OPA1612AQDRQ1 [TI]

汽车类 1.1nV/√Hz 噪声、低功耗、精密音频运算放大器 | D | 8 | -40 to 125;
OPA1612AQDRQ1
型号: OPA1612AQDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 1.1nV/√Hz 噪声、低功耗、精密音频运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总31页 (文件大小:998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Burr-Brown Audio  
OPA1612-Q1 SoundPlus 高性能、双极输入音频运算放大器  
1 特性  
3 概述  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
OPA1612-Q1 器件是一款双通道、 SoundPlus™双极  
输入运算放大器,在 1kHz 频率下可实现很低的噪声密  
(1.1nV/Hz) 以及超低失真 (0.000015%)。  
OPA1612-Q1 器件可在 2k负载条件下提供摆幅在  
600mV 以内的轨到轨输出,这有助于提高余量并实现  
动态范围的最大化。 此外,这些器件还具有 ±30mA  
高输出驱动能力。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模式 (HBM) 分类等级 2  
器件组件充电模式 (CDM) 分类等级 C6  
出色音质  
超低噪声:1kHz 时为 1.1nV/Hz  
这些器件支持 ±2.25V ±18V 的宽电源电压范围,每  
通道电源电流仅为 3.6mAOPA1612-Q1 运算放大器  
的单位增益稳定,在宽负载条件范围内可提供出色的动  
态性能。  
超低失真:  
1kHz 时为 0.000015%  
高压摆率:27V/μs  
高带宽:40MHz (G = +1)  
高开环增益:130dB  
单位增益稳定  
双通道型号具有完全独立的电路,即使处于过驱或过载  
状态也可在通道间实现最低串扰和零交互。  
低静态电流:  
每通道 3.6mA  
OPA1612-Q1 器件采用小外形尺寸集成电路 (SOIC)-8  
封装 封装。 该器件的额定工作温度范围为 –40°C 至  
+125°C。  
轨到轨输出  
宽电源电压范围:±2.25V ±18V  
器件信息(1)  
2 应用  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
专业音频设备  
OPA1612-Q1  
4.90mm x 3.91mm  
麦克风前置放大器  
模数混合控制台  
播音室设备  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
音频测试和测量  
高端 A/V 接收器  
THD+N 比与输出幅值间的关系  
功能框图  
–80  
V+  
0.01  
0.001  
1-kHz Signal  
BW = 80 kHz  
RSOURCE = 0 Ω  
–100  
–120  
–140  
–160  
0.0001  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = –1, RL = 600 Ω  
Pre-Output  
Driver  
OUT  
0.00001  
0.000001  
G = –1, RL = 2 kΩ  
G = 10, RL = 600 Ω  
IN–  
IN+  
G = 10, RL = 2 kΩ  
0.01  
0.1  
1
10 20  
Output Amplitude (VRMS  
)
V–  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS931  
 
 
 
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application .................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
概述.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: VS = ±2.25 V to ±18 V .... 5  
6.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power-Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 文档支持................................................................ 24  
12.2 社区资源................................................................ 24  
12.3 ....................................................................... 24  
12.4 静电放电警告......................................................... 24  
12.5 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2015) to Revision A  
Page  
已更改 器件状态产品预览量产数据” ................................................................................................................................ 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
A
OUT B  
–IN B  
+IN B  
B
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
OUT A  
–IN A  
+IN A  
V–  
O
I
Output, channel A  
2
Inverting input, channel A  
Noninverting input, channel A  
Negative (lowest) power supply  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel B  
3
I
4
I
5
+IN B  
–IN B  
OUT B  
V+  
6
I
7
O
8
Positive (highest) power supply  
Copyright © 2015, Texas Instruments Incorporated  
3
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
(2)  
VS  
Supply voltage  
Input voltage  
(V–) – 0.5  
(V+) + 0.5  
±10  
V
Input current (all pins except power-supply pins)  
Output short-circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
mA  
Continuous  
TA  
–55  
–65  
125  
200  
150  
°C  
°C  
°C  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
85  
UNIT  
V
Supply voltage (V+ – V–)  
Specified temperature  
°C  
6.4 Thermal Information  
OPA1612-Q1  
D (SOIC)  
8 PINS  
111.9  
26.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20.9  
ψJB  
1.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
6.5 Electrical Characteristics: VS = ±2.25 V to ±18 V  
At TA = 25°C and RL = 2 k, unless otherwise noted. VCM = VOUT = midsupply, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.000015%  
–136  
THD+N  
IMD  
Total harmonic distortion + noise  
Intermodulation distortion  
G = +1, f = 1 kHz, VO = 3 VRMS  
dB  
dB  
dB  
dB  
0.000015%  
–136  
SMPTE/DIN two-tone, 4:1 (60 Hz and 7 kHz),  
G = +1, VO = 3 VRMS  
0.000012%  
–138  
DIM 30 (3-kHz square wave and 15-kHz sine  
wave), G = +1, VO = 3 VRMS  
0.000008%  
–142  
CCIF twin-tone (19 kHz and 20 kHz), G = +1,  
VO = 3 VRMS  
FREQUENCY RESPONSE  
G = 100  
G = 1  
80  
40  
MHz  
MHz  
V/μs  
MHz  
ns  
GBW  
SR  
Gain-bandwidth product  
Slew rate  
G = –1  
27  
Full-power bandwidth(1)  
Overload recovery time  
Channel separation (dual)  
VO = 1 VPP  
G = –10  
f = 1 kHz  
4
500  
–130  
dB  
NOISE  
Input voltage noise  
f = 20 Hz to 20 kHz  
f = 10 Hz  
1.2  
2
μVPP  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
en  
Input voltage noise density(2)  
f = 100 Hz  
f = 1 kHz  
1.5  
1.1  
3
1.5  
f = 10 Hz  
In  
Input current noise density  
f = 1 kHz  
1.7  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VOS over temperature(2)  
VS = ±15 V  
±100  
1
±500  
μV  
dVOS/dT  
PSRR  
TA = –40°C to +125°C  
VS = ±2.25 V to ±18 V  
4
1
μV/°C  
μV/V  
Power-supply rejection ratio  
0.1  
INPUT BIAS CURRENT  
VCM = 0 V  
±60  
±60  
±250  
±300  
350  
nA  
nA  
nA  
nA  
IB  
Input bias current  
VCM = 0 V, DRG package only  
TA = –40°C to +125°C  
VCM = 0 V  
IB over temperature(2)  
Input offset current  
IOS  
±25  
120  
±175  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
(V–) + 2  
110  
(V+) – 2  
V
CMRR  
(V–) + 2 V VCM (V+) – 2 V  
dB  
INPUT IMPEDANCE  
Differential  
Common-mode  
20k || 8  
109 || 2  
|| pF  
|| pF  
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
(2) Specified by design and characterization.  
Copyright © 2015, Texas Instruments Incorporated  
5
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Electrical Characteristics: VS = ±2.25 V to ±18 V (continued)  
At TA = 25°C and RL = 2 k, unless otherwise noted. VCM = VOUT = midsupply, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
(V–) + 0.2 V VO (V+) – 0.2 V, RL = 10 kΩ  
(V–) + 0.6 V VO (V+) – 0.6 V, RL = 2 kΩ  
114  
110  
130  
114  
dB  
dB  
AOL  
Open-loop voltage gain  
Voltage output  
OUTPUT  
VOUT  
RL = 10 k, AOL 114 dB  
RL = 2 k, AOL 110 dB  
(V–) + 0.2  
(V–) + 0.6  
(V+) – 0.2  
(V+) – 0.6  
V
V
IOUT  
ZO  
Output current  
See Figure 27  
See Figure 28  
55  
mA  
Open-loop output impedance  
Source, VS = ±18 V  
Sink, VS = ±18 V  
mA  
mA  
pF  
ISC  
Short-circuit current  
–62  
CLOAD  
Capacitive load drive  
See Typical Characteristics  
POWER SUPPLY  
VS  
IQ  
Specified voltage  
±2.25  
±18  
4.5  
5.5  
V
Quiescent current (per channel)  
IQ over Temperature(2)  
IOUT = 0 A  
3.6  
mA  
mA  
TA = –40°C to +125°C  
TEMPERATURE RANGE  
Specified range  
–40  
–55  
125  
125  
°C  
°C  
Operating range  
6
Copyright © 2015, Texas Instruments Incorporated  
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
6.6 Typical Characteristics  
At TA = 25°, VS = ±15 V, and RL = 2 k, unless otherwise noted.  
100  
Current Noise Density  
Voltage Noise Density  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
Time (1 s/div)  
Frequency (Hz)  
Figure 2. 0.1-Hz to 10-Hz Noise  
Figure 1. Input Voltage Noise Density and Input Current  
Noise Density vs Frequency  
30  
25  
20  
15  
10  
5
10k  
VS  
VS  
VS  
=
=
=
15 V  
5 V  
Total Output Voltage Noise  
Resistor Noise  
2.25 V  
1k  
Maximum output  
voltage range  
without slew-rate  
induced distortion  
100  
10  
1
0
100  
1k  
10k  
100k  
1M  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Source Resistance, RS (Ω)  
EO2 = en2 + (in × RS)2 + 4kRTS  
See Figure 29  
Figure 3. Voltage Noise vs Source Resistance  
Figure 4. Maximum Output Voltage vs Frequency  
25  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
G = 10  
G = –1  
G = 1  
Gain  
20  
15  
10  
5
Phase  
60  
0
40  
-5  
20  
60  
-10  
-15  
-20  
-25  
0
40  
-20  
-40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Figure 5. Gain and Phase vs Frequency  
Figure 6. Closed-Loop Gain vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
7
 
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°, VS = ±15 V, and RL = 2 k, unless otherwise noted.  
0.0001  
-120  
-80  
0.01  
0.001  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = 10, RL = 600 Ω  
G = 10, RL = 2 kΩ  
RSOURCE = 0 Ω  
RSOURCE = 150 Ω  
RSOURCE = 300 Ω  
RSOURCE = 600 Ω  
-100  
-120  
-140  
0.0001  
0.00001  
0.00001  
-140  
10  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BW = 80 KHz  
VOUT = 3VRMS  
BW = 80 KHz  
VOUT = 3VRMS  
See Figure 30  
Figure 7. THD+N Ratio vs Frequency  
Figure 8. THD+N Ratio vs Frequency  
-100  
-120  
-140  
0.001  
-80  
0.01  
0.001  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = 11, RL = 600 Ω  
G = 11, RL = 2 kΩ  
RSOURCE = 0 Ω  
RSOURCE = 150 Ω  
RSOURCE = 300 Ω  
RSOURCE = 600 Ω  
-100  
-120  
-140  
0.0001  
0.0001  
0.00001  
0.00001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
BW > 500 KHz  
VOUT = 3VRMS  
BW > 500 KHz  
VOUT = 3VRMS  
See Figure 30  
Figure 9. THD+N Ratio vs Frequency  
Figure 10. THD+N Ratio vs Frequency  
–80  
0.01  
0.001  
-80  
0.01  
0.001  
SMPTE/DIN, Two-Tone, 4:1 (60 Hz and 7 kHz)  
DIM30, (3-kHz square wave and 15-kHz  
sine wave)  
–100  
–120  
–140  
–160  
-100  
-120  
-140  
-160  
CCIF, Twin-Tone, (19 kHz and 20 kHz)  
0.0001  
0.0001  
G = 1, RL = 600 Ω  
G = 1, RL = 2 kΩ  
G = –1, RL = 600 Ω  
0.00001  
0.000001  
0.00001  
0.000001  
G = –1, RL = 2 kΩ  
G = 10, RL = 600 Ω  
G = 10, RL = 2 kΩ  
0.01  
0.1  
1
10 20  
0.1  
1
10  
20  
Output Amplitude (VRMS  
)
Output Amplitude (VRMS)  
1-kHz Signal  
BW = 80 KHz  
RSOURCE = 0 Ω  
G = 1  
Figure 11. THD+N Ratio vs Output Amplitude  
Figure 12. Intermodulation Distortion vs Output Amplitude  
8
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°, VS = ±15 V, and RL = 2 k, unless otherwise noted.  
-80  
RL = 600 Ω  
160  
140  
120  
100  
80  
–PSRR  
+PSRR  
CMRR  
-90  
RL = 2 kΩ  
-100  
RL = 5 kΩ  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
VS = ±15 V  
Frequency (Hz)  
VOUT = 3.5 VRMS  
G = 1  
Figure 13. Channel Separation vs Frequency  
Figure 14. CMRR and PSRR vs Frequency  
(Referred to Input)  
Time (0.1 µs/div)  
Time (0.1 µs/div)  
G = –1  
CL = 50 pF  
See Figure 32  
G = 1  
CL = 50 pF  
See Figure 31  
Figure 16. Small-Signal Step Response (100 mV)  
Figure 15. Small-Signal Step Response (100 mV)  
RF = 75 Ω  
RF = 0 Ω  
Time (0.5 µs/div)  
Time (0.5 µs/div)  
G = 1  
CL = 50 pF  
RL = 2 kΩ  
G = –1  
CL = 50 pF  
RL = 2 kΩ  
See the Input Protection section  
Figure 17. Large-Signal Step Response  
Figure 18. Large-Signal Step Response  
Copyright © 2015, Texas Instruments Incorporated  
9
 
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°, VS = ±15 V, and RL = 2 k, unless otherwise noted.  
50  
RS = 0 Ω  
25  
20  
15  
10  
5
RS = 0 Ω  
RS = 25 Ω  
RS = 50 Ω  
RS = 25 Ω  
40  
30  
20  
10  
0
RS = 50 Ω  
0
0
100  
200  
300  
400  
500  
600  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
Capacitive Load (pF)  
G = 1  
See Figure 33  
G = –1  
See Figure 34  
Figure 19. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 20. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
1.0  
120  
10 kΩ  
–IB  
+IB  
IOS  
0.8  
2 kΩ  
100  
80  
60  
40  
20  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
50  
85  
Temperature (°C)  
Temperature (°C)  
Figure 21. Open-Loop Gain vs Temperature  
Figure 22. IB and IOS vs Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
–IB  
+IB  
IOS  
Common-Mode Range  
-10  
-20  
-18  
-12  
-6  
0
6
12  
18  
-40  
-15  
10  
35  
60  
85  
Common-Mode Voltage (V)  
Temperature (°C)  
VS = ±18 V  
Figure 23. IB and IOS vs Common-Mode Voltage  
Figure 24. Quiescent Current vs Temperature  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°, VS = ±15 V, and RL = 2 k, unless otherwise noted.  
4.0  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–ISC  
+ISC  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3,2  
Specified Supply-Voltage Range  
3.1  
3.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
Supply Voltage (V)  
Figure 25. Quiescent Current vs Supply Voltage  
Figure 26. Short-Circuit Current vs Temperature  
15  
14  
13  
10k  
1k  
100  
–40°C  
25°C  
85°C  
10  
1
-13  
-14  
-15  
0.1  
0
10  
20  
30  
40  
50  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Output Current (mA)  
Frequency (Hz)  
VS = ±15 V  
Both channels driven simultaneously  
Figure 27. Output Voltage vs Output Current  
Figure 28. Open-Loop Output Impedance vs Frequency  
7 Parameter Measurement Information  
EO  
RS  
Figure 29. Circuit for Figure 3—Voltage Noise vs Source Resistance  
Copyright © 2015, Texas Instruments Incorporated  
11  
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Parameter Measurement Information (continued)  
15 V  
Device  
–15 V  
RSOURCE  
RL  
Figure 30. Circuit for Figure 8 and Figure 10—THD+N Ratio vs Frequency  
15 V  
Device  
RL  
CL  
–15 V  
Figure 31. Circuit for Figure 15—Small-Signal Step Response (100 mV)  
CF = 5.6 pF  
RI = 2 kΩ  
R
F = 2 kΩ  
15 V  
Device  
–15 V  
CL  
Figure 32. Circuit for Figure 16—Small-Signal Step Response (100 mV)  
15 V  
RS  
Device  
RL  
CL  
–15 V  
Figure 33. Circuit for Figure 19—Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
12  
Copyright © 2015, Texas Instruments Incorporated  
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Parameter Measurement Information (continued)  
CF = 5.6 pF  
RF = 2 kΩ  
15 V  
RI = 2 kΩ  
RS  
Device  
CL  
–15 V  
Figure 34. Circuit for Figure 20—Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Copyright © 2015, Texas Instruments Incorporated  
13  
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPA1612-Q1 bipolar-input operational amplifierachieves very low 1.1-nV/Hz noise density with an ultralow  
distortion of 0.000015% at 1 kHz. The rail-to-rail output swing, within 600 mV with a 2-kload, increases  
headroom and maximizes dynamic range. These devices also have a high output drive capability of ±40 mA. The  
wide supply range of ±2.25 V to ±18 V, on only 3.6 mA of supply current per channel, makes them applicable to  
both 5-V systems and 36-V audio applications. The OPA1612-Q1 op amp is unity-gain stable and provide  
excellent dynamic behavior over a wide range of load conditions.  
8.2 Functional Block Diagram  
V+  
Pre-Output Driver  
OUT  
IN–  
IN+  
V–  
8.3 Feature Description  
8.3.1 Power Dissipation  
The OPA1612-Q1 op amp is capable of driving 2-kloads with a power-supply voltage up to ±18 V. Internal  
power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the  
OPA1612-Q1 op amp improves heat dissipation compared to conventional materials. Circuit board layout can  
also help minimize junction temperature rise. Wide copper traces help dissipate the heat by acting as an  
additional heat sink. Temperature rise can be further minimized by soldering the devices to the circuit board  
rather than using a socket.  
8.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
14  
Copyright © 2015, Texas Instruments Incorporated  
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Feature Description (continued)  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. Figure 35 shows the ESD circuits contained in the OPA1612-Q1 device (indicated by the dashed line  
area). The ESD protection circuitry involves several current-steering diodes connected from the input and output  
pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
RF  
+VS  
+V  
RI  
ESD Current-  
–IN  
Steering Diodes  
OUT  
Op-Amp  
Core  
+IN  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
–V  
–VS  
(1) VIN = +VS + 500 mV.  
Figure 35. Equivalent Internal ESD Circuitry and its Relation to a Typical Circuit Application  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse when discharged through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage to the core. The energy absorbed  
by the protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or  
more of the steering diodes. Depending on the path that the current takes, the absorption device may activate.  
The absorption device internal to the OPA1612-Q1 device triggers when a fast ESD voltage pulse is impressed  
across the supply pins. Once triggered, the absorption device quickly activates and clamps the ESD pulse to a  
safe voltage level.  
When the operational amplifier connects into a circuit such as the one Figure 35 shows, the ESD protection  
components are intended to remain inactive and not become involved in the application circuit operation.  
However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin.  
If this condition occurs, some of the internal ESD protection circuits may possibly be biased on, and conduct  
current. Any such current flow occurs through steering diode paths and rarely involves the absorption device.  
Figure 35 shows a specific example where the input voltage, VIN, exceeds the positive supply voltage (+VS) by  
500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the datasheet specifications recommend that applications  
limit the input current to 10 mA.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings. In extreme but rare cases, the absorption  
device triggers on while +VS and –VS are applied. If this event happens, a direct current path is established  
between the +VS and –VS supplies. The power dissipation of the absorption device is quickly exceeded, and the  
extreme internal heating destroys the operational amplifier.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or –VS are at 0 V. Again, the result depends on the supply characteristic while at 0 V, or  
at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational  
amplifier supply current may be supplied by the input source via the current steering diodes. This state is not a  
normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance,  
then the current through the steering diodes can become quite high. The current level depends on the ability of  
the input source to deliver current, and any resistance in the input path.  
If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be  
added to the supply pins; see Figure 35. The zener voltage must be selected such that the diode does not turn  
on during normal operation. However, the zener diode voltage must be low enough so that the zener diode  
conducts if the supply pin begins to rise above the safe operating supply voltage level.  
8.3.3 Operating Voltage  
The OPA1612-Q1 op amp operates from ±2.25-V to ±18-V supplies while maintaining excellent performance.  
The OPA1612-Q1 device can operate with as little as +4.5 V between the supplies and with up to +36 V between  
the supplies. However, some applications do not require equal positive and negative output voltage swing. With  
the OPA1612-Q1 device, power-supply voltages do not need to be equal. For example, the positive supply could  
be set to +25 V with the negative supply at –5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. In addition, key  
parameters are assured over the specified temperature range of TA = –40°C to +85°C. Parameters that vary with  
operating voltage or temperature are shown in the Typical Characteristics section.  
8.3.4 Input Protection  
The input terminals of the OPA1612-Q1 device is protected from excessive differential voltage with back-to-back  
diodes, as Figure 36 shows. In most circuit applications, the input protection circuitry has no consequence.  
However, in low-gain or G = +1 circuits, fast ramping input signals can forward bias these diodes because the  
output of the amplifier cannot respond rapidly enough to the input ramp. This effect is illustrated in Figure 17 of  
the Typical Characteristics section. If the input signal is fast enough to create this forward bias condition, the  
input signal current must be limited to 10 mA or less. If the input signal current is not inherently limited, an input  
series resistor (RI) or a feedback resistor (RF) can be used to limit the signal input current. This input series  
resistor degrades the low-noise performance of the OPA1612-Q1 device and is examined in the Noise  
Performance section. Figure 36 shows an example configuration when both current-limiting input and feedback  
resistors are used.  
RF  
Device  
Output  
RI  
+
Input  
Figure 36. Pulsed Operation  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
8.4 Device Functional Modes  
The OPA1612-Q1 device has a single functional mode. The device is powered on as long as the power supply  
voltage is between 4.5 V (±2.25 V) and 36 V (±18 V).  
Copyright © 2015, Texas Instruments Incorporated  
17  
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPA1612-Q1 device is unity-gain stable, precision op amp with very low noise; these devices are also free  
from output phase reversal. Applications with noisy or high-impedance power supplies require decoupling  
capacitors close to the device power-supply pins. In most cases, 0.1-μF capacitors are adequate.  
9.2 Typical Application  
Figure 37 shows how to use the OPA1612-Q1 device as an amplifier for professional audio headphones. The  
circuit shows the left side stereo channel. An identical circuit is used to drive the right side stereo channel.  
820 Ω  
2200 pF  
0.1 µF  
+VA  
(15 V)  
330 Ω  
IOUTL+  
Device  
2700 pF  
VA  
(15 V)  
680 Ω  
620 Ω  
0.1 µF  
+VA  
(15 V)  
0.1 µF  
Audio DAC  
with Differential  
Current  
Outputs  
100 Ω  
L Ch  
Output  
820 Ω  
Device  
8200 pF  
2200 pF  
VA  
(15 V)  
0.1 µF  
0.1 µF  
+VA  
(15 V)  
680 Ω  
620 Ω  
IOUTL–  
Device  
2700 pF  
330 Ω  
VA  
(15 V)  
0.1 µF  
Figure 37. Audio DAC Post Filter (I/V Converter and Low-Pass Filter)  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Application (continued)  
9.2.1 Design Requirements  
Use Equation 1 to calculate the total circuit noise.  
EO2 = en2 + (inRS)2 + 4kTRS  
where  
en = voltage noise  
In = current noise  
RS = source impedance  
k = Boltzmann’s constant = 1.38 × 10–23 J/K  
T = temperature in degrees Kelvin (K)  
(1)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Noise Performance  
Figure 40 shows the total circuit noise for varying source impedances with the op amp in a unity-gain  
configuration (no feedback resistor network, and therefore no additional noise contributions).  
The OPA1612-Q1 device (GBW = 40 MHz, G = +1) is shown with total circuit noise calculated. The op amp  
contributes both a voltage noise component and a current noise component. The voltage noise is commonly  
modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying  
component of the input bias current and reacts with the source resistance to create a voltage component of  
noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low  
source impedance, current noise is negligible, and voltage noise generally dominates. The low voltage noise of  
the OPA1612-Q1 device makes it a good choice for use in applications where the source impedance is less than  
1 kΩ.  
9.2.2.1.1 Basic Noise Calculations  
Design of low-noise op amp circuits requires careful consideration of a variety of possible noise contributors:  
noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The  
total noise of the circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. Figure 40 plots this function. The source impedance is usually fixed; consequently, select the op amp  
and the feedback resistors to minimize the respective contributions to the total noise.  
Figure 38 shows both inverting and noninverting op amp circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors also contribute noise.  
The current noise of the op amp reacts with the feedback resistors to create additional noise components. The  
feedback resistor values can generally be chosen to make these noise sources negligible. The equations for total  
noise are shown for both configurations.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
Noise in Noninverting Gain Configuration  
Noise at the output:  
R2  
é
ù2  
ú
2 é  
1+  
ù2  
ú
R2  
R2  
2
)
2
2
2
2
EO = 1+  
en + e12 + e2 + i R  
+ eS + i R  
(
(
)
ê
ê
n
2
n
S
R1 û  
R1 û  
R1  
ë
ë
EO  
where  
é
ù
ú
R2  
· eS  
=
4kTRS ´ 1+  
= thermal noise of R  
S
RS  
ê
R1 û  
ë
é
ê
ë
ù
ú
R2  
VS  
· e1 = 4kTR ´  
= thermal noise of R  
1
1
R1 û  
· e2 = 4kTR2 = thermal noise of R2  
Noise in Inverting Gain Configuration  
Noise at the output:  
R2  
é
ù2  
ú
R2  
2
)
2
2
2
2
EO = 1+  
en + e12 + e2 + i R  
+ eS  
(
ê
n
2
R1 + RS û  
R1  
ë
EO  
RS  
where  
é
ê
ë
ù
ú
R2  
· eS  
=
4kTRS  
´
= thermal noise of R  
VS  
S
R1 + RS û  
é
ê
ë
ù
ú
R2  
· e1 = 4kTR ´  
= thermal noise of R  
1
1
R1 + RS û  
· e2 = 4kTR2 = thermal noise of R2  
At 1 kHz, en = 1.1 nV/Hz and in = 1.7 pA/Hz.  
Figure 38. Noise Calculation in Gain Configurations  
9.2.2.2 Total Harmonic Distortion Measurements  
The OPA1612-Q1 op amp has excellent distortion characteristics. THD + noise is below 0.00008% (G = +1, VO =  
3 VRMS, BW = 80 kHz) throughout the audio frequency range, 20 Hz to 20 kHz, with a 2-kload (see Figure 7 for  
characteristic performance).  
The distortion produced by OPA1612-Q1 op amp is below the measurement limit of many commercially available  
distortion analyzers. However, a special test circuit (such as Figure 39 shows) can be used to extend the  
measurement capabilities.  
Op amp distortion can be considered an internal error source that can be referred to the input. Figure 39 shows a  
circuit that causes the op amp distortion to be 101 times (or approximately 40 dB) greater than that normally  
produced by the op amp. The addition of R3 to the otherwise standard noninverting amplifier configuration alters  
the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for  
error correction is reduced by a factor of 101, thus extending the resolution by 101. Note that the input signal and  
load applied to the op amp are the same as with conventional feedback without R3. Keep the value of R3 small to  
minimize its effect on the distortion measurements.  
20  
Copyright © 2015, Texas Instruments Incorporated  
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Application (continued)  
Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where  
the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were  
made with an audio precision system two distortion and noise analyzer, which greatly simplifies such repetitive  
measurements. The measurement technique can, however, be performed with manual distortion measurement  
instruments.  
R1  
R2  
R3  
Device  
VO = 3 VRMS  
R2  
R1  
Signal Gain = 1+  
R2  
Distortion Gain = 1+  
R1 || R3  
Generator  
Output  
Analyzer  
Input  
Audio Precision  
System Two(1)  
Load  
with PC Controller  
(1) For measurement bandwidth, see Figure 7 through Figure 12.  
SIGNAL  
GAIN  
DISTORTION  
GAIN  
R1  
R2  
R3  
1
101  
101  
110  
1 kΩ  
10 Ω  
–1  
10  
4.99 kΩ  
549 Ω  
4.99 kΩ  
4.99 kΩ  
49.9 kΩ  
49.9 kΩ  
Figure 39. Distortion Test Circuit  
9.2.2.3 Capacitive Loads  
The dynamic characteristics of the OPA1612-Q1 device is optimized for commonly encountered gains, loads,  
and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the  
phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads  
must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (RS equal to  
50 Ω, for example) in series with the output.  
This small series resistor also prevents excess power dissipation if the output of the device becomes shorted.  
Figure 19 and Figure 20 illustrate graphs of Small-Signal Overshoot vs Capacitive Load for several values of RS.  
For details of analysis techniques and application circuits, refer to Applications Bulletin AB-028, Feedback Plots  
Define Op Amp AC Performance (SBOA015).  
Copyright © 2015, Texas Instruments Incorporated  
21  
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.3 Application Curves  
Equation 1 applies to Figure 40 and Figure 41.  
10k  
Total Output Voltage Noise  
Resistor Noise  
EO  
1k  
RS  
100  
10  
1
100  
1k  
10k  
100k  
1M  
Source Resistance, RS (Ω)  
Figure 40. Noise Performance of the OPA1612-Q1  
in Unity-Gain Buffer Configuration  
Figure 41. Circuit for Figure 40  
10 Power-Supply Recommendations  
The OPA1612-Q1 device is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications  
apply from –40°C to +85°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds while paying attention to the flow of the ground current. For more detailed information,  
refer to the application report, Circuit Board Layout Techniques (SLOA089).  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be keep them separate, crossing the sensitive trace perpendicular as  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
 
OPA1612-Q1  
www.ti.com.cn  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
Layout Guidelines (continued)  
opposed to in parallel with the noisy trace is the preferred method.  
Place the external components as close to the device as possible. As shown in Figure 42, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
11.2 Layout Example  
R±N  
RG  
V±N  
+
VOUT  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
RG  
GND  
GND  
± ±N  
+±N  
V±  
V+  
OUT  
NC  
V±N  
R±N  
Use low-ESR, ceramic  
bypass capacitor  
Only needed for  
dual-supply  
operation  
GND  
VS±  
(or GND for single supply)  
VOUT  
Ground (GND) plane on another layer  
Figure 42. Operational Amplifier Board Layout for a Noninverting Configuration  
版权 © 2015, Texas Instruments Incorporated  
23  
 
OPA1612-Q1  
ZHCSED7A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《反馈曲线图定义运算放大器交流性能》SBOA015  
《电路板布局布线技巧》SLOA089  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
SoundPlus is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1612AQDRQ1  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
1612Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1612AQDRQ1  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
OPA1612AQDRQ1  
D
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA1622

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器
TI

OPA1622IDRCR

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器 | DRC | 10 | -40 to 125
TI

OPA1622IDRCT

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器 | DRC | 10 | -40 to 125
TI

OPA1632

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632D

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632D

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DG4

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DG4

High-Performance, Fully-Differential AUDIO OP AMP
TI

OPA1632DGN

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632DGN

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DGNG4

High-Performance, Fully-Differential AUDIO OP AMP
BB