OPA859IDSGT [TI]

具有 1.8GHz 单位增益带宽、3.3nV/√Hz 电压噪声的 FET 输入放大器 | DSG | 8 | -40 to 125;
OPA859IDSGT
型号: OPA859IDSGT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8GHz 单位增益带宽、3.3nV/√Hz 电压噪声的 FET 输入放大器 | DSG | 8 | -40 to 125

放大器 信息通信管理 光电二极管
文件: 总34页 (文件大小:2756K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
OPA859 1.8GHz 单位增益带宽、3.3nV/HzFET输入放大器  
1 特性  
3 说明  
1
高单位增益带宽:1.8GHz  
增益带宽积:900MHz  
OPA859 是一款具有 CMOS 输入的宽带低噪声运算放  
大器,适用于宽带跨阻和电压放大器 应用。将该器件  
配置为跨阻放大器 (TIA) 时,0.9GHz 增益带宽积  
(GBWP) 能够在低电容光电二极管应用中实现高闭环  
带宽。  
超低偏置电流 MOSFET 输入:10pA  
低输入电压噪声:3.3nV/Hz  
压摆率:1150V/µs  
低输入电容:  
下图展示了在将 OPA859 设置为 TIA 时该放大器的带  
宽和噪声性能与光电二极管电容的函数关系。计算总噪  
声时的带宽范围为从直流到左轴上计算得出的频率 f。  
OPA859 封装具有一个反馈引脚 (FB),可简化输入和  
输出之间的反馈网络连接。  
共模:0.6pF  
差动:0.2pF  
宽输入共模范围:  
与正电源相差 1.4V  
包括负电源  
OPA859 经过优化,可在光学飞行时间 (ToF) 系统中  
运行,在该系统中 OPA859 与时数转换器(如  
TDC7201)配合使用。可在具有差分输出放大器(如  
THS4541 LMH5401)的高分辨率激光雷达系统中  
使用 OPA859 来驱动高速模数转换器 (ADC)。  
TIA 配置下的输出摆幅为 2.5VPP  
电源电压范围:3.3V 5.25V  
静态电流:20.5mA  
封装:8 引脚 WSON  
温度范围:–40 +125°C  
器件信息(1)  
2 应用  
器件编号  
OPA859  
封装  
WSON (8)  
封装尺寸(标称值)  
高速跨阻放大器  
2.00mm × 2.00mm  
激光测距  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
CCD 输出缓冲器  
高速缓冲器  
光学时域反射法 (OTDR)  
高速有源滤波器  
3D 扫描仪  
硅光电倍增器 (SiPM) 缓冲放大器  
光电倍增管后置放大器  
高速飞行时间接收器  
光电二极管电容与带宽和噪声间的关系  
CF  
225  
200  
175  
150  
125  
100  
75  
150  
135  
120  
105  
90  
f-3dB, RF = 2 kW  
f-3dB, RF = 5 kW  
IRN, RF = 2 kW  
IRN, RF = 5 kW  
RF  
VBIAS  
Rx  
5 V  
TLV3501  
+
Lens  
œ
3.5 V  
+
OPA859  
Stop 2  
Start 2  
VREF  
œ
CF  
RF  
75  
TDC7201  
(Time-to-  
Digital  
VBIAS  
60  
5 V  
Converter)  
TLV3501  
+
œ
50  
45  
3.5 V  
+
OPA859  
Stop 1  
Start 1  
VREF  
œ
25  
30  
0
15  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Photodiode capacitance (pF)  
Tx  
Lens  
D409  
MSP430  
Controller  
Pulsed Laser  
Diode  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS852  
 
 
 
