
R/W-0x1  
R/W-0x2  
42  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Table 24. R44 Register Field Descriptions  
Bit  
15-8  
7
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
LO_OUT_PD  
R/W  
0x1  
Disable output buffer of output A  
0x0 = Enable  
0x1 = Disable (disable if not using output B)  
6
5
RESERVED  
R
0x0  
0x1  
MASH_RESET_N  
R/W  
MASH enable. Should be set to 1 in fractional mode. To reset the  
MASH toggle from 0 to 1.  
4-3  
2-0  
RESERVED  
R
0x0  
0x2  
MASH_ORDER  
R/W  
Fractional-N divider sigma-delta MASH engine order. This sets the  
algorithm used in fractional-N mode generation and has impact on  
fractional spurs. Refer to the datasheet for more information.  
Recommended values are as follows, but other values may also  
work.  
7.6.17 R46 Register (Address = 0x2E) [reset = 0x1]  
R46 is shown in Figure 68 and described in Table 25.  
Return to Summary Table.  
Figure 68. R46 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
4
3
RESERVED  
R-0x0  
LO_OUT_MUX  
R/W-0x1  
Table 25. R46 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-2  
1-0  
RESERVED  
LO_OUT_MUX  
R/W  
0x1  
Selects signal to route to output B  
0x0 = Selects the output from channel divider MUX  
0x1 = Selects output from VCO  
7.6.18 R58 Register (Address = 0x3A) [reset = 0x8000]  
R58 is shown in Figure 69 and described in Table 26.  
Return to Summary Table.  
Figure 69. R58 Register  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
SYNC_PIN_IG  
NORE  
RESERVED  
R/W-0x1  
7
R-0x0  
3
4
RESERVED  
R-0x0  
Copyright © 2018, Texas Instruments Incorporated  
43  
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 26. R58 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SYNC_PIN_IGNORE  
R/W  
0x1  
Enable this bit when NOT using SYNC mode as the SYNC pin  
interferes with lock detect in this case. When PLL_PHASE_SYNC=1,  
this bit may be disabled with no issues with lock detect.  
14-0  
RESERVED  
R
0x0  
7.6.19 R59 Register (Address = 0x3B) [reset = 0x1]  
R59 is shown in Figure 70 and described in Table 27.  
Return to Summary Table.  
Figure 70. R59 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
RESERVED  
R-0x0  
4
3
0
RESERVED  
R-0x0  
LD_TYPE  
R/W-0x1  
Table 27. R59 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-1  
0
RESERVED  
LD_TYPE  
R/W  
0x1  
Lock detect type. VCOCal lock detect is high except when the VCO  
is calibrating and also during a timeout count right after calibration  
set LD_DLY. Vtune and VCOCal lock detect is high whenever  
VCOCal lock detect would be high and the VCO tuning voltage is  
within an acceptable range.  
0x0 = VCOCal  
0x1 = Vtune and VCOCal.  
7.6.20 R69 Register (Address = 0x45) [reset = 0x0]  
R69 is shown in Figure 71 and described in Table 28.  
Return to Summary Table.  
Figure 71. R69 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT_31:16  
R/W-0x0  
Table 28. R69 Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
MASH_RST_COUNT_31: R/W  
16  
0x0  
MSB of MASH_RST_COUNT  
7.6.21 R70 Register (Address = 0x46) [reset = 0xC350]  
R70 is shown in Figure 72 and described in Table 29.  
Return to Summary Table.  
44  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Figure 72. R70 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT  
R/W-0xC350  
Table 29. R70 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_RST_COUNT  
Type  
Reset  
Description  
R/W  
0xC350  
When using a fractional N value with PLL_PHASE_SYNC=1, this is  
used to set a delay to allow the SYNC to work properly. In general, it  
should be set to a count equal to 4X the analog settling time of the  
PLL. (LSB)  
7.6.22 R75 Register (Address = 0x4B) [reset = 0x0]  
R75 is shown in Figure 73 and described in Table 30.  
Return to Summary Table.  
Figure 73. R75 Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0x0  
CHDIV  
R/W-0x0  
5
4
3
1
CHDIV  
RESERVED  
R-0x0  
R/W-0x0  
Table 30. R75 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-11  
10-6  
5-0  
RESERVED  
CHDIV  
R/W  
R
0x0  
Channel divider that divides the VCO frequency.  
RESERVED  
0x0  
7.6.23 R78 Register (Address = 0x4E) [reset = 0x0]  
R78 is shown in Figure 74 and described in Table 31.  
Return to Summary Table.  
Figure 74. R78 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
8
RESERVED  
R-0x0  
VCO_CALSTA  
RT_CLOSE  
RESERVED  
R/W-0x0  
1
R-0x0  
0
4
3
RESERVED  
R-0x0  
Table 31. R78 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
0x0  
Description  
15-10  
9
R
VCO_CALSTART_CLOS R/W  
E
0x0  
Uses current values for VCO core, frequency band, and amplitude  
as the starting point for the next VCO calibration. Enable this if the  
VCO frequency change is close, on the order of 50 MHz or less.  
8-0  
RESERVED  
R
0x0  
Copyright © 2018, Texas Instruments Incorporated  
45  
 
