PCI2030PGF [TI]

32-Bit PCI-to-PCI Bridge 176-LQFP;
PCI2030PGF
型号: PCI2030PGF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

32-Bit PCI-to-PCI Bridge 176-LQFP

时钟 PC 外围集成电路
文件: 总14页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Supports PCI Local Bus Specification 2.1  
and PCI-to-PCI Bridge Specification 1.0  
Secondary Positive Decode  
Predictable Latency: Compliant With PCI  
Local Bus Specification 2.1  
3.3-V Core Logic With Universal PCI  
Interfaces Compatible With 3.3-V and 5-V  
PCI Signaling Environments  
External Arbiter Option  
Provides Concurrent Operation  
Serial IRQ Bridging  
Supports Two 32-Bit, 33-MHz PCI Buses  
Provides Internal Arbitration for Up to Six  
Secondary Bus Masters With  
Programmable Control  
Propagates Bus Locking  
Supports PCI Clock Run  
Secondary Bus Driven Low During Reset  
Docking Connect Detects  
Provides Six Secondary PCI Bus Clock  
Outputs  
Supports Burst Transfers to Maximize Data  
Throughput on Both PCI Buses  
PCI Local Bus Specification 2.0-Compliant  
Device Optimization  
Provides Two Extension Windows  
Advanced Submicron, Low-Power CMOS  
Technology  
EEPROM Interface for Loading Texas  
Instruments (TI ) Subsystem ID and  
Subsystem Vendor ID  
Provides VGA/Palette Memory and I/O, and  
Subtractive Decoding Options  
Four Primary and Four Secondary  
General-Purpose I/Os  
Packaged in 176-Pin Plastic Quad Flatpack  
Independent Read and Write Buffers for  
Each Direction  
Table of Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 PCI Clock/Reset Timing Requirements . . . . . . . . . . . . . . . . . . . . . . 10  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PCI Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PCI Bus Parameter Measurement Information . . . . . . . . . . . . . . . . 12  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . 9 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Recommended Operating Conditions for PCI Interface . . . . . . 9  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TI is a trademark of Texas Instruments Incorporated.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
description  
The TI PCI2030 PCI-to-PCI bridge provides a high-performance connection path between two peripheral  
component interconnect (PCI) buses. Transactions can occur between a master on one PCI bus and a target  
on another PCI bus. The bridge supports burst-mode transfers to maximize data throughput, and the two bus  
traffic paths through the bridge act independently.  
The PCI2030 bridge is compliant with the PCI Local Bus Specification 2.1, and can be used to overcome the  
electrical loading limit of ten devices per PCI bus by creating hierarchical buses. Furthermore, add-in cards  
requiring multiple PCI devices can use the bridge to overcome the electrical loading limit of one PCI device  
per slot.  
The PCI2030 bridge is also compliant with the PCI-to-PCI Bridge Specification 1.0, and implements many  
additional features that make it an ideal solution for bridging two PCI buses. It can be configured for subtractive  
decoding, and negative decoding can be disabled on the secondary interface. Two extension windows are also  
included for special decoding purposes. The serial- and parallel-port addresses can also be programmed for  
positive decoding on the primary interface. The bridge implements many other features, listed above, that add  
performance and flexibility.  
An advanced CMOS process is utilized to achieve low system-power consumption while operating at PCI clock  
rates up to 33 MHz.  
system block diagram  
Primary PCI Bus  
Video Controller  
South Bridge  
IDE Controller  
PCI2030  
PCI-To-PCI Bridge  