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 19  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ............................................... 21  
11 Power Supply Recommendations ..................... 23  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Example .................................................... 24  
13 器件和文档支持 ..................................................... 25  
13.1 器件支持................................................................ 25  
13.2 文档支持................................................................ 25  
13.3 接收文档更新通知 ................................................. 25  
13.4 社区资源................................................................ 25  
13.5 ....................................................................... 25  
13.6 静电放电警告......................................................... 25  
13.7 术语表 ................................................................... 25  
14 机械、封装和可订购信息....................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics .......................................... 5  
7.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 14  
8.1 Parameter Measurement Information ..................... 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
9.2 Functional Block Diagram ....................................... 15  
8
9
4 修订历史记录  
日期  
修订版本  
说明  
2018 9 月  
*
初始发行版。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
5 Device Comparison Table  
MINIMUM STABLE  
GAIN  
VOLTAGE NOISE  
INPUT  
CAPACITANCE (pF)  
GAIN BANDWIDTH  
(GHz)  
DEVICE  
INPUT TYPE  
(nV/Hz)  
OPA859  
OPA858  
OPA855  
LMH6629  
CMOS  
CMOS  
Bipolar  
Bipolar  
1 V/V  
7 V/V  
7 V/V  
10 V/V  
3.3  
2.5  
0.8  
0.8  
0.8  
5.7  
0.9  
5.5  
8
0.98  
0.69  
4
6 Pin Configuration and Functions  
DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
FB  
NC  
INœ  
IN+  
1
2
3
4
8
7
6
5
PD  
VS+  
OUT  
VSœ  
Thermal pad  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
FB  
NO.  
1
I
I
Feedback connection to output of amplifier  
Inverting input  
IN–  
3
IN+  
4
I
Noninverting input  
NC  
2
O
I
Do not connect  
OUT  
PD  
6
Amplifier output  
8
Power down connection. PD = logic low = power off mode; PD = logic high = normal operation.  
VS–  
VS+  
5
Negative voltage supply  
7
Positive voltage supply  
Thermal pad  
Connect the thermal pad to VS–  
Copyright © 2018, Texas Instruments Incorporated  
3
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VS  
Total supply voltage (VS+ – VS–  
)
5.5  
VIN+, VIN–  
VID  
Input voltage  
(VS–) – 0.5  
(VS–) – 0.5  
(VS+) + 0.5  
1
V
Differential input voltage  
Output voltage  
V
VOUT  
IIN  
IOUT  
TJ  
(VS+) + 0.5  
±10  
V
Continuous input current  
Continuous output current(2)  
Junction temperature  
Operating free-air temperature  
Storage temperature  
mA  
mA  
°C  
°C  
°C  
±100  
150  
TA  
–40  
–65  
125  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Long-term continuous output current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
±1000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.3  
NOM  
MAX  
5.25  
125  
UNIT  
VS  
TA  
Total supply voltage (VS+ – VS–  
)
5
V
Operating free-air temperature  
–40  
°C  
7.4 Thermal Information  
OPA859  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
80.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
100  
45  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.8  
ψJB  
45.2  
RθJC(bot)  
22.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
7.5 Electrical Characteristics  
VS+ = 5 V, VS- = 0 V, input common-mode biased at midsupply, unity gain configuration, RL = 200 Ω, output load is referenced  
to midsupply, and TA +25(unless otherwise noted)  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SSBW  
LSBW  
GBWP  
Small-signal bandwidth  
Large-signal bandwidth  
Gain-bandwidth product  
Bandwidth for 0.1dB flatness  
Slew rate (10% - 90%)  
Rise time  
VOUT = 100 mVPP  
1.8  
400  
900  
140  
1150  
0.3  
0.3  
8
GHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 VPP  
SR  
tr  
VOUT = 2-V step  
VOUT = 100-mV step  
VOUT = 100-mV step  
VOUT = 2-V step  
tf  
Fall time  
ns  
Settling time to 0.1%  
Settling time to 0.001%  
Overshoot/undershoot  
ns  
VOUT = 2-V step  
3000  
7%  
90  
ns  
VOUT = 2-V step  
f = 10 MHz, VOUT = 2 VPP  
f = 100 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP  
f = 100 MHz, VOUT = 2 VPP  
f = 1 MHz  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
60  
86  
dBc  
dBc  
64  
en  
Input-referred voltage noise  
3.3  
0.15  
nV/Hz  
Ω
ZOUT  
Closed-loop output impedance  
f = 1 MHz  
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
60  
–5  
65  
±0.9  
–2  
dB  
mV  
µV/°C  
pA  
VOS  
Input offset voltage  
TA = 25°C  
5
ΔVOS/ΔT  
IBN, IBI  
IBOS  
Input offset voltage drift  
Input bias current  
TA = –40°C to +125°C  
TA = 25°C  
–5  
–5  
70  
±0.5  
±0.1  
84  
5
5
Input offset current  
TA = 25°C  
pA  
CMRR  
INPUT  
Common-mode rejection ratio  
VCM = ±0.5 V  
dB  
Common-mode input resistance  
Common-mode input capacitance  
Differential input resistance  
1
0.62  
1
GΩ  
pF  
GΩ  
pF  
V
CCM  
CDIFF  
VIH  
Differential input capacitance  
Common-mode input range (high)  
Common-mode input range (low)  
0.2  
1.9  
0
VS+ = 3.3 V, CMRR > 66 dB  
VS+ = 3.3 V, CMRR > 66 dB  
CMRR > 66 dB  
1.7  
3.4  
VIL  
0.4  
V
3.6  
3.4  
0
VIH  
VIL  
Common-mode input range (high)  
Common-mode input range (low)  
V
V
TA = –40°C to +125°C, CMRR > 66 dB  
CMRR > 66 dB  
0.4  
TA = –40°C to +125°C, CMRR > 66 dB  
