LP8731-Q1 [TI]

具有 I²C 接口的双路高电流降压直流/直流和双路线性稳压器;
LP8731-Q1
型号: LP8731-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I²C 接口的双路高电流降压直流/直流和双路线性稳压器

稳压器
文件: 总50页 (文件大小:774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
LP8731-Q1 Dual High-Current Step-Down DC-DC And Dual Linear Regulators  
with I2C Interface  
1 Features  
3 Description  
The LP8731-Q1 is a multi-function, programmable  
Power Management Unit (PMU), optimized for low  
power FPGAs, microprocessors, and DSPs. This  
device integrates two highly efficient 1.2-A step-down  
DC-DC converters with dynamic voltage management  
(DVM), two 300-mA linear regulators, and a 400-kHz  
I2C-compatible interface to allow a host controller  
access to the internal control registers of the LP8731-  
Q1. The LP8731-Q1 device additionally features  
programmable power-on sequencing.  
1
Two LDOs for Powering Internal Processor  
Functions and I/Os  
High-Speed Serial Interface for Independent  
Control of Device Functions and Settings  
Precision Internal Reference  
Thermal Overload Protection  
Current Overload Protection  
Software Programmable Regulators  
External Power-On-Reset Function for Buck1 and  
Buck2 (Power Good with Delay Function)  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (MAX)  
Undervoltage Lockout (UVLO)  
LP8731-Q1  
DSBGA (25)  
2.52 mm x 2.52 mm  
LP8731-Q1 is an Automotive-Grade Product:  
AECQ-100 Grade-1 Qualified  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Step-Down DC/DC Converter (2xBuck)  
space  
space  
space  
Programmable VOUT from:  
Buck1 : 0.8875 V – 1.675 V at 1.2 A  
Buck2 : 0.8875 V – 1.675 V at 1.2 A  
Up to 96% Efficiency  
Simplified Schematic  
PWM Switching Frequency of 2.1 MHz  
±2% Output Voltage Accuracy  
Automatic Soft Start  
LDO1  
EN_T  
I/O Voltage  
Domain  
VINLDO12  
VDD  
100k  
1 PF  
ENLDO1  
ENLDO2  
nPOR  
VIN1  
Linear Regulators (2xLDO)  
ENSW1  
ENSW2  
LDO1  
SDA  
SCL  
Advanced  
Power  
Controller  
10 PF  
Programmable VOUT of 0.8 V to 3.3 V  
±3% Output Voltage Accuracy  
300-mA Output Current  
2.2 PH  
SW1  
FB1  
10 PF  
0.47 PF  
VINLDO1  
VINLDO2  
LDO2  
GND_SW1  
Buck1  
LDO1  
Core ADAS  
Domain  
Block  
1 PF  
1 PF  
LP8731  
VIN2  
30-mV (Typical) Dropout  
10 PF  
2.2 PH  
0.47 PF  
SW2  
FB2  
2 Applications  
Buck2  
LDO2  
Peripheral  
ADAS  
Blocks  
SDA  
SCL  
10 PF  
Configurable Output PMU for ADAS (Advanced  
Driver Assistance Systems)  
GND_SW2  
AVDD  
GND_L  
GND_C  
Application  
System or SoC  
1 PF  
FPGA, DSP Core Power  
Applications Processors  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 11  
8.3 Features Description............................................... 12  
8.4 Device Functional Modes........................................ 19  
8.5 Programming........................................................... 20  
8.6 LP8731-Q1 Register Maps ..................................... 22  
Application and Implementation ........................ 37  
9.1 Application Information............................................ 37  
9.2 Typical Application .................................................. 37  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Tables................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions (Bucks).......... 5  
7.4 Thermal Information.................................................. 5  
7.5 General Electrical Characteristics............................. 6  
7.6 Low Dropout Regulators, LDO1 And LDO2.............. 6  
7.7 Buck Converters SW1, SW2..................................... 7  
7.8 I/O Electrical Characteristics..................................... 7  
7.9 Power-On Reset Threshold/Function (POR) ............ 7  
7.10 I2C-Compatible Interface Timing............................. 8  
7.11 Typical Characteristics............................................ 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
9
10 Power Supply Recommendations ..................... 43  
10.1 Analog Power Signal Routing ............................... 43  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 44  
12 Device and Documentation Support ................. 45  
12.1 Device Support...................................................... 45  
12.2 Documentation Support ........................................ 45  
12.3 Trademarks........................................................... 45  
12.4 Electrostatic Discharge Caution............................ 45  
12.5 Glossary................................................................ 45  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 45  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2014  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
5 Device Comparison Tables  
Table 1. Factory Default Programming(1)  
ORDER NUMBER  
BUCK1  
1.0625 V  
nPOR  
BUCK2  
1.0625 V  
UVLO  
LDO1  
LDO2  
DEFAULT I2C ADDRESS  
LP8731QYZRRQ1  
2.8 V  
3.3 V  
59  
Start/shutdown sequence  
Buck1 (1.5 ms) Buck2 (2 ms) LDO1 (3 ms) LDO2 (6 ms)  
50 µs  
Disabled  
(1) All numbers are typical.  
Table 2. Power Block Operation  
POWER BLOCK OPERATION  
POWER BLOCK INPUT  
NOTE  
ENABLED  
VIN+(1)  
DISABLED  
VIN+  
VINLDO12  
AVDD  
Always powered  
VIN+  
VIN+  
VIN1  
VIN+  
VIN+ or 0 V  
VIN+ or 0 V  
VIN+  
VIN2  
VIN+  
VINLDO 1  
VINLDO 2  
VIN+  
VIN+  
If enabled, min VIN is 2.45 V  
VIN+  
(1) VIN+ is the largest potential voltage on the device.  
6 Pin Configuration and Functions  
DSBGA (YZR) Package  
25 Pins  
Top View  
VIN  
LDO12  
VIN  
LDO2  
GND_S  
SW1  
5
VIN1  
W1  
VIN  
LDO12  
EN_S  
W1  
4
EN_T  
nPOR  
SDA  
FB1  
AVDD  
FB2  
LDO2  
EN_  
LDO2  
EN_  
LDO1  
GND_C  
3
EN_  
SW2  
SCL  
LDO1  
2
1
VIN  
LDO1  
GND_  
SW2  
GND_  
L
SW2  
D
VIN2  
E
A
B
C
Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
VINLDO1  
LDO1  
A1  
A2  
A3  
A4  
A5  
I
O
I
PWR  
PWR  
D
VINLDO1 power in from either DC source or battery to input pin to LDO1.  
LDO1 Output  
ENLDO2  
LDO2  
LDO2 enable pin, a logic HIGH enables the LDO2  
LDO2 Output  
O
I
PWR  
PWR  
VINLDO2  
VINLDO2 power in from either DC source or battery to input pin to LDO2.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NUMBER  
B1  
NAME  
GND_L  
SCL  
G
I
G
LDO ground  
I2C Clock  
B2  
D
D
B3  
ENLDO1  
VINLDO12  
GND_SW2  
SDA  
I
LDO1 enable pin, a logic HIGH enables the LDO1  
Analog power for internal functions (VREF, BIAS, I2C, Logic)  
Buck2 NMOS Power ground  
B4, B5  
C1  
I
PWR  
G
G
I/O  
O
C2  
D
I2C Data (bidirectional)  
C3  
nPOR  
D
nPOR power-on reset pin for both Buck1 and Buck2. Open drain logic output  
100K pull-up resistor. nPOR is pulled to ground when the voltages on these  
supplies are not good. See Flexible Power-On Reset (for example, Power  
Good with Delay) section for more info.  
C4  
EN_T  
I
D
Enable for preset power-on sequence. (See Flexible Power-On Reset (for  
example, Power Good with Delay).)  
C5  
D1  
D2  
D3  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
GND_SW1  
SW2  
G
O
I
G
PWR  
D
Buck1 NMOS power ground  
Buck2 switcher output pin  
ENSW2  
GND_C  
ENSW1  
SW1  
Enable pin for Buck2 switcher, a logic HIGH enables Buck2  
Non-switching core ground pin  
G
I
G
D
Enable pin for Buck1 switcher, a logic HIGH enables Buck1  
Buck1 switcher output pin  
O
I
PWR  
PWR  
A
VIN2  
VIN2 power in from either DC source or Battery to Buck2  
Buck2 input feedback pin  
FB2  
I
AVDD  
FB1  
I
PWR  
A
Analog Power for Buck converters  
I
Buck1 input feedback pin  
VIN1  
I
PWR  
VIN1 power in from either DC source or Battery to Buck1  
A: Analog Pin; D: Digital Pin; G: Ground Pin; PWR: Power Pin; I: Input Pin; O: Output Pin; I/O: Input/Output Pin  
4
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
VIN, SDA, SCL  
0.3  
V
GND to GND SLUG  
±0.3  
Power dissipation (PD_MAX  
Junction temperature (TJ-MAX  
Maximum lead temperature (soldering)  
Storage temperature (Tstg  
)
Internally limited  
)
150  
260  
150  
°C  
)
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions (Bucks)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.8  
0
MAX  
UNIT  
VIN  
5.5  
(VIN + 0.3)  
125  
V
VEN  
Junction temperature (TJ)  
Ambient temperature (TA)  
–40  
–40  
°C  
125  
7.4 Thermal Information  
LP8731-Q1  
THERMAL METRIC(1)  
DSBGA (YZR)  
UNIT  
°C/W  
25 PINS  
58.7  
0.3  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
8
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
7.5 General Electrical Characteristics  
Unless otherwise noted, VIN = 3.6 V. Typical values and limits apply for TJ = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX UNIT  
IQ  
VINLDO12 shutdown current  
Power-on reset threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN = 3.6 V  
VDD Falling Edge(2)  
µA  
V
VPOR  
TSD  
TSDH  
1.9  
160  
20  
°C  
V
Rising  
Falling  
2.9  
2.7  
UVLO  
Undervoltage lockout  
(1) All voltages are with respect to the potential at the GND pin.  
(2) VPOR is voltage at which the EPROM resets. This is different from the UVLO on VINLDO12, which is the voltage at which the  
regulators shut off; and is also different from the nPOR function, which signals if the regulators are in a specified range.  
7.6 Low Dropout Regulators, LDO1 And LDO2  
Unless otherwise noted, VIN = 3.6 V, CIN = 1 µF, COUT = 0.47 µF. Typical values and limits apply for TJ = 25°C.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operational voltage range  
Output voltage accuracy (default  
VOUT)  
VINLDO1 and VINLDO2 PMOS pins(4)  
2.45(5)  
5.5(5)  
V
VOUT  
Accuracy  
Load current = 1 mA  
3%(5)  
3%(5)  
0.2(5)  
VIN = (VOUT + 0.3 V) to 5 V(6)  
Load current = 1 mA  
Line regulation  
%/V  
ΔVOUT  
VIN = 3.6 V,  
Load current = 1 mA to IMAX  
Load regulation  
0.011(5)  
%/mA  
mA  
ISC  
Short circuit current limit  
LDO1 to LDO2, VOUT = 0 V  
Load current = 50 mA at VOUT = 2.8 V(7)  
Load current = 250 mA at VOUT = 2.8 V  
ƒ = 10 kHz, Load current = IMAX  
10 Hz < F < 100 KHz  
500  
30  
50(5)  