Secondary PCI Bus  
Add-In Card  
Add-In Card  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
terminal assignments  
PGF PACKAGE  
(TOP VIEW)  
S_GPIO1  
S_GPIO2  
S_GPIO3  
GND  
S_PCLK0  
S_PCLK1  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
S_AD16  
S_C/BE2  
GND  
S_FRAME  
V
CC  
S_IRDY  
V
S_TRDY  
S_DEVSEL  
S_STOP  
CC  
S_PCLK2  
S_V  
CCP  
S_PCLK3  
S_PCLK4  
S_V  
S_LOCK  
GND  
CCP  
V
CC  
S_PCLK5  
GND  
S_PERR  
S_SERR  
S_PAR  
S_C/BE1  
S_AD15  
S_AD14  
RST_MODE  
P_CLKRUN  
P_V  
P_RST  
GND  
CCP  
V
CC  
P_CLK  
S_AD13  
S_AD12  
S_AD11  
V
CC  
P_GNT  
P_REQ  
V
CC  
P_V  
P_AD31  
S_AD10  
S_AD9  
GND  
CCP  
V
CC  
P_AD30  
P_AD29  
S_AD8  
S_C/BE0  
S_AD7  
V
CC  
P_AD28  
P_AD27  
P_AD26  
GND  
S_V  
S_AD6  
S_AD5  
CCP  
V
CC  
P_AD25  
P_AD24  
P_C/BE3  
GND  
P_IDSEL  
P_AD23  
S_AD4  
S_AD3  
GND  
S_AD2  
S_AD1  
S_AD0  
GND  
P_GPIO0  
P_GPIO1  
P_GPIO2  
P_GPIO3  
V
CC  
P_AD22  
P_V  
CCP  
P_AD21  
P_AD20  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Terminal Functions  
primary PCI system  
TERMINAL  
I/O  
TYPE  
FUNCTION  
NAME  
NO.  
Primary PCI bus clock. P_CLK provides timing for all transactions on the primary PCI bus. All primary PCI signals  
are sampled at rising edge of P_CLK.  
P_CLK  
152  
I
I
PCI reset. When the primary PCI bus reset is asserted, P_RST causes the bridge to 3-state all output buffers  
and reset all internal registers. When asserted, the device is completely nonfunctional. During P_RST, the  
secondary interface is driven low. After P_RST is deasserted, the bridge is in its default state.  
150  
R_RST  
primary PCI address and data  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
P_AD31  
P_AD30  
P_AD29  
P_AD28  
P_AD27  
P_AD26  
P_AD25  
P_AD24  
P_AD23  
P_AD22  
P_AD21  
P_AD20  
P_AD19  
P_AD18  
P_AD17  
P_AD16  
P_AD15  
P_AD14  
P_AD13  
P_AD12  
P_AD11  
P_AD10  
P_AD9  
157  
159  
160  
162  
163  
164  
166  
167  
171  
173  
175  
176  
1
2
3
4
20  
21  
23  
24  
25  
Primaryaddress/data bus. These signals make up the multiplexed PCI address and data bus on theprimary  
interface. During the address phase of a primary bus PCI cycle, P_AD31–P_AD0 contain a 32-bit address  
or other destination information. During the data phase, P_AD31–P_AD0 contain data.  
I/O  
27  
29  
P_AD8  
31  
P_AD7  
34  
P_AD6  
35  
P_AD5  
37  
P_AD4  
38  
P_AD3  
39  
P_AD2  
41  
P_AD1  
43  
P_AD0  
44  
Primarybuscommandsandbyteenables. ThesesignalsaremultiplexedonthesamePCIterminals. During  
the address phase of a primary bus PCI cycle, P_C/BE3–P_C/BE0 define the bus command. During the  
data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full  
32-bit data bus carry meaningful data. P_C/BE0 applies to byte 0 (P_AD7–P_AD0), P_C/BE1 applies to  
byte 1 (P_AD15–P_AD8), P_C/BE2 applies to byte 2 (P_AD23–P_AD16), and P_C/BE3 applies to byte 3  
(P_AD31–P_AD24).  
168  
6
18  
32  
P_C/BE3  
P_C/BE2  
P_C/BE1  
P_C/BE0  
I/O  
I/O  
Primary PCI bus clock run. P_CLKRUN is used by the central resource to request permission to stop the  
PCI clock or to slow it down.  
P_CLKRUN  
148  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Terminal Functions (Continued)  
primary PCI interface control  
TERMINAL  
I/O  
TYPE  
FUNCTION  
NAME  
NO.  
Primary device select. The bridge asserts P_DEVSEL to claim a PCI cycle as the target device. As a PCI  
initiator on the primary bus, the bridge monitors P_DEVSEL until a target responds. If no target responds  
before time-out occurs, then the bridge terminates the cycle with an initiator abort.  
P_DEVSEL  
P_FRAME  
P_GNT  
10  
I/O  
I/O  
I