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.6.24 R79 Register (Address = 0x4F) [reset = 0x7000]  
R79 is shown in Figure 75 and described in Table 32.  
Return to Summary Table.  
Figure 75. R79 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
LO_PATH_EN  
R/W-0x7  
RESERVED  
R-0x0  
7
6
5
4
3
2
RESERVED  
IFA_PULLUP_  
EN  
RESERVED  
LNA_PD  
SIGPATH_RST SIGCHAIN_PD  
R-0x0  
R/W-0x0  
R-0x0  
R/W-0x0  
R/W-0x0 R/W-0x0  
Table 32. R79 Register Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
14-12  
11-7  
6
LO_PATH_EN  
RESERVED  
R/W  
R
0x7  
Enables various parts of the Poly and DIV2 Path  
0x0  
IFA_PULLUP_EN  
R/W  
0x0  
Enable the pull up resistor at the input of the IFA. Needed when the  
output comoon mode is <1.4V  
5-3  
2
RESERVED  
LNA_PD  
R
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
LNA power down  
1
SIGPATH_RST  
SIGCHAIN_PD  
Master reset for the signal chain  
Master power down for the signal chain.  
0
7.6.25 R80 Register (Address = 0x50) [reset = 0xA]  
R80 is shown in Figure 76 and described in Table 33.  
Return to Summary Table.  
Figure 76. R80 Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
RESERVED  
R-0x0  
SYNC_PHASE SYNC_DRV2_ SYNC_DRV1_  
RESERVED  
_MIXLO  
R/W-0x0  
EN  
EN  
R/W-0x0  
R/W-0x0  
R-0x0  
0
4
3
2
1
RESERVED  
R-0x0  
LO_MUX  
R/W-0xA  
Table 33. R80 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-12  
11  
RESERVED  
SYNC_PHASE_MIXLO  
SYNC_DRV2_EN  
R/W  
R/W  
0x0  
Sync bit to close the loop from Mixer LO back to synthesizer  
10  
0x0  
Enables the SYNC 2nd stage driver from the LO output path. It  
should be enabled in SYNC mode.  
0x0 = Disabled  
0x1 = Enabled  
9
SYNC_DRV1_EN  
RESERVED  
R/W  
R
0x0  
0x0  
Enables the SYNC first stage driver from the LO output path. It  
should be enabled in SYNC mode.  
0x0 = Disabled  
0x1 = Enabled  
8-6  
46  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Table 33. R80 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
LO_MUX  
R/W  
0xA  
Sets up various MUXs and Drivers  
0x9 = Internal LO DIV2 Mode  
0x10 = Internal LO Poly 48 External LO  
7.6.26 R81 Register (Address = 0x51) [reset = 0x0]  
R81 is shown in Figure 77 and described in Table 34.  
Return to Summary Table.  
Figure 77. R81 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0x0  
LO_POLY_MODE1  
R/W-0x0  
7
6
5
4
3
2
1
0
EXTLO_CLK_DIV_EN  
R/W-0x0  
LO_DRVR_MODE  
R/W-0x0  
RESERVED  
R-0x0  
EXTLO_CLK_DRV_EN  
R/W-0x0  
SM_CLK_SEL  
R/W-0x0  
Table 34. R81 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
15-12  
11-8  
RESERVED  
LO_POLY_MODE1  
R/W  
0x0  
Sets up parameters for the poly path  
0x0 = Internal LO Poly  
0x15 = External LO  
0x19 = Internal LO DIV2  
Selects driver for SMCLK  
0x0 = Internal LO  
7-6  
5-4  
EXTLO_CLK_DIV_EN  
R/W  
R/W  
0x0  
0x0  
0x1 = Reserved  
0x2 = Reserved  
0x3 = External LO  
LO_DRVR_MODE  
Sets up drivers for LO quadrature path  
0x0 = Internal LO Poly  
0x1 = Internal LO DIV2  
0x2 = Reserved  
0x3 = External LO  
3
2-1  
0
RESERVED  
R
0x0  
0x0  
0x0  
EXTLO_CLK_DRV_EN  
SM_CLK_SEL  
R/W  
R/W  
Enables drivers for state machine clock.  
Selects the state machine clock source for the signal path  
