PCI4410GHK [TI]

PC Card and OHCI Controller; PC卡和OHCI控制器
PCI4410GHK
型号: PCI4410GHK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PC Card and OHCI Controller
PC卡和OHCI控制器

驱动器 总线控制器 微控制器和处理器 外围集成电路 数据传输 PC 时钟
文件: 总201页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCI4410 GHK/PDV  
PC Card and OHCI Controller  
Data Manual  
2000  
PCIBus Solutions  
Printed in U.S.A., 01/00  
SCPS052  
PCI4410 GHK/PDV  
Data Manual  
PC Card and OHCI Controller  
Literature Number: SCPS052  
January 2000  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products  
or to discontinue any product or service without notice, and advise customers to obtain the latest  
version of relevant information to verify, before placing orders, that information being relied on  
is current and complete. All products are sold subject to the terms and conditions of sale supplied  
at the time of order acknowledgement, including those pertaining to warranty, patent  
infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the  
time of sale in accordance with TI’s standard warranty. Testing and other quality control  
techniquesareutilizedtotheextentTIdeemsnecessarytosupportthiswarranty. Specifictesting  
of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE  
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR  
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR  
PRODUCTS ARENOTDESIGNED, AUTHORIZED, ORWARRANTED TOBESUITABLEFOR  
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY  
AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards must be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not  
warrantorrepresentthatanylicense, eitherexpressorimplied, isgrantedunderanypatentright,  
copyright, mask work right, or other intellectual property right of TI covering or relating to any  
combination, machine, or process in which such semiconductor products or services might be  
or are used. TI’s publication of information regarding any third party’s products or services does  
not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 3–2  
3.4.1  
3.4.2  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Loading Subsystem Identification . . . . . . . . . . . . . . . . . . . . . 3–3  
3.5  
PC Card Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
3.5.10  
3.5.11  
3.5.12  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 3–3  
P C Power-Switch Interface (TPS2211) . . . . . . . . . . . . . . . 3–4  
2
Zoomed Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Ultra Zoomed Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
D3_STAT Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
Integrated Pullup Resistors for PC Card Interface . . . . . . . 3–6  
SPKROUT and CAUDPWM Usage . . . . . . . . . . . . . . . . . . . 3–7  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
PC Card-16 Distributed DMA Support . . . . . . . . . . . . . . . . . 3–8  
PC Card-16 PC/PCI DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3.6  
3.7  
Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
Serial Bus Interface Implementation . . . . . . . . . . . . . . . . . . . 3–11  
Serial Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
Serial Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 3–13  
Accessing Serial Bus Devices Through Software . . . . . . . . 3–15  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
PC Card Functional and Card Status Change Interrupts . 3–16  
Interrupt Masks and Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
Using Parallel IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3–18  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3–18  
Using Serialized IRQSER Interrupts . . . . . . . . . . . . . . . . . . . 3–18  
iii  
3.7.6  
SMI Support in the PCI4410 . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
3.8  
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
3.8.7  
3.8.8  
3.8.9  
3.8.10  
Clock Run Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 3–19  
16-Bit PC Card Power Management . . . . . . . . . . . . . . . . . . . 3–20  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
Requirements for Suspend Mode . . . . . . . . . . . . . . . . . . . . . 3–21  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21  
PCI Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–22  
CardBus Bridge Power Management . . . . . . . . . . . . . . . . . . 3–23  
ACPI Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–23  
Master List of PME Context Bits and Global Reset Only  
Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–24  
4
PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . 4–1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
PCI Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.10 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.11 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.12 CardBus Socket/ExCA Base-Address Register . . . . . . . . . . . . . . . . . . 4–7  
4.13 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4.14 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4.15 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.16 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.17 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.18 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.19 Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.20 Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.21 I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.22 I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.23 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.24 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.25 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.26 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.27 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.28 PC Card 16-Bit I/F Legacy-Mode Base-Address Register . . . . . . . . . 4–15  
4.29 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16  
4.30 General Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
iv  
4.31 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
4.32 Multifunction Routing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4.33 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4.34 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.35 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.36 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4.37 Socket DMA Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4.38 Socket DMA Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.39 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.40 Next-Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.41 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.42 Power Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 4–29  
4.43 Power Management Control/Status Register Bridge Support  
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4.44 Power Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4.45 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4.46 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.47 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33  
4.48 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  
ExCA Compatibility Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . 5–4  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
ExCA Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . 5–7  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8  
ExCA Card Status-Change-Interrupt Configuration Register . . . . . . . 5–9  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 5–10  
ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–11  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers . . . . 5–12  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers . . . . 5–12  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers . . . . . 5–13  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers . . . . 5–13  
5.13 ExCA Memory Windows 0–4 Start-Address Low-Byte Registers . . . 5–14  
5.14 ExCA Memory Windows 0–4 Start-Address High-Byte Registers . . . 5–15  
5.15 ExCA Memory Windows 0–4 End-Address Low-Byte Registers . . . . 5–16  
5.16 ExCA Memory Windows 0–4 End-Address High-Byte Registers . . . 5–17  
5.17 ExCA Memory Windows 0–4 Offset-Address Low-Byte Registers . . 5–18  
5.18 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers . 5–19  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers . . . 5–20  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers . . . 5–20  
5.21 ExCA Card Detect and General Control Register . . . . . . . . . . . . . . . . 5–21  
5.22 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–22  
5.23 ExCA Memory Windows 0–4 Page Register . . . . . . . . . . . . . . . . . . . . 5–22  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
6
v
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3  
Socket Present State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7  
Socket Power Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8  
7
Distributed DMA (DDMA) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
DDMA Current Address/Base-Address Register . . . . . . . . . . . . . . . . . 7–1  
DDMA Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2  
DDMA Current Count/Base Count Register . . . . . . . . . . . . . . . . . . . . . 7–2  
DDMA Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DDMA Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DDMA Request Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DDMA Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DDMA Master Clear Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
DDMA Multichannel/Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
8
OHCI-Lynx Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2  
PCI Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3  
PCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . 8–5  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
Open HCI Registers Base Address Register . . . . . . . . . . . . . . . . . . . . 8–6  
8.10 TI Extension Base-Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7  
8.11 PCI Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8  
8.12 PCI Power Management Capabilities Pointer Register . . . . . . . . . . . . 8–8  
8.13 Interrupt Line and Interrupt Pin Registers . . . . . . . . . . . . . . . . . . . . . . . 8–9  
8.14 MIN_GNT and MAX_LAT Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9  
8.15 PCI OHCI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10  
8.16 Capability ID and Next Item Pointer Registers . . . . . . . . . . . . . . . . . . . 8–10  
8.17 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 8–11  
8.18 Power Management Control and Status Register . . . . . . . . . . . . . . . . 8–12  
8.19 Power Management Extension Register . . . . . . . . . . . . . . . . . . . . . . . . 8–13  
8.20 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . 8–14  
8.21 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15  
8.22 Subsystem Access Identification Register . . . . . . . . . . . . . . . . . . . . . . 8–16  
8.23 GPIO Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17  
Open HCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1  
9
9.1  
9.2  
9.3  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . 9–6  
vi  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
CSR Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–7  
CSR Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–7  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9  
Bus Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10  
9.10 GUID High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11  
9.11 GUID Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11  
9.12 Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
9.13 Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
9.14 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13  
9.15 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13  
9.16 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14  
9.17 Self ID Buffer Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15  
9.18 Self ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15  
9.19 ISO Receive Channel Mask High Register . . . . . . . . . . . . . . . . . . . . . . 9–16  
9.20 ISO Receive Channel Mask Low Register . . . . . . . . . . . . . . . . . . . . . . 9–17  
9.21 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–18  
9.22 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19  
9.23 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . 9–20  
9.24 Isochronous Transmit Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 9–21  
9.25 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . 9–21  
9.26 Isochronous Receive Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 9–22  
9.27 Fairness Control Register (Optional Register) . . . . . . . . . . . . . . . . . . . 9–22  
9.28 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23  
9.29 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–24  
9.30 PHY Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25  
9.31 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–26  
9.32 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . 9–27  
9.33 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . 9–29  
9.34 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . 9–30  
9.35 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 9–32  
9.36 Physical Upper Bound Register (Optional Register) . . . . . . . . . . . . . . 9–32  
9.37 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . 9–33  
9.38 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . 9–34  
9.39 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . 9–35  
9.40 Isochronous Transmit Context Command Pointer Register . . . . . . . . 9–36  
9.41 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . 9–37  
9.42 Isochronous Receive Context Command Pointer Register . . . . . . . . 9–38  
9.43 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . 9–39  
10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1  
10.1 Absolute Maximum Ratings Over Operating Temperature Ranges . 10–1  
10.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2  
10.3 Electrical Characteristics Over Recommended Operating Conditions  
(unless otherwise noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3  
vii  
10.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges  
of Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . 10–4  
10.5 PCI Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . 10–4  
11 Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1  
viii  
List of Illustrations  
Figure  
2–1  
2–2  
2–3  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
Title  
Page  
PCI-to-CardBus Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
PCI-to-PC Card (16-Bit) Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
MicroStar BGA Ball Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
PCI4410 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
TPS2211 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
TPS2211 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Zoomed Video Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Sample Application of SPKROUT and CAUDPWM . . . . . . . . . . . . . . . . . . 3–7  
Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
Serial EEPROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
Serial Bus Start/Stop Conditions and Bit Transfers . . . . . . . . . . . . . . . . . . 3–12  
3–10 Serial Bus Protocol Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12  
3–11 Serial Bus Protocol – Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
3–12 Serial Bus Protocol – Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
3–13 EEPROM Interface Doubleword Data Collection . . . . . . . . . . . . . . . . . . . . 3–13  
3–14 EEPROM Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15  
3–15 IRQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18  
3–16 Suspend Functional Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
3–17 Signal Diagram of Suspend Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21  
3–18 RI_OUT Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–22  
5–1  
5–2  
6–1  
ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . 6–1  
ix  
List of Tables  
Table  
Title  
Page  
2–4  
2–1  
2–2  
2–3  
CardBus And 16-Bit PC Card Signal Names by PDV Terminal Number  
CardBus And 16-Bit PC Card Signal Names by GHK Terminal Number 2–6  
CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
2–4  
16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10  
2–5  
2–6  
2–7  
2–8  
2–9  
Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
PC Card Power Switch Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13  
PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2–10 Multifunction and Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2–11 16-Bit PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . 2–16  
2–12 16-Bit PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2–17  
2–13 CardBus PC Card Interface System Terminals . . . . . . . . . . . . . . . . . . . . . . 2–18  
2–14 CardBus PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . 2–19  
2–15 CardBus PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . 2–20  
2–16 IEEE1394 PHY/Link Interface Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21  
2–17 Zoomed Video Interface Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
PC Card Card-Detect and Voltage-Sense Connections . . . . . . . . . . . . . . 3–4  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
PC/PCI Channel Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
I/O Addresses Used for PC/PCI DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
Registers and Bits Loadable Through Serial EEPROM . . . . . . . . . . . . . . . 3–14  
Interrupt Mask and Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
SMI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
3–10 Power Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–23  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . . . 4–1  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
General Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
Multifunction Routing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
x
4–10 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4–11 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4–12 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–13 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4–14 Socket DMA Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–15 Socket DMA Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–16 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–17 Power Management Control/Status Register . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–18 Power Management Control/Status Register Bridge Support Extensions 4–30  
4–19 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4–20 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4–21 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33  
4–22 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  
5–1  
5–2  
5–3  
5–4  
5–5  
5–6  
5–7  
5–8  
5–9  
ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
ExCA Power Control Register 82365SL Support . . . . . . . . . . . . . . . . . . . . 5–6  
ExCA Power Control Register 82365SL-DF Support . . . . . . . . . . . . . . . . . 5–6  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . . . . . 5–7  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8  
ExCA Card Status-Change-Interrupt Configuration Register . . . . . . . . . . 5–9  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10  
5–10 ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–11  
5–11 ExCA Memory Windows 0–4 Start-Address High-Byte Registers . . . . . . 5–15  
5–12 ExCA Memory Windows 0–4 End-Address High-Byte Registers . . . . . . . 5–17  
5–13 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers . . . . . 5–19  
5–14 ExCA I/O Card Detect and General Control Register . . . . . . . . . . . . . . . . 5–21  
5–15 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–22  
6–1  
6–2  
6–3  
6–4  
6–5  
6–6  
6–7  
7–1  
7–2  
7–3  
7–4  
7–5  
8–1  
8–2  
8–3  
8–4  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3  
Socket Present State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7  
Socket Power Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
DDMA Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DDMA Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DDMA Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DDMA Multichannel/Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
PCI Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
PCI Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3  
PCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4  
xi  
8–5  
8–6  
8–7  
8–8  
8–9  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . . . . 8–5  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
Open HCI Registers Base-Address Register . . . . . . . . . . . . . . . . . . . . . . . 8–6  
TI Extension Base-Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7  
8–10 PCI Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8  
8–11 Interrupt Line and Interrupt Pin Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9  
8–12 MIN_GNT and MAX_LAT Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9  
8–13 Capability ID and Next Item Pointer Registers . . . . . . . . . . . . . . . . . . . . . . 8–10  
8–14 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8–11  
8–15 Power Management Control and Status Register . . . . . . . . . . . . . . . . . . . 8–12  
8–16 Power Management Extension Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–13  
8–17 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . 8–14  
8–18 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15  
8–19 Subsystem Access Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16  
8–20 GPIO Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17  
9–1  
9–2  
9–3  
9–4  
9–5  
9–6  
9–7  
9–8  
9–9  
Open HCI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–6  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10  
Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
9–10 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13  
9–11 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14  
9–12 Self ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15  
9–13 ISO Receive Channel Mask High Register . . . . . . . . . . . . . . . . . . . . . . . . . 9–16  
9–14 ISO Receive Channel Mask Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17  
9–15 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–18  
9–16 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19  
9–17 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . 9–20  
9–18 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . 9–21  
9–19 Fairness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22  
9–20 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23  
9–21 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–24  
9–22 PHY Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25  
9–23 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–26  
9–24 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . 9–27  
9–25 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . 9–29  
9–26 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–30  
9–27 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–32  
9–28 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–33  
xii  
9–29 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . . . . . 9–34  
9–30 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . . . . 9–35  
9–31 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . . . . 9–37  
9–32 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . . . . 9–39  
xiii  
xiv  
1 Introduction  
The Texas Instruments PCI4410 is an integrated single-socket PC Card controller and IEEE 1394 Open HCI host  
controller. This high-performance integrated solution provides the latest in both PC Card and IEEE 1394 technology.  
1.1 Description  
The PCI4410 is a dual-function PCI device compliant with PCI Local Bus Specification 2.2. Function 0 provides the  
independent PC Card socket controller compliant with the 1997 PC Card Standard. The PCI4410 provides features  
that make it the best choice for bridging between the PCI bus and PC Cards, and supports either 16-bit or CardBus  
PC Cards in the socket, powered at 5 V or 3.3 V, as required.  
All card signals are internally buffered to allow hot insertion and removal without external buffering. The PCI4410 is  
register compatible with the Intel 82365SL–DF and 82365SL ExCA controllers. The PCI4410 internal data path  
logic allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance.  
Independent bufferingandapipelinearchitectureprovideanunsurpassedperformancelevelwithsustainedbursting.  
The PCI4410 can be programmed to accept posted writes to improve bus utilization.  
Function 1 of the PCI4410 is compatible with IEEE1394A and the latest 1394 open host controller interface (OHCI)  
specifications. The chip provides the IEEE1394 link function and is compatible with data rates of 100, 200, and 400  
Mbits per second. Deep FIFOs are provided to buffer 1394 data and accommodate large host bus latencies. The  
PCI4410providesphysicalwritepostingandahighlytunedphysicaldatapathforSBP-2performance. Multiplecache  
line burst transfers, advanced internal arbitration, and bus holding buffers on the PHY/Link interface are other  
features that make the PCI4410 the best-in-class 1394 Open HCI solution.  
The PCI4410 provides an internally buffered zoomed video (ZV) path. This reduces the design effort of PC board  
manufacturers to add a ZV-compatible solution and ensures compliance with the CardBus loading specifications.  
Various implementation-specific functions and general-purpose inputs and outputs are provided through eight  
multifunction terminals. These terminals present a system with options in PC/PCI DMA, PCI LOCK and parallel  
interrupts, PC Card activity indicator LEDs, and other platform-specific signals. ACPI-compliant general-purpose  
events may be programmed and controlled through the multifunction terminals, and an ACPI-compliant programming  
interface is included for the general-purpose inputs and outputs.  
The PCI4410 is compliant with the latest PCI Bus Power Management Specification, and provides several low-power  
modes which enable the host power system to further reduce power consumption. The PC Card (CardBus) Controller  
and IEEE 1394 Host Controller Device Class Specifications required for Microsoft OnNowt power management are  
supported. Furthermore, an advanced complementary metal-oxide semiconductor (CMOS) process achieves low  
system power consumption.  
Unused PCI4410 inputs must be pulled to a valid logic level using a 43-kresistor.  
1.2 Features  
The PCI4410 supports the following features:  
Ability to wake from D3  
and D3  
hot cold  
Fully compatible with the Intel 430TX (Mobile Triton II) chipset  
A 208-pin low-profile QFP (PDV) or 209-ball MICROSTAR BGA ball grid array (GHK) package  
Intel is a trademark of Intel Corporation.  