Primary cycle frame. P_FRAME is driven by the initiator of a primary bus cycle. P_FRAME is asserted to  
indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted. When  
P_FRAME is deasserted, the primary bus transaction is in the final data phase.  
7
Primary bus grant to bridge. P_GNT is driven by the primary PCI bus arbiter to grant the bridge access to the  
primary PCI bus after the current data transaction has completed. P_GNT may or may not follow a primary  
bus request, depending on the primary bus parking algorithm.  
154  
P_GPIO3  
P_GPIO2  
P_GPIO1  
P_GPIO0  
45  
46  
47  
48  
Primary bus general-purpose I/O terminals. These terminals are provided for general input/output use in  
system design.  
I/O  
I
Initialization device select. P_IDSEL selects the bridge during configuration space accesses. P_IDSEL can  
be connected to one of the upper 24 PCI address lines on the primary PCI bus.  
P_IDSEL  
170  
Note: There is no IDSEL signal interfacing the secondary PCI bus; thus, the entire configuration space of the  
bridge can only be accessed from the primary bus.  
Primary initiator ready. P_IRDY indicates the primary bus initiator’s ability to complete the current data phase  
of the transaction. A data phase is completed on a rising edge of P_CLK where both P_IRDY and P_TRDY  
are asserted. Until P_IRDY and P_TRDY are both sampled asserted, wait states are inserted.  
P_IRDY  
P_LOCK  
8
I/O  
I/O  
13  
Primary PCI bus lock. P_LOCK is used to lock the primary bus and gain exclusive access as an initiator.  
Primary parity. In all primary bus read and write cycles, the bridge calculates even parity across the P_AD  
and P_C/BE buses. As an initiator during PCI write cycles, the bridge outputs this parity indicator with a  
one-P_CLKdelay. As a target during PCI read cycles, the calculated parity is compared to the initiator’s parity  
indicator; a misdemeanor can result in a parity error assertion (P_PERR).  
P_PAR  
17  
I/O  
Primary parity error indicator. P_PERR is driven by a primary bus PCI device to indicate that calculated parity  
does not match P_PAR when P_PERR is enabled through bit 6 of the command register.  
15  
I/O  
O
P_PERR  
P_REQ  
Primary PCI bus request. P_REQ is asserted by the bridge to request access to the primary PCI bus as an  
initiator.  
155  
Primary system error. Output pulsed from the bridge when enabled through the command register indicating  
a system error has occurred. The bridge need not be the target of the primary PCI cycle to assert P_SERR.  
When bit 6 is enabled in the bridge control register, P_SERR will also pulse, indicating that a system error  
has occurred on one of the subordinate buses downstream from the bridge.  
P_SERR  
P_STOP  
16  
O
Primary cycle stop signal. P_STOP is driven by a PCI target to request the initiator to stop the current primary  
bus transaction. P_STOP is used for target disconnects and is commonly asserted by target devices that do  
not support burst data transfers.  
11  
147  
9
I/O  
I
If RST_MODE is asserted during P_RST, it causes S_RST to be asserted and the secondary clocks to be  
turned off.  
RST_MODE  
P_TRDY  
Primary target ready. P_TRDY indicates the primary bus target’s ability to complete the current data phase  
of the transaction. A data phase is completed on a rising edge of P_CLK where both P_IRDY and P_TRDY  
are asserted. Until both P_IRDY and P_TRDY are asserted, wait states are inserted.  
I/O  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Terminal Functions (Continued)  
secondary PCI system  
TERMINAL  
I/O  
TYPE  
FUNCTION  
NAME  
NO.  
145  
143  
142  
140  
138  
137  
S_PCLK5  
S_PCLK4  
S_PCLK3  
S_PCLK2  
S_PCLK1  
S_PCLK0  
