OPA320AQDBVRQ1 [TI]

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 5 | -40 to 125;
OPA320AQDBVRQ1
型号: OPA320AQDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总35页 (文件大小:1772K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
OPAx320-Q1 高精度 20MHz 0.9pA 低噪声 RRIO  
CMOS 运算放大器  
1 特性  
3 说明  
1
符合汽车应用 标准  
具有符合 AEC-Q100 标准的下列结果:  
OPA320-Q1 OPA2320-Q1 (OPAx320-Q1) 器件是  
经过优化的新一代精密低压 CMOS 运算放大器 (op  
amps),具有极低噪声和宽带宽。这些器件可在仅  
1.45mA 的低静态电流下运行。  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件 HBM ESD 分类等级 2  
OPAx320-Q1 非常适用于低功耗、单电源类 应用。低  
噪声 (7nV/Hz) 和高速运行特性使这些器件同样非常  
适合驱动采样模数转换器 (ADC)。其他 应用 包括信号  
调节和传感器放大。  
器件 CDM ESD 分类等级 C4B  
零交叉失真时的精度:  
低偏移电压:150µV(最大值)  
高共模抑制比 (CMRR)114dB  
轨到轨 I/O  
OPAx320-Q1 具有零交叉失真的线性输入级,能够在  
整个输入范围内提供 114dB(典型值)的出色共模抑  
制比 (CMRR)。共模输入范围将正负电源电压分别扩展  
100mV。输出电压摆幅通常在 10mV 电源轨内。  
低输入偏置电流:0.9pA(最大值)  
低噪声:10kHz 时为 7nV/Hz  
高带宽:20MHz  
转换率:10V/μs  
此外,OPAx320-Q1 还具有 1.8V 5.5V 的宽电源电  
压范围,而且在整个电源电压范围内的 PSRR 都极为  
出色 (106dB)。这些 特性 使得 OPAx320-Q1 适用于  
直接从电池运行, 而无需调节的 高精度、低功耗类应  
用。  
静态电流:每通道 1.45mA  
单电源电压范围:1.8V 5.5V  
单位增益稳定  
小型超薄小外形尺寸 (VSSOP) 封装  
OPAx320-Q1 器件采用 8 引脚 VSSOP (DGK) 封装。  
2 应用  
器件信息(1)  
汽车  
高阻抗传感器信号调节  
互阻抗放大器  
器件型号  
OPA320-Q1  
OPA2320-Q1  
封装  
封装尺寸(标称值)  
2.90mm x 1.60mm  
3.00mm × 3.00mm  
SOT (5)  
VSSOP (8)  
测试和测量设备  
可编程逻辑控制器 (PLC)  
电机控制环路  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
零交叉失真:低偏移电压  
通信  
100  
80  
输入和输出 ADC DAC 缓冲器  
有源滤波器  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
–3 –2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
3
Common-Mode Voltage (V)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOS884  
 
 
 