200(5)  
VIN – VOUT  
Dropout voltage  
mV  
150  
45  
PSRR  
Power supply ripple rejection  
Supply output noise  
Quiescent current “on”  
Quiescent current “on”  
Quiescent current “off”  
Turn-on time  
dB  
µVrms  
µA  
θn  
280  
40  
IOUT = 0 mA  
(8)(9)  
IQ  
IOUT = IMAX  
EN is de-asserted(10)  
60  
µA  
0.03  
300  
0.47  
1
µA  
TON  
Start-up from shutdown  
Capacitance for stability 0°C TJ 125°C  
40°C TJ 125°C  
µs  
0.33  
0.68  
5
µF  
COUT  
Output capacitance  
µF  
ESR  
500  
mΩ  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum and Maximum limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the  
most likely norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) Pins A1 and/or A5 can operate from VIN min of 1.74 to a VIN max of 5.5 V. This rating is only for the series pass PMOS power FET. It  
allows the system design to use a lower voltage rating if the input voltage comes from a buck output. However, if VIN is required to  
operate at a higher voltage than other device supply pins, it is necessary to wire the VINLDO12 pins (B4 an B5) and VINLDO1 and  
VINLDO2 pins (A1 and/or A5) together to that higher voltage so that the LDO core supply has sufficient head-room to operate the gate  
of the PMOS.  
(5) Limits apply over the entire operating junction temperature range for operation, –40°C to 125°C.  
(6) VIN minimum for line regulation values is 1.8 V.  
(7) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(8) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(9) The IQ can be defined as the standing current of the LP8731-Q1 when the I2C bus is activated and all other power blocks have been  
disabled via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition.  
These two values can be used by the system designer when the LP8731-Q1 is powered using a battery.  
(10) The IQ exhibits a higher current draw when the EN pin is de-asserted because the I2C buffer pins draw an additional 2 µA.  
6
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
7.7 Buck Converters SW1, SW2  
Unless otherwise noted, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2 µH ceramic. Typical values and limits apply for TJ  
= 25°C.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFB  
Feedback voltage  
3%(4)  
3%(4)  
2.8 V < VIN < 5.5 V  
IOUT = 10 mA  
Line regulation  
Load regulation  
0.089%  
/V  
100 mA < IO < IMAX  
0.0013%  
/mA  
VOUT  
VIN = 3.3 V, VOUT from 0.8875 V to  
1.1625 V  
Output accuracy(5)  
–2%(4)  
2%(4)  
Load from 0 mA to 600 mA  
Eff  
Efficiency  
Load current = 250 mA  
EN is de-asserted  
90%  
0.01  
2.1  
1.7  
1.7  
2
ISHDN  
fOSC  
Shutdown supply current  
Internal oscillator frequency  
Buck1 peak switching current limit  
Buck2 peak switching current limit  
Quiescent current “on”  
Pin-pin resistance PFET  
Pin-pin resistance NFET  
Turn-on time  
µA  
1.7(4)  
MHz  
IPEAK  
A
(6)  
IQ  
No load PWM Mode  
mA  
mΩ  
mΩ  
µs  
RDSON (P)  
RDSON (N)  
TON  
200  
180  
500  
Start-up from shutdown  
Capacitance for stability  
Capacitance for stability  
CIN  
Input capacitance  
10  
10  
µF  
CO  
Output capacitance  
µF  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum and Maximum limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the  
most likely norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) Limits apply over the entire operating junction temperature range for operation, –40°C to 125°C  
(5) Based on closed loop, bench test data with LP8731YZREVM.  
(6) The IQ can be defined as the standing current of the LP8731-Q1 when the I2C bus is active and all other power blocks have been  
disabled via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition.  
These two values can be used by the system designer when the LP8731-Q1 is powered using a battery.  
7.8 I/O Electrical Characteristics  
PARAMETER  
Input low level  
Input high level  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4(1)  
UNIT  
VIL  
VIH  
V
1.2(1)  
(1) This specification is ensured by design.  
7.9 Power-On Reset Threshold/Function (POR)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
nPOR  
nPOR = Power-on reset for Buck1 and  
Buck2  
Default  
50  
µs  
nPOR  
threshold  
Percentage of target voltage Buck1 or  
Buck2  
VBUCK1 AND VBUCK2 rising  
VBUCK1 OR VBUCK2 falling  
Load = IOL = 0.2 mA  
94%  
85%  
0.23  
VOL  
Output level low  
0.5(1)  
V
(1) This specification is ensured by design.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
7.10 I2C-Compatible Interface Timing  
Unless otherwise noted, VIN = 3.6 V. Nominal values and limits apply for TJ = 25°C.(1)  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
ƒCLK  
Clock frequency  
400  
tBF  
Bus-free time between start and stop  
Hold time repeated start condition  
CLK low period  
See(1)  
See(1)  
See(1)  
See(1)  
See(1)  
See(1)  
See(1)  
See(1)  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHOLD  
tCLKLP  
tCLKHP  
tSU  
µs  
µs  
CLK high period  
µs  
Setup time repeated start condition  
Data hold time  
µs  
tDATAHLD  
tDATASU  
TSU  
µs  
Data setup time  
100  
0.6  
ns  
Setup time for start condition  
Maximum pulse width of spikes that  
µs  
TTRANS  
must be suppressed by the input filter See(1)  
of both DATA & CLK signals  
50  
ns  
(1) This specification is ensured by design.  
8
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
7.11 Typical Characteristics  
TA = 25°C unless otherwise noted  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
-50 -35 -20 -5 10 25 40 55 70 85 100  
-50 -35 -20 -5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VIN = 3.6 V  
VOUT = 3.3 V  
100-mA load  
VIN = 3.6 V  
VOUT = 2.6 V  
100-mA load  
Figure 2. Output Voltage Change vs. Temperature (LDO2)  
Figure 1. Output Voltage Change vs. Temperature (LDO1)  
LDO-1  
(50 mV/DIV)  
LDO-1  
(50 mV/DIV)  
Iout  
Iout  
(100 mA/DIV)  
(100 mA/DIV)  
Time (500 µs/DIV)  
Time (500 µs/DIV)  
VOUT = 3.6 V  
VOUT = 1.8 V  
ILOAD = 0 to 300 mA  
Tr = Tf = 1 µs  
VOUT = 3.6 V  
VOUT = 1.8 V  
ILOAD = 0 to 300 mA  
Tr = Tf = 4 µs  
Figure 3. Load Transient 1-µs Edge Rate  
Figure 4. Load Transient 4-µs Edge Rate  
Vin Step  
Vin Step  
(500 mV/DIV)  
(500 mV/DIV)  
Vout LDO  
Vout LDO  
(10 mV/DIV)  
(10 mV/DIV)  
Time (100 µs/DIV)  
Time (1 ms/DIV)  
VIN = 3.6 V to 4.2 V  
VOUT = 1.8 V  
ILOAD = 300 mA  
Tr = Tf = 20 µs  
VIN = 3.6 V to 4.2 V  
VOUT = 1.8 V  
IOUT = 1 mA  
Tr = Tf = 30 µs  
Figure 5. Line Transient 300-mA, 4-µs Edge Rate  
Figure 6. Line Transient 1-mA, 30-µs Edge Rate  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C unless otherwise noted  
Vin Step  
(500 mV/DIV)  
Buck-2  
(100 mV/DIV)  
Vout LDO  
(20 mV/DIV)  
Iout  
(400 mA/DIV)  
Time (50 µs/DIV)  
Time (50 µs/DIV)  
IOUT = 200 mA to 1.2 A PWM  
VIN Step  
IOUT = 300 mA  
Tr = Tf = 30 µs  
Figure 7. Buck Load Transient PWM Mode  
Figure 8. Buck Line Transient PWM  
Vin Step  
Vin Step  
(500 mV/DIV)  
(500 mV/DIV)  
Vout LDO  
Vout LDO  
(20 mV/DIV)  
(20 mV/DIV)  
Time (50 µs/DIV)  
Time (50 µs/DIV)  
VIN Step  
IOUT = 1.2 A  
Tr = Tf = 10 µs  
VIN Step  
IOUT = 1.2 A  
Tr = Tf = 30 µs  
Figure 9. Buck Line Transient PWM  
Figure 10. Buck Line Transient PWM  
10  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8 Detailed Description  
8.1 Overview  
The LP8731-Q1 supplies the various power needs of the application by means of two Linear Low Drop  
Regulators (LDO1 and LDO2) and two Buck converters (SW1 and SW2). Table 3 lists the output characteristics  
of the various regulators.  
Table 3. Supply Specification  
OUTPUT  
SUPPLY  
LOAD  
IMAX  
VOUT RANGE (V)  
RESOLUTION (mV)  
MAXIMUM OUTPUT CURRENT (mA)  
LDO1  
LDO2  
SW1  
analog  
analog  
digital  
digital  
0.8 to 3.3  
0.8 to 3.3  
100  
100  
300  
300  
0.8875 to 1.675  
0.8875 to 1.675  
12.5  
12.5  
1200  
1200  
SW2  
8.2 Functional Block Diagram  
VBATT +  
CVDD  
4.7PF  
1PF  
1PF  
1PF  
PF  
10  
1PF  
10 PF  
ULVO  
VIN OK  
LSW1 2.2PH  
1.25V  
OSC  
VBUCK1  
SW1  
VFB1  
CBUCK1  
10PF  
BUCK1  
AVDD  
ENLDO1  
2.2PH  
LSW1  
ENLDO2  
ENSW 1  
1.25V  
VBUCK2  
Power  
ON-OFF  
Logic  
SW2  
VFB2  
BUCK2  
CBUCK2  
10PF  
AVDD  
ENSW 2  
EN_T  
VINLDO1  
Thermal  
Shutdown  
2.8V  
LDO1  
LDO1  
CLDO1  
0.47PF  
RESET  
I2C  
VINLDO12  
VINLDO2  
2
I C_SCL  
BIAS  
1.8V  
LDO2  
2
I C_SDA  
LDO2  
CLDO2  
0.47PF  
RDY1  
RDY2  
VDD  
RPULLUP  
Logic Control  
and Registers  
nPOR  
100k  
Power On  
Reset  
GND_SW1  
GND_SW2  
GND_C  
GND_L  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.3 Features Description  
8.3.1 Linear Low Dropout Regulators (LDOs)  
LDO1 and LDO2 are identical linear regulators targeting analog loads characterized by low noise requirements.  
LDO1 and LDO2 are enabled through the ENLDO pin or through the corresponding LDO1 or LDO2 control  
register. The output voltages of both LDOs are register programmable. The default output voltages are factory  
programmed during Final Test, which can be tailored to the specific needs of the system designer.  
VLDO  
VIN  
LDO  
Register  
controlled  
+
-
ENLDO  
Vref  
GND  
Figure 11. LDO Functional Block Diagram  
8.3.2 No-Load Stability  
The LDOs remain stable and in regulation with no external load. This is an important consideration in some  
circuits, for example, CMOS RAM keep-alive applications.  
8.3.3 LDO1 and LDO2 Control Registers  
LDO1 and LDO2 can be configured by means of the LDO1 and LDO2 control registers. The output voltage is  
programmable in steps of 100 mV from 1 V to 3.5 V by programming bits D4 to D0 in the LDO Control registers.  
Both LDO1 and LDO2 are enabled by applying a logic 1 to the ENLDO1 and ENLDO2 pin. Enable/disable control  
is also provided through enable bit of the LDO1 and LDO2 control registers. The value of the enable LDO bit in  
the register is logic 1 by default. The output voltage can be altered while the LDO is enabled.  
8.3.4 SW1, SW2: Synchronous Step-Down Magnetic DC-DC Converters  