Secondary PCI bus clock. Provides timing for all transactions on the secondary PCI bus. All secondary PCI  
signals are sampled at the rising edge of S_CLK5–S_CLK0.  
O
Secondary PCI bus clock run. S_CLKRUN is output by the bridge to indicate that S_CLK will be stopped.  
S_CLKRUN is driven by secondary bus PCI devices to request that S_CLK be stopped.  
127  
129  
I/O  
I
S_CLKRUN  
S_EXTARB  
Secondary external arbiter enable. When S_EXTARB is asserted, the secondary external arbiter is enabled.  
When the external arbiter is enabled, S_REQ0 is reconfigured as a secondary bus grant input to the bridge  
and S_GNT0 is reconfigured as a secondary bus master request to the external arbiter on the secondary bus.  
Secondary PCI reset. S_RST is a logical OR of P_RST and the state of the secondary bus reset bit of the  
bridge control register. S_RST is asynchronous with respect to the state of the secondary interface CLK  
signal.  
S_RST  
126  
O
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Terminal Functions (Continued)  
secondary PCI address and data  
TERMINAL  
I/O  
TYPE  
FUNCTION  
NAME  
NO.  
110  
109  
108  
106  
105  
104  
102  
101  
97  
96  
95  
94  
92  
91  
90  
88  
72  
71  
69  
68  
67  
S_AD31  
S_AD30  
S_AD29  
S_AD28  
S_AD27  
S_AD26  
S_AD25  
S_AD24  
S_AD23  
S_AD22  
S_AD21  
S_AD20  
S_AD19  
S_AD18  
S_AD17  
S_AD16  
S_AD15  
S_AD14  
S_AD13  
S_AD12  
S_AD11  
S_AD10  
S_AD9  
Secondary address/data bus. These signals make up the multiplexed PCI address and data bus on the  
secondary interface. During the address phase of a secondary bus PCI cycle, S_AD31–S_AD0 contain a  
32-bit address or other destination information. During the data phase, S_AD31–S_AD0 contain data.  
I/O  
65  
64  
62  
S_AD8  
60  
S_AD7  
58  
S_AD6  
57  
S_AD5  
55  
S_AD4  
54  
S_AD3  
52  
S_AD2  
51  
S_AD1  
50  
S_AD0  
Secondary bus commands and byte enables. These signals are multiplexed on the same PCI terminals.  
During the address phase of a secondary bus PCI cycle, S_C/BE3–S_C/BE0 define the bus command.  
During the data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths  
of the full 32-bit data bus carry meaningful data. S_C/BE0 applies to byte 0 (S_AD7–S_AD0), S_C/BE1  
applies to byte 1 (S_AD15–S_AD8), S_C/BE2 applies to byte 2 (S_AD23–S_AD16), and S_C/BE3 applies  
to byte 3 (S_AD31–S_AD24).  
S_C/BE3  
S_C/BE2  
S_C/BE1  
S_C/BE0  
99  
87  
73  
61  
I/O  
Secondary device select. The bridge asserts S_DEVSEL to claim a PCI cycle as the target device. As a PCI  
initiator on the secondary bus, the bridge monitors S_DEVSEL until a target responds. If no target responds  
before timeout occurs, then the bridge terminates the cycle with an initiator abort.  
S_DEVSEL  
S_FRAME  
81  
85  
I/O  
I/O  
Secondary cycle frame. S_FRAME is driven by the initiator of a secondary bus cycle. S_FRAME is asserted  
to indicate that a bus transaction is beginning and data transfers continue while S_FRAME is asserted. When  
S_FRAME is deasserted, the secondary bus transaction is in the final data phase.  
S_GNT5  
S_GNT4  
S_GNT3  
S_GNT2  
S_GNT1  
S_GNT0  
125  
124  
123  
122  
120  
119  
Secondarybus grant to thebridge. Thebridgeprovidesinternalarbitrationandthesesignalsareusedtogrant  
potential secondary PCI bus masters access to the bus. Seven potential initiators (including the bridge) can  
be located on the secondary PCI bus.  
O
When the internal arbiter is disabled, S_GNT0 is reconfigured as an external secondary bus request signal  
for the bridge.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
Terminal Functions (Continued)  
secondary PCI interface control  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