Microsoft OnNow is a trademark of Microsoft Corporation.  
MicroStar BGA is a trademark of Texas Instruments Incorporated  
1–1  
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
Mix-and-match 5-V/3.3-V 16-bit PC Cards and 3.3-V CardBus Cards  
Single PC Card or CardBus slot with hot insertion and removal  
Burst transfers to maximize data throughput on the PCI bus and the CardBus bus  
Parallel PCI interrupts, parallel ISA IRQ and parallel PCI interrupts, serial ISA IRQ with parallel PCI  
interrupts, and serial ISA IRQ and PCI interrupts  
Serial EEPROM interface for loading subsystem ID and subsystem vendor ID  
Pipelined architecture allows greater than 130M bps sustained throughput from CardBus-to-PCI and from  
PCI-to-CardBus  
Interface to parallel single-slot PC Card power interface switches like the TI TPS2211  
Up to five general-purpose I/Os  
Programmable output select for CLKRUN  
Five PCI memory windows and two I/O windows available to the 16-bit PC Card socket  
Two I/O windows and two memory windows available to the CardBus socket  
Exchangeable Card Architecture (ExCA) compatible registers are mapped in memory and I/O space  
Intel 82365SL-DF and 82365SL register compatible  
Distributed DMA (DDMA) and PC/PCI DMA  
16-Bit DMA on the PC Card socket  
Ring indicate, SUSPEND, PCI CLKRUN, and CardBus CLKRUN  
Socket activity LED pins  
PCI bus lock (LOCK)  
Advanced submicron, low-power CMOS technology  
Internal ring oscillator  
OHCI link function designed to IEEE 1394 Open Host Controller Interface (OHCI) Specification  
Implements PCI burst transfers and deep FIFOs to tolerate large host latency  
Supports physical write posting of up to 3 outstanding transactions  
OHCI link function is IEEE 1394-1995 compliant and compatible with Proposal 1394a  
Supports serial bus data rates of 100, 200, and 400 Mbits/second  
Provides bus-hold buffers on the PHY-Link I/F for low-cost single-capacitor isolation  
TI is a trademark of Texas Instruments Incorporated  
1–2  
1.3 Related Documents  
Advanced Configuration and Power Interface (ACPI) Specification (Revision 2.0)  
PCI Bus Power Management Interface Specification (Revision 1.1)  
PCI Bus Power Management Interface Specification for PCI to CardBus Bridges (Revision 1.)  
PCI Local Bus Specification (Revision 2.2)  
PCI Mobile Design Guide (Revision 1.0)  
PCI14xx Implemenation Guide for D3 Wake-Up  
1997 PC Card Standard  
PC 98/99  
Serialized IRQ Support for PCI Systems (Revision 6)  
1.4 Ordering Information  
ORDERING NUMBER  
NAME  
PC Card controller  
VOLTAGE  
PACKAGE  
208-pin LQFP  
209-ball PBGA  
PCI4410  
3.3-V, 5-V tolerant I/Os  
1–3  
1–4  
2 Terminal Descriptions  
The PCI4410 is packaged in either a 209-ball GHK MICROSTAR BGA or a 208-terminal PDV package. The PCI4410  
is a single-socket CardBus bridge with integrated OHCI link. Figure 2–1 is a terminal diagram of the PDV package  
with PCI-to-CardBus signal names. Figure 2–2 is a terminal diagram of the PDV package with PCI-to-PC Card signal  
names. Figure 2–3 is a terminal diagram of the GHK package.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
ZV_Y(6)  
ZV_Y(5)  
ZV_Y(4)  
ZV_Y(3)  
GND  
ZV_Y(2)  
ZV_Y(1)  
ZV_Y(0)  
ZV_VSYNC  
ZV_HREF  
RSVD  
INTB  
INTA  
VCC  
LED_SKT  
RSVD  
VPPD1  
VPPD0  
SUSPEND  
MFUNC6  
MFUNC5  
MFUNC4  
GRST  
MFUNC3  
MFUNC2  
VCCI  
SPKROUT  
MFUNC1  
MFUNC0  
RI_OUT/PME  
GND  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
VCC  
AD7  
C/BE0  
AD8  
AD9  
AD10  
VCCP  
AD11  
GND  
CTRDY  
CIRDY  
CFRAME  
CC/BE2  
CAD17  
GND  
CAD18  
CAD19  
CVS2  
CAD20  
CRST  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
CAD21  
CAD22  
VCC  
CREQ  
CAD23  
CC/BE3  
VCCCB  
CAD24  
CAD25  
CAD26  
GND  
CVS1  
CINT  
CSERR  
CAUDIO  
CSTSCHG  
CCLKRUN  
CCD2  
VCC  
CAD27  
CAD28  
CAD29  
CAD30  
CRSVD  
CAD31  
LPS  
PHY_LREQ  
VCC  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_DATA0  
VCCL  
PHY_DATA1  
GND  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
AD12  
AD13  
AD14  
AD15  
C/BE1  
Figure 2–1. PCI-to-CardBus Terminal Diagram  
2–1  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
ZV_Y(6)  
ZV_Y(5)  
ZV_Y(4)  
ZV_Y(3)  
GND  
ZV_Y(2)  
ZV_Y(1)  
ZV_Y(0)  
ZV_VSYNC  
ZV_HREF  
RSVD  
INTB  
INTA  
VCC  
LED_SKT  
RSVD  
VPPD1  
VPPD0  
SUSPEND  
MFUNC6  
MFUNC5  
MFUNC4  
GRST  
MFUNC3  
MFUNC2  
VCCI  
SPKROUT  
MFUNC1  
MFUNC0  
RI_OUT/PME  
GND  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
VCC  
AD7  
C/BE0  
AD8  
AD9  
AD10  
VCCP  
AD11  
GND  
ADDR22  
ADDR15  
ADDR23  
ADDR12  
ADDR24  
GND  
ADDR7  
ADDR25  
VS2  
ADDR6  
RESET  
ADDR5  
ADDR4  
VCC  
INPACK  
ADDR3  
REG  
VCCCB  
ADDR2  
ADDR1  
ADDR0  
GND  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
VS1  
READY(IREQ)  
WAIT  
BVD2(SPKR)  
BVD1(STSCHG/RI)  
WP(IOIS16)  
CD2  
VCC  
DATA0  
DATA8  
DATA1  
DATA9  
DATA2  
DATA10  
LPS  
PHY_LREQ  
VCC  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_DATA0  
VCCL  
PHY_DATA1  
GND  
AD12  
AD13  
AD14  
AD15  
C/BE1  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
Figure 2–2. PCI-to-PC Card (16-Bit) Terminal Diagram  
2–2  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
Figure 2–3. MICROSTAR BGA Ball Diagram  
Table 2–1 shows the terminal assignments for the 208-terminal PDV CardBus and 16-bit PC Card signal names.  
Table 2–2 shows the terminal assignments for the 209-ball GHK CardBus and 16-bit PC Card signal names.  
Table 2–3 shows the CardBus PC Card signal names sorted alphabetically to the GHK/PDV terminal numbers.  
Table 2–4 shows the 16-bit PC Card signal names sorted alphabetically to the GHK/PDV terminal numbers.  
2–3  
Table 2–1. CardBus and 16-Bit PC Card Signal Names by PDV Terminal Number  
TERM.  
NO.  
SIGNAL NAME  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
CARDBUS  
16-BIT  
PHY_DATA7  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
GND  
1
PHY_DATA7  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
GND  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
FRAME  
IRDY  
FRAME  
IRDY  
87  
88  
VPPD0  
VPPD1  
RSVD  
VPPD0  
VPPD1  
RSVD  
2
3
V
V
CC  
89  
CC  
4
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
90  
LED_SKT  
LED_SKT  
5
91  
V
V
CC  
CC  
6
92  
INTA  
INTA  
7
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
93  
INTB  
INTB  
8
94  
RSVD  
RSVD  
9
95  
ZV_HREF  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
GND  
ZV_HREF  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
C/BE1  
AD15  
AD14  
AD13  
AD12  
GND  
C/BE1  
AD15  
AD14  
AD13  
AD12  
GND  
96  
97  
98  
99  
V
V
CC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
CC  
PHY_RSVD  
PHY_RSVD  
REQ  
PHY_RSVD  
PHY_RSVD  
REQ  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
ZV_UV(0)  
ZV_UV(2)  
ZV_UV(1)  
ZV_UV(4)  
GND  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
ZV_UV(0)  
ZV_UV(2)  
ZV_UV(1)  
ZV_UV(4)  
GND  
AD11  
AD11  
V
V
CCP  
CCP  
GNT  
GNT  
AD10  
AD9  
AD10  
AD9  
AD31  
AD31  
AD30  
AD30  
AD8  
AD8  
AD29  
AD29  
C/BE0  
AD7  
C/BE0  
AD7  
GND  
GND  
AD28  
AD28  
V
V
CC  
CC  
AD27  
AD27  
AD6  
AD6  
AD26  
AD26  
AD5  
AD5  
ZV_UV(3)  
ZV_UV(6)  
ZV_UV(5)  
ZV_SCLK  
ZV_UV(3)  
ZV_UV(6)  
ZV_UV(5)  
ZV_SCLK  
AD25  
AD25  
AD4  
AD4  
AD24  
AD24  
AD3  
AD3  
C/BE3  
IDSEL  
C/BE3  
IDSEL  
AD2  
AD2  
AD1  
AD1  
V
V
CC  
CC  
V
CC  
V
CC  
AD0  
AD0  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
ZV_SDATA  
ZV_PCLK  
VCCD0  
VCCD1  
CCD1  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
ZV_SDATA  
ZV_PCLK  
VCCD0  
VCCD1  
CD1  
AD23  
AD22  
AD21  
AD23  
AD22  
AD21  
GND  
GND  
RI_OUT/PME  
MFUNC0  
MFUNC1  
SPKROUT  
RI_OUT/PME  
MFUNC0  
MFUNC1  
SPKROUT  
V
CCP  
V
CCP  
AD20  
PRST  
PCLK  
GND  
AD20  
PRST  
PCLK  
GND  
V
V
CCI  
CCI  
MFUNC2  
MFUNC3  
GRST  
MFUNC2  
MFUNC3  
GRST  
CAD0  
DATA3  
AD19  
AD18  
AD17  
AD16  
C/BE2  
AD19  
AD18  
AD17  
AD16  
C/BE2  
CAD2  
DATA11  
GND  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
GND  
CAD1  
DATA4  
CAD4  
DATA12  
DATA5  
CAD3  
2–4  
Table 2–1. CardBus and 16-Bit PC Card Signal Names by PDV Terminal Number (Continued)  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS  
16-BIT  
WP(IOIS16)  
CD2  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
CAD6  
CAD5  
CRSVD  
CAD7  
DATA13  
DATA6  
DATA14  
DATA7  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
CTRDY  
CIRDY  
CFRAME  
CC/BE2  
CAD17  
GND  
ADDR22  
ADDR15  
ADDR23  
ADDR12  
ADDR24  
GND  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
CCLKRUN  
CCD2  
V
V
CC  
CC  
CAD27  
CAD28  
CAD29  
CAD30  
CRSVD  
CAD31  
LPS  
DATA0  
DATA8  
DATA1  
DATA9  
DATA2  
DATA10  
LPS  
V
V
CC  
CC  
CAD8  
DATA15  
CE1  
CC/BE0  
CAD9  
CAD18  
CAD19  
CVS2  
ADDR7  
ADDR25  
VS2  
ADDR10  
V
V
CCCB  
CCCB  
CAD10  
CAD11  
CAD13  
GND  
CE2  
CAD20  
CRST  
ADDR6  
RESET  
ADDR5  
ADDR4  
OE  
PHY_LREQ  
PHY_LREQ  
IORD  
CAD21  
CAD22  
V
CC  
V
CC  
GND  
PHY_CLK  
PHY_CLK  
CAD12  
CAD15  
CAD14  
CAD16  
CC/BE1  
CRSVD  
CPAR  
ADDR11  
IOWR  
V
V
CC  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
CC  
CREQ  
INPACK  
ADDR3  
REG  
ADDR9  
ADDR17  
ADDR8  
ADDR18  
ADDR13  
CAD23  
CC/BE3  
PHY_DATA0  
PHY_DATA0  
V
V
V
CCL  
V
CCL  
CCCB  
CCCB  
CAD24  
CAD25  
CAD26  
GND  
ADDR2  
ADDR1  
ADDR0  
GND  
PHY_DATA1  
GND  
PHY_DATA1  
GND  
V
V
CC  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
CC  
CBLOCK  
CPERR  
CSTOP  
CGNT  
ADDR19  
ADDR14  
ADDR20  
WE  
CVS1  
VS1  
CINT  
READY(IREQ)  
WAIT  
CSERR  
CAUDIO  
CSTSCHG  
CDEVSEL  
CCLK  
ADDR21  
ADDR16  
BVD2(SPKR)  
BVD1  
(STSCHG/RI)  
2–5  
Table 2–2. CardBus and 16-Bit PC Card Signal Names by GHK Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CARDBUS  
16-BIT  
PHY_DATA6  
GND  
CARDBUS  
16-BIT  
PHY_LREQ  
DATA1  
A4  
A5  
A6  
PHY_DATA6  
GND  
E8  
E9  
PHY_LREQ  
CAD29  
H14  
H15  
H17  
CAD13  
GND  
IORD  
GND  
OE  
LINKON  
LINKON  
E10  
CSTSCHG  
BVD1  
CAD11  
(STSCHG/RI)  
A7  
A8  
V
V
E11  
E12  
E13  
E14  
E17  
E18  
E19  
F1  
GND  
GND  
H18  
H19  
J1  
CAD10  
CE2  
CC  
CC  
CAD30  
CCD2  
CINT  
DATA9  
CREQ  
INPACK  
VS2  
V
V
CCCB  
CCCB  
A9  
CD2  
CVS2  
AD31  
AD30  
AD29  
GND  
AD31  
AD30  
AD29  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B5  
READY(IREQ)  
ADDR2  
CFRAME  
CDEVSEL  
CSTOP  
ADDR23  
ADDR21  
ADDR20  
ADDR19  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_DATA2  
PHY_CTL(1)  
LPS  
J2  
CAD24  
J3  
V
V
V
V
J5  
CCCB  
CCCB  
CBLOCK  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_DATA2  
PHY_CTL(1)  
LPS  
J6  
AD28  
CC/BE0  
CAD9  
CAD8  
AD28  
CE1  
CC  
CC  
CAD20  
ADDR6  
J14  
J15  
J17  
J18  
J19  
K1  
GND  
GND  
F2  
ADDR10  
DATA15  
CTRDY  
ADDR22  
PHY_DATA3  
PHY_DATA0  
PHY_CLK  
DATA2  
F3  
PHY_DATA3  
PHY_DATA0  
PHY_CLK  
CRSVD  
F5  
V
CC  
V
CC  
B6  
F6  
CAD7  
AD27  
AD26  
AD25  
AD24  
C/BE3  
CRSVD  
CAD5  
CAD6  
CAD3  
CAD4  
IDSEL  
DATA7  
AD27  
B7  
F7  
B8  
F8  
K2  
AD26  
B9  
V
CC  
V
CC  
F9  
CAD28  
DATA8  
K3  
AD25  
B10  
B11  
B12  
B13  
B14  
B15  
C5  
CSERR  
WAIT  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
G1  
CCLKRUN  
CVS1  
WP(IOIS16)  
VS1  
K5  
AD24  
CAD25  
ADDR1  
K6  
C/BE3  
DATA14  
DATA6  
DATA13  
DATA5  
DATA12  
IDSEL  
CC/BE3  
CAD22  
REG  
CRST  
RESET  
K14  
K15  
K17  
K18  
K19  
L1  
ADDR4  
CC/BE2  
CPERR  
ADDR12  
ADDR14  
WE  
CAD19  
ADDR25  
ADDR24  
PHY_DATA5  
PHY_DATA1  
PHY_CTL(0)  
DATA10  
CAD17  
CGNT  
PHY_DATA5  
PHY_DATA1  
PHY_CTL(0)  
CAD31  
V
CC  
V
CC  
C6  
CRSVD  
CC/BE1  
ADDR18  
ADDR8  
C7  
L2  
V
CC  
V
CC  
C8  
V
CC  
V
CC  
L3  
AD23  
AD21  
AD22  
CAD1  
GND  
AD23  
AD21  
AD22  
DATA4  
GND  
C9  
CAD27  
DATA0  
G2  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
CAD16  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
ADDR17  
ADDR13  
ADDR9  
L5  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
CAUDIO  
CAD26  
BVD2(SPKR)  
ADDR0  
G3  
L6  
G5  
L14  
L15  
L17  
L18  
L19  
M1  
M2  
M3  
M5  
M6  
M14  
M15  
CAD23  
ADDR3  
G6  
CAD21  
ADDR5  
G14  
G15  
G17  
G18  
G19  
H1  
CAD2  
CAD0  
CCD1  
DATA11  
DATA3  
CD1  
CAD18  
ADDR7  
CPAR  
CIRDY  
ADDR15  
PHY_DATA7  
ADDR16  
GND  
CAD14  
PHY_DATA7  
CCLK  
CAD15  
IOWR  
V
CCP  
V
CCP  
D19  
E1  
CAD12  
ADDR11  
AD20  
PRST  
GND  
AD20  
PRST  
GND  
GND  
GNT  
GNT  
E2  
PHY_RSVD  
PHY_RSVD  
PHY_DATA4  
PHY_RSVD  
PHY_RSVD  
PHY_DATA4  
H2  
REQ  
REQ  
E3  
H3  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PCLK  
PCLK  
E6  
H5  
V
V
CC  
ZV_SDATA  
CC  
ZV_SDATA  
E7  
V
CCL  
V
CCL  
H6  
2–6  
Table 2–2. CardBus and 16-Bit PC Card Signal Names by GHK Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CARDBUS  
16-BIT  
ZV_PCLK  
VCCD0  
VCCD1  
AD19  
CARDBUS  
16-BIT  
ZV_UV(6)  
ZV_SCLK  
TRDY  
M17  
M18  
M19  
N1  
ZV_PCLK  
VCCD0  
VCCD1  
AD19  
P18  
P19  
R1  
ZV_UV(6)  
ZV_SCLK  
TRDY  
STOP  
SERR  
AD14  
U14  
U15  
V5  
ZV_Y(1)  
ZV_Y(5)  
AD12  
ZV_Y(1)  
ZV_Y(5)  
AD12  
R2  
STOP  
V6  
V
V
CCP  
CCP  
N2  
AD18  
AD18  
R3  
SERR  
V7  
AD7  
AD7  
N3  
AD17  
AD17  
R6  
AD14  
V8  
AD4  
AD4  
N5  
IRDY  
IRDY  
R7  
AD10  
AD10  
V9  
AD1  
AD1  
N6  
AD16  
AD16  
R8  
AD6  
AD6  
V10  
V11  
V12  
V13  
V14  
V15  
W4  
MFUNC1  
GRST  
VPPD0  
INTA  
MFUNC1  
GRST  
VPPD0  
INTA  
N14  
N15  
N17  
N18  
N19  
P1  
ZV_UV(1)  
ZV_UV(5)  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
C/BE2  
ZV_UV(1)  
ZV_UV(5)  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
C/BE2  
R9  
GND  
GND  
R10  
R11  
R12  
R13  
R14  
R17  
R18  
R19  
T1  
V
CCI  
V
CCI  
MFUNC6  
LED_SKT  
ZV_Y(0)  
ZV_Y(4)  
ZV_UV(0)  
ZV_UV(4)  
GND  
MFUNC6  
LED_SKT  
ZV_Y(0)  
ZV_Y(4)  
ZV_UV(0)  
ZV_UV(4)  
GND  
ZV_VSYNC  
ZV_Y(3)  
C/BE1  
GND  
ZV_VSYNC  
ZV_Y(3)  
C/BE1  
GND  
P2  
FRAME  
FRAME  
W5  
P3  
V
CC  
V
CC  
W6  
AD9  
AD9  
P5  
PERR  
PERR  
W7  
V
CC  
V
CC  
P6  
DEVSEL  
AD13  
DEVSEL  
AD13  
PAR  
PAR  
W8  
AD3  
AD3  
P7  
T19  
U5  
ZV_Y(7)  
AD15  
ZV_Y(7)  
AD15  
W9  
AD2  
AD2  
P8  
AD8  
AD8  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
MFUNC0  
MFUNC3  
SUSPEND  
MFUNC0  
MFUNC3  
SUSPEND  
P9  
RI_OUT/PME  
MFUNC2  
MFUNC5  
RSVD  
RI_OUT/PME  
MFUNC2  
MFUNC5  
RSVD  
U6  
AD11  
AD11  
P10  
P11  
P12  
P13  
P14  
P15  
U7  
C/BE0  
C/BE0  
U8  
AD5  
AD5  
V
CC  
V
CC  
U9  
AD0  
AD0  
ZV_HREF  
ZV_Y(2)  
ZV_Y(6)  
ZV_HREF  
ZV_Y(2)  
ZV_Y(6)  
RSVD  
RSVD  
U10  
U11  
U12  
SPKROUT  
MFUNC4  
VPPD1  
SPKROUT  
MFUNC4  
VPPD1  
GND  
GND  
ZV_UV(2)  
ZV_UV(2)  
P17  
ZV_UV(3)  
ZV_UV(3)  
U13  
INTB  
INTB  
2–7  
Table 2–3. CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
TERM. NO.  
