OPA317QDBVRQ1 [TI]

具有低失调电压、RRIO 和低电流消耗且通过汽车级认证的运算放大器 | DBV | 5 | -40 to 125;
OPA317QDBVRQ1
型号: OPA317QDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低失调电压、RRIO 和低电流消耗且通过汽车级认证的运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总29页 (文件大小:931K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
OPAx317-Q1 零漂移、低偏移、轨到轨 I/O 运算放大器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
OPA317-Q1 系列 CMOS 运算放大器不但具备精密的  
性能,而且价格极具竞争力。这些器件属于采用专有自  
动校准技术的零漂移系列放大器,在整个时间和温度范  
围内的偏移电压非常低(最大 90μV)且几乎零漂移,  
并且静态电流只有 35μA(最大值)。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 3A  
OPA317-Q1 系列放大器 具有 轨到轨输入和输出以及  
几乎不变的 1/f 噪声特性,因此是许多应用 应用的理  
想选择,更容易设计到系统中。此类器件经过优化,适  
合在 1.8V (±0.9V) 5.5V (±2.75V) 的低电压状态下  
工作。  
器件带电器件模型 (CDM) ESD 分类等级 C6  
电源电压:1.8V 5.5V  
微型封装:  
单通道:SOT23-5  
双通道:VSSOP-8  
四通道:TSSOP-14  
OPA317-Q1(单通道版本)提供 SOT23-5 三种封  
装。OPA2317-Q1(双通道版本)提供 VSSOP-8 两种  
封装。OPA4317-Q1 提供 TSSOP-14 两种封装。所有  
器件版本的额定工作温度范围均为 -40°C +125°C。  
低偏移电压:20μV(典型值)  
共模抑制比 (CMRR)108dB(典型值)电源抑制  
(PSRR)  
静态电流:35μA(最大值)  
增益带宽:300kHz  
器件信息(1)  
产品型号  
OPA317-Q1  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
1.60mm x 2.90mm  
3.00mm × 3.00mm  
4.40mm × 5.00mm  
轨到轨输入和输出  
内部电磁干扰 (EMI) 和内部射频干扰 (RFI) 滤波功  
OPA2317-Q1  
OPA4317-Q1  
VSSOP (8)  
TSSOP (14)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
混合动力汽车-电动汽车 (HEV-EV) 动力传动  
高级驾驶员辅助系统 (ADAS)  
自动恒温控制  
低噪声、低功耗电路  
航空电子设备、起落装置  
医疗器械  
电流感测  
偏移电压分布  
Offset Voltage (mV)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS914  
 