135  
134  
133  
132  
S_GPIO3  
S_GPIO2  
S_GPIO1  
S_GPIO0  
Secondary general-purpose I/O terminals. These terminals are provided for general-purpose input/output  
use in system design.  
I/O  
Secondaryinitiatorready. S_IRDYindicatesthesecondarybusinitiator’sabilitytocompletethecurrentdata  
phase of the transaction. A data phase is completed on a rising edge of S_CLK where both S_IRDY and  
S_TRDY are asserted; until S_IRDY and S_TRDY are asserted, wait states are inserted.  
S_IRDY  
S_LOCK  
83  
78  
I/O  
I/O  
Secondary lock S_LOCK is used to lock the secondary bus and gain exclusive access as an initiator.  
Secondary parity. In all secondary bus read and write cycles, the bridge calculates even parity across the  
S_AD and S_C/BE buses. As an initiator during PCI write cycles, the bridge outputs this parity indicator with  
a one-S_CLK delay. As a target during PCI read cycles, the calculated parity is compared to the initiator’s  
parity indicator. A miscompare can result in a parity error assertion (S_PERR).  
S_PAR  
74  
I/O  
I/O  
Secondary parity error indicator. S_PERR is driven by a secondary bus PCI device to indicate that  
calculated parity does not match S_PAR when enabled through the command register.  
76  
S_PERR  
S_REQ5  
S_REQ4  
S_REQ3  
S_REQ2  
S_REQ1  
S_REQ0  
118  
116  
115  
113  
112  
111  
Secondary PCI bus request signals. The bridge provides internal arbitration, and these signals are used as  
inputs from secondary PCI bus initiators requesting the bus. Seven potential initiators (including the bridge)  
can be located on the secondary PCI bus.  
I
When the internal arbiter is disabled, S_REQ0 is reconfigured as an external secondary bus grant for the  
bridge.  
Secondary system error. S_SERR is passed through the primary interface by the bridge if enabled through  
the bridge control register. S_SERR is never asserted by the bridge.  
75  
80  
I
S_SERR  
S_STOP  
Secondary cycle stop signal. S_STOP is driven by a PCI target to request the initiator to stop the current  
secondary bus transaction. S_STOP is used for target disconnects and is commonly asserted by target  
devices that do not support burst data transfers.  
I/O  
Secondary target ready. S_TRDY indicates the secondary bus target’s ability to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of S_CLK where both S_IRDY and  
S_TRDY are asserted; until S_IRDY and S_TRDY are asserted, wait states are inserted.  
S_TRDY  
82  
I/O  
Flush request. When S_FLSHREQ is asserted, it signals a request to the PCI2030 to suspend internal write  
posting. When the bridge is ready to suspend internal write posting, it responds by asserting S_FLSHACK.  
S_FLSHACK remains asserted until the write posting buffers are empty.  
S_FLSHREQ  
S_FLSHACK  
131  
130  
I
Flush acknowledge. S_FLSHACK is asserted by the PCI2030 to indicate that the internal write posting is  
suspended. S_FLSHACK remains asserted until the write posting buffers are empty.  
O
power supply  
TERMINAL  
FUNCTION  
NAME  
NO.  
5, 19, 22. 30, 33, 49, 53, 63, 77, 86, 93, 103,  
107, 121, 136, 146, 151, 161, 165, 169  
GND  
Device ground terminals  
12, 26, 36, 40, 56, 66, 70, 84, 89, 100, 114,  
128, 139, 144, 153, 158, 172  
V
CC  
Power-supply terminal for core logic (3.3 V)  
Primarybus-signalingenvironmentsupply. P_V  
on primary bus I/O signals.  
isusedinprotectioncircuitry  
CCP  
P_V  
14, 28, 42, 149, 156, 174  
59, 79, 98, 117, 141  
CCP  
CCP  
Secondary bus-signaling environment supply. S_V  
circuitry on primary bus I/O signals.  
is used in protection  
CCP  
S_V  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