0x0 = Internal LO  
0x1 = External LO  
7.6.27 R82 Register (Address = 0x52) [reset = 0x23]  
R82 is shown in Figure 78 and described in Table 35.  
Return to Summary Table.  
Figure 78. R82 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
7
6
5
4
3
Copyright © 2018, Texas Instruments Incorporated  
47  
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
RESERVED  
R-0x0  
EXTLO_DIV  
R/W-0x23  
Table 35. R82 Register Field Descriptions  
Bit  
15-6  
5-0  
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
EXTLO_DIV  
R/W  
0x23  
Sets total divide value for the state machine clock when using an  
exeternal LO. This total divide is the product of two divides, DIVA  
and DIVB.  
0x0 = 1  
0x1 = 2  
0x2 = 16  
0x3 = 8  
0x4 = 16  
0x5 = 16  
0x6 = 64  
0x7 = 8  
7.6.28 R83 Register (Address = 0x53) [reset = 0x2000]  
R83 is shown in Figure 79 and described in Table 36.  
Return to Summary Table.  
Figure 79. R83 Register  
15  
7
14  
13  
5
12  
4
11  
10  
2
9
1
8
IFA_PULLUP  
R/W-0x1  
VCM_CONFIG  
R/W-0x0  
RESERVED  
R-0x0  
6
3
0
RESERVED  
R-0x0  
Table 36. R83 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
IFA_PULLUP  
R/W  
0x1  
IFA virtual node pull up resistor to set the biasing of the IFA input  
stage correct when the output common mode is <1.4V. Should be  
used in conjunction with the corresponding EN bit in first register.  
0x2 = Invalid  
0x4 = Invalid  
0x5 = Invalid  
0x6 = Invalid  
12-9  
VCM_CONFIG  
RESERVED  
R/W  
0x0  
0x0  
Output Common mode (VOCM) configuration for IFA. Only one bit to  
be set as high at a time. Only valid states are 0,3,5,9.  
0x0 = 1.7  
0x3 = 2V  
0x5 = External  
0x9 = 1.4V  
8-0  
R
7.6.29 R84 Register (Address = 0x54) [reset = 0x1900]  
R84 is shown in Figure 80 and described in Table 37.  
Return to Summary Table.  
48  
Copyright © 2018, Texas Instruments Incorporated  
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Figure 80. R84 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DCOC_CLK_DIV  
R/W-0x64  
4
3
DCOC_CLK_DIV  
RESERVED  
R-0x0  
EN_DCOC_QC EN_DCOC_IC  
H_LUT  
H_LUT  
R/W-0x64  
R/W-0x0  
R/W-0x0  
Table 37. R84 Register Field Descriptions  
Bit  
15-6  
5-2  
1
Field  
Type  
R/W  
R
Reset  
0x64  
0x0  
Description  
DCOC_CLK_DIV  
RESERVED  
DCOC clock division controlled  
EN_DCOC_QCH_LUT  
R/W  
0x0  
Enable offset calibration for Q channel. Write 1 to trigger calibration.  
To re-trigger, clear this bit and then write 1 again.  
0
EN_DCOC_ICH_LUT  
R/W  
0x0  
Enable offset calibration for I channel. Write 1 to trigger calibration.  
To re-trigger, clear this bit and then write 1 again.  
7.6.30 R88 Register (Address = 0x58) [reset = 0x0]  
R88 is shown in Figure 81 and described in Table 38.  
Return to Summary Table.  
Figure 81. R88 Register  
15  
14  
13  
5
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
rb_DCOC_CAL  
R-0x0  
RESERVED  
R-0x0  
7
6
3
RESERVED  
R-0x0  
Table 38. R88 Register Field Descriptions  
Bit  
15  
14  
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
rb_DCOC_CAL  
R
0x0  
Status bit. Indicates whether I channel DC offset calibration is done.  
0x0 = Neither Channel Done 1 I Channel Done  
0x2 = Q Channel Done  