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: ........................................ 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 16  
8
9
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Applications ................................................ 17  
Power Supply Recommendations...................... 22  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 器件支持................................................................ 24  
11.2 相关链接................................................................ 24  
11.3 接收文档更新通知 ................................................. 24  
11.4 社区资源................................................................ 24  
11.5 ....................................................................... 24  
11.6 静电放电警告......................................................... 24  
11.7 术语表 ................................................................... 24  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
Changes from Revision A (December 2016) to Revision B  
Page  
Changed Figure 1 x-axis unit from mV to µV (typo)............................................................................................................... 7  
Changed Figure 2 x-axis unit from mV/°C to µV/°C (typo)..................................................................................................... 7  
Changed Figure 3 y-axis unit from mV to µV (typo)............................................................................................................... 7  
Changed Figure 14 y-axis unit from mV to µV (typo)............................................................................................................. 8  
Changed Figure 19 y-axis unit from W to Ω (typo)................................................................................................................. 9  
Changed Figure 25 y-axis unit from V/ms to V/µs (typo) ..................................................................................................... 10  
Changed Figure 26 x-axis unit from ms to µs (typo) ............................................................................................................ 10  
Changed Figure 27 x-axis unit from ms to µs (typo) ............................................................................................................ 10  
Changed Figure 28 x-axis unit from ms to µs (typo) ............................................................................................................ 10  
Changed Figure 35 x-axis unit from ms to µs (typo) ............................................................................................................ 16  
Changes from Original (September 2014) to Revision A  
Page  
已添加 在文档中添加了 OPA320-Q1 器件.............................................................................................................................. 1  
已更改 在同时提及 OPA2320-Q1 OPAx320-Q1 器件的文档中,将 OPA2320-Q1 更改为了 OPAx320-Q1...................... 1  
已更改 更改了说明部分的 首句 :添加了 (OPA320-Q1OPA2320-Q1) ............................................................................... 1  
已添加 将 OPA320-Q1 添加到了器件信息 ......................................................................................................................... 1  
Added OPA320-Q1 device (SOT package) to Pin Configuration and Functions section: added OPA320-Q1 pin out  
to section and added relevant rows to Pin Functions table.................................................................................................... 3  
Changed format of ESD Ratings table: updated table to current standards, moved storage temperature parameter to  
Absolute Maximum Ratings table........................................................................................................................................... 4  
Changed Supply voltage parameter in Recommended Operating Conditions table: split apart single- and dual-  
supply values into separate rows ........................................................................................................................................... 4  
Added OPA320-Q1 package to Thermal Information table ................................................................................................... 4  
Changed Output Voltage Swing vs Output Current figure ..................................................................................................... 8  
Changed Operational Amplifier Board Layout for Noninverting Configuration figure........................................................... 23  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
OPA320-Q1: DBV Package  
5-Pin SOT  
OPA2320-Q1: DGK Package  
8-Pin VSSOP  
Top View  
Top View  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
–IN  
DBV  
4
DGK  
2
I
I
Inverting input  
–IN A  
–IN B  
+IN  
3
Inverting input (channel A)  
Inverting input (channel B)  
Noninverting input  
6
I
3
I
+IN A  
+IN B  
OUT  
OUT A  
OUT B  
V–  
1
I
Noninverting input (channel A)  
Noninverting input (channel B)  
Output  
5
I
1
O
O
O
2
Output (channel A)  
7
Output (channel B)  
4
Negative supply or ground (for single-supply operation)  
Positive supply  
V+  
5
8
Copyright © 2014–2018, Texas Instruments Incorporated  
3
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
Voltage(2)  
V+ and V–  
6
V(V+) + 0.5  
10  
Signal input pins  
Signal input pins  
Output short-circuit current(3)  
Operating, TA  
V(V–) – 0.5  
–10  
V
Current(2)  
mA  
Continuous  
–40  
–65  
150  
150  
150  
Temperature  
Junction, TJ  
°C  
Storage, Tstg  
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should  
be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
Corner pins (1, 4, 5, and 8)  
V
Charged-device model (CDM),  
per AEC Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
V
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage  
±0.9  
–40  
±2.75  
125  
Ambient operating temperature  
°C  
6.4 Thermal Information  
OPA320-Q1  
OPA2320-Q1  
THERMAL METRIC(1)  
DBV (SOT)  
5 PINS  
158.8  
60.7  
DGK (VSSOP)  
UNIT  
8 PINS  
174.8  
43.9  
95  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
2
ψJB  
4.2  
93.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
6.5 Electrical Characteristics:  
VS = 1.8 to 5.5 V or ±0.9 V to ±2.75 V; at TA = 25°C, R(L) = 10 kΩ connected to VS / 2, V(CM) = VS / 2, VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OFFSET VOLTAGE  
VIO  
Input offset voltage  
40  
150  
5
µV  
Input offset voltage versus  
temperature  
VS = 5.5 V, TA = –40°C to +125°C  
1.5  
µV/°C  
VS = 1.8 to 5.5 V  
5
20  
Input offset voltage versus power  
supply  
µV/V  
dB  
VS = 1.8 to 5.5 V, TA = –40°C to +125°C  
15  
Input offset-voltage channel  
separation  
At 1 kHz  
130  
INPUT VOLTAGE  
V(CM)  
Common-mode voltage range  
V(V–) – 0.1  
100  
V(V+) + 0.1  
V
CMRR  
Common-mode rejection ratio  
VS = 5.5 V, V(V–) – 0.1 V < V(CM) < V(V+) + 0.1 V  
114  
dB  
Common-mode rejection ratio,  
over temperature  
VS = 5.5 V, V(V–) – 0.1 V < V(CM) < V(V+) + 0.1 V,  
TA = –40°C to 125°C  
96  
dB  
INPUT BIAS CURRENT  
IIB Input bias current  
±0.2  
±0.2  
±0.9  
±50  
pA  
pA  
pA  
pA  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
Input bias current, over  
temperature  
±400  
±0.9  
±50  
IIO  
Input offset current  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
Input offset current, over  
temperature  
±400  
NOISE  
VI(n)  
Input voltage noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
2.8  
8.5  
7
µVPP  
nV/Hz  
fA/Hz  
Input voltage noise density  
f = 10 kHz  
f = 1 kHz  
Input current noise density  
0.6  
INPUT CAPACITANCE  
Differential  
5
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