0.35  
0.45  
OUTPUT  
VOH  
Output voltage (high)  
Output voltage (high)  
Output voltage (low)  
Output voltage (low)  
VS+ = 3.3 V, TA = 25°C  
TA = 25°C  
2.3  
2.4  
4.1  
3.9  
1.05  
1.1  
1.2  
76  
V
V
V
V
3.95  
VOH  
VOL  
VOL  
TA = –40°C to +125°C  
VS+ = 3.3 V, TA = 25°C  
TA = 25°C  
1.15  
1.15  
TA = –40°C to +125°C  
RL = 10 Ω, AOL > 52 dB  
65  
85  
IO_LIN  
ISC  
Linear output drive (sink and source)  
Output short-circuit current  
mA  
mA  
TA = –40°C to +125°C, RL = 10 Ω,  
AOL > 52 dB  
64  
105  
Copyright © 2018, Texas Instruments Incorporated  
5
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VS+ = 5 V, VS- = 0 V, input common-mode biased at midsupply, unity gain configuration, RL = 200 Ω, output load is referenced  
to midsupply, and TA +25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS+ = 5 V  
18  
17.5  
18  
20.5  
20  
24  
23.5  
24  
VS+ = 3.3 V  
VS+ = 5.25 V  
TA = 125°C  
TA = –40°C  
IQ  
Quiescent current  
21  
mA  
dB  
24.5  
18.5  
74  
PSRR+  
PSRR–  
Positive power-supply rejection ratio  
Negative power-supply rejection ratio  
66  
64  
72  
POWER DOWN  
Disable voltage threshold  
Amplifier OFF below this voltage  
Amplifier ON above this voltage  
0.65  
1
1.5  
70  
V
V
Enable voltage threshold  
Power-down quiescent current  
PD bias current  
1.8  
140  
200  
µA  
µA  
ns  
ns  
70  
Turnon time delay  
Time to VOUT = 90% of final value  
25  
Turnoff time delay  
120  
6
版权 © 2018, Texas Instruments Incorporated  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
7.6 Typical Characteristics  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
Gain = +1 V/V  
Gain = -1 V/V  
Gain = +2 V/V  
Gain = +5 V/V  
Gain = +20 V/V  
-9  
-9  
VS = 3.3 V  
VS = 5 V  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
5G  
-12  
1M  
10M  
100M  
1G  
5G  
D300  
Frequency (Hz)  
VOUT = 100 mVPP; see Parameter Measurement Information for  
circuit configuration  
D302  
VOUT = 100 mVPP  
1. Small-Signal Frequency Response vs Gain  
2. Small-Signal Frequency Response vs Supply Voltage  
3
2
1
0
0
-3  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = 0èC  
-9  
RL = 100 W  
RL = 200 W  
RL = 400 W  
-12  
TA = -40èC  
1M  
10M  
100M  
1G  
5G  
1M  
10M  
100M  
1G  
5G  
Frequency (Hz)  
Frequency (Hz)  
D303  
D304  
VOUT = 100 mVPP  
VOUT = 100 mVPP  
3. Small-Signal Frequency Response vs Output Load  
4. Small-Signal Frequency Response vs Ambient  
Temperature  
4
3
0
2
0
-3  
-6  
-9  
-2  
-4  
-6  
-8  
RS = 18 W, CL = 10 pF  
RS = 9.1 W, CL = 47 pF  
RS = 6.2 W, CL = 100 pF  
RS = 2 W, CL = 1 nF  
VS = ê1.65 V, VOUT = 100 mVPP, VCM = 0 V  
VS = ê2.5 V, VOUT = 100 mVPP, VCM = 0.9 V  
VS = ê2.5 V, VOUT = 2 VPP, VCM = 0 V  
-12  
-10  
-12  
-15  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D301  
D305  
Gain = 20 V/V  
RF = 453 Ω  
VOUT = 100 mVPP, See 46 for circuit configuration  
6. Small-Signal Frequency Response vs Capacitive Load  
5. Frequency Response at Gain = 20 V/V  
版权 © 2018, Texas Instruments Incorporated  
7
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
3
0.2  
0.1  
0
0
-3  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-6  
Gain = +1 V/V  
Gain = -1 V/V  
Gain = +2 V/V  
Gain = +5 V/V  
Gain = +20 V/V  
-9  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
Frequency (Hz)  
100M  
D306  
D307  
VOUT = 2 VPP  
7. Large-Signal Frequency Response vs Gain  
VOUT = 2 VPP  
8. Large-Signal Response for 0.1-dB Gain Flatness  
100  
10  
75  
60  
45  
30  
15  
0
45  
AOL Magnitude (dB)  
AOL Phase (è)  
0
-45  
1
-90  
-135  
-180  
-225  
0.1  
0.01  
-15  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D309  
D310  
Small-Signal Response  
9. Closed-Loop Output Impedance vs Frequency  
Small-Signal Response  
10. Open-Loop Magnitude and Phase vs Frequency  
4
100  
10  
1
3.8  
3.6  
3.4  
3.2  
3
2.8  
2.6  
1k  
10k  
100k  
1M  
10M  
100M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Frequency (Hz)  
Ambient Temperature (èC)  
D311  
D312  
Frequency 10 MHz  
11. Voltage Noise Density vs Frequency  
12. Voltage Noise Density vs Ambient Temperature  
8
版权 © 2018, Texas Instruments Incorporated  
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
-40  
-40  
-50  
HD2, VOUT = 0.5 VPP  
HD2, VOUT = 1 VPP  
HD2, VOUT = 2 VPP  
HD2, VOUT = 2.5 VPP  
HD3, VOUT = 0.5 VPP  
HD3, VOUT = 1 VPP  
HD3, VOUT = 2 VPP  
HD3, VOUT = 2.5 VPP  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
D313  
D314  
13. Harmonic Distortion (HD2) vs Output Swing  
14. Harmonic Distortion (HD3) vs Output Swing  
-40  
-50  
-40  
-50  
HD2, RL = 100 W  
HD2, RL = 200 W  
HD2, RL = 400 W  
HD3, RL = 100 W  
HD3, RL = 200 W  
HD3, RL = 400 W  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D315  
D316  
VOUT = 2 VPP  
VOUT = 2 VPP  
15. Harmonic Distortion (HD2) vs Output Load  
16. Harmonic Distortion (HD3) vs Output Load  
-40  
-50  
-40  
-50  
HD2, Gain = 1 V/V, RF = 0 W  
HD2, Gain = -1 V/V, RF = 150 W  
HD2, Gain = 2 V/V, RF = 150 W  
HD2, Gain = 5 V/V, RF = 453 W  
HD3, Gain = 1 V/V, RF = 0 W  
HD3, Gain = -1 V/V, RF = 150 W  
HD3, Gain = 2 V/V, RF = 150 W  
HD3, Gain = 5 V/V, RF = 453 W  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D317  
D318  
VOUT = 2 VPP  
VOUT = 2 VPP  
17. Harmonic Distortion (HD2) vs Gain  
18. Harmonic Distortion (HD3) vs Gain  
版权 © 2018, Texas Instruments Incorporated  
9
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
60  
1.25  
1
Input  
Output  
Input  
Output  
40  
0.75  
0.5  
20  
0.25  
0
0
-0.25  
-0.5  
-0.75  
-1  
-20  
-40  
-60  