0x3 = Both Channels Done  
13-0  
RESERVED  
R
0x0  
7.6.31 R94 Register (Address = 0x5E) [reset = 0x8080]  
R94 is shown in Figure 82 and described in Table 39.  
Return to Summary Table.  
Figure 82. R94 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
IMRR_GCAL_QCH  
R/W-0x80  
4
3
IMRR_GCAL_ICH  
R/W-0x80  
Copyright © 2018, Texas Instruments Incorporated  
49  
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 39. R94 Register Field Descriptions  
Bit  
15-8  
7-0  
Field  
Type  
R/W  
R/W  
Reset  
0x80  
0x80  
Description  
IMRR_GCAL_QCH  
IMRR_GCAL_ICH  
IMRR gain ontrol for the Q channel.  
IMRR gain control for the I channel.  
7.6.32 R95 Register (Address = 0x5F) [reset = X]  
R95 is shown in Figure 83 and described in Table 40.  
Return to Summary Table.  
Figure 83. R95 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 40. R95 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
IMRR Phase polarity control using the phase interpolar.  
15  
IMRR_PHCAL_POL  
IMRR_PHCAL  
X
X
14-9  
IMRR Phase control using the phase interpolar. Preferred method of  
the IMRR phase correction.  
8
LODRV_IMRR_PHCAL_P R/W  
OLCTRL  
X
IMRR Phase polarity control using the slew control driver.  
7-0  
RESERVED  
R
0x0  
7.6.33 R103 Register (Address = 0x67) [reset = X]  
R103 is shown in Figure 84 and described in Table 41.  
Return to Summary Table.  
Figure 84. R103 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 41. R103 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
X
Description  
Selects configurations between Poly and DIV2 Mode  
13-10  
9-0  
LO_POLY_MODE2  
RESERVED  
0x0  
7.6.34 R110 Register (Address = 0x6E) [reset = X]  
R110 is shown in Figure 85 and described in Table 42.  
Return to Summary Table.  
Figure 85. R110 Register  
7
6
5
4
3
2
1
0
rb_VCO_SEL  
R-0x0  
RESERVED  
R-0x0  
50  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Table 42. R110 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
10-9  
rb_LD_VTUNE  
R
X
Readback word for the PLL lock status  
0x0 = Unlock (Fvco Low)  
0x1 = Invalid  
0x2 = PLL Locked  
0x3 = Unlock (Fvco High)  
8
RESERVED  
R
R
X
7-5  
rb_VCO_SEL  
0x0  
Reads back the VCO core selected.  
0x0 = Invalid  
0x1 = VCO1  
0x2 = VCO2  
0x3 = VCO3  
0x4 = VCO4  
0x5 = VCO5  
0x6 = VCO6  
0x7 = VCO7  
4-0  
RESERVED  
R
0x0  
7.6.35 R111 Register (Address = 0x6F) [reset = 0x0]  
R111 is shown in Figure 86 and described in Table 43.  
Return to Summary Table.  
Figure 86. R111 Register  
7
6
5
4
3
2
1
0
rb_VCO_CAPCTRL  
R-0x0  
Table 43. R111 Register Field Descriptions  
Bit  
7-0  
Field  
rb_VCO_CAPCTRL  
Type  
Reset  
Description  
R
0x0  
Readback word for the actual value of VCO_CAPCTRL chosen by  
the VCO frequency calibration.  
7.6.36 R112 Register (Address = 0x70) [reset = 0x0]  
R112 is shown in Figure 87 and described in Table 44.  
Return to Summary Table.  
Figure 87. R112 Register  
7
6
5
4
3
2
1
0
rb_VCO_DACISET  
R-0x0  
Table 44. R112 Register Field Descriptions  
Bit  
8-0  
Field  
rb_VCO_DACISET  
Type  
Reset  
Description  
R
0x0  
Readback word for the actual value of VCO_DACISET chosen by  
the VCO amplitude calibration.  
Copyright © 2018, Texas Instruments Incorporated  
51  
 