0.1 V < VO < V(V+) – 0.1 V, R(L) = 10 kΩ  
114  
100  
108  
96  
132  
130  
123  
130  
47  
0.1 V < VO < V(V+) – 0.1 V, R(L) = 10 kΩ, TA = –40°C to 125°C  
0.2 V < VO < V(V+) – 0.2 V, R(L) = 2 kΩ  
A(OL)  
Open-loop voltage gain  
dB  
°
0.2 V < VO < V(V+) – 0.2 V, R(L) = 2 kΩ, TA = –40°C to 125°C  
VS = 5 V, C(L) = 50 pF  
PM  
Phase margin  
FREQUENCY RESPONSE (VS = 5 V, C(L) = 50 pF)  
GBP  
SR  
Gain bandwidth product  
Slew rate  
Unity gain  
20  
10  
MHz  
V/µs  
G = 1  
To 0.1%, 2-V step, G = 1  
To 0.01%, 2-V step, G = 1  
To 0.0015%, 2-V step, G = 1(1)  
VI × G > VS  
0.25  
ts  
Settling time  
0.32  
µs  
ns  
0.5  
Overload recovery time  
100  
VO = 4 VPP, G = 1, f = 10 kHz, R(L) = 10 kΩ  
VO = 4 VPP, G = 1, f = 10 kHz, R(L) = 600 kΩ  
0.0005%  
0.0011%  
Total harmonic distortion +  
noise(2)  
THD+N  
(1) Based on simulation.  
(2) Third-order filter; bandwidth = 80 kHz at –3 dB.  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics: (continued)  
VS = 1.8 to 5.5 V or ±0.9 V to ±2.75 V; at TA = 25°C, R(L) = 10 kΩ connected to VS / 2, V(CM) = VS / 2, VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX UNIT  
OUTPUT  
R(L) = 10 kΩ  
20  
R(L) = 10 kΩ, TA = –40°C to 125°C  
R(L) = 2 kΩ  
30  
35  
45  
Voltage output swing from both  
rails  
VO  
mV  
25  
R(L) = 2 kΩ, TA = –40°C to 125°C  
VS = 5.5 V  
I(SC)  
C(L)  
Short-circuit current  
±65  
mA  
Capacitive load drive  
Open-loop output resistance  
See Typical Characteristics  
IO = 0 mA, f = 1MHz  
90  
Ω
POWER SUPPLY  
VS  
Specified voltage range  
1.8  
5.5  
V
IO = 0 mA, VS = 5.5V  
1.45  
28  
1.6  
1.7  
IQ  
Quiescent current per amplifier  
Power-on time  
mA  
µs  
IO = 0 mA, VS = 5.5V, TA = –40°C to 125°C  
V(V+) = 0 to 5 V, to 90% IQ level  
TEMPERATURE  
Specified range  
Operating range  
–40  
–40  
125  
150  
°C  
°C  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
6.6 Typical Characteristics  
at TA = 25°C, V(CM) = VO = mid-supply, and R(L) = 10 kΩ (unless otherwise noted)  
14  
12  
10  
8
25  
20  
15  
10  
5
6
4
2
0
0
0.1  
0.5  
0.9  
1.3  
1.7  
2.1  
2.5  
2.9  
Offset Drift (µV/°C)  
Offset Voltage (µV)  
Figure 2. Offset Voltage Drift Distribution  
Figure 1. Offset Voltage Production Distribution  
100  
80  
160  
140  
120  
100  
80  
0
Phase  
Gain  
-20  
60  
-40  
40  
-60  
20  
-80  
0
60  
-100  
-120  
-140  
-160  
-180  
–20  
–40  
–60  
–80  
–100  
40  
20  
0
-20  
–3 –2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
3
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Common-Mode Voltage (V)  
Frequency (Hz)  
Representative units, VS = ±2.75 V  
VS = ±2.5 V, C(L) = 50 pF  
Figure 4. Open-Loop Gain and Phase vs Frequency  
Figure 3. Offset Voltage vs Common-Mode Voltage  
140  
1.5  
10-kΩ Load  
2-kΩ Load  
135  
130  
125  
120  
115  
110  
105  
100  
1.45  
1.4  
1.35  
1.3  
125°C  
85°C  
25°C  
–40°C  
1.25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (°C)  
Supply Voltage (V)  
Figure 5. Open-Loop Gain vs Temperature  
Figure 6. Quiescent Current vs Supply Voltage  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, V(CM) = VO = mid-supply, and R(L) = 10 kΩ (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
6
IIB–  
IIB+  
IIB+  
IIB–  
IIO  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
Supply Voltage ( Vꢀ  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Common-Mode Voltage (V)  
Figure 7. Input Bias Current vs Supply Voltage  
Figure 8. Input Bias Current vs Common-Mode Voltage  
40  
1300  
IIB–  
1200  
35  
30  
25  
20  
15  
10  
5
IIB+  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IIO  
IIB  
IIO  
0
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Input Bias Current (pA)  
Figure 10. Input Bias Current vs Temperature  
Figure 9. Input Bias Current Distribution  
140  
130  
125  
120  
115  
110  
105  
100  
95  
PSRR  
CMRR  
PSRR  
CMRR  
120  
100  
80  
60  
40  
20  
0
90  
100  
1k  
10k  
100k  
1M  
10M  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Frequency (Hz)  
Temperature (°C)  
VS = 1.8 to 5.5 V  
Figure 12. CMRR and PSRR vs Temperature  
Figure 11. CMRR and PSRR vs Frequency  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
Typical Characteristics (continued)  
at TA = 25°C, V(CM) = VO = mid-supply, and R(L) = 10 kΩ (unless otherwise noted)  
6
1000  
100  
10  
5
4
3
2
1
0
–1  
–2  
–3  
–4  
1
10  
100  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (Hz)  
Time (1 s/div)  
VS = 1.8 to 5.5 V  
Figure 13. Input Voltage Noise Spectral Density vs  
Frequency  
Figure 14. 0.1-Hz to 10-Hz Input Voltage Noise  
60  
40  
20  
0
60  
40  
20  
0
G = 100 V/V  
G = 10 V/V  
G = 1 V/V  
G = 100 V/V  
G = 10 V/V  
G = 1 V/V  
-20  
-20  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
VS = 1.8 V, C(L) = 50 pF, R(L) = 10 kΩ  
VS = 5.5 V, C(L) = 50 pF, R(L) = 10 kΩ  
Figure 15. Closed-Loop Gain vs Frequency  
Figure 16. Closed-Loop Gain vs Frequency  
3
2
1
0
6
5
4
3
2
1
0
5.5 VS  
–40°C  
25°C  
3.3 VS  
1.8 VS  
125°C  
-1  
-2  
-3  
10k  
100k  
Frequency (Hz)  
1M  
10M  
0
10  
20  
30  
40  
50  
60  
70  
80  
Output Current (mA)  
C(L) = 50 pF, R(L) = 10 kΩ  
VS = ±2.75 V  
Figure 17. Maximum Output Voltage vs Frequency  
Figure 18. Output Voltage Swing vs Output Current  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, V(CM) = VO = mid-supply, and R(L) = 10 kΩ (unless otherwise noted)  
1000  
100  
10  
70  
60  
50  
40  
30  
20  
10  
0
G = 1 V/V, VS = 1.8 V  
G = 1 V/V, VS = 5.5 V  
G = 10 V/V, VS = 1.8 V  
G = 10 V/V, VS = 5.5 V  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (Hz)  
Capacitive Load (pF)  
VS = ±2.75 V  
Figure 19. Open-Loop Output Impedance vs Frequency  
Figure 20. Small-Signal Overshoot vs Load Capacitance  
0.1  
0.1  
Load = 600 Ω  
Load = 10 kΩ  
0.01  
0.01  
0.001  
0.001  
Load = 600 Ω  
Load = 10 kΩ  
0.0001  
0.0001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
Input Voltage (VPP  
)
Frequency (Hz)  
VS = ±2.5 V, f = 10 kHz, G = 1 V/V  
VS = ±2.5 V, f = 10 kHz, G = 1 V/V, VI = 2 VPP  
Figure 21. THD+N vs Amplitude  
Figure 22. THD+N vs Frequency  
0.1  
0.01  
0
-20  
Load = 600 Ω  
Load = 10 kΩ  
-40  
-60  
-80  
0.001  
0.0001  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
VS = ±2.5 V, f = 10 kHz, G = 1 V/V, VI = 4 VPP  
VS = ±2.75 V  
Figure 23. THD+N vs Frequency  
Figure 24. Channel Separation vs Frequency  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
Typical Characteristics (continued)  
at TA = 25°C, V(CM) = VO = mid-supply, and R(L) = 10 kΩ (unless otherwise noted)  
12  
11.5  
11  
0.1  
0.075  
0.05  
Rise  
Fall  
VO  
VI  
0.025  
0
10.5  
10  
–0.025  
–0.05  
–0.075  
–0.1  
9.5  
9
1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
–0.8  
–0.4  
0
0.4  
0.8  
1.2  
1.6  
Supply Voltage (V)  
Time (µs)  
C(L) = 50 pF  
VS = ±2.75 V, G = 1 V/V, VI = 100 mVPP  
Figure 25. Slew Rate vs Supply Voltage  
Figure 26. Small-Signal Step Response  
1.5  
1
0.1  
VI  
VO  
VO  
VI  
0.075  
0.05  
0.5  
0
0.025  
0
–0.025  
–0.05  
–0.075  
–0.1  
–0.5  
–1  
–1.5  
–1.6  
–1.2  
–0.8  
0
0.4  
0.8  
–0.4  
0
0.4  
0.8  
1.2  
1.6  
–0.4  
Time (µs)  
Time (µs)  
VS = ±2.75 V, G = –1 V/V, VI = 100 mVPP  
VS = ±2.75 V, G = 1 V/V, VI = 2 VPP  
Figure 28. Large-Signal Step Response vs Time  
Figure 27. Small-Signal Step Response  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA320-Q1 and OPA2320-Q1 (OPAx320-Q1) operational amplifiers (op amps) are unity-gain stable and  
operate on a single-supply voltage (1.8 V to 5.5 V), or a split supply voltage (±0.9 V to ±2.75 V), making these  
devices highly versatile and easy to use. The OPAx320-Q1 amplifiers are fully specified from 1.8 V to 5.5 V and  