TERM. NO.  
GHK  
TERM. NO.  
GHK  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
73  
GHK  
U9  
V9  
W9  
W8  
V8  
U8  
R8  
V7  
P8  
W6  
R7  
U6  
V5  
P7  
R6  
U5  
N6  
N3  
N2  
N1  
M2  
L5  
PDV  
140  
143  
141  
145  
144  
146  
161  
163  
164  
166  
168  
169  
172  
175  
176  
177  
187  
188  
189  
190  
192  
182  
64  
PDV  
167  
132  
148  
191  
181  
153  
183  
157  
179  
165  
48  
PDV  
196  
197  
198  
200  
202  
204  
205  
206  
207  
208  
1
GHK  
B7  
AD0  
CAD11  
CAD12  
CAD13  
CAD14  
CAD15  
CAD16  
CAD17  
CAD18  
CAD19  
CAD20  
CAD21  
CAD22  
CAD23  
CAD24  
CAD25  
CAD26  
CAD27  
CAD28  
CAD29  
CAD30  
CAD31  
CAUDIO  
C/BE0  
H17 CRST  
G19 CRSVD  
H14 CRSVD  
G17 CRSVD  
G18 CSERR  
G14 CSTOP  
B15 CSTSCHG  
C14 CTRDY  
B14 CVS1  
F12 PHY_CLK  
K14 PHY_CTL(0)  
F18 PHY_CTL(1)  
AD1  
72  
C7  
F7  
AD2  
71  
AD3  
70  
B8  
PHY_DATA0  
B6  
AD4  
69  
B10 PHY_DATA1  
E18 PHY_DATA2  
E10 PHY_DATA3  
A16 PHY_DATA4  
C6  
F6  
AD5  
68  
AD6  
67  
B5  
AD7  
65  
E6  
AD8  
63  
F11  
PHY_DATA5  
C5  
A4  
AD9  
62  
A14 CVS2  
E13 PHY_DATA6  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
CAD0  
CAD1  
CAD2  
CAD3  
CAD4  
CAD5  
CAD6  
CAD7  
CAD8  
CAD9  
CAD10  
61  
C13 DEVSEL  
B13 FRAME  
C12 GND  
P6  
P2  
E1  
J5  
PHY_DATA7  
PHY_LREQ  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
D1  
E8  
59  
44  
194  
2
57  
6
E3  
56  
A11  
B11  
GND  
GND  
22  
3
F5  
55  
38  
M5  
W5  
R9  
4
G6  
E2  
54  
C11 GND  
58  
5
42  
C9  
F9  
E9  
A8  
C8  
GND  
GND  
GND  
GND  
GND  
74  
7
F3  
41  
100  
110  
126  
142  
162  
178  
203  
18  
P14 PHY_RSVD  
R19 PHY_RSVD  
8
F2  
40  
9
G5  
F1  
39  
L15  
PHY_RSVD  
10  
11  
35  
H15 PHY_RSVD  
A15 PHY_RSVD  
E11 PHY_RSVD  
H6  
G3  
G2  
H5  
H3  
M3  
H2  
P9  
33  
C10 GND  
12  
13  
15  
16  
36  
17  
75  
89  
94  
51  
78  
49  
86  
47  
14  
30  
46  
66  
91  
115  
134  
150  
32  
L6  
U7  
W4  
P1  
K6  
GND  
GND  
GNT  
31  
L3  
C/BE1  
53  
A5  
H1  
PHY_RSVD  
PHY_RSVD  
27  
K5  
K3  
K2  
K1  
J6  
C/BE2  
43  
26  
C/BE3  
28  
GRST  
82  
V11 PRST  
L1 REQ  
25  
CBLOCK  
CC/BE0  
CC/BE1  
CC/BE2  
CC/BE3  
CCD1  
151  
136  
147  
160  
173  
123  
185  
156  
184  
155  
159  
154  
180  
158  
149  
152  
171  
E19 IDSEL  
J14 INTA  
29  
24  
92  
V13 RI_OUT/PME  
U13 RSVD  
23  
F19 INTB  
93  
P12  
P13  
R3  
U10  
R2  
W12  
R1  
G1  
L2  
21  
J3  
F13 IRDY  
45  
N5  
RSVD  
20  
J2  
B12 LED_SKT  
90  
R12 SERR  
19  
J1  
L19  
A9  
LINKON  
LPS  
199  
193  
76  
A6  
F8  
SPKROUT  
STOP  
124  
127  
125  
129  
128  
131  
130  
133  
135  
137  
139  
L18  
L14  
L17  
CCD2  
CCLK  
D19 MFUNC0  
F10 MFUNC1  
E17 MFUNC2  
E14 MFUNC3  
F15 MFUNC4  
A10 MFUNC5  
C15 MFUNC6  
G15 PAR  
W10 SUSPEND  
V10 TRDY  
CCLKRUN  
77  
K18 CDEVSEL  
K19 CFRAME  
K15 CGNT  
80  
P10  
W11  
U11  
P11  
R11  
T1  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
81  
83  
P3  
K17 CINT  
84  
W7  
W13  
M14  
J18  
F17  
J19  
J17  
J15  
CIRDY  
CPAR  
85  
52  
CPERR  
F14 PCLK  
37  
M6  
H18 CREQ  
E12 PERR  
50  
P5  
2–8  
Table 2–3. CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
(Continued)  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
170  
186  
195  
138  
174  
121  
122  
79  
GHK  
A13  
B9  
PDV  
34  
GHK  
M1  
PDV  
119  
106  
108  
107  
111  
109  
113  
112  
116  
GHK  
PDV  
96  
GHK  
V14  
R13  
U14  
W15  
V15  
R14  
U15  
W16  
T19  
V
V
V
V
V
V
V
ZV_SDATA  
ZV_UV(0)  
M15 ZV_VSYNC  
R17 ZV_Y(0)  
N14 ZV_Y(1)  
P15 ZV_Y(2)  
P17 ZV_Y(3)  
R18 ZV_Y(4)  
N15 ZV_Y(5)  
P18 ZV_Y(6)  
N17 ZV_Y(7)  
CC  
CCP  
60  
V6  
97  
CC  
CCP  
A7  
VPPD0  
87  
V12 ZV_UV(1)  
U12 ZV_UV(2)  
W14 ZV_UV(3)  
N19 ZV_UV(4)  
N18 ZV_UV(5)  
M17 ZV_UV(6)  
P19 ZV_UV(7)  
98  
CC  
H19 VPPD1  
88  
99  
CCCB  
CCCB  
A12 ZV_HREF  
M18 ZV_LRCLK  
M19 ZV_MCLK  
R10 ZV_PCLK  
95  
101  
102  
103  
104  
105  
VCCD0  
VCCD1  
118  
117  
120  
114  
V
V
CCI  
201  
E7  
ZV_SCLK  
CCL  
2–9  
Table 2–4. 16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
73  
72  
71  
70  
69  
68  
67  
65  
63  
62  
61  
59  
57  
56  
55  
54  
42  
GHK  
U9  
V9  
PDV  
137  
143  
160  
149  
152  
158  
156  
146  
148  
151  
153  
155  
157  
159  
161  
164  
183  
GHK  
PDV  
48  
GHK  
P6  
PDV  
204  
205  
206  
207  
208  
1
GHK  
F6  
AD0  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR20  
ADDR21  
ADDR22  
ADDR23  
ADDR24  
ADDR25  
J15  
DEVSEL  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
PHY_DATA7  
PHY_LREQ  
AD1  
G19 FRAME  
F13 GND  
G15 GND  
F14 GND  
C15 GND  
D19 GND  
G14 GND  
F18 GND  
E19 GND  
E18 GND  
E17 GND  
A16 GND  
E14 GND  
B15 GNT  
B14 GRST  
E10 IDSEL  
44  
P2  
B5  
E6  
C5  
A4  
D1  
E8  
E3  
F5  
AD2  
W9  
W8  
V8  
6
E1  
AD3  
22  
J5  
AD4  
38  
M5  
W5  
R9  
AD5  
U8  
R8  
V7  
58  
AD6  
74  
194  
2
AD7  
100  
110  
126  
142  
162  
178  
203  
18  
P14 PHY_RSVD  
R19 PHY_RSVD  
AD8  
P8  
3
AD9  
W6  
R7  
U6  
V5  
L15  
PHY_RSVD  
4
G6  
E2  
F3  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
H15 PHY_RSVD  
A15 PHY_RSVD  
E11 PHY_RSVD  
5
7
8
F2  
P7  
A5  
H1  
PHY_RSVD  
PHY_RSVD  
9
G5  
F1  
R6  
U5  
N6  
10  
11  
12  
82  
V11 PHY_RSVD  
L1 PHY_RSVD  
H6  
G3  
BVD1  
29  
(STSCHG/RI)  
AD17  
41  
40  
N3  
N2  
N1  
M2  
L5  
L6  
L3  
K5  
K3  
K2  
K1  
J6  
BVD2(SPKR)  
C/BE0  
C/BE1  
C/BE2  
C/BE3  
CD1  
182  
64  
C10 INPACK  
171  
92  
E12 PHY_RSVD  
V13 PHY_RSVD  
U13 PHY_RSVD  
13  
15  
G2  
H5  
AD18  
U7  
W4  
P1  
INTA  
AD19  
39  
53  
INTB  
93  
16  
H3  
AD20  
35  
43  
IRDY  
45  
N5  
PRST  
36  
M3  
AD21  
33  
28  
K6  
IORD  
141  
144  
90  
H14 READY(IREQ)  
G18 REG  
180  
173  
17  
A10  
B12  
H2  
AD22  
32  
123  
185  
136  
139  
187  
189  
191  
124  
127  
129  
131  
133  
188  
190  
192  
125  
128  
130  
132  
135  
L19  
A9  
IOWR  
LED_SKT  
LINKON  
AD23  
31  
CD2  
R12 REQ  
AD24  
27  
CE1  
J14  
199  
193  
76  
A6  
F8  
RESET  
167  
75  
F12  
P9  
AD25  
26  
CE2  
H18 LPS  
RI_OUT/PME  
AD26  
25  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
C9  
E9  
MFUNC0  
W10 RSVD  
V10 RSVD  
P10 SERR  
W11 SPKROUT  
U11 STOP  
89  
P12  
P13  
R3  
AD27  
24  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
77  
94  
AD28  
23  
B8  
80  
51  
AD29  
21  
J3  
L18  
L14  
81  
78  
U10  
R2  
AD30  
20  
J2  
83  
49  
AD31  
19  
J1  
K18 MFUNC5  
K15 MFUNC6  
84  
P11 SUSPEND  
R11 TRDY  
86  
W12  
R1  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
177  
176  
175  
172  
169  
168  
166  
163  
147  
145  
C11 DATA6  
B11 DATA7  
A11 DATA8  
C12 DATA9  
B13 DATA10  
C13 DATA11  
A14 DATA12  
C14 DATA13  
F19 DATA14  
G17 DATA15  
85  
47  
J19  
F9  
OE  
140  
52  
H17  
T1  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
14  
G1  
PAR  
30  
L2  
A8  
PCLK  
PERR  
PHY_CLK  
37  
M6  
P5  
B7  
C7  
F7  
46  
P3  
C8  
L17  
50  
66  
W7  
W13  
M14  
J18  
F17  
A13  
196  
197  
198  
200  
202  
91  
K19 PHY_CTL(0)  
K17 PHY_CTL(1)  
K14 PHY_DATA0  
115  
134  
150  
170  
B6  
C6  
J17  
PHY_DATA1  
2–10  
Table 2–4. 16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number (Continued)  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
186  
195  
138  
174  
121  
122  
79  
GHK  
B9  
PDV  
87  
GHK  
PDV  
120  
114  
119  
106  
108  
107  
111  
109  
113  
112  
GHK  
PDV  
116  
96  
GHK  
N17  
V14  
R13  
U14  
W15  
V15  
R14  
U15  
W16  
T19  
V
V
V
V
VPPD0  
VPPD1  
V12 ZV_PCLK  
U12 ZV_SCLK  
M17 ZV_UV(7)  
P19 ZV_VSYNC  
M15 ZV_Y(0)  
R17 ZV_Y(1)  
N14 ZV_Y(2)  
P15 ZV_Y(3)  
P17 ZV_Y(4)  
R18 ZV_Y(5)  
N15 ZV_Y(6)  
P18 ZV_Y(7)  
CC  
A7  
88  
CC  
H19 VS1  
179  
165  
181  
154  
184  
95  
F11  
ZV_SDATA  
97  
CCCB  
CCCB  
A12 VS2  
E13 ZV_UV(0)  
B10 ZV_UV(1)  
F15 ZV_UV(2)  
F10 ZV_UV(3)  
W14 ZV_UV(4)  
N19 ZV_UV(5)  
N18 ZV_UV(6)  
98  
VCCD0  
VCCD1  
M18 WAIT  
M19 WE  
99  
101  
102  
103  
104  
105  
V
V
V
V
R10 WP(IOIS16)  
CCI  
201  
34  
E7  
M1  
V6  
ZV_HREF  
ZV_LRCLK  
ZV_MCLK  
CCL  
CCP  
CCP  
118  
117  
60  
2–11  
The terminals are grouped in tables by functionality, such as PCI system function and power-supply function (see  
Table 2–5 through Table 2–17). The terminal numbers are also listed for convenient reference.  