 
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes ....................................... 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Applications ................................................ 17  
9.3 System Example ..................................................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions ...................... 6  
6.4 Thermal Information: OPA317-Q1 ............................ 7  
6.5 Thermal Information: OPA2317-Q1 .......................... 7  
6.6 Thermal Information: OPA4317-Q1 .......................... 7  
6.7 Electrical Characteristics: VS = 1.8 V to 5.5 V .......... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................ 13  
8.2 Functional Block Diagram ...................................... 13  
8.3 Feature Description................................................. 13  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 文档支持................................................................ 21  
12.2 接收文档更新通知 ................................................. 21  
12.3 相关链接................................................................ 21  
12.4 社区资源................................................................ 21  
12.5 ....................................................................... 21  
12.6 静电放电警告......................................................... 21  
12.7 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
7
8
4 修订历史记录  
日期  
修订版本  
注释  
2016 2016  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
5 Pin Configuration and Functions  
OPA317-Q1: DBV Package  
5-Pin SOT-23  
Top View  
OUT  
1
2
3
5
4
V+  
V-  
+IN  
-IN  
Pin Functions: OPA317-Q1  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
SOT-23  
+IN  
–IN  
3
4
1
5
2
I
Noninverting input  
I
Inverting input  
OUT  
V+  
O
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2016, Texas Instruments Incorporated  
3
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
OPA2317-Q1: DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
1
2
3
4
8
7
6
5
V+  
A
-IN A  
+IN A  
V-  
OUT B  
-IN B  
+IN B  
B
Pin Functions: OPA2317-Q1  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
+IN A  
VSSOP  
3
2
5
6
1
7
8
4
I
I
Noninverting input, channel A  
Inverting input, channel A  
Noninverting input, channel B  
Inverting input, channel B  
Output, channel A  
–IN A  
+IN B  
–IN B  
OUT A  
OUT B  
V+  
I
I
O
O
Output, channel B  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Copyright © 2016, Texas Instruments Incorporated  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
OPA4317-Q1: SW Package  
14-Pin TSSOP  
Top View  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
-IN A  
+IN A  
V+  
13 -IN D  
12 +IN D  
11 V-  
10  
9
+IN C  
-IN C  
OUT C  
+IN B  
-IN B  
OUT B  
8
Pin Functions: OPA4317-Q1  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
TSSOP  
+IN A  
–IN A  
+IN B  
–IN B  
+IN C  
–IN C  
+IN D  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
2
I
I
Noninverting input, channel A  
Inverting input, channel A  
Noninverting input, channel B  
Inverting input, channel B  
Noninverting input, channel C  
Inverting input, channel C  
Noninverting input, channel D  
Inverting input, channel D  
Output, channel A  
5
I
6
I
10  
9
I
I
12  
13  
1
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
Copyright © 2016, Texas Instruments Incorporated  
5
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
MAX  
UNIT  
V
VS = (V+) – (V–)  
Supply voltage  
7
(V+) + 0.3  
10  
(2)  
Signal input terminals  
(V–) – 0.3  
–10  
V
Signal input terminals(2)  
Output short circuit(3)  
Operating temperature  
Junction temperature  
Storage temperature  
mA  
Continuous  
TA  
–40  
150  
150  
150  
°C  
°C  
°C  
TJ  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must  
be current-limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted).  
MIN  
1.8 (±0.9)  
–40  
MAX  
UNIT  
V
(V+ – V–)  
TA  
Supply voltage  
5.5 (±2.25)  
125  
Specified temperature  
°C  
6
Copyright © 2016, Texas Instruments Incorporated  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
6.4 Thermal Information: OPA317-Q1  
OPA317-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
220.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
97.5  
61.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.6  
ψJB  
61.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2317-Q1  
OPA2317-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
48.1  
100.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.4  
ψJB  
99.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4317-Q1  
OPA4317-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
120.8  
34.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
62.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1
ψJB  