over the extended temperature range of –40°C to +125°C. Parameters that can exhibit variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics section.  
7.2 Functional Block Diagram  
V(V+)  
Charge Pump  
Reference  
Current  
IN+  
INœ  
VBIAS1  
Class AB  
Control  
OUT  
Circuitry  
VBIAS2  
E-TrimTM  
V(V-)  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
7.3 Feature Description  
7.3.1 Input and ESD Protection  
The OPAx320-Q1 incorporate internal electrostatic discharge (ESD) protection circuits on all pins. In the case of  
input and output pins, this protection primarily consists of current-steering diodes connected between the input  
and power-supply pins. These ESD protection diodes also provide in-circuit input overdrive protection, provided  
that the current is limited to 10 mA, as stated in the Absolute Maximum Ratings. Many input signals are  
inherently current-limited to less than 10 mA; therefore, a limiting resistor is not required. Figure 29 shows how a  
series input resistor (R(S)) may be added to the driven input to limit the input current. The added resistor  
contributes thermal noise at the amplifier input and the value should be kept to the minimum in noise-sensitive  
applications.  
V(V+)  
I(OVERLOAD)  
10 mA, Max  
VO  
OPA320-Q1  
VI  
R(S)  
Figure 29. Input Current Protection  
7.3.2 Feedback Capacitor Improves Response  
For optimum settling time and stability with high-impedance feedback networks, adding a feedback capacitor  
across the feedback resistor, R(FB), as shown in Figure 30 may be necessary. This capacitor compensates for the  
zero created by the feedback network impedance and the OPAx320-Q1 input capacitance (and any parasitic  
layout capacitance). The effect becomes more significant with higher impedance networks.  
C(F)  
R(IN)  
R(F)  
VI  
V(V+)  
C(IN)  
R(IN) × C(IN) = R(F) × C(F)  
VO  
OPA320-Q1  
C(L)  
C(IN)  
NOTE: Where C(IN) is equal to the OPAx320-Q1 input capacitance (approximately 9 pF) plus any parasitic layout  
capacitance.  
Figure 30. Feedback Capacitor Improves Dynamic Performance  
It is suggested that a variable capacitor be used for the feedback capacitor because input capacitance may vary  
between op amps and layout capacitance is difficult to determine. For the circuit shown in Figure 30, the value of  
the variable feedback capacitor should be chosen so that the input resistance times the input capacitance of the  
OPAx320-Q1 (9 pF, typical) plus the estimated parasitic layout capacitance equals the feedback capacitor times  
the feedback resistor:  
R(IN) × C(IN) = R(FB) × C(FB)  
Where:  
C(IN) is equal to the OPAx320-Q1 input capacitance (sum of differential and common-mode) plus the layout  
capacitance.  
(1)  
13  
The capacitor value can be adjusted until optimum performance is obtained.  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 EMI Susceptibility And Input Filtering  
Operational amplifiers vary in susceptibility to electromagnetic interference (EMI). If conducted EMI enters the  
operational amplifier, the DC offset observed at the amplifier output may shift from the nominal value while EMI is  
present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While all  
operational amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible.  
The OPAx320-Q1 operational amplifier family incorporates an internal input low-pass filter that reduces the  
amplifiers response to EMI. Both common-mode and differential mode filtering are provided by the input filter.  
The filter is designed for a cut-off frequency of approximately 580 MHz (–3 dB), with a roll-off of 20 dB per  
decade.  
7.3.4 Output Impedance  
The open-loop output impedance of the OPAx320-Q1 common-source output stage is approximately 90 Ω. When  
the op amp is connected with feedback, this value is reduced significantly by the loop gain. For example, with  
130 dB (typical) of open-loop gain, the output impedance is reduced in unity-gain to less than 0.03 Ω. For each  
decade rise in the closed-loop gain, the loop gain is reduced by the same amount, which results in a ten-fold  
increase in effective output impedance. While the OPAx320-Q1 output impedance remains very flat over a wide  
frequency range, at higher frequencies the output impedance rises as the open-loop gain of the op amp drops.  
However, at these frequencies the output also becomes capacitive as a result of parasitic capacitance. This in  
turn prevents the output impedance from becoming too high, which can cause stability problems when driving  
large capacitive loads. As mentioned previously, the OPAx320-Q1 have excellent capacitive load drive capability  
for op amps with the bandwidth.  
7.3.5 Capacitive Load and Stability  
The OPAx320-Q1 are designed to be used in applications where driving a capacitive load is required. As with all  
op amps, there may be specific instances where the OPAx320-Q1 can become unstable. The particular op amp  
circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing  
whether an amplifier is stable in operation. An op amp in the unity-gain (1 V/V) buffer configuration and driving a  
capacitive load exhibits a greater tendency to become unstable than an amplifier operated at a higher noise gain.  
The capacitive load, in conjunction with the op amp output resistance, creates a pole within the feedback loop  
that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading  
increases. When operating in the unity-gain configuration, the OPAx320-Q1 remain stable with a pure capacitive  
load up to approximately 1 nF.  
The equivalent series resistance (ESR) of some very large capacitors (C(L) > 1 µF) is sufficient to alter the phase  
characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop  
gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when  
observing the overshoot response of the amplifier at higher voltage gains; see Figure 32. One technique for  
increasing the capacitive load drive capability of the amplifier operating in unity gain is to insert a small resistor  
(R(S)), typically 10 Ω to 20 Ω, in series with the output, as shown in Figure 31.  
This resistor significantly reduces the overshoot and ringing associated with large capacitive loads. A possible  
problem with this technique is that a voltage divider is created with the added series resistor and any resistor  
connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that  
reduces the output swing. The error contributed by the voltage divider may be insignificant. For instance, with a  
load resistance, R(L) = 10 kΩ and R(S) = 20 Ω, the gain error is only about 0.2%. However, when R(L) is  
decreased to 600 Ω, which the OPAx320-Q1 are able to drive, the error increases to 7.5%.  
V(V+)  
R(S)  
VO  
OPA320-Q1  
VI  
10 Ω to  
20 Ω  
R(L)  
C(L)  
Figure 31. Improving Capacitive Load Drive  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
Feature Description (continued)  
70  
60  
50  
40  
30  
20  
10  
0
G = 1 V/V, VS = 1.8 V  
G = 1 V/V, VS = 5.5 V  
G = 10 V/V, VS = 1.8 V  
G = 10 V/V, VS = 5.5 V  
0
500  
1000  
1500  
2000  
2500  
3000  
Capacitive Load (pF)  
Figure 32. Small-Signal Overshoot versus Capacitive Load (100-mVPP Output Step)  
7.3.6 Overload Recovery Time  
Overload recovery time is the time it takes the output of the amplifier to come out of saturation and recover to the  
linear region. Overload recovery is particularly important in applications where small signals must be amplified in  
the presence of large transients. Figure 33 and Figure 34 show the positive and negative overload recovery  
times of the OPAx320-Q1, respectively. In both cases, the time elapsed before the OPAx320-Q1 come out of  
saturation is less than 100 ns. In addition, the symmetry between the positive and negative recovery times allows  