-1.25  
Time (5 ns/div)  
Time (5 ns/div)  
D319  
D320  
Average Rise and Fall Time (10% - 90%) = 450 ps  
Slew Rate: Falling = 1160 V/µs, Rising = 1400 V/µs  
19. Small-Signal Transient Response  
20. Large-Signal Transient Response  
4
3
0.075  
0.05  
2
0.025  
0
1
0
-1  
-2  
-3  
-4  
-0.025  
-0.05  
-0.075  
RS = 18 W, CL = 10 pF  
RS = 9.1 W, CL = 47 pF  
RS = 6.2 W, CL = 100 pF  
RS = 2 W, CL = 1 nF  
Ideal Output  
Measured Output  
Time (10 ns/div)  
Time (5 ns/div)  
D321  
D322  
See 46 for circuit configuration  
Gain = 5 V/V, RF = 453 Ω, 2x Output Overdrive  
22. Output Overload Response  
21. Small-Signal Transient Response vs Capacitive Load  
3
2
3
Power Down (PD)  
Output  
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
Power Down (PD)  
Output  
-3  
Time (5 ns/div)  
Time (5 ns/div)  
D323  
D324  
23. Turnon Transient Response  
24. Turnoff Transient Response  
10  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
CMRR  
PSRR+  
PSRR-  
-20  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D325  
D326  
Small-Signal Response  
Small-Signal Response  
25. Common-Mode Rejection Ratio vs Frequency  
26. Power Supply Rejection Ratio vs Frequency  
24  
23  
22  
21  
20  
19  
18  
21.5  
21.25  
21  
20.75  
20.5  
20.25  
20  
19.75  
19.5  
19.25  
19  
Unit 1  
Unit 2  
Unit 1  
Unit 2  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Total Supply Voltage (V)  
Ambient Temperature (èC)  
D360  
D361  
2 Typical Units  
VS = 5 V  
2 Typical Units  
27. Quiescent Current vs Supply Voltage  
28. Quiescent Current vs Ambient Temperature  
1
80  
78  
76  
74  
72  
70  
68  
66  
64  
Unit 1  
Unit 2  
Unit 3  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25  
Ambient Temperature (èC)  
Total Supply Voltage (V)  
D362  
D363  
32 Units Tested  
3 Typical Units  
29. Quiescent Current (Amplifier Disabled) vs Ambient  
30. Offset Voltage vs Supply Voltage  
Temperature  
版权 © 2018, Texas Instruments Incorporated  
11  
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
0.8  
0.6  
0.4  
0.2  
0
2
1.5  
1
Unit 1  
Unit 2  
Unit 3  
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.5  
-1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Ambient Temperature (èC)  
Common-Mode Voltage (V)  
D364  
D366  
µ = –2.1 µV/°C  
σ = 2 µV/°C  
32 Units Tested  
VS = 5 V  
3 Typical Units  
31. Offset Voltage vs Ambient Temperature  
32. Offset Voltage vs Input Common-Mode Voltage  
1.5  
1
5
4
TA = -40èC  
TA = +25èC  
TA = +125èC  
3
2
1
0.5  
0
0
-1  
-2  
-3  
-4  
-5  
Unit 1  
Unit 2  
Unit 3  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Common-Mode Voltage  
Output Voltage (V)  
D367  
D369  
VS = 5 V  
VS = 5 V  
3 Typical Units  
33. Offset Voltage vs Input Common-Mode Voltage vs  
34. Offset Voltage vs Output Swing  
Ambient Temperature  
10n  
4
3
1n  
100p  
10p  
2
1
0
-1  
-2  
1p  
TA = -40èC  
Unit 1  
Unit 2  
Unit 3  
-3  
-4  
TA = +25èC  
TA = +125èC  
0.1p  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Output Voltage (V)  
Ambient Temperature (èC)  
D370  
D371  
VS = 5 V  
3 Typical Units  
35. Offset Voltage vs Output Swing vs Ambient  
36. Input Bias Current vs Ambient Temperature  
版权 © 2018, Texas Instruments Incorporated  
Temperature  
12  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, Gain = 1 V/V, RF = 0 Ω, RL = 200 Ω, and output load referenced to  
midsupply (unless otherwise noted)  
5
2.4  
2.2  
2
TA = -40èC  
TA = +25èC  
TA = +125èC  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
1.8  
1.6  
1.4  
1.2  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
-120  
-100  
-80  
-60  
-40  
-20  
0
Common-Mode Voltage (V)  
Output Current (mA)  
D372  
D373  
VS = 5 V  
VS = 5 V  
37. Input Bias Current vs Input Common-Mode Voltage  
38. Output Swing vs Sinking Current  
4.5  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
4
3.5  
3
2.5  
2
1.5  
1
TA = -40èC  
TA = +25èC  
0.5  
0
TA = +125èC  
0
20  
40  
60  
80  
100  
120  
Output Current (mA)  
D374  
D340  
Quiescent Current (mA)  
VS = 5 V  
µ = 20.8 mA  
σ = 0.25 mA  
9150 Units Tested  
39. Output Swing vs Sourcing Current  
40. Quiescent Current Distribution  
2000  
1750  
1500  
1250  
1000  
750  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
500  
250  
0
0
D342  
D341  
Offset Voltage (mV)  
Input Bias Current (pA)  
µ = –0.38 mV  
σ = 0.97 mV  
9150 Units Tested  
µ = –0.55 pA  
σ = 0.23 pA  
9150 Units Tested  
41. Offset Voltage Distribution  
42. Input Bias Current Distribution  
版权 © 2018, Texas Instruments Incorporated  
13  
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Parameter Measurement Information  
The various test setup configurations for the OPA859 are shown in the figures below. When configuring the  
OPA859 as a noninverting amplifier in gains less 3 V/V, set RF = 150 Ω. When configuring the OPA859 as a  
noninverting amplifier in gains of 4 V/V and greater, set RF = 453 Ω.  
GND  
50  
2.5 V  
50 ꢀ  
50-ꢀ  
Source  
169 ꢀ  
+
50-ꢀ  
Measurement  
System  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
GND  
GND  
43. Unity-Gain Buffer Configuration  
2.5 V  
50  
50-ꢀ  
Source  
169 ꢀ  
+
50-ꢀ  
Measurement  
System  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
GND  
RG  
RF  
GND  
GND  
RG values depend on gain configuration  
44. Noninverting Configuration  
2.5 V  
169  
+
50-ꢀ  
Measurement  
System  
GND  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
50 ꢀ  
50-ꢀ  
Source  
GND  
150 ꢀ  
150 ꢀ  
GND  
75 ꢀ  
GND  
45. Inverting Configuration (Gain = –1 V/V)  
GND  