8.3.4.1 Functional Description  
The LP8731-Q1 incorporates two high-efficiency synchronous switching buck regulators, SW1 and SW2, that  
deliver a constant voltage from a single Li-Ion battery to the portable system processors. Using a voltage mode  
architecture with synchronous rectification, both bucks have the ability to deliver up to 1200 mA, depending on  
the input voltage and output voltage (voltage head room), and the inductor chosen (maximum current capability).  
Both SW1 and SW2 can operate up to a 100% duty cycle (PMOS switch always on) for low dropout control of  
the output voltage. In this way the output voltage is controlled down to the lowest possible input voltage.  
Additional features include soft-start, undervoltage lockout, current overload protection, and thermal overload  
protection.  
8.3.4.2 Circuit Operation  
A buck converter contains a control block, a switching PFET connected between input and output, a synchronous  
rectifying NFET connected between the output and ground (BUCKGND pin) and a feedback path. During the first  
portion of each switching cycle, the control block turns on the internal PFET switch. This allows current to flow  
from the input through the inductor to the output filter capacitor and load. The inductor limits the current to a  
ramp with a slope of  
VIN - VOUT  
L
(1)  
12  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
Features Description (continued)  
by storing energy in a magnetic field. During the second portion of each cycle, the control block turns the PFET  
switch off, blocking current flow from the input, and then turns the NFET synchronous rectifier on. The inductor  
draws current from ground through the NFET to the output filter capacitor and load, which ramps the inductor  
current down with a slope of  
-VOUT  
L
(2)  
The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage  
across the load.  
8.3.4.3 PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This  
allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional  
to the input voltage. To eliminate this dependence, a feedforward voltage inversely proportional to the input  
voltage is introduced.  
8.3.4.4 Internal Synchronous Rectification  
While in PWM mode, the buck uses an internal NFET as a synchronous rectifier to reduce rectifier forward  
voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
8.3.4.5 Current Limiting  
A current limit feature allows the converter to protect itself and external components during overload conditions.  
PWM mode implements current limiting using an internal comparator that trips at 1.7 A for Buck1 and Buck2  
(typical). If the output is shorted to ground the device enters a timed current limit mode where the NFET is turned  
on for a longer duration until the inductor current falls below a low threshold, ensuring inductor current has more  
time to decay, thereby preventing runaway.  
8.3.4.6 SW1, SW2 Operation  
SW1 and SW2 have selectable output voltages ranging from 0.8875 V to 1.675 V (typ.). Both SW1 and SW2 in  
the LP8731-Q1 are I2C register controlled and are enabled by default through the internal state machine of the  
LP8731-Q1 following a power-on event that moves the operating mode to the Active state. (See Flexible Power  
Sequencing of Multiple Power Supplies.) The SW1 and SW2 output voltages revert to default values when the  
power-on sequence has been completed. The default output voltage for each buck converter is factory  
programmable. (See Application and Implementation.)  
8.3.4.7 SW1, SW2 Control Registers  
SW1, SW2 can be enabled/disabled through the corresponding control register.  
8.3.4.8 Shutdown Mode  
During shutdown the PFET switch, reference, control and bias circuitry of the converters are turned off. The  
NFET switch is on in shutdown to discharge the output. When the converter is enabled, soft start is activated. It  
is recommended to disable the converter during the system power up and undervoltage conditions when the  
supply is less than 2.8 V.  
8.3.4.9 Soft Start  
The soft-start feature allows the power converter to gradually reach the initial steady state operating point, thus  
reducing startup stresses and surges. The two LP8731-Q1 buck converters have a soft-start circuit that limits in-  
rush current during start-up. During start-up the switch current limit is increased in steps. Soft start is activated  
only if EN goes from logic low to logic high after VIN reaches 2.8 V. Soft start is implemented by increasing switch  
current limit in steps of 180 mA, 300 mA, and 720 mA for Buck1; 180 mA, 300 mA and 720 mA for Buck2 (typical  
switch current limit). The start-up time thereby depends on the output capacitor and load current demanded at  
start-up.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
Features Description (continued)  
8.3.4.10 Low Dropout Operation  
The LP8731-Q1 can operate at 100% duty cycle (no switching; PMOS switch completely on) for low dropout  
support of the output voltage. In this way the output voltage is controlled down to the lowest possible input  
voltage. When the device operates near 100% duty cycle, output voltage ripple is approximately 25 mV. The  
minimum input voltage needed to support the output voltage is  
VIN, MIN = ILOAD × (RDSON, PFET + RINDUCTOR) + VOUT  
where  
ILOAD: Load current  
RDSON, PFET: Drain to source resistance of PFET switch in the triode region  
RINDUCTOR: Inductor resistance  
(3)  
8.3.4.11 Flexible Power Sequencing of Multiple Power Supplies  
The LP8731-Q1 provides several options for power on sequencing. The two bucks can be individually controlled  
with ENSW1 and ENSW2. The two LDOs can also be individually controlled with ENLDO1 and ENLDO2.  
If the user desires a set power-on sequence, the device can be programmed through I2C by raising EN_T from  
LOW to HIGH.  
8.3.4.12 Power-Up Sequencing Using the EN_T Function  
EN_T assertion causes the LP8731-Q1 to emerge from Standby mode to Full Operation mode at a preset timing  
sequence. By default, the enables for the LDOs and Bucks (ENLDO1, ENLDO2, EN_T, ENSW1, ENSW2) are  
internally pulled down by a 500-kΩ resistor, which causes the part to stay OFF until enabled. If the user wishes  
to use the preset timing sequence to power on the regulators, transition the EN_T pin from LOW to HIGH.  
Otherwise, simply tie the enables of each specific regulator HIGH to turn on automatically.  
EN_T is edge triggered with rising edge signaling the device to power on. The EN_T input is deglitched, and the  
default is set at 1 ms. As shown in Figure 12 and Figure 13, a rising EN_T edge starts a power-on sequence,  
while a falling EN_T edge starts a shutdown sequence. If EN_T is high, toggling the external enables of the  
regulators has no effect on the device.  
The regulators can also be programmed through I2C to turn on and off. By default, I2C enables for the regulators  
on ON.  
The regulators are on following the pattern: Regulators on = (I2C enable) AND (External pin enable OR EN_T  
high).  
NOTE  
The EN_T power-up sequencing may also be employed immediately after VIN is applied to  
the device. However, VIN must be stable for approximately 8 ms minimum before EN_T be  
asserted high to ensure internal bias, reference, and the Flexible POR timing are  
stabilized. This initial EN_T delay is necessary only upon first time device power on for  
power-sequencing function to operate properly.  
2
I C  
Regulator ON  
Ext_Enable  
Pins  
0
1
Start Programmed  
Timing Sequence  
EN_T  
Figure 12. Enable Logic Diagram  
14  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
Features Description (continued)  
EN_T  
t
1
Vout Buck1  
Vout Buck2  
t
2
t
3
Vout LDO1  
Vout LDO2  
t
4
Figure 13. LP8731-Q1 Default Power-Up Sequence  
Table 4. Power-On Timing Specification  
MIN  
NOM  
MAX  
UNIT  
ms  
t1  
t2  
t3  
t4  
Programmable delay from EN_T assertion to VCC_Buck1 on  
Programmable delay from EN_T assertion to VCC_Buck2 on  
Programmable delay from EN_T assertion to VCC_LDO1 on  
Programmable delay from EN_T assertion to VCC_LDO2 on  
1.5  
2
ms  
3
ms  
6
ms  
EN_T  
Vout Buck1  
t
1
Vout Buck2  
Vout LDO1  
t
2
t
3
Vout LDO2  
t
4
Figure 14. LP8731-Q1 Default Power-Off Sequence  
MIN  
NOM  
MAX  
UNIT  
ms  
t1  
Programmable delay from EN_T deassertion to VCC_Buck1 off  
1.5  
2
t2  
t3  
t4  
Programmable delay from EN_T deassertion to VCC_Buck2 off  
Programmable delay from EN_T deassertion to VCC_LDO1 off  
Programmable delay from EN_T deassertion to VCC_LDO2 off  
ms  
3
ms  
6
ms  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
NOTE  
The LP8731-Q1 default power-off delay setting is the same as the on sequence.  
8.3.5 Flexible Power-On Reset (for example, Power Good with Delay)  
The LP8731-Q1 is equipped with an internal Power-On-Reset (“POR”) circuit which monitors the output voltage  
levels on bucks 1 and 2. The nPOR is an open-drain logic output which is logic LOW when either of the buck  
outputs are below 91% of the rising value, or when one or both outputs fall below 82% of the desired value. The  
time delay between output voltage level and when nPOR is enabled is (50 µs, 50 ms, 100 ms, 200 ms), 50 µs by  
default. The system designer can choose the external pull-up resistor (for example, 100 k) for the nPOR pin.  
t2  
t1  
Case1  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
0V  
Counter  
delay  
t2  
t1  
Case2  
EN1  
EN2  
RDY1  
0V  
RDY2  
nPOR  
Counter  
delay  
t2  
t1  
Case3  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
Counter  
delay  
Figure 15. nPOR With Counter Delay  
Figure 15 shows the simplest application of the Power-On Reset, where both switcher enables are tied together.  
In Case 1, EN1 causes nPOR to transition LOW and triggers the nPOR delay counter. If the power supply for  
Buck2 does not come on within that period, nPOR stays LOW, indicating a power fail mode. Case 2 indicates the  