56.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
7
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
6.7 Electrical Characteristics: VS = 1.8 V to 5.5 V  
At TA = 25°C, RL = 10 kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
20  
±90  
VOS  
Input offset voltage  
μV  
TA = –40°C to +125°C, VS = 5 V  
TA = –40°C to +125°C  
±100  
Input offset voltage  
vs temperature  
dVOS/dT  
PSRR  
0.05  
μV/°C  
μV/V  
Input offset voltage  
vs power supply  
TA = –40°C to +125°C, VS = 1.8 V to 5.5 V  
1
10  
(1)  
Long-term stability(1)  
See  
Channel separation, DC  
5
μV/V  
INPUT BIAS CURRENT  
±275  
±155  
±300  
±400  
±140  
IB  
Input bias current  
OPA4317-Q1  
pA  
pA  
TA = –40°C to +125°C  
IOS  
Input offset current  
OPA4317-Q1  
NOISE  
en  
Input voltage noise density  
Input voltage noise  
f = 1 kHz  
55  
0.3  
nV/Hz  
μVPP  
f = 0.01 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
1.1  
in  
Input current noise  
100  
fA/Hz  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage  
(V–) – 0.1  
95  
(V+) + 0.1  
V
TA = –40°C to +125°C  
(V–) – 0.1 V < VCM < (V+) + 0.1 V  
108  
108  
CMRR  
Common-mode rejection ratio  
dB  
OPA4317  
TA = –40°C to +125°C  
95  
(V–) – 0.1 V < VCM < (V+) + 0.1 V, VS = 5.5 V  
INPUT CAPACITANCE  
Differential  
2
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
TA = –40°C to +125°C, RL = 10 kΩ  
(V–) + 100 mV < VO < (V+) – 100 mV  
AOL  
Open-loop voltage gain  
100  
110  
dB  
FREQUENCY RESPONSE  
GBW  
Gain-bandwidth product  
CL = 100 pF  
G = 1  
300  
kHz  
SR  
Slew rate  
0.15  
V/μs  
OUTPUT  
Voltage output swing from rail  
Short-circuit current  
TA = –40°C to +125°C  
f = 350 kHz, IO = 0  
30  
±5  
100  
mV  
mA  
ISC  
CL  
Capacitive load drive  
See the Typical Characteristics section  
Open-loop output impedance  
2
kΩ  
POWER SUPPLY  
VS  
IQ  
Specified voltage  
Quiescent current per amplifier TA = –40°C to +125°C, IO = 0  
Turnon time VS = 5 V  
1.8  
5.5  
35  
V
21  
μA  
µs  
100  
(1) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV.  
8
Copyright © 2016, Texas Instruments Incorporated  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
6.8 Typical Characteristics  
At TA = 25°C, CL = 0 pF, RL = 10 kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
120  
100  
250  
200  
150  
100  
50  
80  
Phase  
60  
40  
Gain  
20  
0
0
-50  
-100  
-20  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Offset Voltage (mV)  
Figure 2. Open-Loop Gain vs Frequency  
Figure 1. Offset Voltage Production Distribution  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
+PSRR  
-PSRR  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Figure 3. Common-Mode Rejection Ratio vs Frequency  
Figure 4. Power-Supply Rejection Ratio vs Frequency  
210  
3
VS = ±2.75V  
205  
200  
195  
190  
VS = ±0.9V  
2
–IB  
-40°C  
1
+25°C  
+125°C  
0
+25°C  
-40°C  
-190  
-195  
-200  
-205  
-210  
-1  
+125°C  
+IB  
+25°C  
-2  
-40°C  
-3  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
Output Current (mA)  
Common-Mode Voltage (V)  
Figure 5. Output Voltage Swing vs Output Current  
Figure 6. Input Bias Current vs Common-Mode Voltage  
Copyright © 2016, Texas Instruments Incorporated  
9
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, CL = 0 pF, RL = 10 kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
–IB  
VS = 5.5 V  
VS = 1.8 V  
–IB  
VS = 5.5 V  
VS = 1.8 V  
0
-50  
-100  
-150  
-200  
-250  
+IB  
+IB  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 7. Input Bias Current vs Temperature  
Figure 8. Quiescent Current vs Temperature  
Time (50 µs/div)  
Time (5 µs/div)  
G = 1  
RL = 10 kΩ  
G = 1  
RL = 10 kΩ  
Figure 9. Large-Signal Step Response  
Figure 10. Small-Signal Step Response  
0
Input  
Input  
0
0
Output  
Output  
0
Time (50 ms/div)  
Time (50 ms/div)  
See Figure 18  
See Figure 18  
Figure 12. Negative Overvoltage Recovery  
Figure 11. Positive Overvoltage Recovery  
10  
Copyright © 2016, Texas Instruments Incorporated  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
Typical Characteristics (continued)  
At TA = 25°C, CL = 0 pF, RL = 10 kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
0
0.001%  
0.01%  
0
10  
100  
1000  
1
10  
100  
Load Capacitance (pF)  
Gain (dB)  
4-V Step  
Figure 14. Small-Signal Overshoot vs Load Capacitance  
Figure 13. Settling Time vs Closed-Loop Gain  
1000  
100  
10  
1000  
Continues with no 1/f (flicker) noise.  
Current Noise  
100  
Voltage Noise  
10  
1
10  
100  
1k  
10k  
1 s/div  
Frequency (Hz)  
Figure 16. Current and Voltage Noise Spectral Density vs  
Frequency  
Figure 15. 0.1-Hz to 10-Hz Noise  
50  
Normal Operating Range  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
Over-Driven Condition  
Over-Driven Condition  
200 400 600 800  
-1V -800 -600 -400 -200  
0
Input Differential Voltage (mV)  