50  
2.5 V  
50 ꢀ  
50-ꢀ  
Source  
RS  
169 ꢀ  
75 ꢀ  
+
50-ꢀ  
Measurement  
System  
œ
50 ꢀ  
CL  
Þ2.5 V  
GND  
GND  
GND  
46. Capacitive Load Driver Configuration  
14  
版权 © 2018, Texas Instruments Incorporated  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
9 Detailed Description  
9.1 Overview  
The ultra-wide, 900-MHz gain bandwidth product (GBWP) of the OPA859, combined with the broadband voltage  
noise of 3.3 nV/Hz, produces a viable amplifier for wideband transimpedance applications, high-speed data  
acquisition systems, and applications with weak signal inputs that require low-noise and high-gain front ends.  
The OPA859 combines multiple features to optimize dynamic performance. In addition to the wide small-signal  
bandwidth, the OPA859 has 400 MHz of large-signal bandwidth (VOUT = 2 VPP), and a slew rate of 1150 V/µs.  
The OPA859 is offered in a 2-mm × 2-mm, 8-pin WSON package that features a feedback (FB) pin for a simple  
feedback network connection between the amplifiers output and inverting input. Excess capacitance on an  
amplifiers input pin can reduce phase margin causing instability. This problem is exacerbated in the case of very  
wideband amplifiers like the OPA859. To reduce the effects of stray capacitance on the input node, the OPA859  
pinout features an isolation pin (NC) between the feedback and inverting input pins that increases the physical  
spacing between them thereby reducing parasitic coupling at high frequencies. The OPA859 also features a very  
low capacitance input stage with only 0.8-pF of total input capacitance.  
9.2 Functional Block Diagram  
The OPA859 is a classic, voltage feedback operational amplifier (op amp) with two high-impedance inputs and a  
low-impedance output. Standard application circuits are supported, like the two basic options shown in 47 and  
48. The DC operating point for each configuration is level-shifted by the reference voltage (VREF), which is  
typically set to midsupply in single-supply operation. VREF is typically connected to ground in split-supply  
applications.  
VSIG  
VS+  
(1 + RF / RG) × VSIG  
VREF  
VIN  
+
VOUT  
VREF  
œ
RG  
VSœ  
RF  
VREF  
47. Noninverting Amplifier  
VS+  
œ(RF / RG) × VSIG  
VREF  
+
VSIG  
VOUT  
VREF  
VREF  
VIN  
œ
RG  
VSœ  
RF  
48. Inverting Amplifier  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Input and ESD Protection  
The OPA859 is fabricated on a low-voltage, high-speed, BiCMOS process. The internal, junction breakdown  
voltages are low for these small geometry devices, and as a result, all device pins are protected with internal  
ESD protection diodes to the power supplies as 49 shows. There are two antiparallel diodes between the  
inputs of the amplifier that clamp the inputs during an overrange or fault condition.  
VS+  
Power Supply  
ESD Cell  
VIN+  
+
VOUT  
œ
VINÞ  
FB  
VSÞ  
49. Internal ESD Structure  
9.3.2 Feedback Pin  
The OPA859 pin layout is optimized to minimize parasitic inductance and capacitance, which is critical in high-  
speed analog design. The FB pin (pin 1) is internally connected to the output of the amplifier. The FB pin is  
separated from the inverting input of the amplifier (pin 3) by a no connect (NC) pin (pin 2). The NC pin must be  
left floating. There are two advantages to this pin layout:  
1. A feedback resistor (RF) can connect between the FB and IN– pin on the same side of the package (see 图  
50) rather than going around the package.  
2. The isolation created by the NC pin minimizes the capacitive coupling between the FB and IN– pins by  
increasing the physical separation between the pins.  
FB  
NC  
INœ  
IN+  
PD  
1
2
3
4
8
7
6
5
VS+  
OUT  
VSœ  
RF  
œ
+
50. RF Connection Between FB and IN– Pins  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
Feature Description (接下页)  
9.3.3 Wide Gain-Bandwidth Product  
10 shows the open-loop magnitude and phase response of the OPA859. Calculate the gain bandwidth product  
of any op amp by determining the frequency at which the AOL is 40 dB and multiplying that frequency by a factor  
of 100. The open-loop response shows the OPA859 to have approximately 63° of phase-margin when configured  
as a unity-gain buffer.  
51 shows the open-loop magnitude (AOL) of the OPA859 as a function of temperature. The results show  
approximately 5° of phase-margin variation over the entire temperature range. Semiconductor process variation  
is the naturally occurring variation in the attributes of a transistor (Early-voltage, β, channel-length and width) and  
other passive elements (resistors and capacitors) when fabricated into an integrated circuit. The process  
variation can occur across devices on a single wafer, or, across devices over multiple wafer lots over time.  
Typically the variation across a single wafer is tightly controlled. 52 shows the AOL magnitude of the OPA859  
as a function of process variation over time. The results show the AOL curve for the nominal process corner and  
the variation one standard deviation from the nominal. The simulated results show less than 2° of phase-margin  
difference within a standard deviation of process variation when the amplifier is configured as a unity-gain bufffer.  
75  
60  
45  
30  
15  
0
75  
60  
45  
30  
15  
0
AOL at -40èC  
AOL at 25èC  
AOL at +125èC  
AOL (-1 s)  
AOL (Typ.)  
AOL (+1 s)  
-15  
-15  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D404  
D405  
51. Open-Loop Gain vs Temperature  
52. Open-Loop Gain vs Process Variation  
版权 © 2018, Texas Instruments Incorporated  
17  
 