Table 2–5. Power Supply Terminals  
TERMINAL  
NUMBER  
DESCRIPTION  
NAME  
PDV  
GHK  
6, 22, 38, 58, 74, A5, A15, E1, E11,  
GND  
100, 126, 142,  
162, 178, 203  
H15, J5, L15, M5, Device ground terminals  
P14, R9, W5  
14, 30, 46, 66,  
91, 115, 134,  
150, 170, 186,  
195  
A7, A13, B9, F17,  
G1, J18, L2, M14, Power supply terminal for core logic (3.3 V)  
P3, W7, W13  
V
CC  
138, 174  
79  
A12, H19  
R10  
Clamp voltage for PC Card interface. Matches card signaling environment, 5 V or 3.3 V.  
V
CCCB  
Clamp voltage for miscellaneous I/O signals (MFUNC, GRST, and SUSPEND)  
Clamp voltage for 1394 link function  
V
CCI  
201  
E7  
V
CCL  
Clamp voltage for PCI interface, ZV interface, SPKROUT, INTA, INTB LED_SKT,  
VCCD0, VCCD1, VPPD0, VPPD1  
34, 60  
M1, V6  
V
CCP  
Table 2–6. PC Card Power Switch Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
VCCD0  
VCCD1  
121  
122  
M18  
M19  
O
O
Logic controls to the TPS2211 PC Card power interface switch to control AVCC  
Logic controls to the TPS2211 PC Card power interface switch to control AVPP  
VPPD0  
VPPD1  
87  
88  
V12  
U12  
Table 2–7. PCI System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
Global reset. When the global reset is asserted, the GRST signal causes the PCI4410 to place all output  
buffers in a high-impedance state and reset all internal registers. When GRST is asserted, the device is  
completely in its default state. For systems that require wake-up from D3, GRST will normally be asserted  
only during initial boot. PRST should be asserted following initial boot so that PME context is retained when  
transitioningfrom D3 to D0. For systems that do not require wake-up from D3, GRST should be tied to PRST.  
GRST  
82  
V11  
I
When the SUSPEND mode is enabled, the device is protected from the GRST, and the internal registers are  
preserved. All outputs are placed in a high-impedance state, but the contents of the registers are preserved.  
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at the  
rising edge of PCLK.  
PCLK  
PRST  
37  
36  
M6  
M3  
I
I
PCI bus reset. When the PCI bus reset is asserted, PRST causes the PCI4410 to place all output buffers  
in a high-impedance state and reset internal registers. When PRST is asserted, the device is completely  
nonfunctional. After PRST is deasserted, the PCI4410 is in a default state.  
When SUSPEND and PRST are asserted, the device is protected from PRST clearing the internal registers.  
All outputs are placed in a high-impedance state, but the contents of the registers are preserved.  
2–12  
Table 2–8. PCI Address and Data Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
19  
20  
21  
23  
24  
25  
26  
27  
31  
32  
33  
35  
39  
40  
41  
42  
54  
55  
56  
57  
59  
61  
62  
63  
65  
67  
68  
69  
70  
71  
72  
73  
J1  
J2  
J3  
J6  
K1  
K2  
K3  
K5  
L3  
L6  
L5  
M2  
N1  
N2  
N3  
N6  
U5  
R6  
P7  
V5  
U6  
R7  
W6  
P8  
V7  
R8  
U8  
V8  
W8  
W9  
V9  
U9  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the primary  
interface. During the address phase of a primary bus PCI cycle, AD31–AD0 contain a 32-bit address or other  
destination information. During the data phase, AD31–AD0 contain data.  
I/O  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
PCI bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During the  
address phase of a primary bus PCI cycle, C/BE3–C/BE0 define the bus command. During the data phase,  
this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit data  
buscarrymeaningfuldata.C/BE0appliestobyte0(AD7–AD0), C/BE1appliestobyte1(AD15–AD8), C/BE2  
applies to byte 2 (AD23–AD16), and C/BE3 applies to byte 3 (AD31–AD24).  
28  
43  
53  
64  
K6  
P1  
W4  
U7  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
I/O  
I/O  
PCIbusparity. InallPCIbusreadandwritecycles, thePCI4410calculatesevenparityacrosstheAD31–AD0  
and C/BE3–C/BE0 buses. As an initiator during PCI cycles, the PCI4410 outputs this parity indicator with  
a one-PCLK delay. As a target during PCI cycles, the calculated parity is compared to the initiator’s parity  
indicator. A compare error results in the assertion of a parity error (PERR).  
PAR  
52  
T1  
2–13  
Table 2–9. PCI Interface Control Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
PCI device select. The PCI4410 asserts DEVSEL to claim a PCI cycle as the target device. As a PCI initiator  
48  
44  
P6  
P2  
I/O on the bus, the PCI4410 monitors DEVSEL until a target responds. If no target responds before timeout  
occurs, then the PCI4410 terminates the cycle with an initiator abort.  
DEVSEL  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a bus  
I/O transaction is beginning, and data transfers continue while this signal is asserted. When FRAME is  
deasserted, the PCI bus transaction is in the final data phase.  
FRAME  
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI4410 access to the PCI bus after the  
18  
29  
45  
H1  
L1  
N5  
I
I
current data transaction has completed. GNT may or may not follow a PCI bus request, depending on the PCI  
bus parking algorithm.  
GNT  
IDSEL  
IRDY  
Initialization device select. IDSEL selects the PCI4410 during configuration space accesses. IDSEL can be  
connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the PCI bus initiator’s ability to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK where both IRDY and TRDY are asserted.  
Until IRDY and TRDY are both sampled asserted, wait states are inserted.  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not match  
PAR when PERR is enabled through bit 6 of the command register (see Section 4.4).  
50  
17  
P5  
H2  
I/O  
PERR  
REQ  
O
O
PCI bus request. REQ is asserted by the PCI4410 to request access to the PCI bus as an initiator.  
PCI system error. SERR is an output that is pulsed from the PCI4410 when enabled through bit 8 of the  
command register (see Section 4.4) indicating a system error has occurred. The PCI4410 need not be the  
target of the PCI cycle to assert this signal. When SERR is enabled in the command register, this signal also  
pulses, indicating that an address parity error has occurred on a CardBus interface.  
51  
R3  
SERR  
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus  
49  
47  
R2  
R1  
I/O transaction. STOP is used for target disconnects and is commonly asserted by target devices that do not  
support burst data transfers.  
STOP  
TRDY  
PCI target ready. TRDY indicates the primary bus target’s ability to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK when both IRDY and TRDY are asserted.  
Until both IRDY and TRDY are asserted, wait states are inserted.  
2–14  
Table 2–10. Multifunction and Miscellaneous Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
INTA  
INTB  
92  
93  
90  
V13  
U13  
R12  
O
O
O
Parallel PCI interrupt. INTA  
Parallel PCI interrupt. INTB  
LED_SKT  
PC Card socket activity LED indicator. LED_SKT provides an output indicating PC Card socket activity.  
Multifunctionterminal0. MFUNC0canbeconfiguredasparallelPCIinterruptINTA, GPI0, GPO0, socket  
MFUNC0  
76  
W10 I/O activity LED output, ZV switching outputs, CardBus audio PWM, GPE, or a parallel IRQ. See  
Section 4.32, Multifunction Routing Register, for configuration details.  
Multifunction terminal 1. MFUNC1 can be configured as GPI1, GPO1, socket activity LED output, ZV  
switchingoutputs,CardBusaudioPWM,GPE, or a parallel IRQ. See Section 4.32, MultifunctionRouting  
Register, for configuration details.  
MFUNC1  
77  
V10  
I/O  
Serial data (SDA). When VCCD0 and VCCD1 are high after a PCI reset, the MFUNC1 terminal provides  
the SDA signaling for the serial bus interface. The two-terminal serial interface loads the subsystem  
identification and other register defaults from an EEPROM after a PCI reset. See Section 3.6.1, Serial  
Bus Interface Implementation, for details on other serial bus applications.  
Multifunction terminal 2. MFUNC2 can be configured as PC/PCI DMA request, GPI2, GPO2, ZV  
MFUNC2  
MFUNC3  
80  
81  
P10  
I/O switching outputs, CardBus audio PWM, GPE, RI_OUT, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
Multifunction terminal 3. MFUNC3 can be configured as a parallel IRQ or the serialized interrupt signal  
IRQSER. See Section 4.32, Multifunction Routing Register, for configuration details.  
W11 I/O  
Multifunction terminal 4. MFUNC4 can be configured as PCI LOCK, GPI3, GPO3, socket activity LED  
output, ZV switching outputs, CardBus audio PWM, GPE, RI_OUT, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
MFUNC4  
MFUNC5  
83  
U11  
I/O  
Serialclock (SCL). When VCCD0 and VCCD1 are high after a PCIreset, theMFUNC4terminalprovides  
the SCL signaling for the serial bus interface. The two-terminal serial interface loads the subsystem  
identification and other register defaults from an EEPROM after a PCI reset. See Section 3.6.1, Serial  
Bus Interface Implementation, for details on other serial bus applications.  
Multifunctionterminal5. MFUNC5canbeconfiguredasPC/PCIDMAgrant, GPI4, GPO4, socketactivity  
84  
P11  
I/O LED output, ZV switching outputs, CardBus audio PWM, GPE, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
Multifunction terminal 6. MFUNC6 can be configured as a PCI CLKRUN or a parallel IRQ. See  
Section 4.32, Multifunction Routing Register, for configuration details.  
MFUNC6  
85  
75  
R11  
P9  
I/O  
Ring indicate out and power management event output. Terminal provides an output for ring-indicate or  
PME signals.  
RI_OUT/PME  
O
Speaker output. SPKROUT is the output to the host system that can carry SPKR or CAUDIO through  
78  
86  
U10  
O
I
the PCI4410 from the PC Card interface. SPKROUT is driven as the exclusive-OR combination of card  
SPKR//CAUDIO inputs.  
SPKROUT  
SUSPEND  
Suspend. SUSPEND protects the internal registers from clearing when the GRST or PRST signal is  
asserted. See Section 3.8.4, Suspend Mode, for details.  
W12  
2–15  
Table 2–11. 16-Bit PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
ADDR25  
ADDR24  
ADDR23  
ADDR22  
ADDR21  
ADDR20  
ADDR19  
ADDR18  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
ADDR13  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
164  
161  
159  
157  
155  
153  
151  
148  
146  
156  
158  
152  
149  
160  
143  
137  
145  
147  
163  
166  
168  
169  
172  
175  
176  
177  
B14  
B15  
E14  
A16  
E17  
E18  
E19  
F18  
G14  
D19  
C15  
F14  
G15  
F13  
G19  
J15  
G17  
F19  
C14  
A14  
C13  
B13  
C12  
A11  
B11  
C11  
O
PC Card address. 16-bit PC Card address lines. ADDR25 is the most significant bit.  
ADDR0  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
135  
132  
130  
128  
189  
192  
190  
188  
133  
131  
129  
127  
124  
191  
189  
187  
J17  
K14  
K17  
K19  
L17  
C8  
A8  
F9  
I/O  
PC Card data. 16-bit PC Card data lines. DATA15 is the most significant bit.  
J19  
K15  
K18  
L14  
L18  
B8  
E9  
C9  
2–16  
Table 2–12. 16-Bit PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Batteryvoltagedetect1. BVD1isgeneratedby16-bitmemoryPCCardsthatincludebatteries. BVD1  
is used with BVD2 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
andBVD2arehighwhenthebatteryisgood. WhenBVD2islowandBVD1ishigh, thebatteryisweak  
and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change-Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD1  
(STSCHG/RI)  
183  
E10  
I
Status change. STSCHG is used to alert the system to a change in the READY, write protect, or  
battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Batteryvoltagedetect2. BVD2isgeneratedby16-bitmemoryPCCardsthatincludebatteries. BVD2  
is used with BVD1 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
andBVD2arehighwhenthebatteryisgood. WhenBVD2islowandBVD1ishigh, thebatteryisweak  
and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change-Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD2  
(SPKR)  
182  
C10  
I
Speaker. SPKR is an optional binary audio signal available only when the card and socket have been  
configured for the 16-bit I/O interface. The audio signals from cards A and B are combined by the  
PCI4410 and are output on SPKROUT.  
DMA request. BVD2 can be used as the DMA request signal during DMA operations to a 16-bit  
PC Card that supports DMA. The PC Card asserts BVD2 to indicate a request for a DMA operation.  
Card detect 1 and Card detect 2. CD1 and CD2 are internally connected to ground on the PC Card.  
When a PC Card is inserted into a socket, CD1 and CD2 are pulled low. For signal status, see  
Section 5.2, ExCA Interface Status Register.  
123  
185  
L19  
A9  
CD1  
CD2  
I
136  
139  
J14  
H18  
Cardenable1andcardenable2. CE1andCE2enableeven-andodd-numberedaddressbytes.CE1  
enables even-numbered address bytes, and CE2 enables odd-numbered address bytes.  
CE1  
CE2  
O
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read cycle  
at the current address.  
INPACK  
171  
E12  
I
DMA request. INPACK can be used as the DMA request signal during DMA operations from a 16-bit  
PC Card that supports DMA. If it is used as a strobe, then the PC Card asserts this signal to indicate  
a request for a DMA operation.  
I/O read. IORD is asserted by the PCI4410 to enable 16-bit I/O PC Card data output during host I/O  
read cycles.  
141  
144  
140  
H14  
G18  
H17  
O
O
O
IORD  
IOWR  
OE  
DMA write. IORD is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4410 asserts IORD during DMA transfers from the PC Card to host memory.  
I/O write. IOWR is driven low by the PCI4410 to strobe write data into 16-bit I/O PC Cards during host  
I/O write cycles.  
DMA read. IOWR is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4410 asserts IOWR during transfers from host memory to the PC Card.  
Outputenable. OE is driven low by the PCI4410 to enable 16-bit memory PC Card data output during  
host memory read cycles.  
DMA terminal count. OE is used as terminal count (TC) during DMA operations to a 16-bit PC Card  
that supports DMA. The PCI4410 asserts OE to indicate TC for a DMA write operation.  
2–17  
Table 2–12. 16-Bit PC Card Interface Control Terminals (Continued)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Ready. The ready function is provided by READY when the 16-bit PC Card and the host socket are  
configuredfor the memory-only interface. READY is driven low by the 16-bit memory PC Cards to indicate  
that the memory card circuits are busy processing a previous write command. READY is driven high when  
the 16-bit memory PC Card is ready to accept a new data transfer command.  
READY  
(IREQ)  
180  
A10  
I
Interruptrequest. IREQisassertedbya16-bitI/OPCCardtoindicatetothehostthatadeviceonthe16-bit  
I /O PC Card requires service by the host software. IREQ is high (deasserted) when no interrupt is  
requested.  
Attribute memory select. REG remains high for all common memory accesses. When REG is asserted,  
access is limited to attribute memory (OE or WE active) and to the I/O space (IORD or IOWR active).  
Attribute memory is a separately accessed section of card memory and is generally used to record card  
capacity and other configuration and attribute information.  
173  
B12  
O
REG  
DMA acknowledge. REG is used as a DMA acknowledge (DACK) during DMA operations to a 16-bit PC  
Card that supports DMA. The PCI4410 asserts REG to indicate a DMA operation. REG is used in  
conjunction with the DMA read (IOWR) or DMA write (IORD) strobes to transfer data.  
RESET  
WAIT  
167  
181  
F12  
B10  
O
I
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
Bus cycle wait. WAIT is driven by a 16-bit PC Card to extend the completion of the memory or I/O cycle  
in progress.  
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE is also used for  
memory PC Cards that employ programmable memory technologies.  
WE  
154  
F15  
O
DMA terminal count. WE is used as TC during DMA operations to a 16-bit PC Card that supports DMA.  
The PCI4410 asserts WE to indicate TC for a DMA read operation.  
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write-protect switch  
on 16-bit memory PC Cards. For 16-bit I/O PC cards, WP is used for the 16-bit port (IOIS16) function.  
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card when the  
address on the bus corresponds to an address to which the 16-bit PC Card responds, and the I/O port that  
is addressed is capable of 16-bit accesses.  
WP  
(IOIS16)  
184  
F10  
I
DMA request. WP can be used as the DMA request signal during DMA operations to a 16-bit PC Card that  
supports DMA. If used, then the PC Card asserts WP to indicate a request for a DMA operation.  
VS1  
VS2  
179  
165  
F11  
E13  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each other, determine  
the operating voltage of the PC Card.  
I/O  
Table 2–13. CardBus PC Card Interface System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
CardBus clock. CCLK provides synchronous timing for all transactions on the CardBus interface. All  
signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2, CCD1, CVS2, and CVS1 are  
sampled on the rising edge of CCLK, and all timing parameters are defined with the rising edge of this  
signal. CCLK operates at the PCI bus clock frequency, but it can be stopped in the low state or slowed  
down for power savings.  