vice-versa scenario if Buck1 supply did not come on. In both cases the nPOR remains LOW.  
16  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
Case 3 shows a typical application of the Power On Reset, where both switcher enables are tied together. Even  
if RDY1 ramps up slightly faster than RDY2 (or vice versa), then nPOR signal triggers a programmable delay  
before going HIGH, as explained in Figure 16.  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
Counter  
delay  
Counter  
delay  
nPOR  
EN2  
RDY2  
Figure 16. Faults Occurring in Counter Delay after Start-Up  
The Figure 16 timing diagram details the power-good with delay with respect to the enable signals EN1, and  
EN2. The RDY1, RDY2 are internal signals derived from the output of two comparators. Each comparator has  
been trimmed as follows:  
COMPARATOR LEVEL  
BUCK SUPPLY LEVEL  
Greater than 94%  
Less than 85%  
HIGH  
LOW  
The circuits for EN1 and RDY1 are symmetrical to EN2 and RDY2, so each reference to EN1 and RDY1 also  
works for EN2 and RDY2 and vice versa.  
If EN1 and RDY1 signals are HIGH at time t1, then the RDY1 signal rising edge triggers the programmable delay  
counter (50 μs, 50 ms, 100 ms, 200 ms). This delay forces nPOR LOW between time interval t1 and t2. nPOR is  
then pulled HIGH after the programmable delay is completed. If EN2 and RDY2 are initiated during this interval,  
the nPOR signal ignores this event.  
If either RDY1or RDY2 were to go LOW at t3 then the programmable delay is triggered again.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
nPOR  
Counter  
delay  
Case 1:  
EN2  
RDY2  
Mask Time  
nPOR  
Mask  
Window  
Counter  
delay  
Case 2:  
EN2  
RDY2  
0V  
Mask  
Window  
Mask Time  
Counter  
delay  
nPOR  
Figure 17. nPOR Mask Window  
If the EN1 and RDY1 are initiated in normal operation, then nPOR is asserted and deasserted .  
Case 1 in Figure 17 shows a case where EN2 and RDY2 are initiated after triggered programmable delay. To  
prevent the nPOR being asserted again, a masked window (5 ms) counter delay is triggered off the EN2 rising  
edge. nPOR is still held HIGH for the duration of the mask, whereupon the nPOR status afterwards depends on  
the status of both RDY1 and RDY2 lines.  
Case 2 shows the case where EN2 is initiated after the RDY1 triggered programmable delay, but RDY2 never  
goes HIGH (Buck2 never turns on). Normal operation of nPOR occurs with respect to EN1 and RDY1, and the  
nPOR signal is held HIGH for the duration of the mask window. nPOR goes LOW after the masking window has  
timed out because it is now dependent on RDY1 and RDY2, where RDY2 is LOW.  
18  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
Delay Mask Counter  
EN1  
RDY1  
S
R
Q
Q
EN2  
nPOR  
RDY2  
Delay  
POR  
Delay Mask Counter  
Figure 18. Design Implementation Of The Flexible Power-On Reset  
An internal power-on reset of the device is used with EN1 and EN2 to produce a reset signal (LOW) to the delay  
timer nPOR. EN1 and RDY1 or EN2 and RDY2 are used to generate the set signal (HIGH) to the delay timer.  
S = R = 1 never occurs. The mask timers are triggered by EN1 and EN2 which are gated with RDY1 and RDY2  
to generate outputs to the final AND gate to generate the nPOR.  
8.3.6 Undervoltage Lockout  
The LP8731-Q1 features an undervoltage lockout circuit. The function of this circuit is to continuously monitor the  
raw input supply voltage (VINLDO12) and automatically disables the four voltage regulators whenever this supply  
voltage is less than 2.8 VDC.  
The circuit incorporates a bandgap-based circuit that establishes the reference used to determine the 2.8-VDC  
trip point for a VIN OK – Not OK detector. This VIN OK signal is then used to gate the enable signals to the four  
regulators of the LP8731-Q1. When VINLDO12 is greater than 2.8 VDC, the four enables control the four  
regulators, when VINLDO12 is less than 2.8 VDC, the four regulators are disabled by the VIN detector being in  
the “Not OK” state. The circuit has built-in hysteresis to prevent chattering from occurring.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
During shutdown the PFET switch, reference, control, and bias circuitry of the converters are turned off. The  
NFET switch is turned on during shutdown to discharge the output. When the converter is enabled, soft start is  
activated. It is recommended that the converter be disabled during the system power up and undervoltage  
conditions when the supply is less than 2.8 V.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.5 Programming  
8.5.1 I2C-Compatible Serial Interface  
8.5.1.1 I2C Signals  
The LP8731-Q1 features an I2C-compatible serial interface, using two dedicated pins: SCL and SDA for I2C clock  
and data, respectively. Both signals need a pullup resistor according to the I2C specification. The LP8731-Q1  
interface is an I2C slave that is clocked by the incoming SCL clock.  
Signal timing specifications are according to the I2C bus specification. The maximum bit rate is 400 kbit/s. See  
I2C specification from NXP Semiconductors for further details.  
8.5.1.2 I2C Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL), that is, the state of  
the data line can only be changed when CLK is LOW.  
2
I C_SCL  
2
I C_SDA  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
Figure 19. I2C Signals: Data Validity  
8.5.1.3 I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as the  
SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. STOP condition is defined as the SDA  
transitioning from LOW to HIGH while the SCL is HIGH. The I2C master always generates START and STOP  
bits. The I2C bus is considered to be busy after START condition and free after STOP condition. During data  
transmission, I2C master can generate repeated START conditions. First START and repeated START  
conditions are equivalent, function-wise.  
2
I C_SDA  
2
I C_SCL  
S
P
START condition  
STOP condition  
Figure 20. Start And Stop Conditions  
8.5.1.4 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledged related clock pulse is generated  
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver  
must pull down the SDA line during the 9th clock pulse, signifying acknowledgment. A receiver which has been  
addressed must generate an acknowledgment (“ACK”) after each byte has been received.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W).  
20  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
Programming (continued)  
NOTE  
According to industry I2C standards for 7-bit addresses, the MSB of an 8-bit address is  
removed, and communication actually starts with the 7th most significant bit. For the  
eighth bit (LSB), a “0” indicates a WRITE and a “1” indicates a READ. The second byte  
selects the register to which the data is written. The third byte contains data to write to the  
selected register.  
The LP8731-Q1 has factory-programmed I2C addresses. The device has a chip address of 59'h.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
1
1
0
0
0
0
0
I2C SLAVE address (chip address)  
Figure 21. I2C Chip Address (see NOTE above)  
ack from slave  
ack from slave  
ack stop  
ack from slave  
start  
MSB Chip id LSB  
w
ack MSB Register Addr LSB ack  
MSB Data LSB  
SCL  
SDA  
start  
id = 101 1001b  
w
ack  
Register address  
ack  
data  
ack stop  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = LP8731-Q1 chip address: 0x59  
Figure 22. I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in  
the Read Cycle waveform.  
Repeated start  
ack from slave data from slave  
ack from master  
ack from slave  
ack from slave  
rs  
ack  
stop  
ack  
start  
MSB Chip id LSB  
w
ack MSB Register Addr LSB ack  
r
MSB Chip id LSB  
MSB Data LSB  
SCL  
SDA  
start  
ack stop  
id = 101 1001b  
data  
id = 101 1001b  
w
ack  
Register address  
ack rs  
ack  
Figure 23. I2C Read Cycle  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.6 LP8731-Q1 Register Maps  
REGISTER ADDRESS REGISTER NAME  
READ/WRITE  
R
REGISTER DESCRIPTION  
Interrupt Status Register A  
0x02  
0x07  
0x10  
0x11  
0x20  
0x23  
0x24  
0x25  
0x29  
0x2A  
0x2B  
0x38  
0x39  
0x3A  
ICRA  
SCR1  
R/W  
R/W  
R
System Control 1 Register  
BKLDOEN  
BKLDOSR  
VCCR  
Buck and LDO Output Voltage Enable Register  
Buck and LDO Output Voltage Status Register  
Voltage Change Control Register 1  
Buck1 Target Voltage 1 Register  
Buck1 Target Voltage 2 Register  
Buck1 Ramp Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B1TV1  
B1TV2  
B1RC  
B2TV1  
Buck2 Target Voltage 1 Register  
Buck2 Target Voltage 2 Register  
Buck2 Ramp Control  
B2TV2  
B2RC  
BFCR  
Buck Function Register  
LDO1VCR  
LDO2VCR  
LDO1 Voltage control Registers  
LDO2 Voltage control Registers  
8.6.1 Interrupt Status Register (ISRA) 0x02  
This register informs the system engineer of the temperature status of the chip.  
D7-D2  
D1  
D0  
Name  
Access  
Data  
Temp 125°C  
R
Reserved  
0
Status bit for thermal warning  
PMIC T > 125°C  
0 – PMIC Temp. < 125°C  
1 – PMIC Temp. > 125°C  
Reserved  
0
Reset  
0
8.6.2 System Control 1 Register (SCR1) 0x07  
This register allows the user to select the preset delay sequence for power-on timing and to select between an  
internal and external clock for the bucks.  
D7  
D6-D4  
EN_DLY  
D3  
D2  
D1  
D0  
Name  
Access  
Data  
FPWM2(1)  
R/W  
FPWM1(1)  
R/W  
ECEN  
R/W  
R/W  
Reserved  
Selects the preset  
delay sequence from  
EN_T assertion  
Reserved  
Buck2 PWM /PFM Mode Buck 1 PWM /PFM  
Reserved  
select  
Mode select  
0 – Auto Switch PFM -  
PWM operation  
1 – PWM Mode Only  
0 – Auto Switch PFM -  
PWM operation  
1 – PWM Mode Only  
(shown below)  
Reset  
0
Factory-Programmed  
Default  
1
Factory-Programmed  
Default  
Factory-Programmed  
Default  
0
(1) Default PWM mode only — please contact TI sales office if Auto switch/PFM mode operation is needed.  