See the Input Differential Voltage section  
Figure 17. Input Bias Current vs  
Input Differential Voltage  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
10 kW  
2.5 V  
1 kW  
Device  
-2.5 V  
Figure 18. Overvoltage Recovery Circuit  
12  
Copyright © 2016, Texas Instruments Incorporated  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
8 Detailed Description  
8.1 Overview  
The OPA317-Q1 is a family of low-power, rail-to-rail input and output operational amplifiers. These devices  
operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose  
applications. The class AB output stage is capable of driving 10-kΩ loads connected to any point between V+  
and ground. The input common-mode voltage range includes both rails and allows the OPA317 series to be used  
in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range,  
especially in low-supply applications, and makes them ideal for driving sampling analog-to-digital converters  
(ADCs).  
8.2 Functional Block Diagram  
C2  
Notch  
Filter  
GM1  
CHOP1  
CHOP2  
GM2  
GM3  
OUT  
+IN  
-IN  
C1  
GM_FF  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Operating Voltage  
The OPA317-Q1 series of operational amplifiers can be used with single or dual supplies from an operating  
range of VS = 1.8 V (±0.9 V) up to 5.5 V (±2.75 V).  
CAUTION  
Supply voltages greater than 7 V can permanently damage the device.  
See the Absolute Maximum Ratings table. Key parameters that vary over the supply voltage or temperature  
range are shown in the Typical Characteristics section.  
Copyright © 2016, Texas Instruments Incorporated  
13  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Input Voltage  
The OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 input common-mode voltage range extends 0.1 V beyond the  
supply rails. The OPA317-Q1 device is designed to cover the full range without the troublesome transition region  
found in some other rail-to-rail amplifiers.  
Typically, input bias current is about 200 pA; however, input voltages exceeding the power supplies can cause  
excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply can be  
tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input resistor, as  
shown in Figure 19.  
5 V  
IOVERLOAD  
10 mA max  
Device  
VOUT  
VIN  
5 kW  
NOTE: Current limiting resistor required if input voltage exceeds supply rails by 0.3 V.  
Figure 19. Input Current Protection  
8.3.3 Input Differential Voltage  
The typical input bias current of the OPA317-Q1 during normal operation is approximately 200 pA. In overdriven  
conditions, the bias current can increase significantly (see Figure 17).The most common cause of an overdriven  
condition occurs when the operational amplifier is outside of the linear range of operation. When the output of the  
operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied, and  
a differential input voltage develops across the input pins. This differential input voltage results in activation of  
parasitic diodes inside the front-end input chopping switches that combine with 10-kΩ electromagnetic  
interference (EMI) filter resistors to create the equivalent circuit shown in Figure 20.  
NOTE  
The input bias current remains within specification within the linear region.  
10 kW  
Clamp  
+IN  
CORE  
-IN  
10 kW  
Figure 20. Equivalent Input Circuit  
8.3.4 Internal Offset Correction  
The OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 operational amplifiers use an auto-calibration technique with  
a time-continuous, 125-kHz operational amplifier in the signal path. This amplifier is zero-corrected every 8 μs  
using a proprietary technique. Upon power up, the amplifier requires approximately 100 μs to achieve specified  
VOS accuracy. This design has no aliasing or flicker noise.  
8.3.5 EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the DC  
offset observed at the amplifier output may shift from its nominal value while the EMI is present. This shift is a  
result of signal rectification associated with the internal semiconductor junctions. While all operational amplifier  
pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The OPA317-Q1  
operational amplifier family incorporates an internal input low-pass filter that reduces the amplifier response to  
EMI. Both common-mode and differential mode filtering are provided by the input filter. The filter is designed for a  
cutoff frequency of approximately 8 MHz (–3 dB), with a roll-off of 20 dB per decade.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
8.4 Device Functional Modes  
The OPAx317-Q1 family of devices are powered on when the supply is connected. The device can be operated  
as a single-supply operational amplifier or a dual-supply amplifier, depending on the application.  
Copyright © 2016, Texas Instruments Incorporated  