 
 
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.6.37 R121 Register (Address = 0x79) [reset = 0x0]  
R121 is shown in Figure 88 and described in Table 45.  
Return to Summary Table.  
Figure 88. R121 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
BIAS_LNA_CUR_CONFIG_2  
R/W-0x0  
RESERVED  
R-0x0  
Table 45. R121 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0x0  
Description  
RESERVED  
R
6-5  
BIAS_LNA_CUR_CONFI R/W  
G_2  
0x0  
4-0  
RESERVED  
R
0x0  
7.6.38 R123 Register (Address = 0x7B) [reset = 0x3]  
R123 is shown in Figure 89 and described in Table 46.  
Return to Summary Table.  
Figure 89. R123 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
EXTLO_INT_MATCH_RES  
R/W-0x3  
Table 46. R123 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
0x0  
Description  
7-2  
1-0  
R
EXTLO_INT_MATCH_RE R/W  
S
0x3  
Control internal resistor termination at EXTLO input pin  
0x0 = No termination  
0x1 = 200 Ohms differential termination  
0x2 = Same as 1  
0x3 = 100 Ohms differential termination  
7.6.39 R126 Register (Address = 0x7E) [reset = X]  
R126 is shown in Figure 90 and described in Table 47.  
Return to Summary Table.  
Figure 90. R126 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
Table 47. R126 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
X
Description  
15  
14-9  
8
IMRR_PHCAL_EXTEND  
RESERVED  
Increase the range of the IMRR phase interpolator DAC by 2x  
Reset DC offset  
X
DCOC_FSM_RST  
RESERVED  
R/W  
R
X
7-0  
0x0  
52  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
 