22  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8.6.3 EN_DLY Preset Delay Sequence after EN_T Assertion  
DELAY (ms)  
EN_DLY<2:0>  
Buck1  
1
Buck2  
LDO1  
LDO2  
000  
001  
010  
011  
100  
101  
110  
111  
1
1.5  
2
1
2
3
1
3
2
1
6
1
2
1
1.5  
1.5  
1.5  
1.5  
3
6
2
1
2
6
1.5  
2
2
1.5  
11  
2
3
8.6.4 Buck and LDO Output Voltage Enable Register (BKLDOEN) – 0x10  
This register controls the enables for the Bucks and LDOs.  
D7  
D6  
LDO2EN  
R/W  
D5  
D4  
LDO1EN  
R/W  
D3  
D2  
BK2EN  
D1  
D0  
BK1EN  
Name  
Access  
Data  
R/W  
R/W  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reset  
0
1
1
1
0
1
0
1
8.6.5 Buck and LDO Status Register (BKLDOSR) – 0x11  
This register monitors whether the Bucks and LDOs meet the voltage output specifications.  
D7  
BKS_OK  
R
D6  
LDOS_OK  
R
D5  
LDO2_OK  
R
D4  
LDO1_OK  
R
D3  
D2  
BK2_OK  
D1  
D0  
Name  
Access  
Data  
BK1_OK  
R
R
0 – Buck 1-2  
Not Valid  
0 – LDO 1-2  
Not Valid  
0 – LDO2 Not  
Valid  
0 – LDO1 Not  
Valid  
Reserve 0 – Buck2 Not  
Reserve 0 – Buck1 Not  
d
Valid  
d
Valid  
1 – Bucks Valid 1 – LDOs Valid 1 – LDO2 Valid 1 – LDO1 Valid  
1 – Buck2 Valid  
1 – Buck1 Valid  
Reset  
0
0
0
0
0
0
0
0
8.6.6 BUCK Voltage Change Control Register 1 (VCCR) – 0x20  
This register selects and controls the output target voltages for the buck regulators.  
D7-D6  
D5  
D4  
D3-2  
D1  
D0  
Name  
Access  
Data  
B2VS  
R/W  
B2GO  
R/W  
B1VS  
R/W  
B1GO  
R/W  
Reserved  
Buck2 Target Voltage  
Select  
Buck2 Voltage Ramp  
CTRL  
Reserved  
Buck1 Target Voltage  
Select  
Buck1 Voltage Ramp  
CTRL  
0 – B2VT1  
0 – Hold  
0 – B1VT1  
0 – Hold  
1 – B2VT2  
1 – Ramp to B2VS  
selection  
1 – B1VT2  
1 – Ramp to B1VS  
selection  
Reset  
00  
0
0
00  
0
0
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.6.7 BUCK1 Target Voltage 1 Register (B1TV1) – 0x23  
This register allows the user to program the output target voltage of Buck1 (target voltage 1).  
D7-D6  
D5  
Buck1 12p5 mV step  
R/W  
D4-0  
B1TV1  
R/W  
BUCK1 OUTPUT VOLTAGE (V)  
Name  
Access  
1’h0  
5’h00  
5’h00  
5’h01  
5’h01  
5’h02  
5’h02  
5’h03  
5’h03  
5’h04  
5’h04  
5’h05  
5’h05  
5’h06  
5’h06  
5’h07  
5’h07  
5’h08  
5’h08  
5’h09  
5’h09  
5’h0A  
5’h0A  
5’h0B  
5’h0B  
5’h0C  
5’h0C  
5’h0D  
5’h0D  
5’h0E  
5’h0E  
5’h0F  
5’h0F  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Data  
Reserved  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
24  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
D7-D6  
D5  
D4-0  
5'h10  
5'h10  
5'h11  
5'h11  
5'h12  
5'h12  
5'h13  
5'h13  
5'h14  
5'h14  
5'h15  
5'h15  
5'h16  
5'h16  
5'h17  
5'h17  
5'h18  
5'h18  
5'h19  
5'h19  
5'h1A  
5'h1A  
5'h1B  
5'h1B  
5'h1C  
5'h1C  
5'h1D  
5'h1D  
5'h1E  
5'h1E  
5'h1F  
5'h1F  
BUCK1 OUTPUT VOLTAGE (V)  
Data  
Register  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.6.8 BUCK1 Target Voltage 2 Register (B1TV2) - 0x24  
This register allows the user to program the output target voltage of Buck1 (target voltage 2).  
D7-D6  
D5  
Buck1 12p5 mV step  
R/W  
D4-D0  
B1TV2  
R/W  
BUCK1 OUTPUT VOLTAGE (V)  
Name  
Access  
1’h0  
5’h00  
5’h00  
5’h01  
5’h01  
5’h02  
5’h02  
5’h03  
5’h03  
5’h04  
5’h04  
5’h05  
5’h05  
5’h06  
5’h06  
5’h07  
5’h07  
5’h08  
5’h08  
5’h09  
5’h09  
5’h0A  
5’h0A  
5’h0B  
5’h0B  
5’h0C  
5’h0C  
5’h0D  
5’h0D  
5’h0E  
5’h0E  
5’h0F  
5’h0F  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Data  
Reserved  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
26  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
D7-D6  
D5  
D4-D0  
5'h10  
5'h10  
5'h11  
5'h11  
5'h12  
5'h12  
5'h13  
5'h13  
5'h14  
5'h14  
5'h15  
5'h15  
5'h16  
5'h16  
5'h17  
5'h17  
5'h18  
5'h18  
5'h19  
5'h19  
5'h1A  
5'h1A  
5'h1B  
5'h1B  
5'h1C  
5'h1C  
5'h1D  
5'h1D  
5'h1E  
5'h1E  
5'h1F  
5'h1F  
BUCK1 OUTPUT VOLTAGE (V)  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
Data  
Reserved  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.6.9 BUCK1 Ramp Control Register (B1RC) - 0x25  
This register allows the user to program the rate of change between the target voltages of Buck1.  
D7  
- - - -  
D6-D4  
- - - -  
D3-D0  
B1RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4'h0  
Ramp Rate mV/us  
Instant  
4'h1  
1
2
4'h2  
4'h3  
3
4'h4  
4
4'h'5  
5
4'h6  
6
4'h7  
7
4'h8  
8
4'h9  
9
4'hA  
10  
10  
4'hB - 4'hF  
28  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8.6.10 BUCK2 Target 1 Register (B2TV1) - 0x29  
This register allows the user to program the output target voltage of Buck2 (target voltage 1).  
D7-D6  
D5  
Buck1 12.5 mV step  
R/W  
D4-D0  
B2TV1  
R/W  
BUCK2 OUTPUT VOLTAGE (V)  
Name  
Access  
1’h0  
5’h00  
5’h00  
5’h01  
5’h01  
5’h02  
5’h02  
5’h03  
5’h03  
5’h04  
5’h04  
5’h05  
5’h05  
5’h06  
5’h06  
5’h07  
5’h07  
5’h08  
5’h08  
5’h09  
5’h09  
5’h0A  
5’h0A  
5’h0B  
5’h0B  
5’h0C  
5’h0C  
5’h0D  
5’h0D  
5’h0E  
5’h0E  
5’h0F  
5’h0F  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Data  
Reserved  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
D7-D6  
D5  
D4-D0  
5'h10  
5'h10  
5'h11  
5'h11  
5'h12  
5'h12  
5'h13  
5'h13  
5'h14  
5'h14  
5'h15  
5'h15  
5'h16  
5'h16  
5'h17  
5'h17  
5'h18  
5'h18  
5'h19  
5'h19  
5'h1A  
5'h1A  
5'h1B  
5'h1B  
5'h1C  
5'h1C  
5'h1D  
5'h1D  
5'h1E  
5'h1E  
5'h1F  
5'h1F  
BUCK2 OUTPUT VOLTAGE (V)  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
Data  
Reserved  
30  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8.6.11 BUCK2 Target 2 Register (B2TV2) - 0x2A  
This register allows the user to program the output target voltage of Buck2 (target voltage 2).  
D7-D6  
D5  
Buck1 12.5 mV step  
R/W  
D4-D0  
B2TV2  
R/W  
BUCK2 OUTPUT VOLTAGE (V)  
Name  
Access  
1’h0  
5’h00  
5’h00  
5’h01  
5’h01  
5’h02  
5’h02  
5’h03  
5’h03  
5’h04  
5’h04  
5’h05  
5’h05  
5’h06  
5’h06  
5’h07  
5’h07  
5’h08  
5’h08  
5’h09  
5’h09  
5’h0A  
5’h0A  
5’h0B  
5’h0B  
5’h0C  
5’h0C  
5’h0D  
5’h0D  
5’h0E  
5’h0E  
5’h0F  
5’h0F  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Data  
Reserved  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
D7-D6  
D5  
D4-D0  
5'h10  
5'h10  
5'h11  
5'h11  
5'h12  
5'h12  
5'h13  
5'h13  
5'h14  
5'h14  
5'h15  
5'h15  
5'h16  
5'h16  
5'h17  
5'h17  
5'h18  
5'h18  
5'h19  
5'h19  
5'h1A  
5'h1A  
5'h1B  
5'h1B  
5'h1C  
5'h1C  
5'h1D  
5'h1D  
5'h1E  
5'h1E  
5'h1F  
5'h1F  
BUCK2 OUTPUT VOLTAGE (V)  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1’h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1'h0  
1'h1  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
Data  
Reserved  
32  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8.6.12 BUCK2 Ramp Control Register (B2RC) - 0x2B  
This register allows the user to program the rate of change between the target voltages of Buck2.  
D7  
- - - -  
D6-D4  
- - - -  
D3-D0  
B2RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4'h0  
Ramp Rate mV/us  
Instant  
4'h1  
1
2
4'h2  
4'h3  
3
4'h4  
4
4'h5  
5
4'h6  
6
4'h7  
7
4'h8  
8
4'h9  
9
4'hA  
10  
10  
4'hB - 4'hF  
Reset  
0
010  
1000  
8.6.13 BUCK Function Register (BFCR) – 0x38  
This register allows the Buck switcher clock frequency to be spread across a wider range, allowing for less  
Electro-magnetic Interference (EMI). The spread spectrum modulation frequency refers to the rate at which the  
frequency ramps up and down, centered at 2 MHz.  
Spread Spectrum  
frequency  
Peak frequency deviation  
2 kHz triangle  
wave  
10 kHz triangle  
wave  
2 MHz  
Time  
Figure 24. Spread Spectrum Frequency Modulation  
8.6.14 Spread Spectrum Function  
Periodic switching in the buck regulator is inherently a noisier function block compared to an LDO. It can be  
challenging in some critical applications to comply with stringent regulatory standards or simply to minimize  
interference to sensitive circuits in space limited portable systems. The regulator’s switching frequency and  
harmonics can cause "noise" in the signal spectrum. The magnitude of this noise is measured by its power  
spectral density. The power spectral density of the switching frequency, FC, is one parameter that system  
designers want to be as low as practical to reduce interference to the environment and subsystems within their  
products. The LP8731-Q1 has a user-selectable function on the device, allowing a noise-reduction technique  
known as spread spectrum to be employed to ease customer’s design and production issues.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
The principle behind spread spectrum is to modulate the switching frequency slightly and slowly, and spread the  
signal frequency over a broader bandwidth. Thus, its power spectral density becomes attenuated, used as a  
spread spectrum clock via two I2C control register bits bk_ssen, and slomod. With this feature enabled, the  
intense energy of the clock frequency can be spread across a small band of frequencies in the neighborhood of  
the center frequency. The results in a reduction of the peak energy!  
The LP8731-Q1 spread spectrum clock uses a triangular modulation profile with equal rise and fall slopes. The  
modulation has the following characteristics:  
The center frequency: FC = 2 MHz, and  
The modulating frequency, ƒM = 6.8 kHz or 12 kHz.  
Peak frequency deviation: Δ_ƒ = ±100 kHz (or ±5%)  
Modulation index β = Δ_ƒ/ƒM = 14.7 or 8.3  
This register also allows dynamic scaling of the nPOR Delay Timing. The LP8731-Q1 is equipped with an internal  
Power-On Reset (POR) circuit which monitors the output voltage levels on the buck regulators, allowing the user  
to more actively monitor the power status of the device. The undervoltage lockout feature continuously monitor  
the raw input supply voltage (VINLDO12) and automatically disables the four voltage regulators whenever this  
supply voltage is less than 2.8 VDC. This prevents the user from damaging the power source (for example, the  