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
9.3.4 Slew Rate and Output Stage  
In addition to wide bandwidth, the OPA859 features a high slew rate of 1150 V/µs. The slew rate is a critical  
parameter in high-speed pulse applications with narrow sub-10-ns pulses, such as optical time-domain  
reflectometry (OTDR) and LIDAR. The high slew rate of the OPA859 implies that the device accurately  
reproduces a 2-V, sub-ns pulse edge, as seen in 20. The wide bandwidth and slew rate of the OPA859 make  
it an excellent amplifier for high-speed signal-chain front ends.  
53 shows the open-loop output impedance of the OPA859 as a function of frequency. To achieve high slew  
rates and low output impedance across frequency, the output swing of the OPA859 is limited to approximately 3  
V. The OPA859 is typically used in conjunction with high-speed pipeline ADCs and flash ADCs that have limited  
input ranges. Therefore, the OPA859 output swing range coupled with the class-leading voltage noise  
specification for a CMOS amplifier maximizes the overall dynamic range of the signal chain.  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
10k  
100k  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
D601  
53. Open-Loop Output Impedance (ZOL) vs Frequency  
9.3.5 Current Noise  
The input impedance of CMOS and JFET input amplifiers at low frequencies exceed several GΩs. However, at  
higher frequencies, the transistors parasitic capacitance to the drain, source, and substrate reduces the  
impedance. The high impedance at low frequencies eliminates any bias current and the associated shot noise. At  
higher frequencies, the input current noise increases (see 54) as a result of capacitive coupling between the  
CMOS gate oxide and the underlying transistor channel. This phenomenon is a natural artifact of the construction  
of the transistor and is unavoidable.  
100p  
10p  
1p  
100f  
10f  
1f  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
D607  
54. Input Current Noise (IBN and IBI) vs Frequency  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
9.4 Device Functional Modes  
9.4.1 Split-Supply and Single-Supply Operation  
The OPA859 can be configured with single-sided supplies or split-supplies as shown in 60. Split-supply  
operation using balanced supplies with the input common-mode set to ground eases lab testing because most  
signal generators, network analyzers, spectrum analyzers, and other lab equipment typically reference inputs and  
outputs to ground. Split-supply operation is preferred in systems where the signals swing around ground.  
However, the system requires two supply rails. In split-supply operation, the thermal pad must be connected to  
the negative supply.  
Newer systems use a single power supply to improve efficiency and reduce the cost of the extra power supply.  
The OPA859 can be used with a single positive supply (negative supply at ground) with no change in  
performance if the input common-mode and output swing are biased within the linear operation of the device. In  
single-supply operation, level shift the dc input and output reference voltages by half the difference between the  
power supply rails. This configuration maintains the input common-mode and output load reference at midsupply.  
To eliminate gain errors, the source driving the reference input common-mode voltage must have low output  
impedance across the frequency range of interest . In this case, the thermal pad must be connected to ground.  
9.4.2 Power-Down Mode  
The OPA859 features a power-down mode to reduce the quiescent current to conserve power. 23 and 24  
show the transient response of the OPA859 as the PD pin toggles between the disabled and enabled states.  
The PD disable and enable threshold voltages are with reference to the negative supply. If the amplifier is  
configured with the positive supply at 3.3 V and the negative supply at ground, then the disable and enable  
threshold voltages are 0.65 V and 1.8 V, respectively. If the amplifier is configured with ±1.65-V supplies, then  
the disable and enable threshold voltages are at –1 V and 0.15 V, respectively. If the amplifier is configured with  
±2.5-V supplies, then the threshold voltages are at –1.85 V and –0.7 V.  
55 shows the switching behavior of a typical amplifier as the PD pin is swept down from the enabled state to  
the disabled state. Similarly, 56 shows the switching behavior of a typical amplifier as the PD pin is swept up  
from the disabled state to the enabled state. The small difference in the switching thresholds between the down  
sweep and the up sweep is caused by the hysteresis designed into the amplifier to increase immunity to noise on  
the PD pin.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
0
0
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Power Down Voltage (V)  
Power Down Voltage (V)  
D200  
D201  
55. Switching Threshold (PD Pin Swept from High to  
56. Switching Threshold (PD Pin Swept from Low to  
Low)  
High)  
Connecting the PD pin low disables the amplifier and places the output in a high-impedance state. When the  
amplifier is configured as a noninverting amplifier, the feedback (RF) and gain (RG) resistor network form a  
parallel load to the output of the amplifier. To protect the input stage of the amplifier, the OPA859 uses internal,  
back-to-back protection diodes between the inverting and noninverting input pins as 49 shows. In the power-  
down state, if the differential voltage between the input pins of the amplifier exceeds a diode voltage drop, an  
additional low-impedance path is created between the noninverting input pin and the output pin.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The OPA859 offers high input impedance, very high-bandwidth, high slew-rate, low noise, and better than –60  
dBc of distortion performance at frequencies up to 100 MHz. These features make this device an excellent front-  