excellent signal rectification without distortion of the output signal.  
3
2.5  
2
1
0.5  
0
Input  
Input  
Output  
Output  
1.5  
1
-0.5  
-1  
0.5  
0
-1.5  
-2  
-0.5  
-1  
-2.5  
-3  
9.75  
10  
10.25  
10.5  
10.75  
11  
9.75  
10  
10.25  
10.5  
10.75  
11  
Time (250 ns/div)  
Time (250 ns/div)  
VS = ±2.75 V, G = –10 V/V  
Figure 33. Positive Recovery Time  
VS = ±2.75 V, G = –10 V/V  
Figure 34. Negative Recovery Time  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Rail-to-Rail Input  
The OPAx320-Q1 feature true rail-to-rail input operation, with supply voltages as low as ±0.9 V (1.8 V). The  
design of the OPAx320-Q1 amplifiers include an internal charge-pump that powers the amplifier input stage with  
an internal supply rail at approximately 1.6 V above the external supply (V+). This internal supply rail allows the  
single differential input pair to operate and remain very linear over a very wide input common-mode range. A  
unique zero-crossover input topology eliminates the input offset transition region typical of many rail-to-rail,  
complementary input stage operational amplifiers. This topology allows the OPAx320-Q1 to provide superior  
common-mode performance (CMRR > 110 dB, typical) over the entire common-mode input range, which extends  
100 mV beyond both power-supply rails. When driving analog-to-digital converters (ADCs), the highly linear V(CM)  
range of the OPAx320-Q1 provides maximum linearity and lowest distortion.  
7.4.2 Phase Reversal  
The OPAx320-Q1 op amps are designed to be immune to phase reversal when the input pins exceed the supply  
voltages, and thus provide further in-system stability and predictability. Figure 35 shows the input voltage  
exceeding the supply voltage without any phase reversal.  
4
VI  
3
2
VO  
1
0
–1  
–2  
–3  
–4  
–500  
–250  
0
250  
500  
750  
1000  
Time (µs)  
VS = ±2.5 V  
Figure 35. No Phase Reversal  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx320-Q1 can be used in a wide range of applications, such as transimpedance amplifiers, high-  
impedance sensors, active filters, and driving ADCs.  
8.2 Typical Applications  
8.2.1 Transimpedance Amplifier  
Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPAx320-Q1 an  
excellent wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode  
capacitance causes the effective noise gain of the circuit to increase at high frequency.  
The key elements to a transimpedance design, as shown in Figure 36, are the expected diode capacitance  
(C(D)), which should include the parasitic input common-mode and differential-mode input capacitance (4 pF + 5  
pF); the desired transimpedance gain (R(FB)); and the gain-bandwidth (GBW) for the OPAx320-Q1 (20 MHz).  
With these three variables set, the feedback capacitor value (C(FB)) can be set to control the frequency response.  
C(FB) includes the stray capacitance of R(FB), which is 0.2 pF for a typical surface-mount resistor.  
(1)  
C(F)  
< 1 pF  
R(F)  
10 MΩ  
V(V+)  
l
VO  
C(D)  
OPA320-Q1  
V(V–)  
(1) C(FB) is optional to prevent gain peaking. C(FB) includes the stray capacitance of R(FB)  
.
Figure 36. Dual-Supply Transimpedance Amplifier  
8.2.1.1 Design Requirements  
PARAMETER  
VALUE  
2.5 V  
Supply voltage V(V+)  
Supply voltage V(V–)  
–2.5 V  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
To achieve a maximally-flat, second-order Butterworth frequency response, the feedback pole should be set to:  
1
GBW  
=
2 ´ p ´ R(FB) ´ C(FB)  
4 ´ p ´ R(FB) ´ C(D)  
(2)  
Use Equation 3 to calculate the bandwidth.  
GBW  
ƒ(–3 dB)  
=
2 ´ p ´ R(FB) ´ C(D)  
(3)  
For even higher transimpedance bandwidth, consider the high-speed CMOS OPA380 (90-MHz GBW), OPA354  
(100-MHz GBW), OPA300 (180-MHz GBW), OPA355 (200-MHz GBW), and OPA656 or OPA657 (400-MHz  
GBW).  
For single-supply applications, the +INx input can be biased with a positive dc voltage to allow the output to  
reach true zero when the photodiode is not exposed to any light, and respond without the added delay that  
results from coming out of the negative rail; this configuration is shown in Figure 37. This bias voltage also  
appears across the photodiode, providing a reverse bias for faster operation.  
(1)  
C(FB)  
< 1pF  
R(FB)  
10 MΩ  
V(V+)  
l
VO  
OPA320-Q1  
+V(BIAS)  
(1) C(FB) is optional to prevent gain peaking. C(FB) includes the stray capacitance of R(FB)  
.
Figure 37. Single-Supply Transimpedance Amplifier  
For additional information, refer to the Compensate Transimpedance Amplifiers Intuitively Application Report.  
8.2.1.2.1 Optimizing The Transimpedance Circuit  
To achieve the best performance, components should be selected according to the following guidelines:  
1. For lowest noise, select R(FB) to create the total required gain. Using a lower value for R(FB) and adding gain  
after the transimpedance amplifier generally produces poorer noise performance. The noise produced by  
R(FB) increases with the square-root of R(FB), whereas the signal increases linearly. Therefore, signal-to-noise  
ratio improves when all the required gain is placed in the transimpedance stage.  
2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This  
capacitance causes the voltage noise of the op amp to be amplified (increasing amplification at high  
frequency). Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the  
capacitance. Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small  
photodiode.  
3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor  
across the R(FB) to limit bandwidth, even if not required for stability.  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit  
board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same  
voltage can help control leakage.  
For additional information, refer to the following documents:  
Texas Instruments, Noise Analysis of FET Transimpedance Amplifiers Application Bulletin  
Texas Instruments, Noise Analysis for High-Speed Op Amps Application Report  
8.2.1.3 Application Curves  
Wide gain bandwidth as shown in Figure 38 and low input voltage noise as shown in Figure 39 make the  
OPAx320-Q1 device an excellent wideband photodiode transimpedance amplifier.  
160  
140  
120  
100  
80  
0
1000  
100  
10  
Phase  
Gain  
-20  
-40  
-60  
-80  
60  
-100  
-120  
-140  
-160  
-180  
40  
20  
0
-20  
1
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
VS = ±2.5 V, C(L) = 50 pF  
Figure 38. Open-Loop Gain and Phase vs Frequency  
VS = 1.8 to 5.5 V  
Figure 39. Input Voltage Noise Spectral Density vs  
Frequency  
8.2.2 High-Impedance Sensor Interface  
Many sensors have high source impedances that may range up to 10 MΩ, or even higher. The output signal of  
sensors often must be amplified or otherwise conditioned by means of an amplifier. The input bias current of this  
amplifier can load the sensor output and cause a voltage drop across the source resistance, as shown in  
Figure 40, where (V(+INx) = VS – I(BIAS) × R(S)). The last term, I(BIAS) × R(S), shows the voltage drop across R(S). To  
prevent errors introduced to the system as a result of this voltage, an op amp with very low input bias current  
must be used with high impedance sensors. This low current keeps the error contribution by I(BIAS) × R(S) less  
than the input voltage noise of the amplifier, so that it does not become the dominant noise factor. The  
OPAx320-Q1 series of op amps feature very low input bias current (typically 200 fA), and are therefore excellent  
choices for such applications.  
R(S)  
IIB  
100 kΩ  
V(+INx)  
V(V+)  
VO  
R(F)  
OPA320-Q1  
V(V)  
R(G)  
Figure 40. Noise as a Result of I(BIAS)  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
 