battery), but can be disabled if the user wishes.  
The UVLO feature continuously monitor the raw input supply voltage (VINLDO12) and automatically disables the  
four voltage regulators whenever this supply voltage is less than 2.8 VDC. This prevents the user from damaging  
the power source (for example, the battery), but can be disabled if the user wishes.  
NOTE  
If the supply to VINs is close to 2.8 V with a heavy load current on the regulators, the  
device could power down due to UVLO. If the user wishes to keep the device active under  
those conditions, the bypass UVLO feature should be enabled.  
D7-D5  
D4  
BP_UVLO  
D3-D2  
D1  
BK_SLOMOD  
D0  
Name  
Access  
Data  
TPOR  
R/W  
BK_SSEN  
R/W  
R/W  
R/W  
Reserved  
Bypass UVLO  
monitoring  
nPOR Delay Timing  
00 - 50 µs  
Buck Spread Spectrum  
Modulation  
Spread Spectrum  
Function Output  
0 - Allow UVLO  
1 - Disable UVLO  
01 - 50 ms  
10 - 100 ms  
11 - 200 ms  
0 – 10-kHz triangular wave 0 – Disabled  
1 – 2-kHz triangular wave  
1 – Enabled  
Reset  
000  
Factory-Programmed Default  
1
0
34  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
8.6.15 LDO1 Control Register (LDO1VCR) – 0x39  
This register allows the user to program the output target voltage of LDO1.  
D7-D5  
D4-D0  
LDO1_OUT  
Name  
Access  
Data  
R/W  
Reserved  
LDO1 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
8.6.16 LDO2 Control Register (LDO2VCR) – 0x3A  
This register allows the user to program the output target voltage of LDO2.  
D7-D5  
D4-D0  
LDO2_OUT  
Name  
Access  
Data  
R/W  
Reserved  
LDO2 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
36  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
One of the key features of this integrated PMU is that it requires effectively no design procedures because the  
output voltage is digitally programmable and bounded, compensation components are internally fixed or selected,  
and the external support capacitors and inductors and optimized for typical applications and performance. Given  
the I/O range and maximum loading are fixed and target transient and output ripple are prescribed, as reflected  
in Design Requirements, the external components values are optimized as follows:  
LDO CIN = 1 µF, COUT = 0.47 µF  
Buck CIN = COUT = 10 µF  
Buck Inductor = 2.2 µH  
The Component Selection section also details the background and sample calculations for capacitor and inductor  
selections, should users choose to operate with different component values than those recommended in order to  
achieve other performance characteristics that typically suggested.  
9.2 Typical Application  
LDO1  
EN_T  
I/O Voltage  
Domain  
VDD  
100k  
VINLDO12  
1 PF  
ENLDO1  
ENLDO2  
nPOR  
VIN1  
ENSW1  
ENSW2  
LDO1  
SDA  
SCL  
Advanced  
Power  
Controller  
10 PF  
2.2 PH  
SW1  
FB1  
10 PF  
0.47 PF  
VINLDO1  
VINLDO2  
LDO2  
GND_SW1  
Buck1  
LDO1  
Core ADAS  
Domain  
Block  
1 PF  
1 PF  
LP8731  
VIN2  
10 PF  
2.2 PH  
0.47 PF  
SW2  
FB2  
Buck2  
LDO2  
Peripheral  
ADAS  
Blocks  
SDA  
SCL  
10 PF  
GND_SW2  
AVDD  
GND_L  
GND_C  
Application  
System or SoC  
1 PF  
Figure 25. LP8731-Q1 Simplified Schematic  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
Typical Application (continued)  
9.2.1 Design Requirements  
Table 5. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.8 V to 5.5 V  
2 MHz ±10%  
0.8875 V to 1.675 V  
1.2 A  
Switching frequency  
Output voltage range: bucks  
Output current rating: bucks  
Output voltage range: LDOs  
Output current rating: LDOs  
0.8 V to 3.3 V  
300 mA  
Transient response at max load with Tr = Tf = 10 µs  
Bucks output typical ripple voltage  
ΔVOUT approximately equals ±1%  
< 10 mV PWM, < 20 mV PFM  
9.2.2 Detailed Design Procedure  
9.2.2.1 Component Selection  
9.2.2.1.1 Inductors for SW1 and SW2  
There are two main considerations when choosing an inductor: the inductor should not saturate, and the inductor  
current ripple is small enough to achieve the desired output voltage ripple. Care should be taken when reviewing  
the different saturation current ratings that are specified by different manufacturers. Saturation current ratings are  
typically specified at 25°C, so ratings at maximum ambient temperature of the application should be requested  
from the manufacturer.  
There are two methods to choose the inductor saturation current rating:  
9.2.2.1.1.1 Method 1:  
The saturation current is greater than the sum of the maximum load current and the worst case average to peak  
inductor current. This can be written as follows:  
Isat > Ioutmax + Iripple  
VIN - VOUT  
2L  
· x §VOUT  
·
¹
1
§ ·  
§
©
x
where  
Iripple  
= © f ¹  
V
¹ ©  
IN  
where  
IRIPPLE: Average to peak inductor current  
IOUTMAX: Maximum load current  
VIN: Maximum input voltage to the buck  
L: Min inductor value including worse case tolerances (30% drop can be considered for method 1)  
ƒ: Minimum switching frequency (1.6 MHz)  
VOUT: Buck Output voltage  
(4)  
9.2.2.1.1.2 Method 2:  
A more conservative and recommended approach is to choose an inductor that has saturation current rating  
greater than the maximum current limit of 1800 mA for Buck1 and Buck2.  
Given a peak-to-peak current ripple (IPP) the inductor needs to be at least:  
VIN - VOUT  
IPP  
· x §VOUT  
·
¹
§ ·  
1
© f ¹  
§
©
x
L t  
V
¹ ©  
IN  
(5)  
38  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
INDUCTOR  
SNVSA28 DECEMBER 2014  
Table 6. Suggested Inductors  
IRMS RATING  
VALUE  
UNIT  
L × W × H (mm)  
DCR  
VENDORS  
PART ID  
TYP  
2.1 A  
1.85 A  
2.1 A  
2 A  
LSW1,2  
LSW1,2  
LSW1,2  
LSW1,2  
2.2  
2.2  
2.2  
2.2  
µH  
µH  
µH  
µH  
3.2 × 2.5 × 1.2  
3.2 × 2.5 × 1.55  
3.2 × 2.5 × 1.2  
5.0 × 5.0 × 1.5  
70 mΩ  
64 mΩ  
70 mΩ  
70 mΩ  
Toko  
Murata  
DFE322512C  
LQH32PN2R2NNCL  
MHCD322512-2R2M-A8DY  
NP04SZB 2R2N  
Chilisin  
Taiyo Yuden  
9.2.2.1.2 External Capacitors  
The regulators on the LP8731-Q1 require external capacitors for regulator stability. These are specifically  
designed for portable applications requiring minimum board space and smallest components. These capacitors  
must be correctly selected for good performance.  
9.2.2.2 LDO Capacitor Selection  
9.2.2.2.1 Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1-μF capacitor be connected between the  
LDO input pin and ground (this capacitance value may be increased without limit).  
This capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean  
analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
NOTE  
Tantalum capacitors can suffer catastrophic failures due to surge currents when  
connected to a low impedance source of power (like a battery or a very large capacitor). If  
a tantalum capacitor is used at the input, it must be ensured by the manufacturer to have  
a surge current rating sufficient for the application.  
There are no requirements for the ESR (Equivalent Series Resistance) on the input capacitor, but tolerance and  
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance remains  
approximately 1 μF over the entire operating temperature range.  
9.2.2.2.2 Output Capacitor  
The LDOs on the LP8731-Q1 are designed specifically to work with very small ceramic output capacitors. A 0.47-  
µF ceramic capacitor (temperature types Z5U, Y5V or X7R) with ESR between 5 mto 500 m, is suitable in  
the application circuit.  
It is also possible to use tantalum or film capacitors at the device output, COUT (or VOUT), but these are not as  
attractive for reasons of size and cost.  
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR  
value that is within the range 5 mto 500 mfor stability.  
9.2.2.2.3 Capacitor Characteristics  
The LDOs are designed to work with ceramic capacitors on the output to take advantage of the benefits they  
offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least  
expensive, and have the lowest ESR values, thus making them best for eliminating high-frequency noise. The  
ESR of a typical 1-µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
requirement for stability for the LDOs.  
For both input and output capacitors, careful interpretation of the capacitor specification is required to ensure  
correct device operation. The capacitor value can change greatly, depending on the operating conditions and  
capacitor type.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
In particular, the output capacitor selection should take account of all the capacitor parameters, to ensure that the  
specification is met within the application. The capacitance can vary with DC bias conditions as well as  
temperature and frequency of operation. Capacitor values also show some decrease over time due to aging. The  
capacitor parameters are also dependent on the particular case size, with smaller sizes giving poorer  
performance figures in general. As an example, Figure 26 is typical graph comparing different capacitor case  
sizes in a capacitance vs DC bias plot.  
0603, 10V, X5R  
100%  
80%  
60%  
0402, 6.3V, X5R  
40%  
20%  
0
1.0  
2.0  
3.0  
4.0  
5.0  
DC BIAS (V)  
Figure 26. Typical Variation In Capacitance vs DC Bias  
As shown in Figure 26, increasing the DC bias condition can result in the capacitance value that falls below the  
minimum value given in the recommended capacitor specifications table. Note that the graph shows the  
capacitance out of spec for the 0402 case size capacitor at higher bias voltages. It is therefore recommended  
that the capacitor manufacturers' specifications for the nominal value capacitor are consulted for all conditions,  
as some capacitor sizes (e.g. 0402) may not be suitable in the actual application.  
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a  
temperature range of 55°C to 125°C, only varies the capacitance to within ±15%. The capacitor type X5R has a  
similar tolerance over a reduced temperature range of 55°C to 85°C. Many large value ceramic capacitors,  
