LP8758-B0 [TI]

四相、单路 16A 输出直流/直流降压转换器;
LP8758-B0
型号: LP8758-B0
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四相、单路 16A 输出直流/直流降压转换器

转换器
文件: 总55页 (文件大小:1911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
LP8758-B0 四相直流/直流降压转换器  
1 特性  
3 说明  
1
高效降压四相直流/直流转换器内核:  
LP8758 专为满足最新应用处理器的电源管理要求而设  
计,这些应用处理器适用于手机和类似便携式 应用。  
该器件包含 4 个降压直流/直流转换器内核,它们一起  
捆绑在单个四相降压转换器中。该器件通过 I2C 兼容串  
行接口进行控制。  
最大输出电流:16A  
自动 PWM-PFM 和强制 PWM 操作  
自动相位增加/减少和强制多相操作  
远程差分反馈电压感测  
可编程输出电压转换率范围:0.5mV/µs 至  
30mV/µs  
自动 PWM-PFMAUTO 模式)操作搭配自动相位增  
/减少操作,可在较宽输出电流范围内以最大限度提  
高效率。LP8758 支持远程差分电压感测,可补偿稳压  
器输出与负载点之间的 IR 压降 (IR drop),从而提高输  
出电压的精度。  
VOUT 范围:0.5V 3.36V(支持动态电压调节  
(DVS))  
可通过使能信号编程启动和关断延迟  
I2C 兼容接口,支持标准 (100kHz)、快速  
(400kHz)、快速+ (1MHz) 和高速 (3.4MHz) 四种模  
LP8758 支持可编程启动和关断延迟与使能信号同步。  
该器件的保护 功能 包括短路保护、电流限制、输入电  
源欠压锁定 (UVLO) 以及过热警告和关断功能。该器件  
还具有一些错误标志,用于提供自身的状态信息。此  
外,LP8758 器件无需添加外部电流感测电阻即可支持  
负载电流测量。在器件启动和电压变化期间,器件会对  
转换率加以控制,以便最大限度减少输出电压过冲和浪  
涌电流。  
具有可编程屏蔽的中断功能  
负载电流测量  
输出短路和过载保护  
用于降低电磁干扰 (EMI) 的扩展频谱模式和相位交  
过热警告和保护  
欠压闭锁 (UVLO)  
器件信息(1)  
2 应用  
器件编号  
LP8758-B0  
封装  
封装尺寸(标称值)  
智能手机、电子书和平板电脑  
游戏设备  
DSBGA (35)  
2.88mm x 2.13mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
效率与输出电流 (VIN = 3.7V)  
4 简化原理图  
95  
90  
85  
80  
75  
70  
65  
60  
LP8758  
VIN  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
SW_B2  
SW_B3  
VOUT  
LOAD  
NRST  
SDA  
SCL  
nINT  
EN1  
EN2  
FB_B0  
FB_B1  
FB_B2  
FB_B3  
1.2 V  
1.0 V  
55  
50  
GNDs  
0.001  
0.01  
0.1  
1
10 20  
Output Current (A)  
D038  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA06  
 
 
 