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.3 Driving ADCs  
The OPAx320-Q1 series op amps are an excellent choice for driving sampling analog-to-digital converters  
(ADCs) with sampling speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the  
OPAx320-Q1 to drive ADCs without degradation of differential linearity and THD.  
The OPAx320-Q1 can be used to buffer the ADC switched input capacitance and resulting charge injection while  
providing signal gain. Figure 42 shows the OPAx320-Q1 configured to drive the ADS8326.  
5 V  
50 kΩ  
(2.5 V)  
8
R(G)  
REF1004-2.5  
R1  
100 kΩ  
R2  
25 kΩ  
4
5 V  
5 V  
R3  
25 kΩ  
R4  
100 kΩ  
½
OPA2320-Q1  
½
VO  
OPA2320-Q1  
R(L)  
10 kΩ  
200 kΩ  
G = 5 +  
R(G)  
Figure 41. Two Op-Amp Instrumentation Amplifier With Improved High-Frequency Common-Mode  
Rejection  
5 V  
C1  
100 nF  
5 V  
R1(1)  
100 Ω  
V(V+)  
+INx  
OPA320-Q1  
ADS8326  
16-Bit  
250kSPS  
C3(1)  
1 nF  
V(V–)  
–INx  
VI  
0 to 4.096 V  
REF IN  
Optional(2)  
5 V  
R2  
50 kΩ  
SD1  
BAS40  
REF3240  
4.096V  
–5 V  
C2  
100 nF  
C4  
100 nF  
(1) Suggested value; may require adjustment based on specific application.  
(2) Single-supply applications lose a small number of ADC codes near ground as a result of op amp output swing limitation. If a negative  
power supply is available, this simple circuit creates a –0.3-V supply to allow output swing to true ground potential.  
Figure 42. Driving the ADS8326  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
8.2.4 Active Filter  
The OPAx320-Q1 is an excellent choice for active filter applications that require a wide bandwidth, fast slew rate,  
low-noise, single-supply operational amplifier. Figure 43 shows a 500 kHz, second-order, low-pass filter using the  
multiple-feedback (MFB) topology. The components have been selected to provide a maximally-flat Butterworth  
response. Beyond the cutoff frequency, roll-off is –40 dB/dec. The Butterworth response is excellent for  
applications requiring predictable gain characteristics, such as the antialiasing filter used in front of an ADC.  
One point to observe when considering the MFB filter is that the output is inverted, relative to the input. If this  
inversion is not required, or not desired, a noninverting output can be achieved through one of the following  
options:  
1. adding an inverting amplifier  
2. adding an additional second-order MFB stage  
3. using a noninverting filter topology, such as the Sallen-Key  
R3  
549 Ω  
C2  
150 pF  
V(V+)  
R1  
549 Ω  
R2  
1.24 kΩ  
VI  
VO  
OPA320-Q1  
C1  
1 nF  
V(V)  
Figure 43. Second-Order Butterworth 500-kHz Low-Pass Filter  
220 pF  
V(V+)  
19.5 kΩ  
150 kΩ  
1.8 kΩ  
VI = 1 VRMS  
VO  
OPA320-Q1  
3.3 nF  
47 pF  
V(V)  
Figure 44. OPAx320-Q1 Configured as a Three-Pole, 20-kHz, Sallen-Key Filter  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
 