larger than 1 µF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance can drop by  
more than 50% as the temperature varies from 25°C to 85°C. Therefore X7R is recommended over Z5U and  
Y5V in applications where the ambient temperature changes significantly above or below 25°C.  
Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more  
expensive when comparing equivalent capacitance and voltage ratings in the 0.47-µF to 4.7-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum increases about  
2:1 as the temperature goes from 25°C down to 40°C, so some guard band must be allowed.  
9.2.2.2.4 Input Capacitor Selection for SW1 And SW2  
A ceramic input capacitor of 10 µF, 6.3 V is sufficient for the magnetic DC-DC converters. Place the input  
capacitor as close as possible to the input of the device. A large value may be used for improved input voltage  
filtering. The recommended capacitor types are X7R or X5R. Y5V type capacitors should not be used. DC bias  
characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and 0603. The  
input filter capacitor supplies current to the PFET switch of the DC-DC converter in the first half of each cycle  
and reduces voltage ripple imposed on the input power source. A ceramic capacitor’s low Equivalent Series  
Resistance (ESR) provides the best noise filtering of the input voltage spikes due to fast current transients. A  
capacitor with sufficient ripple current rating should be selected. The Input current ripple can be calculated as:  
r2  
VOUT  
§
©
·
¹
(Vin ± Vout) x Vout  
Irms = Ioutmax  
1 +  
where  
r =  
VIN  
12  
L x f x Ioutmax x Vin  
(6)  
The worse case is when VIN = 2 × VOUT  
.
40  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
9.2.2.2.5 Output Capacitor Selection for SW1, SW2  
A 10-μF, 6.3-V ceramic capacitor should be used on the output of the SW1 and SW2 magnetic DC-DC  
converters. The output capacitor needs to be mounted as close as possible to the output of the device. A large  
value may be used for improved input voltage filtering. The recommended capacitor types are X7R or X5R. Y5V  
type capacitors should not be used. DC bias characteristics of ceramic capacitors must be considered when  
selecting case sizes like 0805 and 0603. DC bias characteristics vary from manufacturer to manufacturer and DC  
bias curves should be requested from them and analyzed as part of the capacitor selection process.  
The output filter capacitor of the magnetic DC-DC converter smooths out current flow from the inductor to the  
load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple.  
These capacitors must be selected with sufficient capacitance and sufficiently low ESD to perform these  
functions.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
ESR and can be calculated as follows:  
Iripple  
Vpp-c  
=
4 x f x C  
(7)  
(8)  
Voltage peak-to-peak ripple due to ESR can be expressed as follows:  
VPP–ESR = 2 × IRIPPLE × RESR  
Because the VPP-C and VPP-ESR are out of phase, the rms value can be used to get an approximate value of the  
peak-to-peak ripple:  
Vpp-c2 + Vpp-esr  
2
Vpp-rms  
=
(9)  
NOTE  
The output voltage ripple is dependent on the inductor current ripple and the equivalent  
series resistance of the output capacitor (RESR). The RESR is frequency dependent as well  
as temperature dependent. The RESR should be calculated with the applicable switching  
frequency and ambient temperature.  
Table 7. Suggested Capacitors  
CAPACITOR  
CLDO1, CLDO2  
CSW1, CSW2  
CSW1, CSW2  
CIN  
VALUE  
0.47 µF  
10 µF  
10 µF  
1 µF  
L × W × H (mm)  
1.0 × 0.5 × 0.5 (0402)  
3.2 × 1.6 × 1.6 (1206)  
2 × 1.25 × 1.45 (0805)  
0.6 × 0.3 × 0.1 (0603)  
1.0 × 0.5× 0.5 (0402)  
TYPE  
TOLERANCE VENDORS  
PART ID  
X7S, 10 V  
X7R, 16 V  
X5R, 16 V  
X7R, 6.3 V  
X7S, 10 V  
10%  
20%  
20%  
20%  
10%  
Murata  
TDK  
GCM155C71A474KE36  
C3216XR71C106M  
TDK  
CGA4J1X5R1C106M125AC  
C2012XR71C105K  
TDK  
CIN  
1 µF  
Murata  
GCM155C71A105KE38  
9.2.2.2.6 I2C Pull-up Resistor  
Both SDA and SCL pins need to have pull-up resistors connected to VINLDO12 or to the power supply of the I2C  
master. The values of the pull-up resistors (typical approximately1.8 k) are determined by the capacitance of  
the bus. Too large of a resistor combined with a given bus capacitance results in a rise time that would violate  
the maximum rise time specification. A too small resistor results in a contention with the pull-down transistor on  
either slave(s) or master.  
9.2.2.2.7 Operation Without I2C Interface  
Operation of the LP8731-Q1 without the I2C interface is possible if the system can operate with default values for  
the LDO and buck regulators. The I2C-less system must rely on the correct default output values of the LDO and  
Buck converters.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
9.2.2.3 Junction Temperature  
The maximum junction temperature TJ-MAX-OP is 125°C of the IC package.  
The following equations demonstrate junction temperature determination, ambient temperature TA-MAX, and total  
device power must be controlled to keep TJ below this maximum:  
TJ-MAX-OP = TA-MAX + (RθJA) [°C/ Watt] * (PD-MAX) [Watts]  
Total IC power dissipation PD-MAX is the sum of the individual power dissipation of the four regulators plus a minor  
amount for device overhead. Device overhead is Bias, TSD and LDO analog.  
PD-MAX = PLDO1 + PLD02 + PBUCK1 + PBUCK2 + (0.0001 A × VIN) [Watts].  
Power dissipation of LDO1  
PLDO1 = (VINLDO1 – VOUTLDO1) × IOUTLDO1 [V × A]  
Power dissipation of LDO2  
PLDO2 = (VINLDO2 – VOUTLDO2) × IOUTLDO2 [V × A]  
Power dissipation of Buck1  
PBuck1 = PIN – POUT  
=
VOUTBuck1 × IOUTBuck1 × (1 -η1) / η1 [V × A]  
η1 = efficiency of buck 1  
Power dissipation of Buck2  
PBuck2 = PIN – POUT  
=
VOUTBuck2 × IOUTBuck2 × (1 - η2) / η2 [V × A]  
η2 = efficiency of Buck2  
Where η is the efficiency for the specific condition taken from efficiency graphs.  
9.2.3 Application Curves (LDO)  
Vin Step  
(500 mV/DIV)  
EN LDO  
(2 V/DIV)  
Vout LDO  
(1 V/DIV)  
Vout LDO  
Iin_rush  
(10 mV/DIV)  
(200 mA/DIV)  
Time (100 µs/DIV)  
Time (100 µs/DIV)  
VIN = 3.6 V to 4.2 V  
VOUT = 1.8 V  
IOUT = 300 mA  
Tr = Tf = 30 µs  
VIN = 3.6 V  
VOUT = 1.8 V  
IOUT = 200 mA  
EN Tr = 18 ns  
Figure 27. Line Transient 300-mA, 30-µs Edge Rate  
Figure 28. LDO Enable Start-Up Time and Inrush  
42  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
9.2.4 Application Curves (BUCK)  
Vin Step  
(500 mV/DIV)  
Buck-2  
(20 mV/DIV)  
Iout  
(200 mA/DIV)  
Vout LDO  
(20 mV/DIV)  
Time (50 µs/DIV)  
Time (50 µs/DIV)  
IOUT = 300 mA to 500 mA PWM  
VIN Step  
IOUT = 300 mA  
Tr = Tf = 30 µs  
Figure 29. Buck Load Transient PWM Mode  
Figure 30. Buck Line Transient PWM  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.8 V and 5.5 V. This input supply  
may be a battery or regulated source with sufficient low internal resistance such that it is able to deliver the  
maximum input current and maintain stable voltage without significant voltage drop during start-up and at load  
transient conditions. Additional bulk capacitance may be necessary should the supply source is located more  
than five centimeters away from the LP8731-Q1.  
10.1 Analog Power Signal Routing  
All power inputs should be tied to the main VDD source (for example, battery), unless the user wishes to power it  
from another source. (that is, external LDO output).  
The analog VDD input pins power the internal bias and error amplifiers, so they should be tied to the main VDD.  
The analog VDD inputs must have an input voltage between 2.8 and 5.5 V, as specified in the General Electrical  
Characteristics table.  
The other input pins (VINLDO1, VINLDO2, VIN1, and VIN2) can actually have inputs lower than 2.8 V, as long as  
it is higher than the programmed output (0.3 V, to be safe).  
The analog and digital grounds should be tied together outside of the device to reduce noise coupling.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LP8731-Q1  
LP8731-Q1  
SNVSA28 DECEMBER 2014  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The LP8731-Q1 is a monolithic device with integrated power FETs. For that reason, it is important to pay special  
attention to the use of appropriate to input, output, power, and ground track dimensions in the PCB layout in  
order to achieve low impedance small current loop paths and tracks with adequate current density to carry the  
target currents.  
The device pin solder bumps are arranged with power and ground bumps at the edges of the package to  
facilitate PCB layout considerations. This enables using the top metal layer to route the power and ground tracks.  
Thus, the current loops for the bucks can be very short and this also makes placing the bypass caps on the  
device side of the PCB possible. (See Figure 31.) Avoid using vias to tap power and ground planes for the  
switcher supply pins, because they can be very inductive and could incur large i*dv/dt transient voltage drops. If  
vias are unavoidable, use them liberally to minimize the impedance they may present.  
For more information on board layout techniques, refer to Texas Instruments AN-1112 DSBGA Wafer Level Chip  
Scale Package (SNVA009). This application note also discusses recommended PCB pad geometry, package  
handling, solder stencil and the assembly process. See also Texas Instruments AN-1229 SIMPLE SWITCHER®  
PCB Layout Guidelines (SNVA054) and Texas Instruments AN-2078 PCB Layout for Texas Instrument' SIMPLE  
SWITCHER® Power Modules (SNVA452).  
11.2 Layout Example  
All CIN and COUT caps  
VIN, SW, VOUT, GND,  
should be placed as  
CIN and COUT tracks be  
close to VIN, VOUT and  
Suitably sized for low  
GND pads as practical.  
Impedance path and  
carry the target current.  
GND2  
GND1  
CINBK2  
CINBK1  
COUTBK1  
COUTBK2  
BUCK2  
BUCK1  
L2  
L1  
VIN2  
VIN1  
Figure 31. LP8731-Q1 Layout Example  
44  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LP8731-Q1  
 