absolute maximum ratings over operating temperature ranges (unless otherwise noted)  
Supply voltage range: V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
CC  
CCP  
Input voltage range, V : Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
+ 0.5 V  
+ 0.5 V  
I
CC  
CC  
Output voltage range, V : Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
O
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC  
Output clamp current, I  
Storage temperature range, T  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O O CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies to external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals.  
CC  
CC  
I
2. Applies to external output and bidirectional buffers. V > V  
O
does not apply to fail-safe terminals.  
recommended operating conditions  
MIN NOM  
MAX  
4
UNIT  
ns  
t
Input transition (rise and fall) time  
Operating ambient temperature range  
Virtual junction temperature  
CMOS compatible  
Commercial  
1
0
0
t
T
25  
25  
70  
°C  
A
T
Commercial  
115  
°C  
J
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
recommended operating conditions for PCI interface  
OPERATION  
3.3 V  
3.3 V  
5 V  
MIN NOM  
MAX  
3.6  
UNIT  
V
V
Core voltage  
Commercial  
Commercial  
3
3.3  
3.3  
5
V
CC  
3
4.75  
0
3.6  
PCI supply voltage  
V
V
V
V
V
CCP  
5.25  
3.3 V  
5 V  
V
CCP  
CCP  
CCP  
CCP  
V
I
Input voltage  
0
V
V
V
3.3 V  
5 V  
0
§
Output voltage  
V
V
V
O
0
3.3 V  
5 V  
0.5 V  
CCP  
2
CMOS compatible  
CMOS compatible  
High-level input voltage  
Low-level input voltage  
IH  
3.3 V  
5 V  
0.3 V  
CCP  
0.8  
IL  
§
Applies to external output buffers  
Applies to external input and bidirectional buffers without hysteresis  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
SIDE  
TEST CONDITIONS  
OPERATION  
3.3 V  
MIN  
MAX  
UNIT  
I
I
I
I
= –0.5 mA  
0.9 V  
OH  
CC  
2.4  
V
V
V
High-level output voltage  
OH  
= –2 mA  
= 1.5 mA  
= 6 mA  
5 V  
OH  
OL  
OL  
0.1 V  
3.3 V  
CC  
V
Low-level output voltage  
High-level input current  
OL  
0.55  
5 V  
3.6 V  
10  
20  
Input pins  
V = V  
I
CC  
5.25 V  
I
IH  
µA  
3.6 V  
20  
I/O pins  
V = V  
I
CC  
5.25 V  
25  
Input pins  
V = GND  
I
3.6 V to 5.25 V  
3.6 V to 5.25 V  
–1  
I
I
Low-level input current  
µA  
µA  
IL  
V = GND  
I
–20  
±20  
I/O pins  
High-impedance output current  
V
O
= V  
or GND  
CCP  
OZ  
For PCI pins, V  
CC  
= V  
.
CCP  
For I/O pins, the input leakage current includes the off-state output current I  
.
OZ  
PCI clock/reset timing requirements over recommended ranges of supply voltage and operating  
free-air temperature (see Figure 1, Figure 2, and Figure 3)  
ALTERNATE  
SYMBOL  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration, PCLK high  
Pulse duration, PCLK low  
Slew rate, PCLK  
t
high  
wH  
wL  
t
ns  
low  
t , t  
v/t  
4
V/ns  
ms  
s
r f  
t
t
Pulse duration, RSTIN  
t
1
w
rst  
Setup time, PCLK active at end of RSTIN (see Note 3)  
t
100  
su  
rst-clk  
NOTE 3: The setup and hold times for the secondary are identical to those for the primary; however, the times are relative to the secondary PCI  
close.  
PCI timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Note 4 and Figure 1 and Figure 4)  
ALTERNATE  
SYMBOL  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK to shared signal  
valid delay time  
t
11  
val  
inv  
t
Propagation delay time  
Enable time,  
C
= 50 pF, See Note 5  
L
ns  
pd  
PCLK to shared signal  
invalid delay time  
t
2
2
t
t
t
ns  
ns  
en  
on  
off  
high-impedance-to-active delay time from PCLK  
Disable time,  
t
28  
dis  
active-to-high-impedance delay time from PCLK  
t
t