CCLK  
156  
D19  
O
CardBus clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the CCLK  
frequency, and by the PCI4410 to indicate that the CCLK frequency is going to be decreased.  
184  
167  
F10  
F12  
I/O  
O
CCLKRUN  
CRST  
CardBus reset. CRST brings CardBus PC Card-specific registers, sequencers, and signals to a known  
state. When CRST is asserted, all CardBus PC Card signals are placed in a high-impedance state, and  
the PCI4410 drives these signals to a valid logic level. Assertion can be asynchronous to CCLK, but  
deassertion must be synchronous to CCLK.  
2–18  
Table 2–14. CardBus PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
192  
190  
189  
188  
187  
177  
176  
175  
172  
169  
168  
166  
164  
163  
161  
146  
144  
145  
141  
143  
140  
139  
137  
135  
133  
130  
131  
128  
129  
125  
127  
124  
C8  
A8  
E9  
F9  
C9  
C11  
B11  
A11  
C12  
B13  
C13  
A14  
B14  
C14  
B15  
G14  
G18  
G17  
H14  
G19  
H17  
H18  
J15  
J17  
J19  
K17  
K15  
K19  
K18  
L17  
L14  
L18  
CardBus address and data. These signals make up the multiplexed CardBus address and data bus on  
the CardBus interface. During the address phase of a CardBus cycle, CAD31–CAD0 contain a 32-bit  
address. During the data phase of a CardBus cycle, CAD31–CAD0 contain data. CAD31 is the most  
significant bit.  
I/O  
CAD8  
CAD7  
CAD6  
CAD5  
CAD4  
CAD3  
CAD2  
CAD1  
CAD0  
CardBus bus commands and byte enables. CC/BE3–CC/BE0 are multiplexed on the same CardBus  
terminals. During the address phase of a CardBus cycle, CC/BE3–CC/BE0 define the bus command.  
Duringthedataphase, this4-bitbusisusedasbyteenables. Thebyteenablesdeterminewhichbytepaths  
of the full 32-bit data bus carry meaningful data. CC/BE0 applies to byte 0 (CAD7–CAD0), CC/BE1applies  
to byte 1 (CAD15–CAD8), CC/BE2 applies to byte 2 (CAD23–CAD16), and CC/BE3 applies to byte 3  
(CAD31–CAD24).  
173  
160  
147  
136  
B12  
F13  
F19  
J14  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
I/O  
I/O  
CardBus parity. In all CardBus read and write cycles, the PCI4410 calculates even parity across the CAD  
and CC/BE buses. As an initiator during CardBus cycles, the PCI4410 outputs CPAR with a one-CCLK  
delay. AsatargetduringCardBuscycles, thecalculatedparityiscomparedtotheinitiator’sparityindicator;  
a compare error results in a parity error assertion.  
CPAR  
149  
G15  
2–19  
Table 2–15. CardBus PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
182  
151  
GHK  
C10  
E19  
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The PCI4410  
supports the binary audio mode and outputs a binary signal from the card to SPKROUT.  
CAUDIO  
CBLOCK  
I
I/O  
I
CardBus lock. CBLOCK is used to gain exclusive access to a target.  
123  
185  
L19  
A9  
CCD1  
CCD2  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with CVS1 and  
CVS2 to identify card insertion and interrogate cards to determine the operating voltage and card type.  
CardBusdevice select. The PCI4410 asserts CDEVSEL to claim a CardBus cycle as the target device.  
As a CardBus initiator on the bus, the PCI4410 monitors CDEVSEL until a target responds. If no target  
responds before timeout occurs, then the PCI4410 terminates the cycle with an initiator abort.  
155  
159  
E17  
E14  
I/O  
I/O  
CDEVSEL  
CFRAME  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME is asserted  
to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted.  
When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.  
CardBusbusgrant. CGNTisdrivenbythePCI4410tograntaCardBusPCCardaccesstotheCardBus  
bus after the current data transaction has been completed.  
154  
180  
F15  
A10  
O
I
CGNT  
CINT  
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt servicing from the  
host.  
CardBus initiator ready. CIRDY indicates the CardBus initiator’s ability to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of CCLK when both CIRDY and  
CTRDY are asserted. Until CIRDY and CTRDY are both sampled asserted, wait states are inserted.  
158  
C15  
I/O  
CIRDY  
CardBus parity error. CPERR reports parity errors during CardBus transactions, except during special  
cycles. It is driven low by a target two clocks following that data when a parity error is detected.  
152  
171  
F14  
E12  
I/O  
I
CPERR  
CREQ  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires use of the CardBus  
bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors that could lead  
to catastrophic results. CSERR is driven by the card synchronous to CCLK, but deasserted by a weak  
pullup, and may take several CCLK periods. The PCI4410 can report CSERR to the system by  
assertion of SERR on the PCI interface.  
181  
B10  
I
CSERR  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the current CardBus  
transaction. CSTOP is used for target disconnects, and is commonly asserted by target devices that  
do not support burst data transfers.  
153  
183  
157  
E18  
E10  
A16  
I/O  
I
CSTOP  
CSTSCHG  
CTRDY  
CardBus status change. CSTSCHG alerts the system to a change in the card’s status, and is used as  
a wake-up mechanism.  
CardBustargetready. CTRDYindicatestheCardBustarget’sabilitytocompletethecurrentdataphase  
of the transaction. A data phase is completed on a rising edge of CCLK, when both CIRDY and CTRDY  
are asserted; until this time, wait states are inserted.  
I/O  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in conjunction with  
CCD1andCCD2toidentifycardinsertionandinterrogatecardstodeterminetheoperatingvoltageand  
card type.  
CVS1  
CVS2  
179  
165  
F11  
E13  
I/O  
2–20  
Table 2–16. IEEE1394 PHY/Link Interface Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
FUNCTION  
NAME  
PHY-linkinterfacecontrol.Thesebidirectionalsignalscontrolpassageofinformationbetweenthe  
PHY and link. The link can only drive these terminals after the PHY has granted permission  
following a link request (LREQ).  
PHY_CTL1  
PHY_CTL0  
198  
197  
F7  
C7  
I/O  
1
D1  
A4  
C5  
E6  
B5  
F6  
C6  
B6  
PHY_DATA7  
PHY_DATA6  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
208  
207  
206  
205  
204  
202  
200  
PHY-link interface data. These bidirectional signals pass data between the PHY and link. These  
terminals are driven by the link on transmissions and are driven by the PHY on receptions. Only  
DATA1–DATA0 are valid for 100 Mbit speed. DATA4–DATA0 are valid for 200 Mbit speed and  
DATA7–DATA0 are valid for 400 Mbit speed.  
I/O  
196  
194  
B7  
E8  
I
PHY_CLK  
System clock. This input provides a 49.152-MHz clock signal for data synchronization.  
Link request. This signal is driven by the link to initiate a request for the PHY to perform some  
service.  
O
PHY_LREQ  
199  
193  
A6  
F8  
I
LINKON  
LPS  
1394 link on. This input from the PHY indicates that the link should turn on.  
Link power status. LPS indicates that link is powered and fully functional.  
O
Table 2–17. Zoomed Video Interface Terminals  
TERMINAL  
NUMBER  
I/O  
FUNCTION  
NAME  
PDV  
95  
GHK  
W14  
V14  
ZV_HREF  
O
O
Horizontal sync to the zoomed video port  
Vertical sync to the zoomed video port  
96  
ZV_VSYNC  
105  
104  
103  
102  
101  
99  
T19  
W16  
U15  
R14  
V15  
W15  
U14  
R13  
ZV_Y7  
ZV_Y6  
ZV_Y5  
ZV_Y4  
ZV_Y3  
ZV_Y2  
ZV_Y1  
ZV_Y0  
O
Video data to the zoomed video port in YUV:4:2:2 format  
98  
97  
116  
112  
113  
109  
111  
107  
108  
106  
N17  
P18  
N15  
R18  
P17  
P15  
N14  
R17  
ZV_UV7  
ZV_UV6  
ZV_UV5  
ZV_UV4  
ZV_UV3  
ZV_UV2  
ZV_UV1  
ZV_UV0  
O
Video data to the zoomed video port in YUV:4:2:2 format  
114  
117  
120  
118  
119  
P19  
N18  
M17  
N19  
M15  
O
O
O
O
O
ZV_SCLK  
ZV_MCLK  
ZV_PCLK  
ZV_LRCLK  
ZV_SDATA  
Audio SCLK PCM  
Audio MCLK PCM  
Pixel clock to the zoomed video port  
Audio LRCLK PCM  
Audio SDATA PCM  
2–21  
2–22  
3 Feature/Protocol Descriptions  
The following sections give an overview of the PCI4410. Figure 3–1 shows connections to the PCI4410. The PCI  
interface includes all address/data and control signals for PCI protocol. The interrupt interface includes terminals for  
parallel PCI, parallel ISA, and serialized PCI and ISA signaling. Miscellaneous system interface terminals include  
multifunction terminals: SUSPEND, RI_OUT/PME (power management control signal), and SPKROUT.  
1394 Ports  
North  
Bridge  
CPU  
Memory  
OHCI-PHY  
Interface  
1394  
PHY  
PCI Bus  
14  
VGA  
Controller  
PCI4410  
PC Card  
South  
Bridge  
TPS2211  
Power  
Switch  
Super  
I/O  
Controller  
19  
ISA  
23  
Audio  
Codec  
4
Zoomed  
Video  
PC Card Interface  
Figure 3–1. PCI4410 System Block Diagram  
3.1 Power Supply Sequencing  
The PCI4410 contains 3.3-V I/O buffers with 5-V tolerance requiring a core power supply and clamp voltages. The  
core power supply is always 3.3 V. The clamp voltages can be either 3.3 V or 5 V, depending on the interface. The  
following power-up and power-down sequences are recommended.  
The power-up sequence is:  
1. Apply 3.3-V power to the core.  
2. Assert GRST to the device to disable the outputs during power-up. Output drivers must be powered up in  
the high-impedance state to prevent high current levels through the clamp diodes to the 5-V supply.  
3. Apply the clamp voltage.  
The power-down sequence is:  
1. Use GRST to switch outputs to a high-impedance state.  
2. Remove the clamp voltage.  
3. Remove the 3.3-V power from the core.  
3.2 I/O Characteristics  
Figure 3–2 shows a 3-state bidirectional buffer. Section 10.2, Recommended Operating Conditions, provides the  
electrical characteristics of the inputs and outputs.  
NOTE: The PCI4410 meets the ac specifications of the 1997 PC Card Standard and the PCI  
Local Bus Specification.  
3–1  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 3–2. 3-State Bidirectional Buffer  
NOTE: Unused pins (input or I/O) must be held high or low to prevent them from floating.  
3.3 Clamping Voltages  
The clamping voltages are set to match whatever external environment the PCI4410 is interfaced with: 3.3 V or 5 V.  
The I/O sites can be pulled through a clamping diode to a voltage rail that protects the core from external signals.  
The core power supply is always 3.3 V and is independent of the clamping voltages. For example, PCI signaling can  
be either 3.3 V or 5 V, and the PCI4410 must reliably accommodate both voltage levels. This is accomplished by using  
a 3.3-V I/O buffer that is 5-V tolerant, with the applicable clamping voltage applied. If a system designer desires a  
5-V PCI bus, then V  
can be connected to a 5-V power supply.  
CCP  
The PCI4410 requires four separate clamping voltages because it supports a wide range of features. The four  
voltages are listed and defined in Section 10.2, Recommended Operating Conditions.  
3.4 Peripheral Component Interconnect (PCI) Interface  
The PCI4410 is fully compliant with the PCI Local Bus Specification. The PCI4410 provides all required signals for  
PCImasterorslaveoperation,andmayoperateineithera5-Vor3.3-VsignalingenvironmentbyconnectingtheV  
CCP  
terminals to the desired voltage level. In addition to the mandatory PCI signals, the PCI4410 provides the optional  
interrupt signal INTA.  
3.4.1 PCI Bus Lock (LOCK)  
The bus-locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the PCI4410 as an additional compatibility feature. The PCI LOCK signal can be routed to the MFUNC4 terminal via  
the multifunction routing register. See Section 4.32, Multifunction Routing Register, for details. Note that the use of  
LOCK is only supported by PCI-to-CardBus bridges in the downstream direction (away from the processor).  
PCILOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions can proceed to an address that is not currently locked. A grant to start a transaction on  
the PCI bus does not guarantee control of LOCK; control of LOCK is obtained under its own protocol. It is possible  
for different initiators to use the PCI bus while a single master retains ownership of LOCK. Note that the CardBus  
signal for this protocol is CBLOCK to avoid confusion with the bus clock.  
An agent may need to do an exclusive operation because a critical access to memory might be broken into several  
transactions, but the master wants exclusive rights to a region of memory. The granularity of the lock is defined by  
PCI to be 16 bytes, aligned. The LOCK protocol defined by the PCI Local Bus Specification allows a resource lock  
without interfering with nonexclusive real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario,  
the arbiter will not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A complete  
bus lock may have a significant impact on the performance of the video. The arbiter that supports complete bus lock  
must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked operation  
is in progress.  
The PCI4410 supports all LOCK protocol associated with PCI-to-PCI bridges, as also defined for PCI-to-CardBus  
bridges. This includes disabling write posting while a locked operation is in progress, which can solve a potential  
3–2  
deadlock when using devices such as PCI-to-PCI bridges. The potential deadlock can occur if a CardBus target  
supports delayed transactions and blocks access to the target until it completes a delayed read. This target  
characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
3.4.2 Loading Subsystem Identification  
The subsystem vendor ID register (see Section 4.26) and subsystem ID register (see Section 4.27) make up a  
doubleword of PCI configuration space located at offset 40h for functions 0 and 1. This doubleword register is used  
for system and option card (mobile dock) identification purposes and is required by some operating systems.  
Implementation of this unique identifier register is a PC 99 requirement.  
The PCI4410 offers two mechanisms to load a read-only value into the subsystem registers. The first mechanism  
relies upon the system BIOS providing the subsystem ID value. The default access mode to the subsystem registers  
is read-only, but can be made read/write by setting bit 5 (SUBSYSRW) in the system control register (see  
Section 4.29) at PCI offset 80h. When this bit is set, the BIOS can write a subsystem identification value into the  
registers at PCI offset 40h. The BIOS must clear the SUBSYSRW bit such that the subsystem vendor ID register and  
subsystem ID register are limited to read-only access. This approach saves the added cost of implementing the serial  
electrically erasable programmable ROM (EEPROM).  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier via a serial EEPROM. The PCI4410 loads the data from the serial EEPROM  
after a reset of the primary bus. Note that the SUSPEND input gates the PCI reset from the entire PCI4410 core,  
including the serial bus state machine (see Section 3.8.4, Suspend Mode, for details on using SUSPEND).  
The PCI4410 provides a two-line serial bus host controller that can interface to a serial EEPROM. See Section 3.6,  
Serial Bus Interface, for details on the two-wire serial bus controller and applications.  
3.5 PC Card Applications  
This section describes the PC Card interfaces of the PCI4410:  
Card insertion/removal and recognition  
P C power-switch interface  
Zoomed video support  
Speaker and audio applications  
LED socket activity indicators  
PC Card-16 DMA support  
PC Card controller programming model  
CardBus socket registers  
2
3.5.1 PC Card Insertion/Removal and Recognition  
The 1997 PC Card Standard addresses the card-detection and recognition process through an interrogation  
procedure that the socket must initiate on card insertion into a cold, nonpowered socket. Through this interrogation,  
card voltage requirements and interface (16-bit versus CardBus) are determined.  
The scheme uses the card detect and voltage sense signals. The configuration of these four terminals identifies the  
card type and voltage requirements of the PC Card interface. The encoding scheme is defined in the 1997 PC Card  
Standard and in Table 3–1.  
3–3  
Table 3–1. PC Card Card-Detect and Voltage-Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
KEY  
5 V  
5 V  
5 V  
LV  
INTERFACE  
16-bit PC Card  
VOLTAGE  
5 V  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
5 V and 3.3 V  
5 V, 3.3 V, and X.X V  
3.3 V  
Ground  
Ground  
Ground  
Ground  
16-bit PC Card  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
Ground  
Connect to CVS1  
Ground  
Open  
Connect to CCD1  
Ground  
LV  
CardBus PC Card  
16-bit PC Card  
3.3 V  
Ground  
Ground  
LV  
3.3 V and X.X V  
3.3 V and X.X V  
3.3 V, X.X V, and Y.Y V  
Y.Y V  
Connect to CVS2  
Connect to CVS1  
Ground  
Ground  
Connect to CCD2  
Ground  
Ground  
LV  
CardBus PC Card  
CardBus PC Card  
16-bit PC Card  
Ground  
Connect to CCD2  
Open  
LV  
Ground  
Ground  
LV  
Connect to CVS2  
Ground  
Ground  
Connect to CCD2  
Connect to CCD1  
Open  
Open  
LV  
CardBus PC Card  
CardBus PC Card  
CardBus PC Card  
Y.Y V  
Connect to CVS2  
Ground  
Open  
LV  
X.X V and Y.Y V  
Y.Y V  
Connect to CVS1  
Ground  
Connect to CCD2  
Connect to CCD1  
Ground  
LV  
Connect to CVS1  
Connect to CVS2  
Ground  
Reserved  
Reserved  
Ground  
Connect to CCD1  
2
3.5.2 P C Power-Switch Interface (TPS2211)  
2
The PCI4410 provides a P C (PCMCIA peripheral control) interface for control of the PC Card power switch. The  
VCCDandVPPDterminalsareusedwiththeTITPS2211single-slotPCCardpowerinterfaceswitchtoprovidepower  
switch support. Figure 3–3 shows terminal assignments for the TPS2211. Figure 3–4 illustrates a typical application,  
where the PCI4410 represents the PC Card controller.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCD0  
VCCD1  
3.3 V  
3.3 V  
5 V  
SHDN  
VPPD0  
VPPD1  
AVCC  
AVCC  
AVCC  
AVPP  
12 V  
5 V  
GND  
OC  
Figure 3–3. TPS2211 Terminal Assignments  
The PCI4410 also includes support for the Maxim 1602 and Micrel MIC2562A single-channel CardBus power  
switches. Application of these power switches would be similar to that of the TPS2211.  
Maxim is a trademark of Maxim Integrated Products, Inc.  
3–4  
Power Supply  
TPS2211  
12 V  
5 V  
12 V  
5 V  
3.3 V  
3.3 V  
AVPP  
AVCC  
V
V
V
V
PP1  
PP2  
CC  
SHDN  
SHDN  
Supervisor  
PC Card  
CC  
VCCD0  
VCCD1  
VPPD0  
VPPD1  
PCI4410  
(PCMCIA  
Controller)  
OC  
Figure 3–4. TPS2211 Typical Application  
3.5.3 Zoomed Video Support  
The zoomed video (ZV) port on the PCI4410 provides an internally buffered 16-bit ZV PC Card data path. This internal  
routingisprogrammedthroughthecardcontrolregister(offset 91h, bits 5 and 6). Figure 3–5summarizesthezoomed  
video subsystem implemented in the PCI4410, and details the bit functions found in the card control register.  
When ZV PORT_ENABLE is enabled, the zoomed video output terminals are enabled and allow the PCI4410 to route  
the zoomed video data. However, no data is transmitted unless ZVENABLE (offset 91h, bit 6) is enabled. If  
ZVENABLE is set to low, then the ZV output port drives a logic 0 on the PCI4410’s ZV bus.  
Zoomed Video Subsystem  
Card Output  
Enable Logic  
ZV  
PORT_ENABLE  
Note: ZVSTAT must be enabled  
through the GPIO Control Register  
PC Card  
I/F  
PC Card  
Socket  
ZVSTAT  
23  
19 Video Signals  
VGA  
ZVENABLE  
Audio  
Codec  
4 Audio Signals  
Figure 3–5. Zoomed Video Subsystem  
3–5  
3.5.4 Ultra Zoomed Video  
Ultra zoomed video is an enhancement to the PCI4410 DMA engine and is intended to improve the 16-bit bandwidth  
for MPEG I and MPEG II decoder PC Cards. This enhancement allows the PCI4410 to fetch 32 bits of data from  
memory versus the 11XX/12XX 16-bit fetch capability. This enhancement allows a higher sustained throughput to  
the 16-bit PC Card because the PCI4410 prefetches an extra 16 bits (32 bits total) during each PCI read transaction.  
If the PCI bus becomes busy, then the PCI4410 has an extra 16 bits of data to perform back-to-back 16-bit  
transactions to the PC Card before having to fetch more data. This feature is built into the DMA engine and software  
is not required to enable this enhancement.  
NOTE: The 11XX and 12XX series CardBus controllers have enough 16-bit bandwidth to  
support MPEG II PC Card decoders. But it was decided to improve the bandwidth even more  
in the 14XX series CardBus controllers.  
3.5.5 D3_STAT Terminal  
Additional functionality for the PCI4410 versus the 12xx series is the D3_STAT (D3 status) pin. This pin is asserted  
under the following two conditions (both conditions must be true before D3_STAT is asserted):  
Function 0 (PC Card controller) and function 1 (OHCI-Lynx) are both in D3.  
PME is enabled for either function.  
3.5.6 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the PCI4410 so that neither the PCI clock nor an  
external clock is required in order for the PCI4410 to power down a socket or interrogate a PC Card. This internal  
oscillator operates nominally at 16 kHz and can be enabled by setting bit 27 (P2CCLK) of the system control register  
(see Section 4.29) at PCI offset 80h to a 1. This function is disabled by default.  
3.5.7 Integrated Pullup Resistors for PC Card Interface  
The 1997 PC Card Standard requires pullup resistors on various terminals to support both CardBus and 16-bit card  
configurations. Unlike the PCI1210/1211 which required external pullup resistors, the PCI4410 has integrated all of  
these pullup resistors on the terminalss below, except for the CCLKRUN/WP(IOIS16) pullup resistor.  
3–6  
TERMINAL NUMBER  
SIGNAL NAME  
PDV  
152  
158  
151  
153  
155  
157  
183  
182  
123  
185  
171  
180  
167  
179  
165  
GHK  
F14  
C15  
E19  
E18  
E17  
A16  
E10  
C10  
L19  
A9  
ADDR14/CPERR  
ADDR15/CIRDY  
ADDR19/CBLOCK  
ADDR20/CSTOP  
ADDR21/CDEVSEL  
ADDR22/CTRDY  
BVD1(STSCHG)/CSTSCHG  
BVD2(SPKR)/CAUDIO  
CD1/CCD1  
CD2/CCD2  
INPACK/CREQ  
E12  
A10  
F12  
F11  
E13  
B10  
READY/CINT  
RESET/CRST  
VS1/CVS1  
VS2/CVS2  
WAIT/CSERR  
181  
184†  
F10  
WP(IOIS16)/CLKRUN  
This pin requires pullup, but the PCI1451 lacks an integrated pullup  
resistor.  
3.5.8 SPKROUT and CAUDPWM Usage  
SPKROUT carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is configured for  
I/O mode, the BVD2 pin becomes SPKR. This terminal is also used in CardBus binary audio applications, and is  
referred to as CAUDIO. SPKR passes a TTL level digital audio signal to the PCI4410. The CardBus CAUDIO signal  
also can pass a single-amplitude binary waveform. The binary audio signals from the PC Card socket is used in the  
PCI4410 to produce SPKROUT. This output is enabled by bit 1 (SPKROUTEN) in the card control register (see  
Section 4.34).  
Older controllers support CAUDIO in binary or PWM mode but use the same pin (SPKROUT). Some audio chips may  
not support both modes on one pin and may have a separate pin for binary and PWM. The PCI4410 implementation  
includes a signal for PWM, CAUDPWM, which can be routed to a MFUNC terminal. Bit 2 (AUD2MUX) located in the  
card control register is programmed to route a CardBus CAUDIO PWM terminal to CAUDPWM. See Section 4.32,  
Multifunction Routing Register, for details on configuring the MFUNC terminals.  
Figure 3–6 illustrates a sample application using SPKROUT and CAUDPWM.  
System  
Core Logic  
BINARY_SPKR  
SPKROUT  
Speaker  
Subsystem  
PCI4410  
PWM_SPKR  
CAUDPWM  
Figure 3–6. Sample Application of SPKROUT and CAUDPWM  
3.5.9 LED Socket Activity Indicators  
The socket activity LEDs are provided to indicate when a PC Card is being accessed. The LED_SKT signal can be  
routed to the multifunction terminals and is also provided on a dedicated pin (LED_SKT). When configured for LED  
3–7  
output, this terminal outputs an active high signal to indicate socket activity. See Section 4.32, Multifunction Routing  
Register, for details on configuring the multifunction terminals.  
The LED signal is active high and is driven for 64-ms durations. When the LED is not being driven high, it is driven  
to a low state. Either of the two circuits shown in Figure 3–7 can be implemented to provide LED signaling. It is left  
for the board designer to implement the circuit that best fits the application.  
The LED activity signals are valid when a card is inserted, powered, and not in reset. For PC Card-16, the LED activity  
signal is pulsed when READY/IREQ is low. For CardBus cards, the LED activity signal is pulsed if CFRAME, CIRDY,  
or CREQ is active.  
Current Limiting  
R 500  
LED  
PCI4410  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
LED  
PCI4410  
Figure 3–7. Two Sample LED Circuits  
As indicated, the LED signals are driven for a period of 64 ms by a counter circuit. To avoid the possibility of the LED  
appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when the SUSPEND signal is  
asserted, when the PCI clock is to be stopped during the clock run protocol, or when in the D2 or D1 power state.  
If any additional socket activity occurs during this counter cycle, then the counter is reset and the LED signal remains  
driven. If socket activity is frequent (at least once every 64 ms), then the LED signal remains driven.  
3.5.10 PC Card-16 Distributed DMA Support  
ThePCI4410supportsadistributedDMAslaveenginefor16-bitPCCardDMAsupport. ThedistributedDMA(DDMA)  
slave register set provides the programmability necessary for the slave DDMA engine. Table 3–2 provides the DDMA  
register configuration.  
Two socket function dependent PCI configuration header registers that are critical for DDMA are the socket DMA  
register 0 (see Section 4.37) and the socket DMA register 1 (see Section 4.38). Distributed DMA is enabled through  
socketDMAregister0andthecontentsofthisregisterconfigurethePCCard-16terminal(SPKR, IOIS16, orINPACK)  
which is used for the DMA request signal, DREQ. The base address of the DDMA slave registers and the transfer  
size (bytes or words) are programmed through the socket DMA register 1. See the programming model and register  
descriptions in Section 4 for details.  
3–8  
Table 3–2. Distributed DMA Registers  
REGISTER NAME  
DDMA  
BASE ADDRESS  
OFFSET  
TYPE  
R
W
R
Current address  
00h  
04h  
08h  
0Ch  
Reserved  
Reserved  
Page  
Base address  
Current count  
Reserved  
W
R
Base count  
N/A  
Mode  
N/A  
Status  
Reserved  
W
R
Request  
N/A  
Command  
Multichannel  
Mask  
Reserved  
Reserved  
W
Master clear  
The DDMA registers contain control and status information consistent with the 8237 DMA controller; however, the  
register locations are reordered and expanded in some cases. While the DDMA register definitions are identical to  
those in the 8237 DMA controller of the same name, some register bits defined in the 8237 DMA controller do not  
apply to distributed DMA in a PCI environment. In such cases, the PCI4410 implements these obsolete register bits  
as read-only, nonfunctional bits. The reserved registers shown in Table 3–2 are implemented as read-only and return  
0s when read. Write transactions to reserved registers have no effect.  
The DDMA transfer is prefaced by several configuration steps that are specific to the PC Card and must be completed  
after the PC Card is inserted and interrogated. These steps include setting the proper DREQ signal assignment,  
setting the data transfer width, and mapping and enabling the DDMA register set. As discussed above, this is done  
through socket DMA register 0 and socket DMA register 1. The DMA register set is then programmed similarly to an  
8237 controller, and the PCI4410 awaits a DREQ assertion from the PC Card requesting a DMA transfer.  
DMA writes transfer data from the PC Card-to-PCI memory addresses. The PCI4410 accepts data 8 or 16 bits at a  
time, depending on the programmed data width, and then requests access to the PCI bus by asserting its REQsignal.  
Once the PCI bus is granted in an idle state, the PCI4410 initiates a PCI memory write command to the current  
memory address and transfers the data in a single data phase. After terminating the PCI cycle, the PCI4410 accepts  
the next byte(s) from the PC Card until the transfer count expires.  
DMA reads transfer data from PCI memory addresses to the PC Card application. Upon the assertion of DREQ, the  
PCI4410 asserts REQ to acquire the PCI bus. Once the bus is granted in an idle state, the PCI4410 initiates a PCI  
memory read operation to the current memory address and accepts 8 or 16 bits of data, depending on the  
programmed data width. After terminating the PCI cycle, the data is passed onto the PC Card. After terminating the  
PC Card cycle, the PCI4410 requests access to the PCI bus again until the transfer count has expired.  
The PCI4410 target interface acts normally during this procedure and accepts I/O reads and writes to the DDMA  
registers. While a DDMA transfer is in progress and the host resets the DMA channel, the PCI4410 asserts TC and  
ends the PC Card cycle(s). TC is indicated in the DDMA status register (see Section 7.5). At the PC Card interface,  
the PCI4410 supports demand mode transfers. The PCI4410 asserts DACK during the transfer unless DREQ is  
deasserted before TC. TC is mapped to the OE PC Card terminal for DMA write operations and is mapped to the WE  
PC Card terminal for DMA read operations. The DACK signal is mapped to the PC Card REG signal in all transfers,  
and the DREQ terminal is routed to one of three options which is programmed through socket DMA register 0.  
3–9  
3.5.11 PC Card-16 PC/PCI DMA  
Some chip sets provide a way for legacy I/O devices to do DMA transfers on the PCI bus. In the PC/PCI DMA protocol,  
the PCI4410 acts as a PCI target device to certain DMA related I/O addresses. The PCI4410 PCREQ and PCGNT  
signals are provided as a point-to-point connection to a chipset supporting PC/PCI DMA. The PCREQ and PCGNT  
signals may be routed to the MFUNC2 and MFUNC5 terminals, respectively. See Section 4.32, Multifunction Routing  
Register, for details on configuring the multifunction terminals.  
Under the PC/PCI protocol, a PCI DMA slave device (such as the PCI4410) requests a DMA transfer on a particular  
channel using a serialized protocol on PCREQ. The I/O DMA bus master arbitrates for the PCI bus and grants the  
channel through a serialized protocol on PCGNT when it is ready for the transfer. The I/O cycle and memory cycles  
are then presented on the PCI bus, which performs the DMA transfers similarly to legacy DMA master devices.  
PC/PCI DMA is enabled for each PC Card-16 slot by setting bit 19 (CDREQEN) in the respective system control  
register (see Section 4.29). On power up this bit is reset and the card PC/PCI DMA is disabled. Bit 3 (CDMA_EN)  
of the system control register is a global enable for PC/PCI DMA, and is set at power up and never cleared if the  
PC/PCI DMA mechanism is implemented. The desired DMA channel for each PC Card-16 slot must be configured  
through bits 18–16 (CDMACHAN field) in the system control register. The channels are configured as indicated in  
Table 3–3.  
Table 3–3. PC/PCI Channel Assignments  
SYSTEM CONTROL  
CHANNEL TRANSFER  
DATA WIDTH  
REGISTER  
DMA CHANNEL  
BIT 18  
BIT 17  
BIT16  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
8-bit DMA transfers  
8-bit DMA transfers  
8-bit DMA transfers  
8-bit DMA transfers  
Not used  
16-bit DMA transfers  
16-bit DMA transfers  
16-bit DMA transfers  
As in distributed DMA, the PC Card terminal mapped to DREQ must be configured through socket DMA register 0  
(see Section 4.37). The data transfer width is a function of channel number and the DDMA slave registers are not  
used. When a DREQ is received from a PC Card and the channel has been granted, the PCI4410 decodes the I/O  
addresses listed in Table 3–4 and performs actions dependent upon the address.  
Table 3–4. I/O Addresses Used for PC/PCI DMA  
DMA I/O ADDRESS  
DMA CYCLE TYPE  
Normal  
TERMINAL COUNT  
PCI CYCLE TYPE  
I/O read/write  
I/O read/write  
I/O read  
00h  
04h  
C0h  
C4h  
0
1
0
1
Normal TC  
Verify  
Verify TC  
I/O read  
When the PC/PCI DMA is used as a PC Card-16 DMA mechanism, it may not provide the performance levels of  
DDMA; however, the design of a PCI target implementing PC/PCI DMA is considerably less complex. No bus master  
state machine is required to support PC/PCI DMA, because the DMA control is centralized in the chipset. This DMA  
scheme is often referred to as centralized DMA for this reason.  
3.5.12 CardBus Socket Registers  
The PCI4410 contains all registers for compatibility with the PC Card Standard, release 7. These registers exist as  
the CardBus socket registers and are listed in Table 3–5.  
3–10  
Table 3–5. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
Socket event  
Socket mask  
00h  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
Socket present state  
Socket force event  
Socket control  
Reserved  
Reserved  
Reserved  
Socket power management  
3.6 Serial Bus Interface  
The PCI4410 provides a serial bus interface to load subsystem identification and select register defaults through a  
2
2
serial EEPROM and to provide a PC Card power switch interface alternative to P C. See Section 3.5.2, P C  
2
Power-Switch Interface (TPS2211), for details. The PCI4410 serial bus interface is compatible with various I C and  
SMBus components.  
3.6.1 Serial Bus Interface Implementation  
The PCI4410 defaults to the serial bus interface are disabled. To enable the serial interface, a pullup resistor must  
be implemented on the VCCD0 and VCCD1 terminals and the appropriate pullup resistors must be implemented on  
the SDA and SCL signals, that is, the MFUNC1 and MFUNC4 terminals.  
The PCI4410 implements a two-pin serial interface with one clock signal (SCL) and one data signal (SDA). When  
pullup resistors are provided on the VPPD0 and VPPD1 terminals, the SCL signal is mapped to the MFUNC4 terminal  
and the SDA signal is mapped to the MFUNC1 terminal. The PCI4410 drives SCL at nearly 100 kHz during data  
2
transfers, which is the maximum specified frequency for standard mode I C. The serial EEPROM must be located  
at address A0h. Figure 3–8 illustrates an example application implementing the two-wire serial bus.  