LP8731-Q1  
www.ti.com  
SNVSA28 DECEMBER 2014  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009).  
Texas Instrument AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines (SNVA054).  
Texas Instruments AN-2078 PCB Layout for Texas Instrument'sSIMPLE SWITCHER® Power Modules  
(SNVA452).  
12.3 Trademarks  
SIMPLE SWITCHER is a registered trademark of Texas Instruments Incorporated.  
All other trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP8731-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8731QYZRRQ1  
ACTIVE  
DSBGA  
YZR  
25  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
RAEQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8731QYZRRQ1  
DSBGA  
YZR  
25  
3000  
178.0  
8.4  
2.69  
2.69  
0.76  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YZR 25  
SPQ  
Length (mm) Width (mm) Height (mm)  
208.0 191.0 35.0  
LP8731QYZRRQ1  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0025xxx  
0.600±0.075  
D
E
TLA25XXX (Rev D)  
D: Max = 2.521 mm, Min = 2.46 mm  
E: Max = 2.521 mm, Min = 2.46 mm  
4215055/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LP8731QYZRRQ1

具有 I²C 接口的双路高电流降压直流/直流和双路线性稳压器 | YZR | 25 | -40 to 125
TI

LP8732-Q1

汽车类双路 2A 降压转换器和双路线性稳压器
TI

LP8732-Q1_V01

LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator
TI

LP8732-Q1_V02

LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator
TI

LP873200RHDRQ1

汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873200RHDTQ1

汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器
TI

LP873220-Q1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器
TI

LP873220RHDR

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDRQ1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDT

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDTQ1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI