OPA2192-Q1 [TI]

采用电子修整技术的汽车类 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器;
OPA2192-Q1
型号: OPA2192-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用电子修整技术的汽车类 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器

电子 放大器 运算放大器
文件: 总43页 (文件大小:2818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
OPAx192-Q1 36-V Precision, Rail-to-Rail Input/Output,  
Low-Offset Voltage, Low-Input Bias Current Op Amp With e-trim™  
1 Features  
3 Description  
The OPAx192-Q1 family (OPA192-Q1 and OPA2192-  
1
Qualified for Automotive Applications  
Q1) is a new generation of 36-V, e-trim operational  
amplifiers. The OPAx192-Q1 family of operational  
amplifiers use e-trim™, a method of package-level  
trim for offset and offset temperature drift  
implemented during the final steps of manufacturing  
after the plastic molding process. This method  
minimizes the influence of inherent input transistor  
mismatch, as well as errors induced during package  
molding.  
AEC-Q100 Qualified with the Following Results:  
Device Temperature Grade 1: –40°C to  
+125°C Ambient Operating Temperature  
Device HBM ESD Classification Level 3A  
Device CDM ESD Classification Level 4A  
Low Offset Voltage: ±5 µV  
Low Offset Voltage Drift: ±0.2 µV/°C  
Low Noise: 5.5 nV/Hz at 1 kHz  
High Common-Mode Rejection: 140 dB  
Low Bias Current: ±5 pA  
These devices offer outstanding dc precision and ac  
performance, including rail-to-rail input/output, low  
offset (±5 µV, typical), low offset drift (±0.2 µV/°C,  
typical), and 10-MHz bandwidth.  
Rail-to-Rail Input and Output  
Unique features such as differential input-voltage  
range to the supply rail, high output current (±65 mA),  
high capacitive-load drive of up to 1 nF, and high  
slew rate (20 V/µs) make the OPAx192-Q1 a robust,  
high-performance operational amplifier for high-  
voltage industrial applications.  
Wide Bandwidth: 10 MHz GBW  
High Slew Rate: 20 V/µs  
Low Quiescent Current: 1 mA per Amplifier  
Wide Supply: ±2.25 V to ±18 V, 4.5 V to 36 V  
EMI/RFI Filtered Inputs  
The OPAx192-Q1 family of op amps is available in an  
8-pin VSSOP package and is specified from –40°C to  
+125°C.  
Differential Input Voltage Range to Supply Rail  
High Capacitive-Load-Drive Capability: 1 nF  
Industry-Standard Package:  
Device Information(1)  
Single and Dual Channel in VSSOP-8  
PART NUMBER  
OPA192-Q1  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
VSSOP (8)  
3.00 mm × 3.00 mm  
OPA2192-Q1  
Motor Control for Automotive  
Traction Inverter  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
On-Board Charger  
Precision Current Sensing  
OPAx192-Q1 Maintains Ultra-Low Input Offset Voltage Over Temperature  
100  
66 Typical Units Shown  
75  
50  
25  
0
œ25  
œ50  
œ75  
œ100  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 22  
8.4 Device Functional Modes........................................ 28  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Applications ................................................ 29  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA192-Q1 ............................ 6  
6.5 Thermal Information: OPA2192-Q1 .......................... 6  
9
10 Power-Supply Recommendations ..................... 33  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Example .................................................... 34  
12 Device and Documentation Support ................. 35  
12.1 Device Support...................................................... 35  
12.2 Related Links ........................................................ 35  
12.3 Receiving Notification of Documentation Updates 35  
12.4 Community Resources.......................................... 35  
12.5 Trademarks........................................................... 36  
12.6 Electrostatic Discharge Caution............................ 36  
12.7 Glossary................................................................ 36  
6.6 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8  
V to 36 V)................................................................... 7  
6.7 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS  
=
4.5 V to 8 V)............................................................... 9  
6.8 Typical Characteristics............................................ 11  
6.9 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 19  
7.1 Input Offset Voltage Drift......................................... 19  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
7
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 36  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2017  
*
Initial release  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
5 Pin Configuration and Functions  
OPA192-Q1 DGK Package  
8-Pin VSSOP  
Top View  
NC – No internal connection.  
Pin Functions: OPA192-Q1  
PIN  
OPA192-Q1  
I/O  
DESCRIPTION  
NAME  
DGK (VSSOP)  
+IN  
–IN  
NC  
OUT  
V+  
3
I
Noninverting input  
Inverting input  
2
I
1, 5, 8  
O
No internal connection (can be left floating)  
Output  
6
7
4
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
OPA2192-Q1 DGK Package  
8-Pin VSSOP  
Top View  
Pin Functions: OPA2192-Q1  
PIN  
OPA2192-Q1  
NAME  
I/O  
DESCRIPTION  
DGK (VSSOP)  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
5
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
2
I
I
I
6
I
1
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
±20  
Supply voltage, VS = (V+) – (V–)  
V
(40, single-supply)  
Common-mode  
Voltage  
(V–) – 0.5  
(V+) + 0.5  
(V+) – (V–) + 0.2  
±10  
V
Signal input pins  
Differential  
Current  
mA  
Output short circuit(2)  
Latch-up per JESD78D  
Continuous  
Class 1  
150  
Operating range  
Junction  
–55  
–65  
Temperature  
150  
°C  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
OPA192-Q1  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±4000  
±500  
V(ESD)  
Electrostatic discharge  
V
OPA2192-Q1  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±4000  
±500  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
+125  
UNIT  
Supply voltage, VS = (V+) – (V–)  
Specified temperature  
V
°C  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
6.4 Thermal Information: OPA192-Q1  
OPA192-Q1  
DGK (VSSOP)  
8 PINS  
180.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67.9  
102.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.4  
ψJB  
100.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2192-Q1  
OPA2192-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
158  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.6  
78.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.9  
ψJB  
77.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
6.6 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±5  
±8  
±25  
±50  
TA = 0°C to 85°C  
TA = –40°C to 125°C  
±10  
±10  
±25  
±50  
±0.1  
±0.2  
±75  
VOS  
Input offset voltage  
µV  
±40  
VCM = (V+) – 1.5 V  
TA = 0°C to 85°C  
±150  
±250  
±0.8  
±1.0  
TA = –40°C to 125°C  
TA = 0°C to 85°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
µV/°C  
µV/V  
TA = –40°C to 125°C  
Power-supply rejection  
ratio  
TA = –40°C to 125°C  
±0.3  
±1.0  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.30  
4
µVPP  
10.5  
5.5  
32  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
12.5  
NOISE (continued)  
Input current noise  
in  
f = 1 kHz  
1.5  
fA/Hz  
density  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
120  
114  
100  
86  
140  
126  
120  
100  
(V–) – 0.1 V < VCM < (V+) – 3 V  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dB  
Common-mode  
rejection ratio  
CMRR  
(V+) – 1.5 V < VCM < (V+)  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω || pF  
OPEN-LOOP GAIN  
120  
114  
126  
120  
134  
126  
140  
134  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RLOAD = 2 kΩ  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
AOL  
Open-loop voltage gain  
dB  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RLOAD = 10 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Unity gain bandwidth  
10  
20  
MHz  
V/µs  
Slew rate  
G = 1, 10-V step  
To 0.01%  
V S = ±18 V, G = 1, 10-V  
step  
1.4  
0.9  
2.1  
V S = ±18 V, G = 1, 5-V step  
ts  
Settling time  
µs  
ns  
dB  
V S = ±18 V, G = 1, 10-V  
step  
To 0.001%  
V S = ±18 V, G = 1, 5-V step  
1.8  
tOR  
Overload recovery time VIN × G = VS  
Total harmonic  
200  
THD+N  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.00008%  
distortion + noise  
OPA2192-Q1 at dc  
150  
130  
Crosstalk  
OPA2192-Q1 at f = 100 kHz  
OUTPUT  
No load  
5
95  
15  
110  
500  
15  
Positive rail  
Negative rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
No load  
430  
5
Voltage output swing  
from rail  
VO  
mV  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
95  
110  
500  
430  
±65  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
CLOAD  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A; see Figure 29  
375  
Ω
POWER SUPPLY  
IO = 0 A  
1
1.2  
1.5  
Quiescent current per  
IQ  
mA  
°C  
amplifier  
TEMPERATURE  
Thermal protection(1)  
TA = –40°C to 125°C, IO = 0 A  
140  
(1) For a detailed description of thermal protection, see Thermal Protection .  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
6.7 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±5  
±8  
±25  
±50  
±75  
VCM = (V+) – 3 V  
TA = 0°C to 85°C  
µV  
TA = –40°C to 125°C  
±10  
VOS  
Input offset voltage  
(V+) – 3.5 V < VCM < (V+) – 1.5 V  
VCM = (V+) – 1.5 V  
See Common-Mode Voltage Range  
±10  
±25  
±40  
TA = 0°C to 85°C  
±150  
±250  
±0.8  
±1.1  
±3  
µV  
TA = –40°C to 125°C  
TA = 0°C to 85°C  
±50  
±0.1  
±0.2  
±0.5  
dVOS/dT Input offset voltage drift  
VCM = (V+) – 3 V  
µV/°C  
TA = –40°C to 125°C  
VCM = (V+) – 1.5 V, TA = –40°C to 125°C  
TA = –40°C to 125°C, VCM = VS / 2 – 0.75 V  
Power-supply rejection  
PSRR  
ratio  
±1  
µV/V  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
Input offset current  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±20  
±2  
IOS  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V, f = 0.1 Hz to 10 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz  
1.30  
4
Input voltage noise  
µVPP  
f = 100 Hz  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
10.5  
5.5  
32  
en  
Input voltage noise density  
Input current noise density  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
12.5  
1.5  
in  
f = 1 kHz  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
94  
90  
110  
104  
120  
100  
(V–) – 0.1 V < VCM < (V+) – 3 V  
TA = –40°C to 125°C  
dB  
Common-mode rejection  
ratio  
CMRR  
100  
84  
(V+) – 1.5 V < VCM < (V+)  
TA = –40°C to 125°C  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω || pF  
Common-mode  
OPEN-LOOP GAIN  
110  
100  
110  
110  
120  
114  
126  
120  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RLOAD = 2 kΩ  
TA = –40°C to 125°C  
AOL  
Open-loop voltage gain  
dB  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RLOAD = 10 kΩ  
TA = –40°C to 125°C  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
ts  
Unity gain bandwidth  
Slew rate  
10  
20  
MHz  
V/µs  
µs  
G = 1, 10-V step  
To 0.01%  
Settling time  
VS = ±3 V, G = 1, 5-V step  
1
tOR  
Overload recovery time  
VIN× G = VS  
200  
150  
130  
ns  
OPA2192-Q1 at dc  
Crosstalk  
dB  
OPA2192-Q1 f = 100 kHz  
Positive rail  
OUTPUT  
No load  
5
95  
15  
110  
500  
15  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
No load  
430  
5
Voltage output swing from  
rail  
VO  
mV  
Negative rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
95  
110  
500  
430  
±65  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
CLOAD  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A; see Figure 29  
375  
Ω
POWER SUPPLY  
1
1.2  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
mA  
°C  
amplifier  
TEMPERATURE  
Thermal protection(1)  
TA = –40°C to 125°C  
140  
(1) For a detailed description of thermal protection, see Thermal Protection .  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
6.8 Typical Characteristics  
Table 1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
FIGURE  
Figure 1 to Figure 6  
Figure 7 to Figure 8  
Figure 9  
Offset Voltage vs Temperature  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Figure 10 to Figure 12  
Figure 13  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Output Voltage Swing vs Output Current (maximum supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
Figure 18  
Figure 19  
Figure 20  
PSRR vs Temperature  
Figure 21  
0.1-Hz to 10-Hz Noise  
Figure 22  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
Figure 23  
Figure 24  
THD+N vs Output Amplitude  
Figure 25  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30, Figure 31  
Figure 32  
Positive Overload Recovery  
Figure 33  
Negative Overload Recovery  
Figure 34  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Figure 35, Figure 36  
Figure 37  
Settling Time  
Figure 38 to Figure 41  
Figure 42  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Propagation Delay Rising Edge  
Propagation Delay Falling Edge  
Crosstalk vs Frequency  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
22  
Distribution Taken From 190 Amplifiers  
Distribution Taken From 4715 Amplifiers  
20  
18  
16  
14  
12  
10  
8
40  
30  
20  
10  
0
6
4
2
0
Offset Voltage (µV)  
Offset Voltage (V)  
C013  
C032  
TA = 125°C  
TA = 25°C  
Figure 2. Offset Voltage Production Distribution at 125°C  
Figure 1. Offset Voltage Production Distribution at 25°C  
Distribution Taken From 190 Amplifiers  
Distribution Taken From 190 Amplifiers  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Offset Voltage (µV)  
Offset Voltage (µV)  
TA = 85°C  
TA = 0°C  
Figure 3. Offset Voltage Production Distribution at 85°C  
Figure 4. Offset Voltage Production Distribution at 0°C  
50  
50  
Distribution Taken From 190 Amplifiers  
Distribution Taken From 190 Amplifiers  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Offset Voltage (µV)  
Offset Voltage (µV)  
TA = –25°C  
TA = –40° C  
Figure 5. Offset Voltage Production Distribution at –25°C  
Figure 6. Offset Voltage Production Distribution at –40°C  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
Distribution Taken From 75 Amplifiers  
Distribution Taken From 75 Amplifiers  
0
Offset Voltage Drift (µV/ƒC)  
OPA192-Q1IDGK and OPA2192-Q1IDGK  
TA = –40°C to +125°C  
Offset Voltage Drift (µV/ƒC)  
OPA192-Q1IDGK and OPA2192-Q1IDGK  
TA = 0°C to 85°C  
Figure 7. Offset Voltage Drift Distribution  
Figure 8. Offset Voltage Drift Distribution  
100  
75  
50  
190 Typical Units Shown  
5 Typical Units Shown  
50  
25  
0
25  
0
œ25  
œ50  
œ75  
œ100  
VCM = -18.1 V  
œ25  
œ50  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ20  
œ15  
œ10  
œ5  
0
5
10  
15  
20  
Temperature (°C)  
C001  
VCM (V)  
C001  
Figure 9. Offset Voltage vs Temperature  
Figure 10. Offset Voltage vs Common-Mode Voltage  
200  
100  
75  
5 Typical Units Shown  
5 Typical Units Shown  
150  
100  
50  
VCM = +18.1 V  
50  
VCM = -18.1 V  
25  
0
0
œ25  
œ50  
œ75  
œ100  
50  
P-Channel  
N-Channel  
VCM = +2.35 V  
N-Channel  
VCM = -2.35 V  
100  
150  
200  
Transition  
Transition  
P-Channel  
12.5  
13.5  
14.5  
15.5  
16.5  
17.5  
18.5  
2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5  
VCM (V)  
VCM (V)  
C001  
VS = ±2.25 V  
Figure 11. Offset Voltage vs Common-Mode Voltage  
Figure 12. Offset Voltage vs Common-Mode Voltage  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
40  
30  
20  
10  
0
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
180  
135  
90  
45  
0
10 Typical Units Shown  
Open-loop Gain  
Phase  
10  
20  
30  
40  
50  
20.0  
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
VSUPPLY (V)  
Frequency (Hz)  
VS = ±2.25 V to ±18 V  
CLOAD = 15 pF  
Figure 13. Offset Voltage vs Power Supply  
Figure 14. Open-Loop Gain and Phase vs Frequency  
60.0  
40.0  
20.0  
0.0  
20  
G = -100  
G = +1  
G = -1  
15  
10  
5
IB-  
G = -10  
0
IB+  
œ5  
œ10  
œ15  
œ20  
œ20.0  
1000  
10k  
100k  
1M  
10M  
œ18.0  
œ9.0  
0.0  
9.0  
18.0  
C003  
Frequency (Hz)  
VCM (V)  
C001  
Figure 15. Closed-Loop Gain and Phase vs Frequency  
Figure 16. Input Bias Current vs Common-Mode Voltage  
6000  
(V-) + 5  
IB+  
IB -  
Ios  
5000  
4000  
3000  
2000  
1000  
0
(V-) + 4  
+125°C  
(V-) + 3  
(V-) + 2  
-40°C  
(V-) + 1  
(V-)  
Ios  
(V-) - 1  
œ1000  
0
10  
20  
30  
40  
50  
60  
70  
80  
œ75 œ50 œ25  
0
25  
50  
75 100 125 150 175  
Iout (mA)  
Temperature (°C)  
C001  
C001  
Figure 17. Input Bias Current vs Temperature  
Figure 18. Output Voltage Swing vs Output Current  
(Maximum Supply)  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10  
8
6
4
VS = ±2.25 V, VCM = V+ - 3 V  
2
0
œ2  
œ4  
œ6  
œ8  
œ10  
VS = ±18 V, VCM = 0 V  
+PSRR  
CMRR  
-PSRR  
1
10  
100  
1k  
10k  
100k  
1M  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
C012  
Frequency (Hz)  
Temperature (°C)  
C001  
Figure 19. CMRR and PSRR vs Frequency  
Figure 20. CMRR vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Peak-to-Peak Noise = VRMS × 6.6 = 1.30 Vpp  
Time (1 s/div)  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
C001  
Temperature (°C)  
C001  
Figure 21. PSRR vs Temperature  
Figure 22. 0.1-Hz to 10-Hz Noise  
0.1  
-60  
1000  
100  
10  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = -1 V/V, RL = 10 kΩ  
G = -1 V/V, RL = 2 kΩ  
0.01  
0.001  
-80  
VCM = V+ - 100 mV  
N-Channel Input  
-100  
-120  
-140  
0.0001  
0.00001  
VCM = 0 V  
P-Channel Input  
1
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k 10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C002  
VOUT = 3.5 VRMS  
BW = 80 kHz  
Figure 24. THD+N Ratio vs Frequency  
Figure 23. Input Voltage Noise Spectral Density  
vs Frequency  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
0.1  
-60  
1.2  
1.1  
1.0  
0.9  
0.8  
0.01  
-80  
0.001  
-100  
-120  
-140  
0.0001  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = -1 V/V, RL = 10 kΩ  
G = -1 V/V, RL = 2 kΩ  
0.00001  
0.01  
0.1  
1
10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Output Amplitude (VRMS)  
Supply Voltage (V)  
C001  
f = 1 kHz, BW = 80 kHz  
Figure 25. THD+N vs Output Amplitude  
Figure 26. Quiescent Current vs Supply Voltage  
3.0  
1.2  
1.1  
1
Vs = 4.5 V  
Vs = 36 V  
2.0  
1.0  
0.0  
1.0  
2.0  
3.0  
Vs = ±18 V  
Vs = ±2.25 V  
0.9  
0.8  
75  
50  
25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (ƒC)  
Temperature (°C)  
C001  
RL = 10 kΩ  
Figure 28. Open-Loop Gain vs Temperature  
Figure 27. Quiescent Current vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10k  
1k  
+ 18  
V
-
RISO  
+
-
OPA192-Q1  
VIN  
+
CL  
-18  
V
0
RISO = 0 Ω  
100  
10  
RISO = 25 2Ω5  
RISO = 50 Ω50  
0
10p  
100p  
1n  
0
1
10  
100  
1k  
10k 100k 1M  
10M  
Capacitive Load (F)  
Frequency (Hz)  
C016  
RI = 1 kΩ  
RF = 1 kΩ  
G = –1  
Figure 30. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 29. Open-Loop Output Impedance vs Frequency  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
VIN  
+ 18 V  
+ 18 V  
45  
40  
35  
30  
25  
20  
15  
10  
5
-
-
RISO  
OPA192-Q1  
OPA192-Q1  
VOUT  
+
+
-
+
RL  
CL  
+
-
VIN  
-18 V  
-18 V  
37 VPP  
Sine Wave  
18.5V)  
(
VOUT  
RISO = 0 Ω  
0
RISO = 25 Ω  
25  
RISO = 50 Ω  
50  
0
10p  
100p  
1n  
Time (200 μs/div)  
Capacitive Load (F)  
G = 1  
Figure 31. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 32. No Phase Reversal  
+
18 V  
VOUT  
-
+
VOUT  
OPA192-Q1  
VIN  
+
VOUT  
+ 18  
V
-
-18  
V
-
+
-
VOUT  
OPA192-Q1  
VIN  
+
- 18  
V
VIN  
VIN  
Time (200 ns/div)  
Time (200 ns/div)  
RI = 1 kΩ  
RF = 10 kΩ  
G = –10  
RI = 1 kΩ  
G = –10  
RF = 10 kΩ  
Figure 33. Positive Overload Recovery  
Figure 34. Negative Overload Recovery  
+ 18 V  
-
+
-
OPA192-Q1  
VIN  
+
CL  
- 18 V  
+ 18 V  
-
OPA192-Q1  
+
+
VIN  
RL  
CL  
-18 V  
-
Time (120 ns/div)  
Time (100 ns/div)  
RL = 1 kΩ  
CL = 10 pF  
G = –1  
CL = 10 pF  
G = 1  
Figure 36. Small-Signal Step Response (100 mV)  
Figure 35. Small-Signal Step Response (100 mV)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
4
3
2
1
0
+ 18 V  
-1  
0.01% Settling = 1 mV  
-
+
-
OPA192-Q1  
-2  
-3  
-4  
VIN  
+
CL  
-18 V  
Step Applied at t = 0  
1.25 1.5 1.75 2  
0
0.25  
0.5  
0.75  
1
Time (300 ns/div)  
Time (μs)  
RL = 1 kΩ  
CL = 10 pF  
G = –1  
G = 1  
Figure 38. Settling Time (10-V Positive Step)  
Figure 37. Large-Signal Step Response  
4
3
4
3
2
2
1
1
0
0
0.01% Settling = 500 μV  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
0.01% Settling = 1 mV  
Step Applied at t = 0  
Step Applied at t = 0  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Time (μs)  
Time (μs)  
G = 1  
G = 1  
Figure 39. Settling Time (5-V Positive Step)  
Figure 40. Settling Time (10-V Negative Step)  
4
3
80  
60  
40  
20  
0
ISC, Source  
ISC, Sink  
2
1
0
0.01% Settling = 500 μV  
-1  
-2  
-3  
-4  
Step Applied at t = 0  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Time (μs)  
Temperature (°C)  
C001  
G = 1  
Figure 41. Settling Time (5-V Negative Step)  
Figure 42. Short-Circuit Current vs Temperature  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
30  
Maximum output voltage without  
VS = ±15 V  
slew-rate induced distortion.  
Overdrive = 100 mV  
25  
20  
15  
10  
5
tpLH = 0.97 s  
VS = ±5 V  
VS = ±2.25 V  
VOUT Voltage  
0
Time (200 ns/div)  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C033  
C025  
Figure 43. Maximum Output Voltage vs Frequency  
Figure 44. Propagation Delay Rising Edge  
-80  
-100  
-120  
-140  
-160  
-180  
VOUT Voltage  
tpLH = 1.1 s  
Overdrive = 100 mV  
Time (200 ns/div)  
1k  
10k  
100k  
1M  
Frequency (Hz)  
C026  
Figure 46. Crosstalk vs Frequency  
Figure 45. Propagation Delay Falling Edge  
7 Parameter Measurement Information  
7.1 Input Offset Voltage Drift  
The OPAx192-Q1 family of operational amplifiers is manufactured using TI’s e-trim technology. Each amplifier  
input offset voltage and input offset voltage drift is trimmed in production, thereby minimizing errors associated  
with input offset voltage and input offset voltage drift. The e-trim technology is a TI proprietary method of  
trimming internal device parameters during either wafer probing or final testing. When trimming input offset  
voltage drift the systematic or linear drift error on each device is trimmed to zero. This results in the remaining  
errors associated with input offset drift are minimal and are the result from only nonlinear error sources.  
Figure 47 illustrates this concept.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Input Offset Voltage Drift (continued)  
VOS Before e-trim  
VOS After e-trim  
Linear component of drift  
Linear component of drift  
Temperature  
Figure 47. Input Offset Before and After Drift Trim  
Figure 48 shows six typical units.  
75  
50  
6 Typical Units Shown  
3 1  
25  
0
œ25  
œ50  
œ75  
-3 1  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Figure 48. Input Offset Voltage Drift vs Temperature for Six Typical Units  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
8 Detailed Description  
8.1 Overview  
The OPAx192-Q1 family of operational amplifiers use e-trim, a method of package-level trim for offset and offset  
temperature drift implemented during the final steps of manufacturing after the plastic molding process. This  
method minimizes the influence of inherent input transistor mismatch, as well as errors induced during package  
molding. The trim communication occurs on the output pin of the standard pinout, and after the trim points are  
set, further communication to the trim structure is permanently disabled. The Functional Block Diagram shows  
the simplified diagram of the OPAx192-Q1 with e-trim.  
Unlike previous e-trim op amps, the OPAx192-Q1 uses a patented two-temperature trim architecture to achieve a  
very low offset voltage of 25 µV (maximum) and low voltage offset drift of 0.5 µV/°C (maximum) over the full  
specified temperature range. This level of precision performance at wide supply voltages makes these amplifiers  
useful for high-impedance industrial sensors, filters, and high-voltage data acquisition.  
8.2 Functional Block Diagram  
OPAx192-Q1  
NCH Input  
Stage  
IN+  
VOUT  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
High Capacitive  
Load  
Compensation  
IN-  
PCH Input  
Stage  
œ
e-trim  
Package Level Trim  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
8.3 Feature Description  
8.3.1 Input Protection Circuitry  
The OPAx192-Q1 uses a unique input architecture to eliminate the need for input protection diodes but still  
provides robust input protection under transient conditions. Conventional input diode protection schemes shown  
in Figure 49 can be activated by fast transient step responses and can introduce signal distortion and settling  
time delays because of alternate current paths, as shown in Figure 50. For low-gain circuits, these fast-ramping  
input signals forward-bias back-to-back diodes, causing an increase in input current, and resulting in extended  
settling time, as shown in Figure 51.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
OPAx192-Q1  
~0.7 V  
36 V  
VIN-  
VIN-  
V-  
V-  
OPA192-Q1 Provides Full  
36-V Differential Input  
Range  
Conventional Input Protection  
Limits Differential Input Range  
Copyright © 2017, Texas Instruments Incorporated  
Figure 49. OPAx192-Q1 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = +10 V  
RFILT  
+10 V  
Sn  
D
1
2
~œ9.3 V  
+10 V  
CFILT  
CS  
CD  
Vinœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
Vout  
CFILT  
CS  
Idiode_transient  
Vin+  
œ10 V  
Input Low Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 50. Back-to-Back Diodes Create Settling Issues  
100  
Standard Input Diode Structure  
80  
Extends Settling Time  
60  
40  
0.1% Settling = 10 mV  
20  
0
20  
OPA192-Q1 Input Structure  
Offers Fast Settling  
40  
60  
80  
100  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Time (µs)  
C040  
Figure 51. OPAx192-Q1 Protection Circuit Maintains Fast-Settling Transient Response  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
 
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
Feature Description (continued)  
The OPAx192-Q1 family of operational amplifiers provides a true high-impedance differential input capability for  
high-voltage applications. This patented input protection architecture does not introduce additional signal  
distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input  
applications. The OPAx192-Q1 can tolerate a maximum differential swing (voltage between inverting and  
noninverting pins of the op amp) of up to 36 V, making the device suitable for use as a comparator or in  
applications with fast-ramping input signals such as multiplexed data-acquisition systems; see Figure 61.  
8.3.2 EMI Rejection  
The OPAx192-Q1 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx192-Q1 benefits  
from these design improvements. Texas Instruments has developed the ability to accurately measure and  
quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz  
to 6 GHz. Figure 52 shows the results of this testing on the OPAx192-Q1. Table 2 shows the EMIRR IN+ values  
for the OPAx192-Q1 at particular frequencies commonly encountered in real-world applications. Applications  
listed in Table 2 may be centered on or operated near the particular frequency shown. Detailed information can  
also be found in the application report EMI Rejection Ratio of Operational Amplifiers available for download from  
www.ti.com.  
160.0  
PRF = -10 dBm  
VSUPPLY = ±18 V  
VCM = 0 V  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
Figure 52. EMIRR Testing  
Table 2. OPAx192-Q1 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
44.1 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
52.8 dB  
61.0 dB  
69.5 dB  
88.7 dB  
105.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
8.3.3 Phase Reversal Protection  
The OPAx192-Q1 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when  
the input is driven beyond its linear common-mode range. This condition is most often encountered in  
noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the  
output to reverse into the opposite rail. The OPAx192-Q1 is a rail-to-rail input op amp; therefore, the common-  
mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the  
output limits into the appropriate rail. This performance is shown in Figure 53.  
VIN  
+ 18 V  
-
OPA192-Q1  
VOUT  
+
+
-
-18 V  
37 VPP  
Sine Wave  
18.5V)  
(
VOUT  
Time (200 μs/div)  
Figure 53. No Phase Reversal  
8.3.4 Thermal Protection  
The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the OPAx192-Q1 is 150°C.  
Exceeding this temperature causes damage to the device. The OPAx192-Q1 has a thermal protection feature  
that prevents damage from self heating. The protection works by monitoring the temperature of the device and  
turning off the op amp output drive for temperatures above 140°C. Figure 54 shows an application example for  
the OPAx192-Q1 that has significant self heating (159°C) because of the power dissipation (0.81 W). Thermal  
calculations indicate that for an ambient temperature of 65°C the device junction temperature must reach 187°C.  
The actual device, however, turns off the output drive to maintain a safe junction temperature. Figure 54 shows  
how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the  
output is 3 V. When self heating causes the device junction temperature to increase above 140°C, the thermal  
protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL.  
Normal  
Operation  
3 V  
TA = 65°C  
+30 V  
PD = 0.81W  
JA = 116°C/W  
TJ = 116°C/W × 0.81W + 65°C  
TJ = 159°C (expected)  
Output  
High-Z  
0 V  
-
150°C  
OPAx192-Q1  
140ºC  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Copyright © 2017, Texas Instruments Incorporated  
Figure 54. Thermal Protection  
8.3.5 Capacitive Load and Stability  
The OPAx192-Q1 features a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the  
amplifier to drive greater capacitive loads; see Figure 55 and Figure 56. The particular op amp circuit  
configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an  
amplifier is stable in operation.  
24  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+ 18 V  
-
+ 18  
V
RISO  
OPA192-Q1  
-
RISO  
+
+
-
RL  
CL  
+
-
OPA192-Q1  
VIN  
-18 V  
VIN  
+
CL  
-18  
V
0
RISO = 0 Ω  
RISO = 25 2Ω5  
RISO = 50 Ω50  
RISO = 0 Ω  
0
RISO = 25 Ω  
25  
RISO = 50 Ω  
50  
0
0
10p  
100p  
Capacitive Load (F)  
1n  
10p  
100p  
1n  
Capacitive Load (F)  
Figure 55. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 56. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
(10 Ω to 20 Ω) resistor, RISO, in series with the output, as shown in Figure 57. This resistor significantly reduces  
ringing and maintains dc performance for purely capacitive loads. However, if a resistive load is in parallel with  
the capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at  
low output levels. A high capacitive-load drive makes the OPAx192-Q1 work well with applications such as  
reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 57 uses an isolation  
resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased  
phase margin, and results using the OPAx192-Q1 are summarized in Table 3. For additional information on  
techniques to optimize and design using this circuit, TI Precision Design Capacitive Load Drive Solution using an  
Isolation Resistor details complete design goals, simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 57. Extending Capacitive Load Drive with the OPAx192-Q1  
Table 3. OPAx192-Q1 Capacitive Load Drive Solution Using Isolation Resistor Comparison of  
Calculated and Measured Results  
PARAMETER  
VALUE  
Capacitive Load  
Phase Margin  
RISO (Ω)  
100 pF  
1000 pF  
0.01 µF  
0.1 µF  
1 µF  
45°  
47  
60°  
45°  
24  
60°  
45°  
20  
60°  
51  
45°  
6.2  
60°  
45°  
2
60°  
4.7  
360  
100  
15.8  
Measured  
Overshoot (%)  
23.2 8.6  
45.1°  
10.4  
22.5  
9.0  
22.1  
8.7  
23.1  
8.6  
21  
8.6  
Calculated PM  
58.1°  
45.8°  
59.7°  
46.1°  
60.1°  
45.2°  
60.2°  
47.2°  
60.2°  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Precision Design TIDU032, Capacitive Load Drive Solution using  
an Isolation Resistor .  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
8.3.6 Common-Mode Voltage Range  
The OPAx192-Q1 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 58. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition  
region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are on. This transition region can vary  
modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise and THD  
performance may be degraded compared to operation outside this region.  
+Vsupply  
IS1  
VIN-  
PCH1  
NCH4  
NCH3  
PCH2  
VIN+  
e-ÇrimÇa  
CÜ{9 .!bY  
ëh{ ÇwLa  
ëh{ 5wLCÇ ÇwLa  
-Vsupply  
Figure 58. Rail-to-Rail Input Stage  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPAx192-Q1 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown in  
Figure 59.  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
200  
100  
200  
100  
0
0
œ100  
œ100  
œ200  
œ300  
OPA192 e-Trim  
Input Offset Voltage vs Vcm  
œ200  
œ300  
Input Offset Voltage vs Vcm  
without e-Trim Input  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
Figure 59. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers  
26  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
8.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. Figure 60 shows an illustration of the ESD circuits contained in the OPAx192-Q1 (indicated by the  
dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input  
and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption  
device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to  
remain inactive during normal circuit operation.  
TVS  
RF  
+VS  
OPAx192-Q1  
VDD  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power Supply  
ESD Cell  
RL  
+
VIN  
œ
VSS  
œVS  
TVS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 60. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled  
ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
8.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPAx192-Q1 is approximately 200 ns.  
8.4 Device Functional Modes  
The OPAx192-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx192-Q1 is 36 V (±18 V).  
28  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPAx192-Q1 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input and output, ultra-low offset voltage and offset voltage drift, as well as  
10-MHz bandwidth and high capacitive load drive. These features make the OPAx192-Q1 a robust, high-  
performance operational amplifier for high-voltage industrial applications.  
9.2 Typical Applications  
9.2.1 16-Bit Precision Multiplexed Data-Acquisition System  
Figure 61 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This  
TI Precision Design details the process for optimizing the precision, high-voltage, front-end drive circuit using the  
OPAx192-Q1 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.  
1
2
3
4
High-Impedance Inputs  
No Differential Input Clamps  
Fast Settling-Time Requirements  
Attenuate High-Voltage Input Signal  
Fast-Settling Time Requirements  
Stability of the Input Driver  
Attenuate ADC Kickback Noise  
VREF Output: Value and Accuracy  
Low Temp and Long-Term Drift  
Very Low Output Impedance  
Input-Filter Bandwidth  
Voltage  
Reference  
OPAx192-Q1  
+
/I0+  
/I0-  
RC Filter  
.uffer  
RC Filter  
±20-V,  
10-kHz  
Sine Wave  
Reference Driver  
+
Gain  
Network  
Gain  
Network  
OPAx192-Q1  
OPAx192-Q1  
+
4:2  
aux  
REFP  
+
VINP  
OPAx192-Q1  
Gain  
Network  
OPAx192-Q1  
+
/I3+  
OPAx192-Q1  
+
Antialiasing  
Filter  
SAR  
ADC  
±20-V,  
10-kHz  
Sine Wave  
+
VINM  
OPAx192-Q1  
/I3-  
n
CONV  
16 Bits  
High-Voltage Level Translation  
400 kSPS  
Iigh-ëoltage ꢀultiplexed Lnput  
Voltage  
Divider  
REF3240  
ht!350  
Shmidtt  
Trigger  
VCM Generation Circuit  
Counter  
Delay  
n
Digital Counter For Multiplexer  
5
Fast logic transition  
Copyright © 2017, Texas Instruments Incorporated  
Figure 61. OPAx192-Q1 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-  
Voltage Inputs With Lowest Distortion  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
The primary objective is to design a ±20 V, differential 4-channel multiplexed data acquisition system with lowest  
distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10 kHz full-scale pure sine-wave input.  
The design requirements for this block design are:  
System Supply Voltage: ±15 V  
ADC Supply Voltage: 3.3 V  
ADC Sampling Rate: 400 kSPS  
ADC Reference Voltage (REFP): 4.096 V  
System Input Signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
9.2.1.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for  
highest system linearity and fast settling. The overall system block diagram is illustrated in Figure 61. The circuit  
is a multichannel data acquisition signal chain consisting of an input low-pass filter, multiplexer (mux), mux output  
buffer, attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast  
sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design  
considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input  
analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each  
analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit  
resolution and lowest distortion system. The diagram includes the most important specifications for each  
individual analog block.  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design  
is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding  
helps in the decision of an appropriate input filter and selection of a mux to meet the system settling  
requirements. The next important step is the design of the attenuating analog front-end (AFE) used to level  
translate the high-voltage input signal to a low-voltage ADC input when maintaining amplifier stability. The next  
step is to design a digital interface to switch the mux input channels with minimum delay. The final design  
challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage  
with low offset, drift, and noise contributions.  
9.2.1.3 Application Curve  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
ADC Differential Input (V)  
Figure 62. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU181, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition  
System for High Voltage Inputs with Lowest Distortion.  
30  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
9.2.2 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down  
at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPAx192-Q1 make the device an optimal amplifier to achieve slew rate  
control for both dual- and single-supply systems.Figure 63 shows the OPAx192-Q1 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
470 nF  
R1  
1.69 kΩ  
VEE  
VEE  
R2  
1.6 MΩ  
-
-
OPAx192-Q1  
V+  
VIN  
+
OPAx192-Q1  
V+  
VOUT  
+
VCC  
RL  
10 kΩ  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 63. Slew Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, see TI Precision Design TIDU026, Slew Rate Limiter Uses One Op Amp.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
9.2.3 Precision Reference Buffer  
The OPAx192-Q1 features high output current drive capability and low input offset voltage, making the device an  
excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For the  
10-µF ceramic capacitor shown in Figure 64, RISO, a 37.4-Ω isolation resistor, provides separation of two  
feedback paths for optimal stability. Feedback path number one is through RF and is directly at the output (VOUT).  
Feedback path number two is through RFx and CF and is connected at the output of the op amp. The optimized  
stability components shown for the 10-µF load give a closed-loop signal bandwidth at VOUT of 4 kHz and still  
provides a loop gain phase margin of 89°. Any other load capacitances require recalculation of the stability  
components: RF, RFx , CF , and RISO  
.
RF  
1 k  
CF  
39 nF  
RFx  
10 kΩ  
RISO  
-
37.4 Ω  
VOUT  
OPAx192-Q1  
V+  
+
CL  
10 µF  
+
VCC  
VREF  
2.5 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 64. Precision Reference Buffer  
32  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
10 Power-Supply Recommendations  
The OPAx192-Q1 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply  
from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see Absolute  
Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see Layout.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current. .  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much  
better as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in Figure 66, keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB  
assemblyto remove moisture introduced into the device packaging during the cleaning process. A low  
temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
11.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 65. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
Copyright © 2017, Texas Instruments Incorporated  
Figure 66. Operational Amplifier Board Layout for Noninverting Configuration  
34  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
OPA192-Q1, OPA2192-Q1  
www.ti.com  
SBOS850 DECEMBER 2017  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
12.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
12.1.1.2 TI Precision Designs  
The OPA192 is featured in several Texas Instruments (TI) Precision Designs, available online at  
http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI’s  
precision analog applications experts and offer the theory of operation, component selection, simulation,  
complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.  
12.2 Related Links  
Table 4 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 4. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
OPA192-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
OPA2192-Q1  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
 
OPA192-Q1, OPA2192-Q1  
SBOS850 DECEMBER 2017  
www.ti.com  
12.5 Trademarks  
e-trim, E2E are trademarks of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
e-trim, are trademarks of ~ Texas Instruments.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
36  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: OPA192-Q1 OPA2192-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA192QDGKRQ1  
OPA2192QDGKRQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
192  
NIPDAUAG  
2192  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF OPA192-Q1, OPA2192-Q1 :  
Catalog: OPA192, OPA2192  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA192QDGKRQ1  
OPA2192QDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA192QDGKRQ1  
OPA2192QDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

OPA2192ID

具有 e-trim 的 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器 | D | 8 | -40 to 125
TI

OPA2192IDGKR

具有 e-trim 的 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器 | DGK | 8 | -40 to 125
TI

OPA2192IDGKT

具有 e-trim 的 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器 | DGK | 8 | -40 to 125
TI

OPA2192IDR

具有 e-trim 的 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器 | D | 8 | -40 to 125
TI

OPA2192QDGKRQ1

采用电子修整技术的汽车类 36V、精密、RRIO、低失调电压、低输入偏置电流运算放大器 | DGK | 8 | -40 to 125
TI

OPA2196

具有多路复用器友好型输入的双路、36V、低功耗通用放大器
TI

OPA2196ID

具有多路复用器友好型输入的双路、36V、低功耗通用放大器 | D | 8 | -40 to 125
TI

OPA2196IDGKR

具有多路复用器友好型输入的双路、36V、低功耗通用放大器 | DGK | 8 | -40 to 125
TI

OPA2196IDGKT

具有多路复用器友好型输入的双路、36V、低功耗通用放大器 | DGK | 8 | -40 to 125
TI

OPA2196IDR

具有多路复用器友好型输入的双路、36V、低功耗通用放大器 | D | 8 | -40 to 125
TI

OPA2197

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器
TI

OPA2197-Q1

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器
TI