end buffer in high-speed data acquisition systems. The wide bandwidth also makes this amplifier an excellent  
choice for high-gain active filter systems.  
20  
版权 © 2018, Texas Instruments Incorporated  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
10.2 Typical Application  
57 shows the OPA859 configured as a transimpedance amplifier (U1) in a wide-bandwidth, optical front-end  
system. A second OPA859 configured as a unity-gain buffer (U2) sets a dc offset voltage to the THS4520. The  
THS4520 is used to convert the single-ended transimpedance output of the OPA859 into a differential output  
signal. The THS4520 drives the input of the ADS54J64, 14-bit, 1-GSPS analog-to-digital converter (ADC) that  
digitizes the analog signal.  
CF  
RF  
VBIAS  
5 V  
œ
499  
499 ꢀ  
U1  
+
3.5 V  
OPA859  
5 V  
+
œ
Low-pass  
filter  
VOCM = 1.3 V  
ADS54J64  
+
œ
5 V  
œ
U2  
+
2.95 V  
OPA859  
499 ꢀ  
499 ꢀ  
57. OPA859 as Both a TIA and a Buffer in an Optical Front-End System  
10.2.1 Design Requirements  
The objective is to design a low noise, wideband optical front-end system using the OPA859 as a  
transimpedance amplifier. The design requirements are:  
Amplifier supply voltage: 5 V  
TIA common-mode voltage: 3.5 V  
THS4520 gain: 1 V/V  
ADC input common-mode voltage: 1.3 V  
ADC analog differential input range: 1.1 VPP  
10.2.2 Detailed Design Procedure  
The OPA859 meets the growing demand for wideband, low-noise photodiode amplifiers. The closed-loop  
bandwidth of a transimpedance amplifier is a function of the following:  
1. The total input capacitance (CIN). This total includes the photodiode capacitance, the input capacitance of the  
amplifier (common-mode and differential capacitance) and any stray capacitance from the PCB.  
2. The op amp gain bandwidth product (GBWP).  
3. The transimpedance gain (RF).  
57 shows the OPA859 configured as a TIA, with the avalanche photodiode (APD) reverse biased so that the  
APD cathode is tied to a large positive bias voltage. In this configuration, the APD sources current into the op  
amp feedback loop so that the output swings in a negative direction relative to the input common-mode voltage.  
To maximize the output swing in the negative direction, the OPA859 common-mode voltage is set close to the  
positive limit; only 1.5 V from the positive supply rail. The feedback resistance (RF) and the input capacitance  
(CIN) form a zero in the noise gain that results in instability if left unchecked. To counteract the effect of the zero,  
a pole is inserted into the noise gain transfer function by adding the feedback capacitor (CF).  
The Transimpedance Considerations for High-Speed Amplifiers Application Report discusses theories and  
equations that show how to compensate a transimpedance amplifier for a particular transimpedance gain and  
input capacitance. The bandwidth and compensation equations from the application report are available in an  
Excel™ calculator. What You Need To Know About Transimpedance Amplifiers – Part 1 provides a link to the  
calculator.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
The equations and calculators in the referenced application report and blog posts are used to model the  
bandwidth (f–3dB) and noise (IRN) performance of the OPA859 configured as a TIA. The resultant performance is  
shown in 58 and 59. The left-side Y-axis shows the closed-loop bandwidth performance, whereas the right  
side of the graph shows the integrated input-referred noise. The noise bandwidth to calculate IRN for a fixed RF  
and CPD is set equal to the f–3dB frequency. 58 shows the amplifier performance as a function of photodiode  
capacitance (CPD) for RF = 10 kΩ and 20 kΩ. Increasing CPD decreases the closed-loop bandwidth. To maximize  
bandwidth, make sure to reduce any stray parasitic capacitance from the PCB. The OPA859 is designed with 0.8  
pF of total input capacitance to minimize the effect of stray capacitance on system performance. 59 shows the  
amplifier performance as a function of RF for CPD = 1 pF and 2 pF. Increasing RF results in lower bandwidth. To  
maximize the signal-to-noise ratio (SNR) in an optical front-end system, maximize the gain in the TIA stage.  
Increasing RF by a factor of X increases the signal level by X, but only increases the resistor noise contribution  
by X, thereby improving SNR.  
The OPA859 configured as a unity-gain buffer drives a dc offset voltage of 2.95 V into the lower half of the  
THS4520. To maximize the dynamic range of the ADC, the two OPA859 amplifiers drive a differential common-  
mode of 3.5 V and 2.95 V into the THS4520. The dc offset voltage of the buffer amplifier can be derived using 公  
1.  
«
÷
÷
÷
÷
÷
VADC _DIFF _IN  
1
2
VBUF _DC = VTIA _ CM  
-
ì
«
÷
RF  
RG ◊  
where  
VTIA_CM is the common-mode voltage of the TIA (3.5 V)  
VADC_DIFF_IN is the differential input voltage range of the ADC (1.1 VPP  
)
RF and RG are the feedback resistance (499 Ω) and gain resistance (499 Ω) of the THS4520 differential  
amplifier  
(1)  
The low-pass filter between the THS4520 and the ADC54J64 minimizes high-frequency noise and maximizes  
SNR. The ADC54J64 has an internal buffer that isolates the output of the THS4520 from the ADC sampling-  
capacitor input, so a traditional charge bucket filter is not required.  
10.2.3 Application Curves  
225  
200  
175  
150  
125  
100  
75  
150  
135  
120  
105  
90  
350  
300  
250  
200  
150  
100  
50  
140  
120  
100  
80  
f-3dB, RF = 2 kW  
f-3dB, RF = 5 kW  
IRN, RF = 2 kW  
IRN, RF = 5 kW  
f-3dB, CF = 0.5 pF  
f-3dB, CF = 1 pF  
IRN, CF = 0.5 pF  
IRN, RF = 1 pF  
75  
60  
60  
40  
50  
45  
20  
25  
30  
0
15  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
100  
Photodiode capacitance (pF)  
Feedback Resistance (kW)  
D409  
D410  
58. Bandwidth and Noise vs Photodiode Capacitance  
59. Bandwidth and Noise vs Feedback Resistance  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
11 Power Supply Recommendations  