V
CC  
Serial  
EEPROM  
PCI4410  
VCCD0  
V
CC  
VCCD1  
MFUNC4  
MFUNC1  
SCL  
SDA  
Figure 3–8. Serial EEPROM Application  
Some serial device applications may include PC Card power switches, ZV source switches, card ejectors, or other  
devices that may enhance the user’s PC Card experience. The serial EEPROM device and PC Card power switches  
are discussed in the sections that follow.  
3.6.2 Serial Bus Interface Protocol  
The SCL and SDA signals are bidirectional, open-drain signals and require pullup resistors as shown in Figure 3–8.  
2
The PCI4410 supports up to 100 Kb/s data transfer rate and is compatible with standard mode I C using 7-bit  
addressing.  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a start  
condition, which is signalled when the SDA line transitions to a low state while SCL is in the high state, as illustrated  
3–11  
in Figure 3–9. The end of a requested data transfer is indicated by a stop condition, which is signaled by a low-to-high  
transition of SDA while SCL is in the high state, as shown in Figure 3–9. Data on SDA must remain stable during the  
high state of the SCL signal, as changes on the SDA signal during the high state of SCL are interpreted as control  
signals, that is, a start or a stop condition.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 3–9. Serial Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. The number of bytes that may be transmitted during a data transfer is  
unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by  
the receiver pulling the SDA signal low so that it remains low during the high state of the SCL signal. Figure 3–10  
illustrates the acknowledge protocol.  
SCL From  
1
2
3
7
8
9
Master  
SDA Output  
by Transmitter  
SDA Output  
by Receiver  
Figure 3–10. Serial Bus Protocol Acknowledge  
The PCI4410 is a serial bus master; all other devices connected to the serial bus external to the PCI4410 are slave  
devices. As the bus master, the PCI4410 drives the SCL clock at nearly 100 kHz during bus cycles and places SCL  
in a high-impedance state (zero frequency) during idle states.  
Typically, the PCI4410 masters byte reads and byte writes under software control. Doubleword reads are performed  
by the serial EEPROM initialization circuitry upon a PCI reset and may not be generated under software control. See  
Section 3.6.3, Serial Bus EEPROM Application, for details on how the PCI4410 automatically loads the subsystem  
identification and other register defaults through a serial bus EEPROM.  
Figure 3–11 illustrates a byte write. The PCI4410 issues a start condition and sends the 7-bit slave device address  
and the command bit zero. A 0 in the R/W command bit indicates that the data transfer is a write. The slave device  
acknowledges if it recognizes the address. The word address byte is then sent by the PCI4410 and another slave  
acknowledgmentisexpected. ThenthePCI4410deliversthedatabyteMSBfirstandexpectsafinalacknowledgment  
before issuing the stop condition.  
3–12  
Slave Address  
Word Address  
Data Byte  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
P
R/W  
A = Slave acknowledgement  
S/P = Start/stop condition  
Figure 3–11. Serial Bus Protocol – Byte Write  
Figure 3–12 illustrates a byte read. The read protocol is very similar to the write protocol except the R/W command  
bit must be set to 1 to indicate a read-data transfer. In addition, the PCI4410 master must acknowledge reception  
of the read bytes from the slave transmitter. The slave transmitter drives the SDA signal during read data transfers.  
The SCL signal remains driven by the PCI4410 master.  
Slave Address  
Word Address  
S
b6 b5 b4 b3 b2 b1 b0  
1
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
R/W  
Data Byte  
Slave Address  
A
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
b6 b5 b4 b3 b2 b1 b0  
A = Slave acknowledgement  
M = Master acknowledgement  
S/P = Start/stop condition  
Figure 3–12. Serial Bus Protocol – Byte Read  
Figure 3–13 illustrates EEPROM interface doubleword data collection protocol.  
Slave Address  
Word Address  
Slave Address  
S
1
0
1
0
0
0
0
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
1
0
1
0
0
0
0
1
A
Start  
R/W  
Restart  
R/W  
Data Byte 3  
M
Data Byte 2  
M
Data Byte 1  
M
Data Byte 0  
M
P
A = Slave acknowledgement  
M = Master acknowledgement  
S/P = Start/stop condition  
Figure 3–13. EEPROM Interface Doubleword Data Collection  
3.6.3 Serial Bus EEPROM Application  
When the PCI bus is reset and the serial bus interface is detected, the PCI4410 attempts to read the subsystem  
identification and other register defaults from a serial EEPROM. The registers and corresponding bits that may be  
loaded with defaults through the EEPROM are provided in Table 3–6.  
3–13  
Table 3–6. Registers and Bits Loadable Through Serial EEPROM  
OHCI REGISTERS LOADED  
OFFSET  
REFERENCE  
REGISTER  
REGISTER NAME  
BITS LOADED FROM EEPROM  
0
1
3Eh  
MIN_GNT and MAX_LAT (see Section 8.14)  
MIN_GNT and MAX_LAT (see Section 8.14)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Link enhancement control (see Section 8.21)  
Mini-ROM address  
Byte 0, bits 3–0  
Byte 1, bits 3–0  
Byte 0  
3Fh  
2
PCI 2Ch  
PCI 2Ch  
PCI 2Ch  
PCI 2Ch  
PCI F4h  
3
Byte 1  
4
Byte 2  
5
Byte 3  
6
Byte 0, bits 7, 2, 1  
7
8
PCI 24h  
PCI 24h  
PCI 24h  
PCI 24h  
PCI 28h  
PCI 28h  
PCI 28h  
PCI 28h  
GUID high (see Section 9.10)  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
9
GUID high (see Section 9.10)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
GUID high (see Section 9.10)  
GUID high (see Section 9.10)  
GUID low (see Section 9.11  
GUID low (see Section 9.11)  
GUID low (see Section 9.11)  
GUID low (see Section 9.11)  
Checksum  
PCI F4h  
PCI F0h  
PCI F0h  
Link enhancement control (see Section 8.21)  
Miscellaneous configuration (see Section 8.20)  
Miscellaneous configuration (see Section 8.20)  
Byte 1, bits 5, 4, 1, 0  
Byte 0, bits 4, 2–0  
Byte 1, bits 7, 5, 2  
CARDBUS REGISTERS LOADED  
REGISTER NAME  
OFFSET  
REFERENCE  
REGISTER  
BITS LOADED FROM EEPROM  
0
1
Flag byte  
PCI 40h  
PCI 40h  
PCI 42h  
PCI 42h  
PCI 80h  
PCI 80h  
PCI 80h  
PCI 86h  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 90h  
PCI 91h  
PCI 92h  
PCI 93h  
PCI A2h  
ExCA 00h  
Subsystem vendor ID (see Section 4.26)  
Subsystem vendor ID (see Section 4.26)  
Subsystem ID (see Section 4.27)  
Subsystem ID (see Section 4.27)  
System control (see Section 4.29)  
System control (see Section 4.29)  
System control (see Section 4.29)  
General control (see Sectin 4.31)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Retry status (see Section 4.33)  
Byte 0  
2
Byte 1  
3
Byte 0  
4
Byte 1  
5
Byte 0  
6
Byte 1, bits 7, 6  
Byte 3, bits 7, 5, 3, 2, 0  
Bits 3, 1, 0  
Byte 0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Byte 1  
Byte 2  
Byte 3, bits 3–0  
Bits 7, 6  
Card control (see Section 4.34)  
Bit 7  
Device control (see Section 4.35)  
Diagnostic (see Section 4.36)  
Bits 6–0  
Bits 7, 4–0  
Bit 15  
Power management capabilities (see Section 4.41)  
ExCA Identification and revision (see Section 5.1)  
Bits 7–0  
3–14  
Figure 3–14 details the EEPROM data format. This format must be followed for the PCI4410 to properly load  
initializations from a serial EEPROM.  
Slave Address = 1010 000  
Reference(0)  
Byte 3 (0)  
Byte 2 (0)  
Byte 1 (0)  
Byte 0 (0)  
RSVD  
Word Address 00h  
Word Address 01h  
Word Address 02h  
Word Address 03h  
Word Address 04h  
Reference(n)  
Byte 3 (n)  
Byte 2 (n)  
Byte 1 (n)  
Byte 0 (n)  
RSVD  
Word Address 8 × (n–1)  
Word Address 8 × (n–1) + 1  
Word Address 8 × (n–1) + 2  
Word Address 8 × (n–1) + 3  
Word Address 8 × (n–1) + 4  
RSVD  
RSVD  
RSVD  
Reference(1)  
Word Address 08h  
RSVD  
EOL  
Word Address 8 × (n)  
Figure 3–14. EEPROM Data Format  
The byte at the EEPROM word address 00h must either contain a valid offset reference, as listed in Table 3–6, or  
an end-of-list (EOL) indicator. The EOL indicator is a byte value of FFh, and indicates the end of the data to load from  
the EEPROM. Only doubleword registers are loaded from the EEPROM, and all bit fields must be considered when  
the EEPROM is programmed.  
The serial EEPROM is addressed at slave address 1010000b by the PCI4410. All hardware address bits for the  
EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
applicationcircuit (see Figure 3–8) assumes the 1010b high address nibble. The lower three address bits are terminal  
inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
When a valid offset reference is read, four bytes are read from the EEPROM, MSB first, as illustrated in Figure 3–13.  
The address autoincrements after every byte transfer according to the doubleword read protocol. Note that the word  
addresses align with the data format illustrated in Figure 3–14. The PCI4410 continues to load data from the serial  
EEPROMuntil an end-of-list indicator is read. Three reserved bytes are stuffed to maintain eight-byte data structures.  
Note, the eight-byte data structure is important to provide correct addressing per the doubleword read format shown  
in Figure 3–13. In addition, the reference offsets must be loaded in the EEPROM in sequential order, that is, 01h,  
02h, 03h, 04h. If the offsets are not sequential, then the registers may be loaded incorrectly.  
3.6.4 Accessing Serial Bus Devices Through Software  
The PCI4410 provides a programming mechanism to control serial bus devices through software. The programming  
is accomplished through a doubleword of PCI configuration space at offset B0h.  
3.7 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards and the abundance of PC Card I/O applications require substantial interrupt support from the  
PCI4410. The PCI4410 provides several interrupt signaling schemes to accommodate the needs of a variety of  
platforms. The different mechanisms for dealing with interrupts in this device are based on various specifications and  
industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card functions, and the  
CardBus socket register set provides interrupt control for the CardBus PC Card functions. The PCI4410 is, therefore,  
backward compatible with existing interrupt control register definitions, and new registers have been defined where  
required.  
3–15  
The PCI4410 detects PC Card interrupts and events at the PC Card interface and notifies the host controller using  
one of several interrupt signaling protocols. To simplify the discussion of interrupts in the PCI4410, PC Card interrupts  
are classified as either card status change (CSC) or as functional interrupts.  
The method by which any type of PCI4410 interrupt is communicated to the host interrupt controller varies from  
system to system. The PCI4410 offers system designers the choice of using parallel PCI interrupt signaling, parallel  
ISA-type IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. It is possible to use the  
parallel PCI interrupts in combination with either parallel IRQs or serialized IRQs, as detailed in the sections that  
follow. All interrupt signaling is provided through the seven multifunction terminals, MFUNC0–MFUNC6. In addition,  
PCI interrupts (INTA and INTB) are available on dedicated pins.  
3.7.1 PC Card Functional and Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service and are  
indicated by asserting specially defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC)-type interrupts are defined as events at the PC Card interface that are detected by the  
PCI4410 and may warrant notification of host card and socket services software for service. CSC events include both  
card insertion and removal from PC Card sockets, as well as transitions of certain PC Card signals.  
Table 3–7 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functionalinterruptsourcesaredependentonthetypeofcardinsertedinthePCCardsocket. Thethreetypesofcards  
that can be inserted into any PC Card socket are:  
16-bit memory card  
16-bit I/O card  
CardBus cards  
Table 3–7. Interrupt Mask and Flag Registers  
CARD TYPE  
EVENT  
MASK  
FLAG  
Battery conditions  
(BVD1, BVD2)  
ExCA offset 05h/805h  
bits 1 and 0  
ExCA offset 04h/804h  
bits 1 and 0  
16-bit  
memory  
Wait states  
(READY)  
ExCA offset 05h/805h  
bit 2  
ExCA offset 04h/804h  
bit 2  
Change in card status  
(STSCHG)  
ExCA offset 05h/805h  
bit 0  
ExCA offset 04h/804h  
bit 0  
16-bit I/O  
Interrupt request  
(IREQ)  
PCI configuration offset 91h  
bit 0  
Always enabled  
All 16-bit  
PC Cards  
ExCA offset 05h/805h  
bit 3  
ExCA offset 04h/804h  
bit 3  
Power cycle complete  
Change in card status  
(CSTSCHG)  
Socket mask  
bit 0  
Socket event  
bit 0  
Interrupt request  
(CINT)  
PCI configuration offset 91h  
bit 0  
Always enabled  
CardBus  
Socket mask  
bit 3  
Socket event  
bit 3  
Power cycle complete  
Card insertion or  
removal  
Socket mask  
bits 2 and 1  
Socket event  
bits 2 and 1  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards; that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal-type CSC interrupts are independent of the  
card type. Table 3–8 describes the PC Card interrupt events.  
3–16  
Table 3–8. PC Card Interrupt Events and Description  
CARD TYPE  
EVENT  
TYPE  
SIGNAL  
DESCRIPTION  
A transition on BVD1 indicates a change in the  
PC Card battery conditions.  
BVD1(STSCHG)//CSTSCHG  
Battery conditions  
(BVD1, BVD2)  
CSC  
A transition on BVD2 indicates a change in the  
PC Card battery conditions.  
16-bit  
memory  
BVD2(SPKR)//CAUDIO  
READY(IREQ)//CINT  
Wait states  
(READY)  
A transition on READY indicates a change in the ability  
of the memory PC Card to accept or provide data.  
CSC  
CSC  
Change in card  
status (STSCHG)  
The assertion of STSCHG indicates a status change  
on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
16-bit I/O  
CardBus  
Interrupt request  
(IREQ)  
The assertion of IREQ indicates an interrupt request  
from the PC Card.  
Functional  
CSC  
Change in card  
status (CSTSCHG)  
The assertion of CSTSCHG indicates a status change  
on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
Interrupt request  
(CINT)  
The assertion of CINT indicates an interrupt request  
from the PC Card.  
Functional  
A transition on either CD1//CCD1 or CD2//CCD2  
indicatesan insertion or removal of a 16-bit or CardBus  
PC Card.  
Card insertion  
or removal  
CD1//CCD1,  
CD2//CCD2  
CSC  
CSC  
All PC Cards  
Power cycle  
complete  
An interrupt is generated when a PC Card power-up  
cycle has completed.  
N/A  
The naming convention for PC Card signals describes the function for 16-bit memory, I/O cards, and CardBus. For  
example, READY(IREQ)//CINT includes READY for 16-bit memory cards, IREQ for 16-bit I/O cards, and CINT for  
CardBus cards. The 16-bit memory card signal name is first, with the I/O card signal name second, enclosed in  
parentheses. The CardBus signal name follows after a forward double slash (//).  
The 1997 PC Card Standard describes the power-up sequence that must be followed by the PCI4410 when an  
insertion event occurs and the host requests that the socket V  
and V  
be powered. Upon completion of this  
CC  
PP  
power-up sequence, the PCI4410 interrupt scheme can be used to notify the host system (see Table 3–8), denoted  
by the power cycle complete event. This interrupt source is considered a PCI4410 internal event because it depends  
on the completion of applying power to the socket rather than on a signal change at the PC Card interface.  
3.7.2 Interrupt Masks and Flags  
Host software may individually mask (or disable) most of the potential interrupt sources listed in Table 3–8 by setting  
the appropriate bits in the PCI4410. By individually masking the interrupt sources listed, software can control those  
events that cause a PCI4410 interrupt. Host software has some control over the system interrupt the PCI4410 asserts  
by programming the appropriate routing registers. The PCI4410 allows host software to route PC Card CSC and PC  
Card functional interrupts to separate system interrupts. Interrupt routing somewhat specific to the interrupt signaling  
method used is discussed in more detail in the following sections.  
When an interrupt is signaled by the PCI4410, the interrupt service routine must determine which of the events listed  
in Table 3–7 caused the interrupt. Internal registers in the PCI4410 provide flags that report the source of an interrupt.  
By reading these status bits, the interrupt service routine can determine the action to be taken.  
Table 3–7 details the registers and bits associated with masking and reporting potential interrupts. All interrupts can  
be masked except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Notice that there is not a mask bit to stop the PCI4410 from passing PC Card functional interrupts through to the  
appropriateinterruptscheme. Theseinterruptsarenotvaliduntilthecardisproperlypowered, andthereshouldnever  
be a card interrupt that does not require service after proper initialization.  
Table 3–7 lists the various methods of clearing the interrupt flag bits. The flag bits in the ExCA registers (16-bit PC  
Card-related interrupt flags) can be cleared using two different methods. One method is an explicit write of 1 to the  
flag bit to clear and the other is by reading the flag bit register. The selection of flag bit clearing is made by bit 2  
(IFCMODE) in the ExCA global control register (see Section 5.22), located at ExCA offset 1Eh/5Eh/81Eh, and  
defaults to the flag cleared on read method.  