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx320-Q1 are specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply  
from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device (see the Absolute  
Maximum Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and operational  
amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed  
information, refer to the Circuit Board Layout Techniques Application Report.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace  
perpendicular as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 45, keeping RF  
and RG close to the inverting input will minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
22  
版权 © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
10.2 Layout Example  
Run the input traces  
as far away from  
the supply lines  
VS+  
VIN  
as possible.  
VSœ  
+IN  
V+  
GND  
Use a low-ESR,  
ceramic bypass  
capacitor.  
Vœ  
Use a low-ESR,  
ceramic bypass  
capacitor.  
RG  
OUT  
œIN  
VOUT  
GND  
RF  
Place components  
close to the device  
and to each other to  
reduce parasitic  
errors.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. Operational Amplifier Board Layout for Noninverting Configuration  
版权 © 2014–2018, Texas Instruments Incorporated  
23  
OPA320-Q1, OPA2320-Q1  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
相关文档如下:  
德州仪器 (TI)ADS8326 16 位、2.7V 5.5V 高速微功耗采样模数转换器产品说明书》  
德州仪器 (TI)《用直观方式补偿跨阻放大器的应用报告》  
德州仪器 (TI)FET 跨阻放大器噪声分析应用简报》  
德州仪器 (TI)《高速运算放大器噪声分析应用报告》  
德州仪器 (TI)OPAx380 精密高速跨阻放大器产品说明书》  
德州仪器 (TI)OPAx354 250MHz 轨至轨 I/O CMOS 运算放大器产品说明书》  
德州仪器 (TI)《具有关断功能的 OPAx355 200MHz CMOS 运算放大器产品说明书》  
德州仪器 (TI)OPA656 宽带单位增益稳定 FET 输入运算放大器产品说明书》  
11.2 相关链接  
1 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品的快速链  
接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
OPA320-Q1  
OPA2320-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
24  
版权 © 2014–2018, Texas Instruments Incorporated  
 