The OPA859 operates on supplies from 3.3 V to 5.25 V. The OPA859 operates on single-sided supplies, split  
and balanced bipolar supplies, and unbalanced bipolar supplies. Because the OPA859 does not feature rail-to-  
rail inputs or outputs, the input common-mode and output swing ranges are limited at 3.3-V supplies.  
a) Single supply configuration  
VS+  
VS+  
+
2
0.1 F  
6.8 F  
RG  
75  
RF  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
RT  
49.9 ꢀ  
VS+  
2
VS+  
2
b) Split supply configuration  
VS+  
+
0.1 F  
6.8 F  
RG  
RF  
75 ꢀ  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
+
RT  
49.9 ꢀ  
0.1 F  
6.8 F  
VSœ  
60. Split and Single Supply Circuit Configuration , Gain = 7 V/V  
版权 © 2018, Texas Instruments Incorporated  
23  
OPA859  
ZHCSIQ9 SEPTEMBER 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier like the OPA859 requires careful attention to  
board layout parasitics and external component types. Recommendations that optimize performance include:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the output  
and inverting input pins can cause instability. To reduce unwanted capacitance, cut out the power and ground  
traces under the signal input and output pins. Otherwise, ground and power planes must be unbroken  
elsewhere on the board. When configuring the amplifier as a TIA, if the required feedback capacitor is less  
than 0.15 pF, consider using two series resistors, each of half the value of a single resistor in the feedback  
loop to minimize the parasitic capacitance from the resistor.  
Minimize the distance (less than 0.25") from the power-supply pins to high-frequency bypass  
capacitors. Use high-quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage  
ratings at least three times greater than the amplifiers maximum power supplies. This configuration makes  
sure that there is a low-impedance path to the amplifiers power-supply pins across the amplifiers gain  
bandwidth specification. At the device pins, do not allow the ground and power plane layout to be in close  
proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the  
pins and the decoupling capacitors. The power-supply connections must always be decoupled with these  
capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower frequency must be used  
on the supply pins. Place these decoupling capacitors further from the device. Share the decoupling  
capacitors among several devices in the same area of the printed circuit board (PCB).  
Careful selection and placement of external components preserves the high-frequency performance  
of the OPA859. Use low-reactance resistors. Surface-mount resistors work best and allow a tighter overall  
layout. Never use wirewound resistors in a high-frequency application. Because the output pin and inverting  
input pin are the most sensitive to parasitic capacitance, always position the feedback and series output  
resistor, if any, as close to the output pin as possible. Place other network components (such as noninverting  
input termination resistors) close to the package. Even with a low parasitic capacitance shunting the external  
resistors, high resistor values create significant time constants that can degrade performance. When  
configuring the OPA859 as a voltage amplifier, keep resistor values as low as possible and consistent with  
load driving considerations. Decreasing the resistor values keeps the resistor noise terms low and minimizes  
the effect of the parasitic capacitance. However, lower resistor values increase the dynamic power  
consumption because RF and RG become part of the output load network of the amplifier.  
12.2 Layout Example  
Representative schematic  
Connect PD to VS+ to enable the  
amplifier  
VS+  
1
2
8
7
CBYP  
RS  
+
NC (Pin 2) isolates the IN- and FB  
pins thereby reducing capacitive  
coupling  
œ
Thermal  
Pad  
CBYP  
RF  
CBYP  
Place gain and feedback resistors  
close to pins to minimize stray  
capacitance  
VS-  
RF  
3
4
6
5
RS  
RG  
RG  
CBYP  
Connect the thermal pad to the  
negative supply pin  
Ground and power plane exist on  
inner layers.  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed  
Place bypass capacitor  
close to power pins  
61. Layout Recommendation  
24  
版权 © 2018, Texas Instruments Incorporated  
OPA859  
www.ti.com.cn  
ZHCSIQ9 SEPTEMBER 2018  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
宽带宽光学前端参考设计  
使用高速数据转换器的激光雷达脉冲飞行时间参考设计  
激光雷达脉冲飞行时间参考设计  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
OPA858EVM 用户指南》  
《高速运算放大器跨阻注意事项应用报告》  
《跨阻放大器须知 1 部分》  
《跨阻放大器须知 2 部分》  
培训视频:如何设计跨阻放大器电路  
培训视频:高速跨阻放大器设计流程  
培训视频:如何将 TINA-TI 模型转换为通用 SPICE 模型  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
Excel is a trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA859IDSGR  
OPA859IDSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
859  
859  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
OTHER QUALIFIED VERSIONS OF OPA859 :  
Automotive : OPA859-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Sep-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA859IDSGR  
OPA859IDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Sep-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA859IDSGR  
OPA859IDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA859Q1DSGR

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA859QDSGRQ1

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA860

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) and BUFFER
BB

OPA860

高带宽运算跨导放大器和缓冲器
TI

OPA860ID

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) and BUFFER
BB

OPA860ID

高带宽运算跨导放大器和缓冲器 | D | 8 | -40 to 85
TI

OPA860IDR

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) and BUFFER
BB

OPA860IDR

高带宽运算跨导放大器和缓冲器 | D | 8 | -40 to 85
TI

OPA861

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861ID

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDBVR

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDBVRG4

Wide Bandwidth Operational Transconductance Amplifier 6-SOT-23 -40 to 85
TI