Setup time before PCLK valid  
Hold time after PCLK high  
t
, See Note 6  
7
0
ns  
ns  
su  
su  
t , See Note 6  
h
h
NOTES: 4. This data sheet uses the following conventions to describe time (t) intervals. The format is: t , where subscript A indicates the type  
A
ofdynamicparameterbeingrepresented. Oneofthefollowingisused:t =propagationdelaytime, t = delay time, t = setup time,  
pd su  
d
and t = hold time.  
h
5. PCI shared signals are AD31–AD0, C/BE3–C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
6. The setup and hold times for the secondary are identical to those for the primary; however, the times are relative to the secondary  
PCI close.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
PARAMETER MEASUREMENT INFORMATION  
LOAD CIRCUIT PARAMETERS  
I
OL  
TIMING  
PARAMETER  
C
I
I
V
LOAD  
(pF)  
OL  
OH  
LOAD  
(V)  
(mA)  
(mA)  
t
0
3
PZH  
Test  
Point  
t
50  
8
–8  
en  
t
t
t
PZL  
PHZ  
PLZ  
From Output  
Under Test  
V
LOAD  
t
t
50  
50  
8
8
–8  
–8  
1.5  
dis  
pd  
C
LOAD  
C
V
includes the typical load-circuit distributed capacitance.  
LOAD  
LOAD  
I
OH  
– V  
OL  
= 50 , where V  
= 0.6 V, I  
= 8 mA  
OL  
OL  
I
OL  
LOAD CIRCUIT  
V
Timing  
Input  
(see Note A)  
CC  
V
CC  
50% V  
High-Level  
Input  
CC  
50% V  
50% V  
CC  
CC  
0 V  
0 V  
t
t
h
su  
t
w
Data  
Input  
V
CC  
90% V  
CC  
V
CC  
50% V  
50% V  
10% V  
CC  
CC  
CC  
t
Low-Level  
Input  
0 V  
50% V  
50% V  
CC  
CC  
0 V  
t
f
r
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATION  
INPUT RISE AND FALL TIMES  
V
CC  
Output  
Control  
(low-level  
enabling)  
50% V  
50% V  
CC  
CC  
V
0 V  
CC  
Input  
(see Note A)  
t
50% V  
50% V  
CC  
PZL  
CC  
t
PLZ  
0 V  
t
pd  
V
t
CC  
pd  
50% V  
V
Waveform 1  
(see Note B)  
CC  
CC  
OH  
50% V  
CC  
In-Phase  
Output  
V
+ 0.3 V  
OL  
50% V  
50% V  
CC  
CC  
V
OL  
V
OL  
t
PHZ  
t
pd  
t
PZH  
t
pd  
V
OH  
V
OH  
V
– 0.3 V  
OH  
Out-of-Phase  
Output  
Waveform 2  
(see Note B)  
50% V  
CC  
50% V  
50% V  
CC  
CC  
50% V  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the  
following characteristics: PRR = 1 MHz, Z = 50 , t 6 ns, t 6 ns.  
O
r
f
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.  
C. For t  
and t  
, V  
PHZ OL  
and V  
are measured values.  
OH  
PLZ  
Figure 1. Load Circuit and Voltage Waveforms  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
PCI BUS PARAMETER MEASUREMENT INFORMATION  
t
wH  
t
wL  
2 V  
2 V MIN Peak to Peak  
0.8 V  
t
t
f
r
t
c
Figure 2. PCLK Timing Waveform  
PCLK  
t
w
RSTIN  
t
su  
Figure 3. RSTIN Timing Waveforms  
PCLK  
1.5 V  
t
t
pd  
1.5 V  
pd  
t
Valid  
PCI Output  
PCI Input  
t
on  
off  
Valid  
t
su  
t
h
Figure 4. Shared-Signals Timing Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PCI2030  
PCI-TO-PCI BRIDGE  
XCPS012 – DECEMBER 1997  
MECHANICAL DATA  
PGF (S-PQFP-G176)  
PLASTIC QUAD FLATPACK  
132  
89  
133  
88  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
176  
45  
1
44  
Gage Plane  
21,50 SQ  
24,20  
SQ  
23,80  
26,20  
25,80  
0,25  
0,05 MIN  
0°7°  
SQ  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040134/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

PCI2031

PCI-TO-PCI BRIDGE
TI

PCI2031PGF

暂无描述
TI

PCI2040

PCI2040 PCI-DSP Bridge controller
TI

PCI2040GGU

PCI Bus Interface/Controller
TI

PCI2040PGE

PCI Bus Interface/Controller
TI

PCI2050

PCI-TO-PCI BRIDGE
TI

PCI2050A

Two 32-Bit, 66-MHz PCI Buses
TI

PCI2050APDV

32-Bit, 66MHz, 9-Master PCI-to-PCI Bridge 208-LQFP
TI

PCI2050APDVG4

IC,BUS CONTROLLER,CMOS,QFP,208PIN
TI

PCI2050B

PCI-TO-PCI BRIDGE
TI

PCI2050BGHK

PCI-TO-PCI BRIDGE
TI

PCI2050BIGHK

PCI-TO-PCI BRIDGE
TI