OPA320-Q1, OPA2320-Q1  
www.ti.com.cn  
ZHCSCS6B SEPTEMBER 2014REVISED DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2320AQDGKRQ1  
OPA320AQDBVRQ1  
OPA320AQDBVTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
SOT-23  
DGK  
DBV  
DBV  
8
5
5
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
ZAEV  
15DD  
15DD  
NIPDAU  
NIPDAU  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2320AQDGKRQ1  
OPA320AQDBVRQ1  
OPA320AQDBVTQ1  
VSSOP  
SOT-23  
SOT-23  
DGK  
DBV  
DBV  
8
5
5
2500  
3000  
250  
330.0  
178.0  
178.0  
12.4  
9.0  
5.3  
3.3  
3.4  
3.2  
1.4  
1.4  
8.0  
4.0  
4.0  
12.0  
8.0  
Q1  
Q3  
Q3  
9.0  
3.23  
3.17  
1.37  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2320AQDGKRQ1  
OPA320AQDBVRQ1  
OPA320AQDBVTQ1  
VSSOP  
SOT-23  
SOT-23  
DGK  
DBV  
DBV  
8
5
5
2500  
3000  
250  
366.0  
180.0  
180.0  
364.0  
180.0  
180.0  
50.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA320AQDBVTQ1

通过汽车级认证的精密、零交叉、20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA320SAIDBVR

高精度、零交叉 20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 6 | -40 to 125
TI

OPA320SAIDBVR

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA320SAIDBVT

高精度、零交叉 20MHz、0.9pA Ib、RRIO、CMOS 运算放大器 | DBV | 6 | -40 to 125
TI

OPA320SAIDBVT

Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown
NSC

OPA322

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier with Shutdown
TI

OPA322-Q1

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier With Shutdown
TI

OPA322AIDBVR

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier with Shutdown
TI

OPA322AIDBVT

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier with Shutdown
TI

OPA322AQDBVRQ1

汽车级、单路、5.5V、20MHz、65mA 输出电流、低噪声 (8.5nV/√Hz) 运算放大器 | DBV | 5 | -40 to 125
TI

OPA322S

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier with Shutdown
TI

OPA322S-Q1

20-MHz, Low-Noise, 1.8-V, RRI/O, CMOS Operational Amplifier With Shutdown
TI