15  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 are unity-gain stable, precision operational amplifiers free  
from unexpected output and phase reversal. Proprietary Zerø-Drift circuitry gives the benefit of low input offset  
voltage over time and temperature, as well as lowering the 1/f noise component. As a result of the high PSRR,  
these devices work well in applications that run directly from battery power without regulation. The OPA317-Q1  
family is optimized for low-voltage, single-supply operation. These miniature, high-precision, low quiescent  
current amplifiers offer high impedance inputs that have a common-mode range 100 mV beyond the supplies,  
and a rail-to-rail output that swings within 100 mV of the supplies under normal test conditions. The OPA317-Q1  
series are precision amplifiers for cost-sensitive applications.  
9.1.1 Achieving Output Swing to the Op Amp Negative Rail  
Some applications require output voltage swings from 0 V to a positive full-scale voltage (such as 2.5 V) with  
excellent accuracy. With most single-supply operational amplifiers, problems arise when the output signal  
approaches 0 V, near the lower output swing limit of a single-supply operational amplifier. A good single-supply  
operational amplifier may swing close to single-supply ground, but does not reach ground. The output of the  
OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 can be made to swing to ground, or slightly below, on a single-  
supply power source. To do so requires the use of another resistor and an additional, more negative power  
supply than the operational amplifier negative supply. A pulldown resistor can be connected between the output  
and the additional negative supply to pull the output down below the value that the output would otherwise  
achieve, as shown in Figure 21.  
V+ = 5 V  
Device  
VOUT  
VIN  
RP = 20 kW  
Op Amp V- = GND  
-5 V  
Additional  
Negative  
Supply  
Figure 21. For VOUT Range to Ground  
The OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 have an output stage that allows the output voltage to be  
pulled to its negative supply rail, or slightly below, using the technique previously described. This technique only  
works with some types of output stages. The OPA317-Q1, OPA2317-Q1, and OPA4317-Q1 have been  
characterized to perform with this technique; the recommended resistor value is approximately 20 k. This  
configuration increases the current consumption by several hundreds of microamps. Accuracy is excellent down  
to 0 V and as low as –2 mV. Limiting and nonlinearity occur below –2 mV, but excellent accuracy returns as the  
output drives back up above –2 mV. Lowering the resistance of the pulldown resistor allows the operational  
amplifier to swing even further below the negative rail. Use resistances as low as 10 kto achieve excellent  
accuracy down to –10 mV.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
9.2 Typical Applications  
The circuit shown in Figure 22 is a high-side voltage-to-current (V-I) converter. It translates an input voltage of  
0 V to 2 V to an output current of 0 mA to 100 mA. Figure 23 shows the measured transfer function for this  
circuit. The low offset voltage and offset drift of the OPA317 facilitate excellent DC accuracy for the circuit.  
V+  
RS2  
470  
VRS2  
RS3  
4.7 ꢀ  
IRS2  
IRS3  
R4  
VRS3  
10 kꢀ  
C7  
2200 pF  
R5  
A2  
Q2  
+
330 ꢀ  
V+  
200 ꢀ  
+
Q1  
A1  
R3  
+
VIN  
1000 pF  
C6  
œ
VRS1  
VLOAD  
10 kꢀ  
R2  
RS1  
2 kꢀ  
RLOAD  
ILOAD  
IRS1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. High-Side Voltage-to-Current (V-I) Converter  
9.2.1 Design Requirements  
The design requirements are as follows:  
Supply Voltage: 5-V DC  
Input: 0-V to 2-V DC  
Output: 0-mA to 100-mA DC  
9.2.2 Detailed Design Procedure  
The V-I transfer function of the circuit is based on the relationship between the input voltage, VIN, and the three  
current-sensing resistors: RS1, RS2, and RS3. The relationship between VIN and RS1 determines the current that  
flows through the first stage of the design. The current gain from the first stage to the second stage is based on  
the relationship between RS2 and RS3.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
Typical Applications (continued)  
For a successful design, pay close attention to the DC characteristics of the operational amplifier chosen for the  
application. To meet the performance goals, this application benefits from an operational amplifier with low offset  
voltage, low temperature drift, and rail-to-rail output. The OPA2317 CMOS operational amplifier is a high-  
precision, 5-µV offset, 0.05-μV/°C drift amplifier optimized for low-voltage, single-supply operation with an output  
swing to within 50 mV of the positive rail. The OPA2317 family uses chopping techniques to provide low initial  