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
8.5 Programming........................................................... 25  
8.6 Register Maps......................................................... 29  
Application and Implementation ........................ 40  
9.1 Application Information............................................ 40  
9.2 Typical Application .................................................. 40  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化原理............................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 I2C Serial Bus Timing Parameter.............................. 9  
7.7 Switching Characteristics........................................ 11  
7.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 47  
11 Layout................................................................... 48  
11.1 Layout Guidelines ................................................. 48  
11.2 Layout Example .................................................... 49  
12 器件和文档支持 ..................................................... 50  
12.1 器件支持................................................................ 50  
12.2 文档支持................................................................ 50  
12.3 接收文档更新通知 ................................................. 50  
12.4 社区资源................................................................ 50  
12.5 ....................................................................... 50  
12.6 静电放电警告......................................................... 50  
12.7 术语表 ................................................................... 50  
13 机械、封装和可订购信息....................................... 50  
8
5 修订历史记录  
Changes from Revision B (May 2016) to Revision C  
Page  
Changed logic low level to 0 V and high level to VANA up to 3.6 V ...................................................................................... 5  
Added support for I2C signals up to 3.3V ............................................................................................................................. 5  
Changed "700 µs" to "1.2 ms".............................................................................................................................................. 17  
Changes from Revision A (May 2015) to Revision B  
Changes from Original (March 2015) to Revision A  
Page  
Page  
第一个 WEB 版本 .................................................................................................................................................................. 1  
已添加 添加了社区资源部分 .............................................................................................................................................. 50  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
6 Pin Configuration and Functions  
YFF Package  
35-Pin DSBGA  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
G
F
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
FB  
_B2  
PGND  
_B23  
FB  
_B3  
FB  
_B3  
PGND  
_B23  
FB  
_B2  
SCL  
SDA  
EN1  
VANA  
AGND  
SGND  
VANA  
AGND  
SGND  
SCL  
SDA  
EN1  
E
D
C
B
A
NRST  
EN2  
nINT  
nINT  
EN2  
NRST  
FB  
_B0  
PGND  
_B01  
FB  
_B1  
FB  
_B1  
PGND  
_B01  
FB  
_B0  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
5
4
3
2
1
1
2
3
4
5
Top View (Bump-side down)  
Bottom View  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
Input for Buck 1. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A1, B1  
VIN_B1  
P
A2, B2  
SW_B1  
PGND_B01  
SW_B0  
A
G
A
Buck 1 switch node.  
A3, B3, C3  
A4, B4  
Power Ground for Buck 0 and Buck 1.  
Buck 0 switch node.  
Input for Buck 0. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A5, B5  
VIN_B0  
P
C1  
C2  
C4  
SGND  
FB_B1  
FB_B0  
G
A
A
Substrate Ground.  
Output ground feedback (negative) for Buck 0.  
Output voltage feedback (positive) for Buck 0.  
Programmable Enable signal for Buck regulator. Can be also configured to switch between two  
output voltage levels.  
C5  
EN1  
D/I  
D1  
D2  
AGND  
nINT  
G
Ground.  
D/O  
Open-drain interrupt output. Active LOW.  
Programmable Enable signal for Buck regulator. Can be also configured to switch between two  
output voltage levels.  
D3  
EN2  
D/I  
D4  
D5  
NRST  
SDA  
D/I  
Reset signal for the device.  
D/I/O Serial interface data input and output for system access. Connect a pull-up resistor.  
Supply voltage for Analog and Digital blocks. VANA pin must be connected to same voltage as  
VIN_Bx pins.  
E1  
VANA  
P
E2  
E4  
E5  
FB_B3  
FB_B2  
SCL  
A
A
Output voltage feedback (positive) for Buck 3 - Connect to ground in 4-phase configuration.  
Output voltage feedback (positive) for Buck 2. - Connect to ground in 4-phase configuration.  
Serial interface clock input for system access. Connect a pull-up resistor.  
D/I  
Input for Buck 3. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F1, G1  
VIN_B3  
P
F2, G2  
SW_B3  
PGND_B23  
SW_B2  
A
G
A
Buck 3 switch node.  
E3, F3, G3  
F4, G4  
Power Ground for Buck 2 and Buck 3.  
Buck 2 switch node.  
Input for Buck 2. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F5, G5  
VIN_B2  
P
A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
SW_Bx  
Voltage on power connections  
Voltage on buck switch nodes  
–0.3  
–0.3  
6
V
V
(VIN_Bx + 0.3 ) with 6 V  
max  
–0.3  
(VANA + 0.3 ) with  
6 V max  
V
V
FB_Bx  
NRST  
Voltage on buck voltage sense nodes  
Voltage on NRST input  
–0.3  
–0.3  
3.6  
3.6  
ENx, SDA, SCL, nINT Voltage on logic pins (input or output pins)  
CURRENT  
VIN_Bx, SW_Bx,  
PGND_Bx  
Current on power pins (average current over 100k hour  
lifetime, TJ = 125°C)  
0.62  
A/pin  
TEMPERATURE  
Junction temperature, TJ-MAX  
40  
150  
150  
260  
°C  
°C  
°C  
Storage temperature, Tstg  
Maximum lead temperature (soldering, 10 sec.)(3)  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
(3) For detailed soldering specifications and information, refer to AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009).  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
NRST  
Voltage on power connections  
Voltage on NRST  
2.5  
0
5.5  
V
V
VANA up to  
3.6  
ENx, nINT  
Voltage on logic pins (input or output pins)  
0
VANA up to  
3.6  
V
V
V
Voltage on I2C interface, standard (100 kHz), fast (400  
khz),  
fast+ (1 MHz), and high-speed (3.4 MHz) modes  
Voltage on I2C interface, standard (100 kHz), fast (400  
kHz), and fast+ (1 MHz) modes  
0
0
1.95  
SCL, SDA  
VANA up to  
3.6  
TEMPERATURE  
Junction temperature, TJ  
Ambient temperature, TA  
40  
40  
125  
85  
°C  
°C  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
7.4 Thermal Information  
LP8758  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
35 PINS  
56.1  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
8.4  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL COMPONENTS  
CIN  
Input filtering capacitance  
Connected from VIN_Bx to PGND_Bx  
Capacitance per phase  
1.9  
10  
10  
22  
µF  
µF  
Output filtering capacitance,  
local  
COUT  
Output capacitance, total  
(local and remote)  
Total output capacitance, 4-phase  
configuration  
COUT-TOTAL  
ESRC  
40  
200  
10  
µF  
Input and output capacitor  
ESR  
[1-10] MHz  
2
mΩ  
0.33 or 0.47  
µH  
L
Inductor  
Inductance of the inductor  
TOKO, DFE252010F-R33M  
–30%  
30%  
DCRL  
Inductor DCR  
16  
mΩ  
BUCK REGULATOR  
Voltage between VIN_Bx and ground  
pins. VANA must be connected to the  
same supply as VIN_Bx.  
VIN  
Input voltage range  
2.5  
0.5  
3.7  
5.5  
V
V
Programmable voltage range  
1
10  
5
3.36  
Step size, 0.5 V VOUT < 0.73 V  
Step size, 0.73 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
Output current, 4-phase configuration  
VOUT  
Output voltage  
mV  
20  
12(3)  
16(3)  
IOUT  
Output current  
A
V
Output current, 4-phase configuration,  
VIN > 3 V, VOUT < 2 V  
Dropout voltage  
VIN – VOUT  
0.7  
Forced PWM mode, 0.8 V VOUT 1.2  
V, 2.5 V VIN 4.5 V, TJ = 25°C, 0 ≤  
-1%  
1.5%  
DC output voltage accuracy,  
includes voltage reference,  
DC load and line regulations,  
process and temperature  
IOUT IOUT(max)  
max ( 2%,  
15 mV) 20  
mV  
PFM mode, the average output voltage  
level is increased by max. 20 mV  
min (–2%,  
–15 mV)  
(1) All voltage values are with respect to network ground.  
(2) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(3) The maximum output current is also limited by the junction temperature and maximum average current over lifetime. The power  
dissipation inside the die increases the junction temperature and limits the maximum current depending of the length of the current  
pulse, efficiency, board and ambient temperature. The maximum average current/pin over lifetime is described in Absolute Maximum  
Ratings.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
PWM mode, L = 0.33 µH  
MIN  
TYP  
10  
MAX  
UNIT  
mVp-p  
%/V  
Ripple, 4-phase  
configuration  
PFM mode, L = 0.33 µH  
IOUT = IOUT(max)  
10  
DCLNR  
DCLDR  
DC line regulation  
±0.05  
DC load regulation in PWM  
mode  
IOUT from 0 to IOUT(max)  
0.3%  
-45  
IOUT = 1 A to 8 A, TR = 400 ns, PWM  
mode, COUT = 100 µF, L = 0.33 µH  
mV  
mV  
2.5 V VIN 4.5 V, 0.8 V VOUT 1.2  
Undershoot for transient load V, IOUT = 0.1 A to 4.1 A, TR = 100 ns,  
–35  
step response, 4-phase  
configuration  
AUTO mode, COUT = 100 µF, L = 0.33  
µH  
3 V VIN 4.5 V, 0.8 V VOUT 1.2 V,  
IOUT from 1 A to 12 A, TR = 1000 ns,  
COUT = 100 µF, L = 0.33 µH  
–45  
45  
mV  
mV  
TLDSR  
IOUT = 8 A to 1 A, TF = 400 ns, PWM  
mode, COUT = 100 µF, L = 0.33 µH  
2.5 V VIN 4.5 V, 0.8 V VOUT 1.2  
Overshoot for transient load V, IOUT = 4.1 A to 0.1 A, TF = 100 ns,  
25  
mV  
mV  
step response, 4-phase  
configuration  
AUTO mode, COUT = 100 µF, L = 0.33  
µH  
3 V VIN 4.5 V, 0.8 V VOUT 1.2 V,  
IOUT from 12 A to 1 A, TF = 1000 ns,  
COUT = 100 µF, L = 0.33 µH  
50  
VIN stepping 2.5 V 3 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
TLNSR  
Transient line response  
±20  
mV  
A
Programmable range  
1.5  
5
Step size  
0.5  
7.5%  
7.5%  
2
Forward current limit (peak  
for every switching cycle)  
ILIM FWD  
Accuracy, 3 V VIN 5.5 V, ILIM = 5 A  
Accuracy, 2.5 V VIN < 3 V, ILIM = 5 A  
–5%  
–20%  
1.6  
20%  
20%  
2.4  
ILIM NEG  
RDS(ON) HS  
Negative current limit  
A
On-resistance, high-side  
FET  
Each phase, between VIN_Bx and  
SW_Bx pins (I = 1 A)  
40  
33  
90  
50  
mΩ  
FET  
RDS(ON) LS  
FET  
Each phase, between SW_Bx and  
PGND_Bx pins (I = 1 A)  
On-resistance, low-side FET  
mΩ  
Current mismatch between phases, IOUT  
Current balancing  
> 1000 mA / phase, 0.8 V VOUT 1.2  
V
10%  
50  
Overshoot during start-up  
VOUT = 1 V, Slew rate = 10 mV/µs  
mV  
mA  
PFM-to-PWM transition -  
current threshold(4)  
IPFM-PWM  
IPWM-PFM  
600  
240  
PWM-to-PFM transition -  
current threshold(4)  
mA  
mA  
From 1-phase to 2-phase  
From 2-phase to 3-phase  
From 3-phase to 4-phase  
From 2-phase to 1-phase  
From 3-phase to 2-phase  
From 4-phase to 3-phase  
Regulator disabled  
1000  
2000  
3000  
750  
IADD  
Phase-adding level  
ISHED  
Phase-shedding level  
1500  
2300  
250  
mA  
Output pulldown resistance  
150  
350  
Ω
(4) The final PFM-to-PWM and PWM-to-PFM transition current varies slightly and is dependant on the output voltage, input voltage, and the  
magnitude of inductor's ripple current.  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Powergood threshold for  
interrupt  
Rising ramp voltage, enable or voltage  
change  
–23  
–17  
–10  
BUCKx_INT(BUCKx_SC_IN  
T), difference from final  
voltage  
mV  
Falling ramp, voltage change  
10  
17  
23  
Powergood threshold for  
status signal  
BUCKx_STAT(BUCKx_PG_ to '0' during voltage change  
STAT)  
During operation, status signal is forced  
–23  
–17  
–10  
mV  
PROTECTION FEATURES  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 0  
125  
105  
Thermal warning  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 1  
°C  
°C  
Hysteresis  
15  
150  
15  
Temperature rising  
Hysteresis  
Thermal shutdown  
Voltage falling  
Hysteresis  
2.3  
2.4  
50  
2.5  
V
VANAUVLO  
VANA undervoltage lockout  
mV  
LOAD CURRENT MEASUREMENT  
Current measurement range Maximum code  
20.46  
20  
A
Resolution  
Measurement accuracy  
LSB  
OUT 2 A  
mA  
I
<10%  
CURRENT CONSUMPTION  
Shutdown current  
consumption  
V(NRST) = 0 V  
1
6
µA  
µA  
Standby current  
consumption, regulator  
disabled  
V(NRST) = 1.8 V  
Active current consumption  
during PFM operation  
V(NRST) = 1.8 V, IOUT = 0 mA, not  
switching  
71  
18  
µA  
Active current consumption  
during PWM operation  
V(NRST) = 1.8 V, IOUT = 0 mA  
mA  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT SIGNALS NRST, ENx, SCL, SDA  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
V
1.2  
10  
Hysteresis of Schmitt trigger  
inputs (SCL, SDA)  
VHYS  
80  
160  
mV  
ENx pulldown resistance  
NRST pulldown resistance  
ENx_PD = 1  
500  
kΩ  
kΩ  
Always present  
800  
1200  
1700  
0.4  
DIGITAL OUTPUT SIGNALS nINT, SDA  
VOL  
Output low level  
ISOURCE = 2 mA  
To VIO Supply  
V
External pullup resistor for  
nINT  
RP  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK Input current  
All logic inputs over pin voltage range  
1  
1
µA  
7.6 I2C Serial Bus Timing Parameter  
See(1) and Figure 1.  
MIN  
MAX  
UNIT  
Standard mode  
Fast mode  
100  
400  
1
kHz  
kHz  
ƒSCL  
Serial clock frequency  
Fast mode +  
MHz  
MHz  
MHz  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
tLOW  
SCL low time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
60  
120  
250  
100  
50  
10  
0
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
tSU;DAT  
ns  
Fast mode +  
High-speed mode  
Standard mode  
3.45  
0.9  
Fast mode  
0
µs  
ns  
tHD;DAT  
Fast mode +  
0
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
0
70  
0
150  
(1) Cb refers to the capacitance of one bus line. Cb is expressed in pF units.  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
I2C Serial Bus Timing Parameter (continued)  
See(1) and Figure 1.  
MIN  
4.7  
0.6  
0.26  
160  
4
MAX  
UNIT  
µs  
Standard mode  
Setup time for a start or  
Fast mode  
tSU;STA  
a repeated start  
condition  
Fast mode +  
High-speed mode  
Standard mode  
Fast mode  
ns  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
µs  
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast mode +  
High-speed mode  
Standard mode  
Fast mode  
ns  
Bus free time between a  
stop and start condition  
tBUF  
µs  
Fast mode +  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
Setup time for a stop  
condition  
tSU;STO  
Fast mode +  
High-speed mode  
Standard mode  
Fast mode  
1000  
300  
120  
80  
trDA  
tfDA  
trCL  
trCL1  
tfCL  
Rise time of SDA signal Fast mode +  
High-speed mode, Cb = 100 pF  
ns  
ns  
ns  
ns  
ns  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
250  
250  
120  
80  
Fast mode  
Fall time of SDA signal  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
1000  
300  
120  
40  
Fast mode  
Rise time of SCL signal Fast mode +  
High-speed Mode, Cb = 100 pF  
High-speed Mode, Cb = 400 pF  
Standard mode  
80  
1000  
300  
120  
80  
Rise time of SCL signal  
after a repeated start  
condition and after an  
acknowledge bit  
Fast mode  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
300  
300  
120  
40  
Fast mode  
Fall time of a SCL signal Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
80  
Capacitive load for each  
bus line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike  
suppressed in SCL and  
SDA lines (spikes that  
are less than the  
indicated width are  
suppressed)  
Fast mode, fast mode +  
High-speed mode  
tSP  
10  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
7.7 Switching Characteristics  
Limits apply over the junction temperature range –40°C TJ 125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V unless otherwise  
noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switching frequency, PWM  
mode  
MHz  
ƒSW  
2.7  
3
3.3  
Maximum switching  
VOUT 0.6 V  
2.7  
3
3.3  
frequency, PWM mode  
Automatically limited to  
smaller of ƒSW and ƒSW-MAX  
ƒSW-MAX  
MHz  
µs  
VOUT < 0.6 V  
1.8  
2
2.2  
From ENx to VOUT = 0.225 V (slew-rate  
control begins), COUT_TOTAL = 88 µF, no  
load  
Regulator start-up time (soft  
start)  
90  
SLEW_RATEx[2:0] = 000, VOUT 0.5 V  
SLEW_RATEx[2:0] = 001, VOUT 0.5 V  
SLEW_RATEx[2:0] = 010, VOUT 0.5 V  
SLEW_RATEx[2:0] = 011, VOUT 0.5 V  
SLEW_RATEx[2:0] = 100, VOUT 0.5 V  
SLEW_RATEx[2:0] = 101, VOUT 0.5 V  
SLEW_RATEx[2:0] = 110, VOUT 0.5 V  
SLEW_RATEx[2:0] = 111, VOUT 0.5 V  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
30  
15  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
10  
7.5  
3.8  
1.9  
0.94  
0.4  
Output voltage slew-rate(2)  
mV/µs  
PFM mode (automatically changing to  
PWM mode for the measurement)  
50  
4
Load current measurement  
time  
µs  
PWM mode  
(1) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(2) The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 1. I2C Timing  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
7.8 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, ƒSW = 3 MHz.  
2
1.8  
1.6  
1.4  
1.2  
1
8
7.6  
7.2  
6.8  
6.4  
6
0.8  
0.6  
0.4  
0.2  
0
5.6  
5.2  
4.8  
4.4  
4
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D011  
D010  
V(NRST) = 0 V  
V(NRST) = 1.8 V  
Regulator disabled  
Figure 2. Shutdown Current Consumption vs Input Voltage  
Figure 3. Standby Current Consumption vs Input Voltage  
80  
25  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D012  
D039  
V(NRST) = 1.8 V  
Load = 0 mA  
V(EN1) = 1.8 V  
L = 330 nH  
VOUT = 1 V  
V(NRST) = 1.8 V  
Load = 0 mA  
V(EN1) = 1.8 V  
1 phase active  
VOUT = 1 V  
L = 330 nH  
Figure 4. PFM Mode Current Consumption vs Input Voltage  
Figure 5. PWM Mode Current Consumption vs Input Voltage  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D040  
V(NRST) = 1.8 V  
Load = 0 mA  
V(EN1) = 1.8 V  
VOUT = 1 V  
L = 330 nH  
4 phases active  
Figure 6. Forced Multi-Phase Current Consumption vs Input Voltage  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8 Detailed Description  
8.1 Overview  
The LP8758 is a high-efficiency, high-performance power supply device with four step-down DC-DC converter  
cores. The cores are configured for a single 4-phase configuration. The device delivers 0.5-V to 3.36-V regulated  
voltage rail from 2.5-V to 5.5-V battery or supply voltage to portable devices such as cell phones, tablets, and  
PDAs.  
There are two modes of operation for the converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 400 mA or higher. When operating in PWM mode the phases are automatically  
added/shedded based on the load current level. Lighter output current loads will cause the converter to  
automatically switch into PFM mode for reduced current consumption and a longer battery life when forced PWM  
mode is disabled. The forced multi-phase mode can be enabled for highest transient performance.  
Additional features include soft-start, undervoltage lockout, overload protection, thermal warning, and thermal  
shutdown.  
8.1.1 Buck Information  
The LP8758 has four integrated high-efficiency buck converter cores. The cores are designed for flexibility; most  
of the functions are programmable, thus giving a possibility to optimize the regulator operation for each  
application.  
8.1.1.1 Operating Modes  
OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor.  
PWM: Converter operates in buck configuration with fixed switching frequency.  
PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current  
is discontinuous.  
8.1.1.2 Features  
Output voltage  
Forced PWM operation  
Forced multi-phase operation (forces also the PWM operation)  
Switch current limit  
Output voltage slew rate  
Enable and disable delays  
8.1.1.3 Programmability  
The following parameters can be programmed via registers:  
DVS support with programmable slew-rate  
Automatic mode control based on the loading  
Synchronous rectification  
Current mode loop with PI compensator  
Optional spread spectrum technique to reduce EMI  
Soft start  
Power good flag with maskable interrupt  
Phase control for optimized EMI  
Average output current sensing (for PFM entry, phase shedding/adding, and load current measurement)  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load  
Dynamic phase shedding/adding, each output being phase shifted  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
VANA  
Buck0  
ILIM Det  
nINT  
Interrupts  
Pwrgood Det  
Overload and  
SC Det  
Enable,  
Roof/Floor,  
Slew-Rate  
Control  
Iload ADC  
EN1  
EN2  
Buck1  
ILIM Det  
Pwrgood Det  
SDA  
SCL  
I2C  
Overload and  
SC Det  
Iload ADC  
OTP  
EPROM  
Registers  
Buck2  
ILIM Det  
Pwrgood Det  
Digital  
Logic  
Overload and  
SC Det  
UVLO  
Iload ADC  
Oscillator  
NRST  
Buck3  
ILIM Det  
Pwrgood Det  
Ref &  
Bias  
Thermal  
Monitor  
SW  
Reset  
Overload and  
SC Det  
Iload ADC  
8.3 Feature Description  
8.3.1 Multi-Phase DC-DC Converters  
8.3.1.1 Overview  
A multi-phase synchronous buck converter offers several advantages over a single power stage converter. For  
application processor power delivery, lower ripple on the input and output currents and faster transient response  
to load steps are the most significant advantages. Also, since the load current is evenly shared among multiple  
channels, the heat generated is greatly reduced for each channel due to the fact that power loss is proportional  
to square of current. Physical size of the output inductor shrinks significantly due to this heat reduction. A block  
diagram of a single core is shown in Figure 7.  
Interleaving switching action of the converters and channels in a four-phase configuration is illustrated in  
Figure 8.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Feature Description (continued)  
PMOS  
Current  
Sense  
Differential to Single-  
Ended  
FBP  
FBN  
+
-
VIN  
POS  
Current  
Limit  
œ
Slave  
Phase  
Control  
Ramp  
Generator  
VOUT  
œ
Gate  
Error  
Control  
Amp  
SW  
+
Loop  
Comp  
Voltage  
Setting  
Slew Rate  
Control  
NEG  
Current  
Limit  
Power  
Good  
+
-
VDAC  
Zero  
Cross  
Detect  
NMOS  
Current  
Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
Slave  
Interface  
IADC  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Detailed Block Diagram Showing One Core  
IL_TOT_4PH  
IL0  
IL1  
IL2  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
PWM2  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
(1)  
Figure 8. PWM Timings and Inductor Current Waveforms in 4-phase Configuration  
(1) Graph is not in scale and is for illustrative purposes only.  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.1.2 Multi-Phase Operation and Phase Adding/Shedding  
Under heavy load conditions, the 4-phase converter switches each channel 90° apart. As a result, the 4-phase  
converter has an effective ripple frequency four times greater than the switching frequency of any one phase.  
However, the parallel operation decreases the efficiency at light load conditions. In order to overcome this  
operational inefficiency, the LP8758 can change the number of active phases to optimize efficiency for the  
variations of the load. This is called phase adding/shedding. The concept is illustrated below in Figure 9.  
The converter can be forced to multi-phase operation by the BUCK0_CTRL1.BUCK0_FPWM_MP bit. If the  
regulator operates in forced multi-phase mode the forced PWM operation is automatically used. If the multi-  
phase operation is not forced, the number of phases are added and shedded automatically to follow the required  
output current.  
Best efficiency obtained with  
N=1  
N=2  
N=3  
N=4  
Load Current  
Figure 9. Multi-Phase Buck Converter Efficiency vs Number of Phases -  
(2)  
All Converters in PWM Mode  
8.3.1.3 Transition Between PWM and PFM Modes  
Normal PWM mode operation with phase-adding or phase-shedding optimizes efficiency at mid-to-full load at the  
expense of light-load efficiency. The LP8758 converter operates in PWM mode at load current of about 400 mA  
or higher. At lighter load current levels the device automatically switches into PFM mode for reduced current  
consumption when Forced PWM mode is disabled (AUTO mode operation). By combining the PFM and the  
PWM modes a high efficiency is achieved over a wide output-load current range.  
8.3.1.4 Multi-Phase Switcher Configurations  
In the multi-phase configuration the control of the multi-phase regulator settings is done using the control  
registers of the master buck. The following slave registers are ignored:  
BUCKx_CTRL1  
BUCKx_CTRL2, except ILIMx[2:0] bits  
interrupt bits related to the slave buck, except BUCKx_ILIM_INT  
(2) Graph is not in scale and is for illustrative purposes only.  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Feature Description (continued)  
8.3.1.5 Buck Converter Load Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter is selected with the  
SEL_I_LOAD.LOAD_CURRENT_BUCK_SELECT[1:0] register bits. A write to this selection register starts a  
current measurement sequence. The measurement sequence is typically 50 µs long. The LP8758 device can be  
configured to give out an interrupt INT_TOP.I_LOAD_READY after the load current measurement sequence is  
finished. Load current measurement interrupt can be masked with TOP_MASK.I_LOAD_READY_MASK bit. The  
measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits  
BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8]  
the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the  
measurement is 20.46 A. The measured current is the total value of the master and slave phases.  
8.3.1.6 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The LP8758's register selectable spread-spectrum mode minimizes the  
need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency varies  
randomly by ±5% (depending on selected switching frequency) about the center frequency, reducing the EMI  
emissions radiated by the converter and associated passive components and PCB traces (see Figure 10). This  
feature is enabled with the CONFIG.EN_SPREAD_SPEC bit, and it affects all the buck cores.  
Frequency  
Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread  
spectrum architecture of the LP8758 spreads that energy over a large bandwidth.  
Figure 10. Spread-Spectrum Modulation  
8.3.2 Power-Up  
The power-up sequence for the LP8758 is as follows:  
VANA (and VIN_Bx) reach min recommended levels (V(VANA) > VANAUVLO).  
NRST is set to high level. This initiates power-on-reset (POR), OTP reading and enables the system I/O  
interface. The I2C host allows at least 1.2 ms before writing or reading data to the LP8758.  
Device enters STANDBY mode.  
The host can change the default register setting by I2C if needed.  
The regulator can be enabled/disabled by ENx pin(s) and by I2C interface.  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Regulator Control  
8.3.3.1 Enabling and Disabling Regulator  
The regulator can be enabled when the device is in STANDBY state. There are two ways for enable and disable  
the regulator:  
Using BUCK0_CTRL1.EN_BUCK0 register bit (BUCK0_CTRL1.EN_PIN_CTRL0 register bit is '0').  
Using EN1/2 control pins (BUCK0_CTRL1.EN_BUCK0 register bit is  
BUCK0_CTRL1.EN_PIN_CTRL0 register bit is '1').  
'1'  
AND  
If the EN1/2 control pins are used for enable and disable then the delay from the control signal rising edge to  
startup is set by BUCK0_DELAY.BUCK0_STARTUP_DELAY[3:0] bits and the delay from control signal falling  
edge to shutdown is set by BUCK0_DELAY.BUCK0_SHUTDOWN_DELAY[3:0] bits. The delays are valid only for  
EN1/2 signal and not for control with BUCK0_CTRL1.EN_BUCK0 bit. The delay time implemented by EN1/2 has  
overall +/-10% timing accuracy.  
The control of the regulator (with 0 ms delays) is shown in Table 1. The multi-phase regulator is controlled with  
registers of the master phase.  
Table 1. Regulator Control  
CONTROL  
METHOD  
BUCK0_CTRL1  
EN_PIN_CTRL0  
BUCK0_CTRL1  
EN_PIN_SELECT0  
BUCK0_CTRL1  
EN_ROOF_FLOOR0  
BUCK0  
OUTPUT VOLTAGE  
ROW  
EN_BUCKx0  
EN1 PIN  
EN2 PIN  
Enable/disable  
control with  
EN_BUCK0 bit  
1
2
0
1
Don't Care  
0
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care Disabled  
Don't Care BUCK0_VOUT.BUCK0_VSET[7:0]  
Enable/disable  
control with EN1  
pin  
3
4
1
1
1
1
0
0
0
0
Low  
Don't Care Disabled  
High  
Don't Care BUCK0_VOUT.BUCK0_VSET[7:0]  
Enable/disable  
control with EN2  
pin  
5
6
1
1
1
1
1
1
0
0
Don't Care  
Don't Care  
Low  
Disabled  
High  
BUCK0_VOUT.BUCK0_VSET[7:0]  
Roof/floor  
control with EN1  
pin  
7
1
1
0
1
Low  
Don't Care BUCK0_FLOOR_VOUT.BUCK0_F  
LOOR_VSET[7:0]  
8
9
1
1
1
1
0
1
1
1
High  
Don't Care BUCK0_VOUT.BUCK0_VSET[7:0]  
Roof/floor  
control with EN2  
pin  
Don't Care  
Low  
BUCK0_FLOOR_VOUT.BUCK0_F  
LOOR_VSET[7:0]  
10  
1
1
1
1
Don't Care  
High  
BUCK0_VOUT.BUCK0_VSET[7:0]  
The following configuration allows the enable/disable control using ENx pin:  
BUCK0_CTRL1.EN_BUCK0 = 1  
BUCK0_CTRL1.EN_PIN_CTRL0 = 1  
BUCK0_CTRL1.EN_ROOF_FLOOR0 = 0  
BUCK0_VOUT.BUCK0_VSET[7:0] = Required voltage when ENx is high  
The enable pin for control is selected with BUCK0_CTRL1.EN_PIN_SELECT0  
When the ENx pin is low, Table 1 row 3 (or 5) is valid, and the regulator is disabled. By setting ENx pin high,  
Table 1 row 4 (or 6) is valid, and the regulator is enabled with required voltage.  
If the regulator is enabled all the time, and the ENx pin controls selection between two voltage level, the following  
configuration is used:  
BUCK0_CTRL1.EN_BUCK0 = 1  
BUCK0_CTRL1.EN_PIN_CTRL0 = 1  
BUCK0_CTRL1.EN_ROOF_FLOOR0 = 1  
BUCK0_VOUT.BUCK0_VSET[7:0] = Required voltage when ENx is high  
The enable pin for control is selected with BUCK0_CTRL1.EN_PIN_SELECT0  
When the ENx pin is low, Table 1 row 7(or 9) is valid, and the regulator is enabled with a voltage defined by  
BUCK0_FLOOR_VOUT.BUCK0_FLOOR_VSET[7:0] bits. Setting the ENx pin high, Table 1 row 8 (or 10) is valid,  
and the regulator is enabled with a voltage defined by BUCK0_VOUT.BUCK0_VSET[7:0] bits.  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
If the regulator is controlled by I2C writings, the BUCK0_CTRL1.EN_PIN_CTRL0 bit is set to 0. The  
enable/disable is controlled by the BUCK0_CTRL1.EN_BUCK0 bit, and when the regulator is enabled, the output  
voltage is defined by the BUCK0_VOUT.BUCK0_VSET[7:0] bits. The Table 1 rows 1 and 2 are valid for I2C  
controlled operation (ENx pins are ignored).  
The regulator is enabled by the ENx pin or by I2C writing as shown in Figure 11. The soft-start circuit limits the in-  
rush current during start-up. Output voltage increase rate is around 30 mV/μsec during soft-start. When the  
output voltage rises to approximately 0.3 V, the output voltage becomes slew-rate controlled. If there is a short  
circuit at the output, and the output voltage does not increase above a 0.35-V level in 1 ms, the regulator is  
disabled, and interrupt is set. When the output voltage reaches the powergood threshold level the  
INT_BUCK_0_1.BUCK0_PG_INT interrupt flag is set. The powergood interrupt flag can be masked using  
BUCK_0_1_MASK.BUCK0_PG_MASK bit.  
The ENx input pins have integrated pull-down resistors. The pull-down resistors are enabled by default and host  
can disable those with CONFIG.ENx_PD bits.  
Voltage decrease because of load  
No new Powergood interrupt  
Voltage  
BUCK0_VSET[7:0]  
Powergood  
Ramp  
BUCK0_CTRL2.SLEW_RATE0[2:0]  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
BUCK_0_1_STAT.BUCK0_STAT  
BUCK_0_1_STAT.BUCK0_PG_STAT  
INT_BUCK_0_1.BUCK0_PG_INT  
nINT  
0
0
0
1
0
0
1
1
0
1
0
Powergood  
interrupt  
Host clears  
interrupt  
Figure 11. Regulator Enable and Disable  
8.3.3.2 Changing Output Voltage  
The regulator's output voltage can be changed by the ENx pin (voltage levels defined by the BUCK0_VOUT and  
BUCK0_FLOOR_VOUT registers) or by writing to the BUCK0_VOUT and BUCK0_FLOOR_VOUT registers. The  
voltage change is always slew-rate controlled, and the slew-rate is defined by the  
BUCKx_CTRL2.SLEW_RATE[2:0] bits. During voltage change the Forced PWM mode is used automatically. If  
the multi-phase operation is forced by the BUCK0_CTRL1. BUCK0_FPWM_MP bit, the regulator operates in  
multi-phase mode (four phases active). If the multi-phase operation is not forced, the number of phases are  
added and shedded automatically to follow the required slew rate. When the programmed output voltage is  
achieved, the mode becomes the one defined by load current, and the BUCK0_CTRL1.BUCK0_FPWM and  
BUCK0_CTRL1.BUCK0_FPWM_MP bits.  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Voltage  
BUCK0_VSET  
Powergood  
Ramp  
Powergood  
BUCK0_CTRL2.SLEW_RATE0[2:0]  
BUCK0_FLOOR_VSET  
Time  
ENx  
BUCK_0_1_STAT.BUCK0_STAT  
BUCK_0_1_STAT.BUCK0_PG_STAT  
INT_BUCK_0_1.BUCK0_PG_INT  
nINT  
1
1
0
0
1
1
0
1
1
0
Powergood  
interrupt  
Host clears  
interrupt  
Powergood  
interrupt  
Host clears  
interrupt  
Figure 12. Regulator Output Voltage Change  
8.3.4 Device Reset Scenarios  
There are three reset methods implemented on the LP8758:  
Software reset with RESET.SW_RESET register bit  
Reset from low logic level of NRST signal  
Undervoltage lockout (UVLO) reset from VANA supply  
An SW reset occurs when RESET.SW_RESET bit is written '1'. The bit is automatically cleared after writing. This  
event disables the regulator immediately, resets all the register bits to the default values and OTP bits are loaded  
(see Figure 14). I2C interface is not reset during software reset.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low, then the regulator is disabled  
immediately, and all the register bits are reset to the default values. When the VANA supply voltage is above  
UVLO threshold level and NRST signal rises above threshold level an internal power-on reset (POR) occurs.  
OTP bits are loaded to the registers, and a start-up is initiated according to the register settings.  
8.3.5 Diagnosis and Protection Features  
The LP8758 is capable of providing three levels of protection features:  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling the regulator; and  
Faults which are causing the device to shutdown.  
When the device detects warning/protection condition(s), the LP8758 sets the flag bits indicating what protection  
or warning conditions have occurred, and the nINT pin will be pulled low. nINT will be released again after a  
clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.  
When a fault is detected, it is indicated by a INT_TOP.RESET_REG interrupt flag after next start-up.  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
EVENT  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Table 2. Summary of Interrupt Signals  
RESULT  
No effect  
INTERRUPT REGISTER  
AND BIT  
INTERRUPT MASK  
STATUS BIT  
RECOVERY /  
INTERRUPT CLEAR  
Current limit  
triggered (20 µs  
debounce)  
INT_TOP.INT_BUCKx = 1  
INT_BUCKx.BUCKx_ILIM_I  
NT = 1  
BUCKx_MASK.BUCKx_ILI BUCKx_STAT.BUCKx_IL Write 1 to  
M_MASK  
N/A  
IM_STAT  
INT_BUCKx.BUCKx_ILI  
M_INT bit  
Interrupt is not cleared if  
current limit is active  
Short circuit (VOUT  
<
Regulator disable  
INT_TOP.INT_BUCK0 = 1  
INT_BUCK_0_1.BUCK0_SC  
_INT = 1  
N/A  
Write 1 to  
0.35 V at 1 ms after  
enable) or Overload  
(VOUT decreasing  
below 0.35V during  
operation, 1 ms  
debounce)  
INT_BUCK_0_1.BUCK0_  
SC_INT bit  
Thermal Warning  
No effect  
INT_TOP.TDIE_WARN = 1 TOP_MASK.TDIE_WARN TOP_STAT.TDIE_WARN Write 1 to  
_MASK  
_STAT  
INT_TOP.TDIE_WARN  
bit  
Interrupt is not cleared if  
temperature is above  
thermal warning level  
Thermal Shutdown  
Regulator disabled  
INT_TOP.TDIE_SD = 1  
N/A  
TOP_STAT.TDIE_SD_S Write 1 to  
TAT INT_TOP.TDIE_SD bit  
Interrupt is not cleared if  
temperature is above  
thermal shutdown level  
Powergood, output  
voltage reaches the  
programmed value  
No effect  
No effect  
INT_TOP.INT_BUCK0 = 1 BUCK_0_1_MASK.BUCK0 BUCK_0_1_STAT.BUCK Write 1 to  
INT_BUCK_0_1.BUCK0_PG  
_INT = 1  
_PG_MASK  
0_PG_STAT  
INT_BUCK_0_1.BUCK0_  
PG_INT bit  
Load current  
measurement ready  
INT_TOP.I_LOAD_READY TOP_MASK.I_LOAD_REA  
= 1 DY_MASK  
N/A  
Write 1 to  
INT_TOP.I_LOAD_REA  
DY bit  
Start-up (NRST  
rising edge)  
Device ready for  
operation, registers  
reset to default values  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
N/A  
N/A  
Write 1 to  
INT_TOP.RESET_REG  
bit  
Glitch on supply  
voltage and UVLO  
triggered (VANA  
falling and rising)  
Immediate shutdown  
followed by powerup,  
registers reset to  
default values  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
Write 1 to  
INT_TOP.RESET_REG  
bit  
Software requested Immediate shutdown  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
N/A  
Write 1 to  
INT_TOP.RESET_REG  
bit  
reset  
followed by powerup,  
registers reset to  
default values  
8.3.5.1 Warnings for Diagnosis (Interrupt)  
8.3.5.1.1 Output Current Limit  
The buck regulators have programmable output peak current limits. The limits are individually programmed for all  
buck regulators with BUCKx_CTRL2.ILIMx[2:0] bits. The current limit settings of master and slave regulators  
used for the same output voltage rail must be identical. If the load current is increased so that the current limit is  
triggered, the regulator continues to regulate to the limit current level (current peak regulation). The voltage may  
decrease if the load current is higher than limit current. If the current regulation continues for 20 µs, the LP8758  
device sets the INT_BUCKx.BUCKx_ILIM_INT bit and pulls the nINT pin low. The host processor can read  
BUCKx_STAT.BUCKx_ILIM_STAT bits to see if the regulator is still in peak current regulation mode.  
If the load is so high that the output voltage decreases below a 350-mV level, the LP8758 device disables the  
regulator and sets the INT_BUCK_0_1.BUCK0_SC_INT bit. In addition the BUCK_0_1_STAT.BUCK0_STAT bit  
is set to 0. The interrupt is cleared when the host processor writes 1 to INT_BUCK_0_1.BUCK0_SC_INT bit. The  
overload situation is shown in Figure 13.  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
BUCK0_VSET  
350mV  
Resistive  
pull-down  
1ms  
Time  
Time  
Current  
ILIMx  
25ms  
0
0
1
1
0
INT_BUCKx.BUCKx_ILIM_INT  
INT_BUCK_0_1.BUCK0_SC_INT  
BUCK_0_1_STAT.BUCK0_STAT  
nINT  
1
0
0
1
Host clearing the interrupt by writing to flags  
Figure 13. Overload Situation  
8.3.5.1.2 Thermal Warning  
The LP8758 device includes protection feature against over-temperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with CONFIG.TDIE_WARN_LEVEL bit.  
If the LP8758 device temperature increases above thermal warning level the device sets INT_TOP.TDIE_WARN  
bit and pulls nINT pin low. The status of the thermal warning can be read from TOP_STAT.TDIE_WARN_STAT  
bit and the interrupt is cleared by writing 1 to INT_TOP.TDIE_WARN bit.  
8.3.5.2 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, or undervoltage lockout), the output power FETs are set to high-impedance mode, and the output pull-  
down resistor is enabled (if enabled with BUCKx_CTRL1.EN_RDISx bits). The turn-off time of the output voltage  
is defined by the output capacitance, load current, and the resistance of the integrated pulldown resistor.  
8.3.5.2.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the LP8758 to protect itself and external components against short circuit  
at the output or against overload during start-up. The fault threshold is 350 mV, and the protection is triggered,  
and the regulator disabled, if the output voltage is below the threshold level 1 ms after the regulator is enabled.  
In a similar way the overload situation is protected during normal operation. If the regulator's feedback-pin  
voltage falls below 0.35 V, and remains below the threshold level for 1 ms, the regulator is disabled.  
In the short-circuit and overload situations the INT_BUCK_0_1.BUCK0_SC_INT and the INT_TOP.INT_BUCK0  
bits are set to 1, the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0 and the nINT signal is pulled low. The host  
processor clears the interrupt by writing 1 to the INT_BUCK_0_1.BUCK0_SC_INT bit. Upon clearing the interrupt  
the regulator makes a new start-up attempt if the enable register bits and/or ENx control signal is valid.  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8.3.5.2.2 Thermal Shutdown  
The LP8758 has an overtemperature protection function that operates to protect itself from short-term misuse  
and overload conditions. When the junction temperature exceeds around 150°C, the regulator is disabled, the  
INT_TOP.TDIE_SD bit is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT will be  
cleared by writing 1 to the INT_TOP.TDIE_SD bit. If the temperature is above thermal shutdown level the  
interrupt is not cleared. The host can read the status of the thermal shutdown from the  
TOP_STAT.TDIE_SD_STAT bit. Regulator cannot be enabled as long as the junction temperature is above  
thermal shutdown level or the thermal shutdown interrupt is pending.  
8.3.5.3 Fault (Power Down)  
8.3.5.3.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck converters are disabled immediately,  
and the output capacitor is discharged using the pulldown resistor and the LP8758 device enters SHUTDOWN.  
When VANA voltage is above UVLO threshold level and NRST signal is high, the device powers up to STANDBY  
state.  
If the reset interrupt is unmasked by default (TOP_MASK.RESET_REG_MASK = 0) the INT_TOP.RESET_REG  
interrupt indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by  
writing 1 to the INT_TOP.RESET_REG bit. If the host processor reads the INT_TOP.RESET_REG flag after  
detecting an nINT low signal, it knows that the input supply voltage has been below UVLO level (or the host has  
requested reset), and the registers are reset to default values.  
8.3.6 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Table 3. Digital Signal Filtering  
EVENT  
SIGNAL / SUPPLY  
RISING EDGE LENGTH  
FALLING EDGE LENGTH  
Enable/Disable/Voltage Select for  
BUCK0  
(1)  
(1)  
EN1  
3µs  
3µs  
Enable/Disable/Voltage Select for  
BUCK0  
(1)  
(1)  
EN2  
3µs  
3µs  
VANA undervoltage lockout  
Thermal warning  
VANA  
Immediate  
20 µs  
Immediate  
20 µs  
TDIE_WARN  
TDIE_SD  
Thermal shutdown  
Current limit  
20 µs  
20 µs  
VOUTx_ILIM  
20 µs  
20 µs  
FB_B0 - FB_B1, FB_B2 -  
FB_F3  
Overload  
1 ms  
1 ms  
FB_B0 - FB_B1, FB_B2 -  
FB_F3  
Powergood  
20 µs  
20 µs  
(1) No glitch filtering, only synchronization.  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Modes of Operation  
SHUTDOWN: The V(NRST) voltage is below threshold level. All switch, reference, control and bias circuitry of the  
LP8758 device are turned off.  
WAIT-ON: The V(NRST) voltage is above threshold level. The reference and bias circuitry are enabled. The  
regulator of the LP8758 device is turned off.  
READ OTP: The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. The regulator is disabled and the reference and bias circuitry of the LP8758 are enabled. The  
OTP bits are loaded to registers.  
STANDBY: The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. The regulator is disabled and the reference, control and bias circuitry of the LP8758 are  
enabled. All registers can be read or written by the host processor via the system serial interface.  
The regulator can be enabled if needed.  
ACTIVE:  
The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. At least one regulated DC-DC converter is enabled. All registers can be read or written by the  
host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in Figure 14.  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Device Functional Modes (continued)  
SHUTDOWN  
NRST high  
NRST low  
FROM ANY STATE  
EXCEPT SHUTDOWN  
WAIT-ON  
V(  
> VANAUVLO  
VANA)  
V(  
< VANAUVLO  
VANA)  
READ  
OTP  
FROM ANY STATE  
EXCEPT SHUTDOWN  
REG  
RESET  
STANDBY  
2
I C RESET  
REGULATOR  
ENABLED  
REGULATOR(S)  
DISABLED  
ACTIVE  
Figure 14. Device Operation Modes  
8.5 Programming  
8.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL).  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines should each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The LP8758 supports standard mode  
(100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).  
8.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Programming (continued)  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 15. Data Validity Diagram  
8.5.1.2 Start and Stop Conditions  
The LP8758 is controlled via an I2C-compatible interface. START and STOP conditions classify the beginning  
and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while SCL is  
HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C master  
always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 16. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 17 shows the  
SDA and SCL signal timing for the I2C-Compatible Bus. See the I2C Serial Bus Timing Parameter for timing  
values.  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 17. I2C-Compatible Timing  
26  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Programming (continued)  
8.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8758 pulls  
down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8758 generates an  
acknowledge after each byte has been received.  
There is one exception to the “acknowledge after every byte” rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (“negative acknowledge”) the last byte clocked  
out of the slave. This “negative acknowledge” still includes the acknowledge clock pulse (generated by the  
master), but the SDA line is not pulled down.  
NOTE  
If the NRST signal is low during I2C communication the LP8758 device does not drive  
SDA line. The ACK signal and data transfer to the master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a “0” indicates a WRITE and a “1”  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
Figure 18. Write Cycle (w = write; SDA = '0'), id = Device Address = 60Hex for LP8758  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 19. Read Cycle ( r = read; SDA = '1'), id = Device Address = 60Hex for LP8758  
Copyright © 2015–2018, Texas Instruments Incorporated  
27  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Programming (continued)  
8.5.1.4 I2C-Compatible Chip Address  
The device address for the LP8758 is 0x60. After the START condition, the I2C master sends the 7-bit address  
followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The  
second byte following the device address selects the register address to which the data will be written. The third  
byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Here device address is 110 0000Bin = 60Hex.  
Figure 20. Device Address  
8.5.1.5 Auto Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the LP8758, the internal address index counter will be incremented by one and the next  
register will be written. Table 4 below shows writing sequence to two consecutive registers. Note that the auto-  
increment feature does not work for read.  
Table 4. Auto-Increment Example  
Master  
Action  
Start  
Device  
Address  
= 60H  
Write  
Register  
Address  
Data  
Data  
Stop  
LP8758  
Action  
ACK  
ACK  
ACK  
ACK  
28  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8.6 Register Maps  
8.6.1 Register Descriptions  
The LP8758 is controlled by a set of registers through the system serial interface port. The device registers, their  
addresses and their abbreviations are listed in Table 5. A more detailed description is given in sections  
DEV_REV to I_LOAD_1.  
Table 5. Summary of LP8758 Control Registers  
Addr  
Register  
Read /  
Write  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x01  
0x02  
OTP_REV  
R
OTP_ID[7:0]  
BUCK0  
_FPWM  
_MP  
BUCK0_  
CTRL1  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF  
_FLOOR0  
BUCK0_  
FPWM  
R/W  
EN_BUCK0  
EN_RDIS0  
Reserved  
BUCK0_  
CTRL2  
0x03  
0x05  
0x07  
0x09  
0x0A  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
ILIM0[2:0]  
ILIM1[2:0]  
ILIM2[2:0]  
ILIM3[2:0]  
SLEW_RATE0[2:0]  
Reserved  
BUCK1_  
CTRL2  
Reserved  
Reserved  
Reserved  
BUCK2_  
CTRL2  
Reserved  
BUCK3_  
CTRL2  
Reserved  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK0_  
FLOOR_  
VOUT  
0x0B  
R/W  
BUCK0_FLOOR_VSET[7:0]  
BUCK0_  
DELAY  
0x12  
0x16  
R/W  
R/W  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
SW_  
RESET  
RESET  
CONFIG  
INT_TOP  
Reserved  
TDIE  
_WARN  
_LEVEL  
EN_  
SPREAD  
_SPEC  
0x17  
R/W  
Reserved  
EN2_PD  
EN1_PD  
INT_  
BUCK3  
INT_  
INT_  
INT_  
BUCK0  
TDIE_  
WARN  
RESET_  
REG  
I_LOAD_  
READY  
0x18  
0x19  
0x1A  
R/W  
R/W  
R/W  
TDIE_SD  
Reserved  
BUCK2  
BUCK1  
INT_BUCK_  
0_1  
BUCK1_  
ILIM_INT  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
Reserved  
Reserved  
INT_BUCK_  
2_3  
BUCK3_  
ILIM_INT  
BUCK2_  
ILIM_INT  
Reserved  
TDIE_  
WARN_  
STAT  
TOP_  
STAT  
TDIE_SD  
_STAT  
0x1B  
R
Reserved  
Reserved  
BUCK1_  
ILIM_  
STAT  
BUCK0_  
ILIM_  
STAT  
BUCK_0_1_  
STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
0x1C  
0x1D  
0x1E  
R
R
Reserved  
Reserved  
Reserved  
BUCK_2_3_  
STAT  
BUCK3_  
ILIM_STAT  
BUCK2_  
ILIM_STAT  
Reserved  
I_LOAD_  
READY_  
MASK  
TOP_  
MASK  
TDIE_WAR  
N_MASK  
RESET_  
REG_MASK  
R/W  
Reserved  
BUCK1_  
ILIM_  
MASK  
BUCK0_  
ILIM_  
MASK  
BUCK_0_1_  
MASK  
BUCK0_  
PG_MASK  
0x1F  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK3_  
ILIM_  
MASK  
BUCK2_  
ILIM_  
MASK  
BUCK_2_3_  
MASK  
0x20  
0x21  
R/W  
R/W  
Reserved  
SEL_I_  
LOAD  
LOAD_CURRENT_  
BUCK_SELECT[1:0]  
Reserved  
Reserved  
BUCK_LOAD_CURRENT[7:0]  
BUCK_LOAD_CURRENT[  
9:8]  
0x22  
0x23  
I_LOAD_2  
I_LOAD_1  
R/W  
R/W  
Copyright © 2015–2018, Texas Instruments Incorporated  
29  
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1.1 DEV_REV  
Address: 0x00  
D7  
D6  
D5  
D4  
D3  
D2  
METAL_LAYER[3:0]  
Description  
D1  
D0  
DEVICE_ID[1:0]  
ALL_LAYER[1:0]  
Bits  
7:6  
Field  
Type  
R
Default  
00  
DEVICE_ID[1:0]  
ALL_LAYER[1:0]  
Device specific ID code.  
5:4  
R
00  
Shows the all layer version of the device:  
00 - First all layer version  
01 - Second all layer version  
10 - Third all layer version  
11 - Fourth all layer version  
3:0  
METAL_LAYER  
[3:0]  
R
0001  
Shows the metal layer version of the device:  
0000 - All layer version  
0001 - First metal layer spin  
...  
1111 - 15th metal layer spin  
8.6.1.2 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
1011 0000 Identification Code of the OTP EPROM Version.  
8.6.1.3 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK0  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF_  
FLOOR0  
EN_RDIS0  
Reserved  
BUCK0_FPWM BUCK0_FPWM  
_MP  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK0  
EN_PIN_CTRL0  
EN_PIN_SELECT0  
R/W  
1
Enable BUCK0 regulator:  
0 - BUCK0 regulator is disabled  
1 - BUCK0 regulator is enabled.  
R/W  
R/W  
R/W  
R/W  
1
0
0
1
Enable EN1/2 pin control for BUCK0:  
0 - only EN_BUCK0 bit controls BUCK0  
1 - EN_BUCK0 bit AND EN1/2 pin control BUCK0.  
Select which ENx pin controls BUCK0 if EN_PIN_CTRL0 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR0  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL0 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control.  
EN_RDIS0  
Enable output discharge resistor when BUCK0 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
2
1
Reserved  
R/W  
R/W  
0
0
BUCK0_FPWM  
Forces the BUCK0 regulator to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
BUCK0_FPWM  
_MP  
R/W  
0
Forces the BUCK0 regulator to operate always in multi-phase and forced PWM  
operation mode:  
0 - Automatic phase adding and shedding.  
1 - Forced to multi-phase operation, 2 phases in the 2-phase configuration, 3 phases  
in the 3-phase configuration and 4 phases in the 4-phase configuration.  
30  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8.6.1.4 BUCK0_CTRL2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM0[2:0]  
5:3  
111  
Sets the switch current limit of BUCK0. Can be programmed at any time during  
operation:  
000 - 1.5 A  
001 - 2.0 A  
010 - 2.5 A  
011 - 3.0 A  
100 - 3.5 A  
101 - 4.0 A  
110 - 4.5 A  
111 - 5.0 A (Default)  
2:0 SLEW_RATE0[2:0]  
R/W  
010  
Sets the output voltage slew rate for BUCK0 regulator (rising and falling edges):  
000 - 30 mV/µs  
001 - 15 mV/µs  
010 - 10 mV/µs (Default)  
011 - 7.5 mV/µs  
100 - 3.8 mV/µs  
101 - 1.9 mV/µs  
110 - 0.94 mV/µs  
111 - 0.4 mV/µs  
8.6.1.5 BUCK1_CTRL2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM1[2:0]  
Reserved  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM1[2:0]  
5:3  
111  
Sets the switch current limit of BUCK1. Can be programmed at any time during  
operation:  
000 - 1.5 A  
001 - 2.0 A  
010 - 2.5 A  
011 - 3.0 A  
100 - 3.5 A  
101 - 4.0 A  
110 - 4.5 A  
111 - 5.0 A (Default)  
2:0  
Reserved  
R/W  
010  
Copyright © 2015–2018, Texas Instruments Incorporated  
31  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1.6 BUCK2_CTRL2  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM2[2:0]  
Reserved  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM2[2:0]  
5:3  
111  
Sets the switch current limit of BUCK2. Can be programmed at any time during  
operation:  
000 - 1.5 A  
001 - 2.0 A  
010 - 2.5 A  
011 - 3.0 A  
100 - 3.5 A  
101 - 4.0 A  
110 - 4.5 A  
111 - 5.0 A (Default)  
2:0  
Reserved  
R/W  
010  
8.6.1.7 BUCK3_CTRL2  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM3[2:0]  
Reserved  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM3[2:0]  
5:3  
111  
Sets the switch current limit of BUCK3. Can be programmed at any time during  
operation:  
000 - 1.5 A  
001 - 2.0 A  
010 - 2.5 A  
011 - 3.0 A  
100 - 3.5 A  
101 - 4.0 A  
110 - 4.5 A  
111 - 5.0 A (Default)  
2:0  
Reserved  
R/W  
010  
8.6.1.8 BUCK0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
0110 0001 Sets the output voltage of BUCK0 regulator  
0.5 V - 0.73 V, 10 mV steps  
0000 0000 - 0.5V  
...  
0001 0111 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0001 1000 - 0.735 V  
...  
1001 1101 - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
1001 1110 - 1.42 V  
...  
1111 1111 - 3.36 V  
32  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8.6.1.9 BUCK0_FLOOR_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D4  
BUCK0_FLOOR  
_VSET[7:0]  
D3  
D2  
D1  
D0  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK0_FLOOR  
_VSET[7:0]  
R/W  
0000 0000 Sets the output voltage of BUCK0 regulator when Floor state is used  
0.5 V - 0.73 V, 10 mV steps  
0000 0000 - 0.5V  
...  
0001 0111 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0001 1000 - 0.735 V  
...  
1001 1101 - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
1001 1110 - 1.42 V  
...  
1111 1111 - 3.36 V  
8.6.1.10 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0000  
Shutdown delay of BUCK0 from falling edge of ENx signal:  
0000 - 0 ms  
0001 - 1 ms  
...  
1111 - 15 ms  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
0000  
Start-up delay of BUCK0 from rising edge of ENx signal:  
0000 - 0 ms  
0001 - 1 ms  
...  
1111 - 15 ms  
Copyright © 2015–2018, Texas Instruments Incorporated  
33  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1.11 RESET  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers will be reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
8.6.1.12 CONFIG  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN1_PD  
EN_SPREAD  
_SPEC  
Bits  
7:4  
3
Field  
Type  
R/W  
R/W  
Default  
0000  
0
Description  
Reserved  
TDIE_WARN_  
LEVEL  
Thermal warning threshold level.  
0 - 125°C  
1 - 105°C.  
2
1
0
EN2_PD  
EN1_PD  
R/W  
R/W  
R/W  
1
1
0
Selects the pull down resistor on the EN2 input pin.  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
Selects the pull down resistor on the EN1 input pin.  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
EN_SPREAD  
_SPEC  
Enable spread spectrum feature:  
0 - Disabled  
1 - Enabled  
8.6.1.13 INT_TOP  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INT_BUCK3  
INT_BUCK2  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
TDIE_WARN  
RESET_REG  
I_LOAD_  
READY  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
INT_BUCK3  
INT_BUCK2  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
R
0
Interrupt indicating that output BUCK3 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK3 register.  
This bit is cleared automatically when INT_BUCK3 register is cleared to 0x00.  
R
R
0
0
0
0
Interrupt indicating that output BUCK2 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK2 register.  
This bit is cleared automatically when INT_BUCK2 register is cleared to 0x00.  
Interrupt indicating that output BUCK1 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK1 register.  
This bit is cleared automatically when INT_BUCK1 register is cleared to 0x00.  
R
Interrupt indicating that output BUCK0 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK0 register.  
This bit is cleared automatically when INT_BUCK0 register is cleared to 0x00.  
R/W  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The regulator has been disabled if it was enabled. The  
regulator cannot be enabled if this bit is active. The actual status of the thermal  
warning is indicated by TOP_STAT.TDIE_SD_STAT bit.  
Write 1 to clear interrupt.  
34  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
Bits  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Field  
Type  
Default  
Description  
2
TDIE_WARN  
R/W  
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TOP_STAT.TDIE_WARN_STAT bit.  
Write 1 to clear interrupt.  
1
RESET_REG  
R/W  
R/W  
0
0
Latched status bit indicating that either startup (NRST rising edge) has done, VANA  
supply voltage has been below undervoltage threshold level or the host has requested  
a reset (RESET.SW_RESET). The regulator has been disabled, and registers are  
reset to default values and the normal startup procedure is done.  
Write 1 to clear interrupt.  
0
I_LOAD_READY  
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
8.6.1.14 INT_BUCK_0_1  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
7:5  
4
Field  
Reserved  
Type  
R/W  
R/W  
Default  
000  
Description  
BUCK1_ILIM_INT  
0
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_INT  
Latched status bit indicating that BUCK0 output voltage has reached powergood  
threshold level.  
Write 1 to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK0 output voltage has fallen below 0.35V  
level during operation or BUCK0 output didn't reach 0.35 V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
8.6.1.15 INT_BUCK_2_3  
Address: 0x1A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_ILIM  
_INT  
Bits  
7:5  
4
Field  
Reserved  
Type  
R/W  
R/W  
Default  
000  
Description  
BUCK3_ILIM_INT  
0
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3:1  
0
Reserved  
R/W  
R/W  
000  
0
BUCK2_ILIM_INT  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
Copyright © 2015–2018, Texas Instruments Incorporated  
35  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1.16 TOP_STAT  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
Reserved  
Bits  
7:4  
3
Field  
Type  
R
Default  
0000  
0
Description  
Reserved  
TDIE_SD_STAT  
R
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below thermal shutdown level  
1 - Die temperature above thermal shutdown level.  
2
TDIE_WARN  
_STAT  
R
R
0
Status bit indicating the status of thermal warning:  
0 - Die temperature below thermal warning level  
1 - Die temperature above thermal warning level.  
1:0  
Reserved  
00  
8.6.1.17 BUCK_0_1_STAT  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
7:5  
4
Field  
Type  
R
Default  
000  
Description  
Reserved  
BUCK1_ILIM  
_STAT  
R
0
Status bit indicating BUCK1 current limit status (raw status)  
0 - BUCK1 output current is below current limit level  
1 - BUCK1 output current limit is active.  
3
2
BUCK0_STAT  
R
R
0
0
Status bit indicating the enable/disable status of BUCK0:  
0 - BUCK0 regulator is disabled  
1 - BUCK0 regulator is enabled.  
BUCK0_PG_STAT  
Reserved  
Status bit indicating BUCK0 output voltage validity (raw status)  
0 - BUCK0 output is above powergood threshold level  
1 - BUCK0 output is below powergood threshold level.  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating BUCK0 current limit status (raw status)  
0 - BUCK0 output current is below current limit level  
1 - BUCK0 output current limit is active.  
8.6.1.18 BUCK_2_3_STAT  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_ILIM  
_STAT  
Reserved  
BUCK2_ILIM  
_STAT  
Bits  
7:5  
4
Field  
Type  
R
Default  
000  
Description  
Reserved  
BUCK3_ILIM  
_STAT  
R
0
Status bit indicating BUCK3 current limit status (raw status)  
0 - BUCK3 output current is below current limit level  
1 - BUCK3 output current limit is active.  
3:1  
0
Reserved  
R
R
000  
0
BUCK2_ILIM  
_STAT  
Status bit indicating BUCK2 current limit status (raw status)  
0 - BUCK2 output current is below current limit level  
1 - BUCK2 output current limit is active.  
36  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
8.6.1.19 TOP_MASK  
Address: 0x1E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_WARN  
_MASK  
RESET_REG  
_MASK  
I_LOAD_  
READY_MASK  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0 0000  
0
Description  
Reserved  
TDIE_WARN  
_MASK  
Masking for thermal warning interrupt INT_TOP.TDIE_WARN:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect TOP_STAT.TDIE_WARN_STAT status bit.  
1
0
RESET_REG  
_MASK  
R/W  
R/W  
1
0
Masking for register reset interrupt INT_TOP.RESET_REG:  
0 - Interrupt generated  
1 - Interrupt not generated.  
I_LOAD_  
READY_MASK  
Masking for load current measurement ready interrupt INT_TOP.I_LOAD_READY.  
0 - Interrupt generated  
1 - Interrupt not generated.  
8.6.1.20 BUCK_0_1_MASK  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
7:5  
4
Field  
Type  
R/W  
R/W  
Default  
000  
Description  
Reserved  
BUCK1_ILIM  
_MASK  
1
Masking for BUCK1 current limit detection interrupt INT_BUCK_0_1.BUCK1_ILIM_INT:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_MASK  
Masking for BUCK0 power good interrupt INT_BUCK_0_1.BUCK0_PG_INT:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK_0_1_STAT.BUCK1_PG_STAT status bit.  
1
0
Reserved  
R
0
0
BUCK0_ILIM  
_MASK  
R/W  
Masking for BUCK0 current limit detection interrupt INT_BUCK_0_1.BUCK0_ILIM_INT:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
Copyright © 2015–2018, Texas Instruments Incorporated  
37  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1.21 BUCK_2_3_MASK  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
7:5  
4
Field  
Type  
R/W  
R/W  
Default  
000  
Description  
Reserved  
BUCK3_ILIM  
_MASK  
1
Masking for BUCK3 current limit detection interrupt INT_BUCK_2_3.BUCK3_ILIM_INT:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK_2_3_STAT.BUCK3_ILIM_STAT status bit.  
3:1  
0
Reserved  
R/W  
R/W  
000  
1
BUCK2_ILIM  
_MASK  
Masking for BUCK2 current limit detection interrupt INT_BUCK_2_3.BUCK2_ILIM_INT:  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK_2_3_STAT.BUCK1_ILIM_STAT status bit.  
8.6.1.22 SEL_I_LOAD  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
00 0000  
00  
Description  
7:2  
Reserved  
1:0 LOAD_CURRENT_  
BUCK_SELECT  
[1:0]  
Start the current measurement on the selected regulator:  
00 - BUCK0  
01 - BUCK1  
10 - BUCK2  
11 - BUCK3  
The measurement is started when register is written.  
If the selected buck is master, the measurement result is a sum current of master and  
slave bucks.  
If the selected buck is slave, the measurement result is a current of the selected slave  
bucks.  
8.6.1.23 I_LOAD_2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
7:2  
Field  
Type  
R
Default  
00 0000  
00  
Description  
Reserved  
1:0  
BUCK_LOAD_  
CURRENT[9:8]  
R
This register describes 3 MSB bits of the average load current on selected regulator  
with a resolution of 20 mA per LSB and max 20 A current.  
8.6.1.24 I_LOAD_1  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
38  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
Bits  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0000 0000 This register describes 8 LSB bits of the average load current on selected regulator  
with a resolution of 10 mA per LSB and max 20 A current.  
Copyright © 2015–2018, Texas Instruments Incorporated  
39  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP8758 is a multi-phase step-down converter with four switcher cores bundled together.  
9.2 Typical Application  
4-Phase configuration  
0.33mH  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
SW_B0  
SW_B1  
VBAT  
0.33mH  
22mF  
22mF  
Load  
CPOL  
10mF  
10mF  
10mF  
10mF  
0.33mH  
0.33mH  
SW_B2  
SW_B3  
VANA  
100nF  
AGND  
SGND  
22mF  
22mF  
1.8V IO  
10kW  
1.8kW 1.8kW  
FB_B0  
FB_B1  
SDA  
SCL  
FB_B2  
FB_B3  
nINT  
Host  
Digital  
Processor  
NRST  
Control  
EN1  
EN2  
Figure 21. LP8758 Typical Application Circuit  
Table 6. Design Parameters  
9.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range  
Output voltage  
2.5 V to 5.5 V  
1.1 V  
Converter operation mode  
Maximum load current  
Inductor current limit  
Auto mode (PWM-PFM)  
16 A  
5 A  
40  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
9.2.2 Detailed Design Procedure  
The performance of the LP8758 device depends greatly on the care taken in designing the printed circuit board  
(PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended, while  
proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling capacitors  
must be connected close to the device and between the power and ground pins to support high peak currents  
being drawn from system power rail during turn-on of the switching MOSFETs. Keep input and output traces as  
short as possible, because trace inductance, resistance, and capacitance can easily become the performance  
limiting items. The separate power pins VIN_Bx are not connected together internally. The VIN_Bx power  
connections shall be connected together outside the package using power plane construction.  
9.2.2.1 Application Components  
9.2.2.1.1 Inductor Selection  
DC bias current characteristics of inductors must be considered. Different manufacturers follow different  
saturation current rating specifications, so attention must be given to details. DC bias curves should be requested  
from them as part of the inductor selection process. Minimum effective value of inductance to ensure good  
performance is 0.22 μH at 4-A bias current over the inductor's operating temperature range. The inductor’s DC  
resistance should be less than 0.05 for good efficiency at high current condition. The inductor AC loss  
(resistance) also affects conversion efficiency. Higher Q factor at switching frequency usually gives better  
efficiency at light load to middle load. See Table 7. Shielded inductors are preferred as they radiate less noise.  
Table 7. Recommended Inductors  
MANUFACTURER  
PART NUMBER  
VALUE  
DIMENSIONS L×W×H  
(mm)  
DCR (m)  
TOKO  
TDK  
DFE252010F-R33M  
VLS252010HBX-R33M  
VLS252010HBX-R47M  
TFM2016GHM-0R47M  
DFE322512C R47  
0.33 µH  
0.33 µH  
0.47 µH  
0.47 µH  
0.47 µH  
2.5 × 2.0 × 1.0  
2.5 × 2.0 × 1.0  
2.5 × 2.0 × 1.0  
2.0 × 1.6 × 1.0  
3.2 × 2.5 × 1.2  
16 (typ), 21 (max)  
25 (typ), 31 (max)  
29 (typ), 35 (max)  
46 (max)  
TDK  
TDK  
TOKO  
21 (typ), 31 (max)  
9.2.2.1.2 Input Capacitor Selection  
A ceramic input capacitor of 10 μF, 6.3 V is sufficient for most applications. Place the power input capacitor as  
close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating may  
be used to improve input voltage filtering. Use X7R or X5R types, do not use Y5V or F. DC bias characteristics of  
ceramic capacitors must be considered when selecting case sizes like 0402. Minimum effective input  
capacitance to ensure good performance is 1.9 μF per buck input at maximum input voltage DC bias including  
tolerances and over ambient temp range, assuming that there are at least 22 μF of additional capacitance  
common for all the power input pins on the system power rail. See Table 8.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance (ESR)  
provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input  
filter capacitor with sufficient ripple current rating.  
The VANA input is used to supply analog and digital circuits in the device. See recommended components from  
Table 9 for VANA input supply filtering.  
Table 8. Recommended Power Input Capacitors (X5R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L×W×H  
(mm)  
VOLTAGE  
RATING  
Murata  
GRM188R60J106ME47  
10 µF (20%)  
0603  
1.6 × 0.8 × 0.8  
6.3 V  
Copyright © 2015–2018, Texas Instruments Incorporated  
41  
 
 
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 9. Recommended VANA Supply Filtering Components  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L×W×H VOLTAGE RATING  
(mm)  
Samsung  
Murata  
CL03A104KP3NNNC  
100 nF (10%)  
100 nF (10%)  
0201  
0201  
0.6 × 0.3 × 0.3  
0.6 × 0.3 × 0.3  
10 V  
GRM033R61A104KE84  
6.3 V  
9.2.2.1.3 Output Capacitor Selection  
Use ceramic capacitors, X7R or X5R types; do not use Y5V or F. DC bias voltage characteristics of ceramic  
capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias  
curves should be requested from them as part of the capacitor selection process. The output filter capacitor  
smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient  
load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance  
and sufficiently low ESR and ESL to perform these functions. Minimum effective output capacitance to ensure  
good performance is 10 μF per phase at the output voltage DC bias including tolerances and over ambient temp  
range.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See Table 10.  
A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as  
decreases the PFM switching frequency. For most 4-phase applications 4 x 22 μF 0603 capacitors for COUT are  
suitable. A point-of-load (POL) capacitance CPOL can be added with remove feedback as shown in Figure 21.  
Although a converter's loop compensation can be programmed to adapt to virtually several hundreds of  
microfarads COUT, it is preferable for COUT to be < 200 µF (4-phase configuration). Choosing higher than that is  
not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage  
ramp, especially for very large (> 100 µF) output capacitors. For large output capacitors, the output voltage might  
be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the  
output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be  
longer. At shutdown, if the output capacitor is discharged by the internal discharge resistor, more time is required  
to settle VOUT down as a consequence of the increased time constant.  
Table 10. Recommended Output Capacitors (X5R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L×W×H  
(mm)  
VOLTAGE  
RATING  
Samsung  
Murata  
CL10A226MP8NUNE  
22 µF (20%)  
22 µF (20%)  
0603  
0603  
1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
10 V  
GRM188R60J226MEA0  
6.3 V  
42  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
9.2.3 Application Curves  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25 °C, ƒSW = 3 MHz, L = 330 nH  
(TOKO DFE252010F-R33M), CPOL = 22 µF. Measurements done with connections in Figure 21.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VOUT = 1.2V  
VOUT = 1V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1V  
VOUT = 0.8V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Output Current (A)  
Output Current (A)  
D014  
D015  
VIN = 3.7 V  
Figure 22. Efficiency in Forced PWM Mode  
VIN = 3.7 V  
Inductor = TDK VLS252010HBX-R47M  
Figure 23. Efficiency in Forced PWM Mode  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VOUT = 1.2V  
VOUT = 1.1V  
VOUT = 1V  
VOUT = 0.9V  
VOUT = 0.8V  
AUTO  
FPWM  
FMP  
0.001  
0.01  
0.1  
1
10 20  
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (A)  
Input Voltage (V)  
D002  
D016  
VIN = 3.7 V  
VOUT = 1 V  
Load = 1 A  
Figure 25. Efficiency vs Input Voltage  
Figure 24. Efficiency in PFM, PWM and Forced Multi-Phase  
Mode  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
65  
60  
55  
50  
VOUT = 1.2V  
VOUT = 1.1V  
VOUT = 1V  
VOUT = 0.9V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.1V  
VOUT = 1V  
VOUT = 0.9V  
VOUT = 0.8V  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D017  
D018  
Load = 8 A  
Figure 26. Efficiency vs Input Voltage  
Load = 12 A  
Figure 27. Efficiency vs Input Voltage  
Copyright © 2015–2018, Texas Instruments Incorporated  
43  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
1.005  
1.004  
1.003  
1.002  
1.001  
1
1.01  
1.008  
1.006  
1.004  
1.002  
1
0.999  
0.998  
0.997  
0.996  
0.995  
0.998  
0.996  
0.994  
0.992  
0.99  
VIN = 2.5V  
VIN = 3.7V  
VIN = 5.5V  
VIN = 2.5V  
VIN = 3.7V  
VIN = 5.5V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
Output Current (A)  
D005  
D004  
VOUT = 1 V  
VOUT = 1 V  
Figure 28. Output Voltage vs Load Current in Forced PWM  
Mode  
Figure 29. Output Voltage vs Load Current in PWM-PFM  
Mode  
1.015  
1.005  
PWM Mode  
PFM Mode  
1.004  
1.003  
1.002  
1.001  
1
1.010  
1.005  
1.000  
0.995  
0.990  
0.999  
0.998  
0.997  
0.996  
0.995  
-50  
-25  
0
25  
50  
75  
100  
125  
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (èC)  
D048  
Input Voltage (V)  
D044  
VOUT = 1 V  
VOUT = 1 V  
Load = 1 A  
Load = 3 A (PWM Mode) and 100 mA (PFM Mode)  
Figure 31. Output Voltage vs Temperature  
Figure 30. Output Voltage vs Input Voltage in PWM Mode  
5
V(EN1) (500 mV/div)  
4
3
2
1
0
VOUT (200 mV/div)  
V(SW_B0) (2 V/div)  
SHEDDING  
ADDING  
Time (40 µs/div)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Load = 0 A  
Output Current (A)  
D041  
Figure 32. Phase Adding and Shedding vs Load Current  
Figure 33. Start-up with EN1, Forced PWM  
44  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
V(EN1) (500 mV/div)  
V(EN1) (500 mV/div)  
VOUT (200 mV/div)  
VOUT (200 mV/div)  
ILOAD (2 A/div)  
ILOAD (2 A/div)  
V(SW_B0) (2 V/div)  
V(SW_B0) (2 V/div)  
Time (40 µs/div)  
Time (20 µs/div)  
Load = 3 A  
Load = 3 A  
Figure 34. Start-up with EN1, Forced PWM  
Figure 35. Shutdown with EN1, Forced PWM  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
V(SW_B0) (2 V/div)  
V(SW_B0) (2 V/div)  
Time (40 µs/div)  
Time (200 ns/div)  
Load = 10 mA  
Load = 200 mA  
Figure 36. Output Voltage Ripple, PFM Mode  
Figure 37. Output Voltage Ripple, Forced PWM Mode  
VOUT (10 mV/div)  
V(SW_B0) (1 V/div)  
VOUT (10 mV/div)  
V(SW_B0) (1 V/div)  
Time (2 µs/div)  
Time (4 µs/div)  
Figure 38. Transient from PFM-to-PWM Mode  
Figure 39. Transient from PWM-to-PFM Mode  
Copyright © 2015–2018, Texas Instruments Incorporated  
45  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
V(SW_B1) (2 V/div)  
V(SW_B1) (2 V/div)  
V(SW_B0) (2 V/div)  
V(SW_B0) (2V/div)  
Time (10 µs/div)  
Time (10 µs/div)  
Figure 41. Transient from 2-Phase to 1-Phase Operation  
Figure 40. Transient from 1-Phase to 2-Phase Operation  
VOUT (20 mV/div)  
VOUT (20 mV/div)  
ILOAD (1 A/div)  
ILOAD (4 A/div)  
Time (40 µs/div)  
Time (40 µs/div)  
Load = 1 A 8 A 1 A  
TR = TF = 400 ns  
Load = 0.1 A 4.1 A 0.1 A  
TR = TF = 100 ns  
Figure 43. Transient Load Step Response, FPWM Mode  
Figure 42. Transient Load Step Response, AUTO Mode  
VIN 500 mV/DIV  
VOUT (20 mV/div)  
VOUT 20 mV/DIV  
ILOAD (4 A/div)  
TIME 400 µs/DIV  
Load = 12 A  
Time (40 µs/div)  
Load = 1 A 12 A 1 A  
TR = TF = 10 µs  
TR = TF = 1 µs  
VIN = 2.5 V 3 V 2.5 V  
Figure 45. Transient Line Response  
Figure 44. Transient Load Step Response, FPWM Mode  
46  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
VOUT (200 mV/div)  
VOUT (200 mV/div)  
Time (400 µs/div)  
Time (400 µs/div)  
Figure 46. VOUT Transition from 0.6 V to 1.4 V with  
Different Slew Rate Settings  
Figure 47. VOUT Transition from 1.4 V to 0.6 V with  
Different Slew Rate Settings  
V(EN1) (1 V/div)  
V(nINT) (1 V/div)  
VOUT (50 mV/div)  
IOUT (5 A/div)  
Time (200 µs/div)  
Figure 48. Start-up with Short on Output  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply  
should be well-regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even at load transition condition. The resistance of the input supply rail should be low enough that  
the input current transient does not cause too high drop in the LP8758 supply voltage that can cause false UVLO  
fault triggering. If the input supply is located more than a few inches from the LP8758 additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors.  
Copyright © 2015–2018, Texas Instruments Incorporated  
47  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The high frequency and large switching currents of the LP8758 make the choice of layout important. Good power  
supply results only occur when care is given to proper design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general  
PCB design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage  
and current regulation across its intended operating voltage and current range.  
1. Place CIN as close to the VIN_Bx pin and the PGND_Bxx pin as possible. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the input capacitor's positive node and LP8758’s VIN_Bx pin(s) as well  
as the trace between the input capacitor's negative node and power PGND_Bxx pin(s) must be kept as short  
as possible. The input capacitance provides a low-impedance voltage source for the switching converter. The  
inductance of the connection is the most important parameter of a local decoupling capacitor — parasitic  
inductance on these traces must be kept as tiny as possible for proper device operation.  
2. The output filter, consisting of Lx and COUTx, converts the switching signal at SW_Bx to the noiseless output  
voltage. Place the output filter as close to the device as possible, keeping the switch node small, for best  
EMI behavior. Route the traces between the LP8758's output capacitors and the load's input capacitors  
direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close to the VANA pin as possible. VANA must be connected to the same power node as  
VIN_Bx pins.  
4. If the processor load supports remote voltage sensing, connect the LP8758’s feedback pins FB_Bx to the  
respective sense pins on the processor. The sense lines are susceptible to noise. They must be kept away  
from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the  
I2C. Avoid both capacitive as well as inductive coupling by keeping the sense lines short, direct and close to  
each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if  
possible. TI recommends running the signal as a differential pair.  
5. Route PGND_Bxx, VIN_Bx and SW_Bx on thick layers. They must not surround inner signal layers which are  
not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances, thereby reducing the device junction temperature, TJ. Performing a careful system-  
level 2D or full 3D dynamic thermal analysis at the beginning product design process is strongly recommended,  
using a thermal modeling analysis software.  
48  
Copyright © 2015–2018, Texas Instruments Incorporated  
LP8758-B0  
www.ti.com.cn  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
11.2 Layout Example  
Via to GND plane  
Via to VIN plane  
L2  
COUT2  
COUT3  
L3  
VIN  
GND  
CIN2  
VIN  
CIN3  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
CIN5  
VIN  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
FB  
_B2  
PGND  
_B23  
FB  
_B3  
VIN  
GND  
CVANA  
SCL  
SDA  
EN1  
VANA  
AGND  
SGND  
VOUT  
GND  
NRST  
EN2  
nINT  
FB  
_B0  
PGND  
_B01  
FB  
_B1  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
CIN0  
VIN  
Pin A1  
CIN4  
CIN1  
GND  
VIN  
L0  
COUT0  
COUT1  
L1  
Figure 49. LP8758 Board Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
49  
LP8758-B0  
ZHCSDQ0C MARCH 2015REVISED AUGUST 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
AN-1112 DSBGA 晶圆级芯片级封装》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
50  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8758A1B0YFFR  
ACTIVE  
DSBGA  
YFF  
35  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
8758A1B0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Sep-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8758A1B0YFFR  
DSBGA  
YFF  
35  
3000  
180.0  
8.4  
2.28  
3.03  
0.74  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Sep-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFF 35  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
LP8758A1B0YFFR  
3000  
Pack Materials-Page 2  
D: Max = 2.91 mm, Min = 2.85 mm  
E: Max = 2.16 mm, Min = 2.1 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP8758-E0

四路、单相、4A 输出直流/直流降压转换器
TI

LP8758-E3

四路、单相、4A 输出直流/直流降压转换器
TI

LP8758-EA

四路、单相、4A 输出直流/直流降压转换器
TI

LP8758A1B0YFFR

四相、单路 16A 输出直流/直流降压转换器 | YFF | 35 | -40 to 85
TI

LP8758A1E0YFFR

四路、单相、4A 输出直流/直流降压转换器

| YFF | 35 | -40 to 85
TI

LP8758A2E3YFFR

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 85
TI

LP8758A2EAYFFR

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 105
TI

LP876242-Q1

四个适用于 AWR 和 IWR MMIC 的汽车级 8.8MHz 降压转换器
TI

LP876242B0RQKRQ1

四个适用于 AWR 和 IWR MMIC 的汽车级 8.8MHz 降压转换器 | RQK | 32 | -40 to 125
TI

LP8764-Q1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC
TI

LP876411B4RQKRQ1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC | RQK | 32 | -40 to 125
TI

LP876411B5RQKRQ1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC | RQK | 32 | -40 to 125
TI