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Typical Application shows a typical usage of the LMX8410L with internal synthesizer and shows the basic  
components needed for the operation of the device. There is also guidance on how to design the loop external  
loop filter which is part of the LMX8410L synthesizer. The PLLatinum Sim is a tool that allows users to enter the  
information regarding the input reference and target LO frequency they need and simulate the expected phase  
noise and performance parameters for the synthesizer.  
8.2 Typical Application  
91. Typical Application Schematic  
8.2.1 Design Requirements  
The design of the loop filter is complex and is typically done with software. The PLLatinum Sim software is an  
excellent resource for doing this and the design is shown in the following figure. For those interested in the  
equations involved, the PLL Performance, Simulation, and Design Handbook listed in the end of this document  
goes into great detail as to theory and design of PLL loop filters. PLLatinum Sim does not model the mixers and  
LNAs in this device, but it can be used for the PLL. To use this tool, it can be modeled as the LMX2594 PLL.  
版权 © 2018, Texas Instruments Incorporated  
53  
 
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2 Detailed Design Procedure  
The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates to  
signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise  
outside the loop bandwidth is dominated by the VCO. Generally, jitter is lowest if loop bandwidth is designed to  
the point where the two intersect. A higher phase margin loop filter design has less peaking at the loop  
bandwidth and thus lower jitter. The tradeoff with this is that longer lock times and spurs must be considered in  
design as well.  
As for software programming, it is highly recommended to use the TICSPro software. In addition to simplifying  
the process, it also gives the user recommended programming default values for the undisclosed registers not  
mentioned in the datasheet.  
92. PLLatinum Sim Design Example  
54  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Typical Application (接下页)  
8.2.3 Application Curve  
-60  
-70  
7.5 GHz  
1.1 dBm  
1: 1 kHz  
-90.8 dBc/Hz  
2: 10 kHz -104.0 dBc/Hz  
3: 100 kHz -111.0 dBc/Hz  
4: 1 MHz -125.2 dBc/Hz  
5: 10 MHz -148.6 dBc/Hz  
6: 20 MHz -152.2 dBc/Hz  
7: 100 MHz -155.0 dBc/Hz  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
100 MHz  
Offset (Hz)  
ta_C  
93. Direct VCO Noise  
版权 © 2018, Texas Instruments Incorporated  
55  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
1. Design 5-V supply to be capable of greater than 200 mA.  
2. Design 3.3-V supply to be capable of greater than 800 mA.  
3. Supply to channel I and Q sides must be well matched and isolated from one another. Recommend using  
ferrite beads in series to the pin. The I and Q supplies are for IF amplifier (at pin 38 and 23), for RF input (at  
pin 33 and 29), and for IF path circuitry (at pin 35 and 27).  
4. Pins 7 and 16 are supplies for digital circuitry, and they can have extra isolation in this path (TI recommends  
using ferrite bead in series to the pin).  
5. Pins 12, 19, and 46 are supplies for the internal synthesizer; designer must take care not to have noise  
sources that can couple to it nearby.  
6. Typically use 0.1-µF capacitors near the pins. Add extra capacitance values at specific frequencies if known  
interfering frequencies in system. See Pin Configuration and Functions for more recommendations on  
component value recommendations.  
10 Layout  
10.1 Layout Guidelines  
Generally, there are two major focuses of layout guidelines: high frequency signals and power routing.  
10.1.1 High Frequency Trace Routing  
Design all traces for matched impedance. The single-ended RF trace must be controlled for 50-Ω impedance,  
while the differential OSCIN, LO, and IF traces must be controlled for 100-Ω differential impedance.  
Run an uninterrupted ground plane beneath all impedance-controlled traces. No other currents should flow  
directly under the controlled impedance traces.  
Keep high-frequency traces as short as possible to minimize losses, or potential for cross-coupling.  
Controlled impedance can be challenging in materials not designed for RF applications. For example,  
standard FR-4 has a wide range of acceptable dielectric constants in practice. Although the constants seen in  
boards from the same panel or material lot code may match very well, this does not ensure that the constants  
match between different lots or different dielectric manufacturers. Furthermore, FR-4 has a high loss tangent  
compared to many other materials, which can result in much greater attenuation of high frequency signals  
across the same distances. TI recommends the use of materials designed specifically for high-frequency use,  
such as RO4350B or RO4003C from Rogers Corporation.  
The RF pin is surrounded on three sides by ground pins to assist in the creation of a coplanar waveguide  
structure. Design the coplanar waveguide to minimize current flow on the ground traces around the pins.  
The IF outputs are low impedance, and require resistors to set the output impedance.  
The LO pins are capacitively coupled as inputs, with internal 50-Ω termination. Use 50-Ω pullup resistors to  
VCC_BUF to bias these pins as inputs, if driven through external capacitors. The LO pins require 50-Ω pullup  
resistors to VCC_BUF as outputs.  
The LO pins are located very close to the Q-channel IF pins, and the LO buffer supply is located between  
these two ports. Placing a bypass capacitor as close as possible to the LO buffer is recommended for proper  
operation, but this presents a potential problem: vias to VCC and GND must be routed between the  
differential pairs. Because the high frequency currents in the bypass capacitor and the LO buffer circuit tend  
to follow the loop with the lowest inductance, and since the VCC via interrupts the path from capacitor ground  
to IC ground on the plane layer immediately below the top, ground currents tend to travel around this via, in  
the path of the LO and IF coupling to the plane layer. To maintain the signal integrity of both the LO and IF  
differential traces, no other currents should be flowing immediately below them on the plane layer. Therefore,  
the LO bypass capacitor ground via must not connect to the plane layer immediately below the capacitor. TI  
recommends connecting through the subsequent layer. See the Layout Example section on how this is done.  
56  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Layout Guidelines (接下页)  
10.1.2 Power Trace Routing  
Regardless of whether the part is used in internal or external LO mode, all synthesizer VCC and GND pins  
must be connected properly. If VCC and GND pins are not connected on the synthesizer, the internal power-  
up procedure may not execute properly. Noise may also be coupled into the mixer from the synthesizer  
circuitry if power and ground are not properly connected.  
Place bypass capacitors, whenever possible, to minimize the inductance of the current loop formed by the  
capacitor and the IC. Placing the bypass capacitors on the same surface as the IC allows one terminal to be  
connected closely to the IC, minimizing this loop. The ground connection can also be made low-inductance by  
placing a ground via to a plane layer immediately below. Placing capacitors on the opposite surface  
substantially limits the effective frequencies they can bypass, since the current must travel through two vias.  
The loop area formed by placing a capacitor on the opposite surface is almost always larger than the loop  
area formed by placing a capacitor on the same surface.  
Consider the path that ground currents will take. For optimal performance, supply and bypass capacitor  
currents must not flow underneath high-frequency traces.  
Use as many ground vias as possible to connect the IC pad to the ground plane. This is required for optimal  
thermal performance.  
Connect ground pins back to the pad. Aside from routing convenience, the inductance through the bond wires  
tends to be very high, and the inductance through the ground pad tends to be very low.  
Avoid connecting different VCC pins in such a way that the current paths overlap. Overlapping current paths  
can inject common-mode noise into the supply pins, degrading performance.  
10.2 Layout Examples  
94. Top Layer  
版权 © 2018, Texas Instruments Incorporated  
57  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Layout Examples (接下页)  
95. Ground Layer 1  
96. Mid Layer 1  
58  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
Layout Examples (接下页)  
97. Mid Layer 2  
98. Mid Layer 3  
版权 © 2018, Texas Instruments Incorporated  
59  
LMX8410L  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Layout Examples (接下页)  
99. Bottom Layer  
60  
版权 © 2018, Texas Instruments Incorporated  
LMX8410L  
www.ti.com.cn  
ZHCSHV3A MARCH 2018REVISED NOVEMBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
LMX8410LEVM 用户指南》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
Narda-MITEQ is a trademark of L3 Narda-MITEQ.  
Mini-Circuits is a trademark of Mini-Circuits.  
PPM-Test is a trademark of Pulse Power & Measurement Ltd..  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
61  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX8410RGZR  
LMX8410RGZT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX8410  
LMX8410  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX8410RGZR  
LMX8410RGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
1000  
250  
330.0  
178.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX8410RGZR  
LMX8410RGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMX8410RGZT

带集成式合成器的高性能混合器 | RGZ | 48 | -40 to 85
TI

LMX9301

Frequency Synthesizer Module
NSC

LMX9402

Frequency Synthesizer Module
NSC

LMX9402BL1501X

Frequency Synthesizer Module
NSC

LMX9402BL1577X

Frequency Synthesizer Module
NSC

LMX9402BL1619X

Frequency Synthesizer Module
NSC

LMX9402BL1701X

Frequency Synthesizer Module
NSC

LMX9820

Bluetooth Serial Port Module
NSC

LMX9820A

Bluetooth Serial Port Module
NSC

LMX9820ASM

Bluetooth Serial Port Module
NSC

LMX9820ASMX

Bluetooth Serial Port Module
NSC

LMX9820ASMX/NOPB

SPECIALTY TELECOM CIRCUIT, PBGA116, 10.10 X 14.10 MM, 2 MM HEIGHT, ROHS COMPLIANT, LGA-116
TI