offset voltage and near-zero drift over time and temperature. Low offset voltage and low drift reduce the offset  
error in the system, making these devices appropriate for precise DC control. The rail-to-rail output stage of the  
OPA2317 ensures that the output swing of the operational amplifier is able to fully control the gate of the  
MOSFET devices within the supply rails.  
9.2.3 Application Curve  
0.1  
Load  
0.075  
0.05  
0.025  
0
0
0.5  
1
Input Voltage (V)  
1.5  
2
D001  
Figure 23. Measured Transfer Function for High-Side V-I Converter  
18  
Copyright © 2016, Texas Instruments Incorporated  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
9.3 System Example  
RN are operational resistors used to isolate the ADS1100 from the noise of the digital I2C bus. The ADS1100  
device is a 16-bit converter; therefore, a precise reference is essential for maximum accuracy. If absolute  
accuracy is not required and the 5-V power supply is sufficiently stable, the REF3130 device may be omitted.  
3 V  
REF3130  
+5 V  
Load  
R1  
4.99 kW  
R2  
49.9 kW  
R6  
71.5 kW  
RN  
56 W  
V
RSHUNT  
1 W  
ILOAD  
Device  
I2C  
R3  
4.99 kW  
R4  
48.7 kW  
RN  
56 W  
ADS1100  
R7  
1.18 kW  
(PGA Gain = 4)  
FS = 3.0 V  
Stray Ground-Loop Resistance  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: 1% resistors provide adequate common-mode rejection at small ground-loop errors.  
Figure 24. Low-Side Current Monitor  
10 Power Supply Recommendations  
The OPAx317-Q1 device is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications  
apply from –40°C to +125°C. The Electrical Characteristics: VS = 1.8 V to 5.5 V table presents parameters that  
can exhibit significant variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see the Absolute  
Maximum Ratings) table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
Copyright © 2016, Texas Instruments Incorporated  
19  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
ZHCSFA4 JULY 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Attention to good layout practice is always recommended. Keep traces short and, when possible, use a printed-  
circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible.  
Place a 0.1-μF capacitor closely across the supply pins. Apply these guidelines throughout the analog circuit to  
improve performance and provide benefits, such as reducing the electromagnetic interference (EMI)  
susceptibility.  
Optimize circuit layout and mechanical conditions for lowest offset voltage and precision performance. Avoid  
temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from  
connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring they  
are equal on both input terminals. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause  
thermoelectric voltage drift of 0.1 μV/°C or higher, depending on the materials used.  
11.2 Layout Example  
VS+  
VOUT  
VSœ  
V+  
OUT  
GND  
Vœ  
Use a low-ESR,  
Use a low-ESR,  
ceramic bypass  
capacitor.  
ceramic bypass  
capacitor.  
RG  
+IN  
œIN  
VIN  
GND  
GND  
Run the input traces  
as far away from  
the supply lines  
as possible.  
Place components  
close to the device  
and to each other to  
reduce parasitic  
errors.  
RF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. OPAx317-Q1 Layout Example  
20  
版权 © 2016, Texas Instruments Incorporated  
OPA317-Q1, OPA2317-Q1, OPA4317-Q1  
www.ti.com.cn  
ZHCSFA4 JULY 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《自校准 16 位模数转换器》,  
《最大 15ppm/°C100μASOT23-3 系列电压基准》,  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 相关链接  
列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
OPA317-Q1  
OPA2317-Q1  
OPA4317-Q1  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2317QDGKRQ1  
OPA317QDBVRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
DGK  
DBV  
8
5
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
2317  
317Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA320

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
TI

OPA320

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA320-Q1

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器
TI

OPA320AIDBVR

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
TI

OPA320AIDBVR

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA320AIDBVT

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
TI

OPA320AIDBVT

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA320AQDBVRQ1

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA320AQDBVTQ1

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA320SAIDBVR

高精度、零交叉 20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 6 | -40 to 125
TI

OPA320SAIDBVR

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA320SAIDBVT

高精度、零交叉 20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 6 | -40 to 125
TI