3–17  
The CardBus-related interrupt flags can be cleared by an explicit write of 1 to the interrupt flag in the socket event  
register (see Section 6.1). Although some of the functionality is shared between the CardBus registers and the ExCA  
registers, software should not program the chip through both register sets when a CardBus card is functioning.  
3.7.3 Using Parallel IRQ Interrupts  
The seven multifunction terminals, MFUNC6–MFUNC0, implemented in the PCI4410 may be routed to obtain a  
subset of the ISA IRQs. The IRQ choices provide ultimate flexibility in PC Card host interruptions. To use the parallel  
ISA type IRQ interrupt signaling, software must program the device control register (see Section 4.35), located at PCI  
offset 92h, to select the parallel IRQ signaling scheme. See Section 4.32, Multifunction Routing Register, for details  
on configuring the multifunction terminals.  
A system using parallel IRQs requires a minimum of one PCI terminal, INTA, to signal CSC events. This requirement  
is dictated by certain card and socket services software. The MFUNC pins provide (at a maximum) seven different  
IRQs to support legacy 16-bit PC Card functions.  
As an example, suppose the seven IRQs used by legacy PC Card applications are IRQ3, IRQ4, IRQ5, IRQ9, IRQ10,  
IRQ11, and IRQ15. The multifunction routing register must be programmed to a value of 0x0FBA5439. This routes  
the MFUNC terminals as illustrated in Figure 3–15. Not shown is that INTA must also be routed to the programmable  
interrupt controller (PIC), or to some circuitry that provides parallel PCI interrupts to the host.  
PCI4410  
MFUNC0  
PIC  
IRQ9  
IRQ3  
IRQ4  
IRQ5  
IRQ10  
IRQ11  
IRQ15  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
Figure 3–15. IRQ Implementation  
Power-on software is responsible for programming the multifunction routing register to reflect the IRQ configuration  
of a system implementing the PCI4410. See Section 4.32, Multifunction Routing Register, for details on configuring  
the multifunction terminals.  
The parallel ISA type IRQ signaling from the MFUNC6–MFUNC0 terminals is compatible with those input directly into  
the 8259 PIC. The parallel IRQ option is provided for system designs that require legacy ISA IRQs. Design constraints  
may demand more MFUNC6–MFUNC0 IRQ terminals than the PCI4410 makes available.  
3.7.4 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available in parallel PCI interrupt mode, parallel IRQ and parallel PCI interrupt mode, or  
serialized IRQ and parallel PCI interrupt mode.  
3.7.5 Using Serialized IRQSER Interrupts  
The serialized interrupt protocol implemented in the PCI4410 uses a single terminal to communicate all interrupt  
status information to the host controller. The protocol defines a serial packet consisting of a start cycle, multiple  
interrupt indication cycles, and a stop cycle. All data in the packet is synchronous with the PCI clock. The packet data  
describes 16 parallel ISA IRQ signals and the optional 4 PCI interrupts INTA, INTB, INTC, and INTD. For details on  
the IRQSER protocol refer to the document Serialized IRQ Support for PCI Systems.  
3–18  
3.7.6 SMI Support in the PCI4410  
The PCI4410 provides a mechanism for interrupting the system when power changes have been made to the PC  
Cardsocketinterfaces. Theinterruptmechanismisdesignedtofitintoasystemmaintenanceinterrupt(SMI)scheme.  
SMI interrupts are generated by the PCI4410, when enabled, after a write cycle to either the socket control register  
(see Section 6.5) of the CardBus register set or the ExCA power control register (see Section 5.3).  
The SMI control is programmed through three bits in the system control register (see Section 4.29). These bits are  
SMIROUTE (bit 26), SMISTATUS (bit 25), and SMIENB (bit 24). Table 3–9 describes the SMI control bits function.  
Table 3–9. SMI Control  
BIT NAME  
SMIROUTE  
SMISTAT  
FUNCTION  
This shared bit controls whether the SMI interrupts are sent as a CSC interrupt or as IRQ2.  
This socket-dependent bit is set when an SMI interrupt is pending. This status flag is cleared by writing back a 1.  
When set, SMI interrupt generation is enabled.  
SMIENB  
If CSC SMI interrupts are selected, then the SMI interrupt is sent as the CSC. The CSC interrupt can be either level  
or edge mode, depending upon the CSCMODE bit in the ExCA global control register (see Section 5.22).  
If IRQ2 is selected by SMIROUTE, then the IRQSER signaling protocol supports SMI signaling in the IRQ2 IRQ/Data  
slot. In a parallel ISA IRQ system, the support for an active low IRQ2 is provided only if IRQ2 is routed to MFUNC1,  
MFUNC3, or MFUNC6 through the multifunction routing register (see Section 4.32).  
3.8 Power Management Overview  
In addition to the low-power CMOS technology process used for the PCI4410, various features are designed into the  
device to allow implementation of popular power-saving techniques. These features and techniques are discussed  
in this section.  
3.8.1 Clock Run Protocol  
ThePCICLKRUNfeatureistheprimarymethodofpowermanagementonthePCIinterfaceofthePCI4410. CLKRUN  
signaling is provided through the MFUNC6 terminal. Because some chipsets do not implement CLKRUN, this is not  
always available to the system designer, and alternative power-saving features are provided. For details on the  
CLKRUN protocol see the PCI Mobile Design Guide.  
The PCI4410 does not permit the central resource to stop the PCI clock under any of the following conditions:  
Bit 1 (KEEPCLK) in the system control register (see Section 4.29) is set.  
The PC Card-16 resource manager is busy.  
The PCI4410 CardBus master state machine is busy. A cycle may be in progress on CardBus.  
The PCI4410 master is busy. There may be posted data from CardBus to PCI in the PCI4410.  
Interrupts are pending.  
The CardBus CCLK for either socket has not been stopped by the PCI4410 CCLKRUN manager.  
The PCI4410 restarts the PCI clock using the CLKRUN protocol under any of the following conditions:  
A PC Card-16 IREQ or a CardBus CINT has been asserted.  
A CardBus CBWAKE (CSTSCHG) or PC Card-16 STSCHG/RI event occurs.  
A CardBus attempts to start the CCLK using CCLKRUN.  
A CardBus card arbitrates for the CardBus bus using CREQ.  
A 16-bit DMA PC Card asserts DREQ.  
3.8.2 CardBus PC Card Power Management  
The PCI4410 implements its own card power management engine that can turn off the CCLK to a socket when there  
is no activity to the CardBus PC Card. The PCI clock-run protocol is followed on the CardBus CCLKRUN interface  
to control this clock management.  
3–19  
3.8.3 16-Bit PC Card Power Management  
The COE (bit 7, ExCA power control register) and PWRDWN (bit 0, ExCA global control register) bits are provided  
for 16-bit PC Card power management. The COE bit places the card interface in a high-impedance state to save  
power. The power savings when using this feature are minimal. The COE bit will reset the PC Card when used, and  
the PWRDWN bit will not. Furthermore, the PWRDWN bit is an automatic COE; that is, the PWRDWN performs the  
COE function when there is no card activity.  
NOTE: The 16-bit PC Card must implement the proper pullup resistors for the COE and  
PWRDWN modes.  
3.8.4 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the PCI4410. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the PCI4410  
in order to minimize power consumption.  
Gating PCLK does not create any issues with respect to the power switch interface in the PCI4410. This is because  
the PCI4410 does not depend on the PCI clock to clock the power switch interface. There are two methods to clock  
the power switch interface in the PCI4410:  
Use an external clock to the PCI4410 CLOCK terminal  
Use the internal oscillator  
It should also be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, then the PCI clock must be restarted in order to pass the interrupt, because neither the internal oscillator nor  
an external clock is routed to the serial interrupt state machine. Figure 3–16 is a functional implementation diagram.  
xRST  
xRSTIN  
PCI4410  
Core  
SUSPEND  
GNT  
SUSPENDIN  
PCLKIN  
PCLK  
Figure 3–16. Suspend Functional Implementation  
Figure 3–17 is a signal diagram of the suspend function.  
3–20  
xRST  
GNT  
SUSPEND  
PCLK  
External Terminals  
Internal Signals  
xRSTIN  
SUSPENDIN  
PCLKIN  
Figure 3–17. Signal Diagram of Suspend Function  
3.8.5 Requirements for Suspend Mode  
The suspend mode prevents the clearing of all register contents on the assertion of reset (PRST or GRST) which  
would require the reconfiguration of the PCI4410 by software. Asserting the SUSPEND signal places the controller’s  
PCI outputs in a high-impedance state and gates the PCLK signal internally to the controller unless a PCI transaction  
is currently in process (GNT is asserted). It is important that the PCI bus not be parked on the PCI4410 when  
SUSPEND is asserted because the outputs are in a high-impedance state.  
The GPIOs, MFUNC signals, and RI_OUT signals are all active during SUSPEND, unless they are disabled in the  
appropriate PCI4410 registers.  
3.8.6 Ring Indicate  
The RI_OUT output is an important feature in power management, allowing a system to go into a suspended mode  
and wake up on modem rings and other card events. TI-designed flexibility permits this signal to fit wide platform  
requirements. RI_OUT on the PCI4410 can be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate to the system the presence of an  
incoming call.  
A powered-down CardBus card asserts CSTSCHG (CBWAKE) requesting system and interface wake up.  
A powered CardBus card asserts CSTSCHG from the insertion/removal of cards or change in battery  
voltage levels.  
Figure 3–18 shows various enable bits for the PCI4410 RI_OUT function; however, it does not show the masking of  
CSC events. See Table 3–7 for a detailed description of CSC interrupt masks and flags.  
3–21  
RI_OUT Function  
CSTSMASK  
RIENB  
PC Card  
Socket  
RINGEN  
Card  
I/F  
RI_OUT  
CDRESUME  
Figure 3–18. RI_OUT Functional Diagram  
RI from the 16-bit PC Card interface is masked by bit 7 (RINGEN) in the ExCA interrupt and general control register  
(see Section 5.4). This is programmed on a per-socket basis and is only applicable when a 16-bit card is powered  
in the socket.  
The CBWAKE signaling to RI_OUT is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit (bit 0, CSTSMASK) is programmed through the socket mask register (see Section 6.2) in the CardBus socket  
registers.  
3.8.7 PCI Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges establishes the infrastructure  
required to let the operating system control the power of PCI functions. This is done by defining a standard PCI  
interface and operations to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can  
be assigned one of four software-visible power management states that result in varying levels of power savings.  
The four power management states of PCI functions are:  
D0 – Fully-on state  
D1 and D2 – Intermediate states  
D3 – Off state  
Similarly, bus power states of the PCI bus are B0–B3. The bus power states B0–B3 are derived from the device power  
state of the originating bridge device.  
For the operating system (OS) to manage the device power states on the PCI bus, the PCI function should support  
four power management operations. These operations are:  
Capabilities reporting  
Power status reporting  
Setting the power state  
System wake up  
The OS identifies the capabilities of the PCI function by traversing the new capabilities list. The presence of  
capabilities in addition to the standard PCI capabilities is indicated by a 1 in bit 4 (CAPLIST) of the status register (see  
Section 4.5).  
The capabilities pointer provides access to the first item in the linked list of capabilities. For the PCI4410, a CardBus  
bridge with PCI configuration space header type 2, the capabilities pointer is mapped to an offset of 14h. The first  
byte of each capability register block is required to be a unique ID of that capability. PCI power management has been  
assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there are no more  
items in the list, then the next item pointer should be set to 0. The registers following the next item pointer are specific  
to the function’s capability. The PCI power management capability implements the register block outlined in  
Table 3–10.  
3–22  
Table 3–10. Power Management Registers  
REGISTER NAME  
OFFSET  
A0h  
Power management capabilities  
PMCSR bridge support extensions  
Next item pointer  
Capability ID  
Data  
Power management control status (CSR)  
A4h  
The power management capabilities register (see Section 4.41) is a staticread-onlyregisterthatprovidesinformation  
on the capabilities of the function related to power management. The power management/control status register  
(offset A4h, see Section 4.42) enables control of power management states and enables/monitors power  
management events. The data register is an optional register that can provide dynamic data.  
For more information on PCI power management, see the PCI Bus Power Management Interface Specification for  
PCI to CardBus Bridges.  
3.8.8 CardBus Bridge Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges was approved by PCMCIA in  
December of 1997. This specification follows the device and bus state definitions provided in the PCI Bus Power  
Management Interface Specification published by the PCI Special Interest Group (SIG). The main issue addressed  
inthePCIBusPowerManagementInterfaceSpecificationforPCItoCardBusBridgesiswakeupfromD3 orD3  
without losing wake-up context (also called PME context).  
hot  
cold  
ThespecificissuesaddressedbythePCIBusPowerManagementInterfaceSpecificationforPCItoCardBusBridges  
for D3 wake up are as follows:  
Preservation of device context: The specification states that a reset must occur when transitioning from D3  
to D0. Some method to preserve wake-up context must be implemented so that the reset does not clear  
the PME context registers.  
Power source in D3  
if wake-up support is required from this state.  
cold  
The Texas Instruments PCI4410 addresses these D3 wake-up issues in the following manner:  
Two resets are provided to handle preservation of PME context bits:  
Global reset (GRST) is used only on the initial boot up of the system after power up. It places the  
PCI4410 in its default state and requires BIOS to configure the device before becoming fully functional.  
PCI reset (PRST) now has dual functionality based on whether PME is enabled or not. If PME is  
enabled, then PME context is preserved. If PME is not enabled, then PRST acts the same as a normal  
PCI reset. Please see the master list of PME context bits in Section 3.8.10.  
Power source in D3  
if wake-up support is required from this state. Because V  
is removed in D3  
,
cold  
CC  
cold  
an auxiliary power source must be supplied to the PCI4410 V pins. Consult the PCI14xx Implementation  
CC  
Guide for D3 Wake-Up or the PCI Power Management Interface Specification for PCI to CardBus Bridges  
for further information.  
3.8.9 ACPI Support  
The Advanced Configuration and Power Interface (ACPI) Specification provides a mechanism that allows unique  
pieces of hardware to be described to the ACPI driver. The PCI4410 offers a generic interface that is compliant with  
ACPI design rules.  
Two doublewords of general-purpose ACPI programming bits reside in PCI4410 PCI configuration space at offset  
A8h. The programming model is broken into status and control functions. In compliance with ACPI, the top level event  
status and enable bits reside in the general-purpose event status (see Section 4.45) and general-purpose event  
enable (see Section 4.46) registers.  
3–23  
The status and enable bits generate an event that allows the ACPI driver to call a control method associated with the  
pending status bit. The control method can then control the hardware by manipulating the hardware control bits or  
by investigating child status bits and calling their respective control methods. A hierarchical implementation would  
be somewhat limiting, however, as upstream devices would have to remain in some level of power state to report  
events.  
For more information of ACPI, see the Advanced Configuration and Power Interface (ACPI) Specification.  
3.8.10 Master List of PME Context Bits and Global Reset Only Bits  
If the PME enable bit (PCI offset A4h, bit 8) is asserted, then the assertion of PRST will not clear the following PME  
context bits. If the PME enable bit is not asserted, then the PME context bits are cleared with PRST. The PME context  
bits are:  
Bridge control register (PCI offset 3Eh): bit 6  
Power management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA offset 802h): bits 4, 3, 1, 0  
ExCA interrupt and general control (ExCA offset 803h): bits 6, 5  
ExCA card status change interrupt register (ExCA offset 805h): bits 3–0  
CardBus socket event register (CardBus offset 00h): bits 3–0  
CardBus socket mask register (CardBus offset 04h): bits 3–0  
CardBus socket present state register (CardBus offset 08h): bits 13–10, 7, 5–0  
CardBus socket control register (CardBus offset 10h): bits 6–4, 2–0  
Global reset places all registers in their default state regardless of the state of the PME enable bit. The GRST signal  
is gated only by the SUSPEND signal. This means that assertion of SUSPEND blocks the GRST signal internally,  
thus preserving all register contents. The registers cleared by GRST are:  
Subsystem ID/subsystem vendor ID (PCI offset 40h): bits 31–0  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 31–1  
System control register (PCI offset 80h): bits 31–24, 22–14, 6–3, 1, 0  
General status register (PCI offset 85h): bits 2–0  
General control register (PCI offset 86h): bits 3, 1, 0  
Multifunction routing register (PCI offset 8Ch): bits 27–0  
Retry status register (PCI offset 90h): bits 7, 6, 3, 1  
Card control register (PCI offset 91h): bits 7–5, 2–0  
Device control register (PCI offset 92h): bits 7–0  
Diagnostic register (PCI offset 93h): bits 7–0  
Socket DMA register 0 (PCI offset 94h): bits 1–0  
Socket DMA register 1 (PCI offset 98h): bits 15–4, 2–0  
Power management capabilities register (PCI offset A2h): bit 15  
General-purpose event enable register (PCI offset AAh): bits 15, 11, 8, 4–0  
General-purpose output register (PCI offset AEh): bits 4–0  
PCI miscellaneous configuration register (OHCI function, PCI offset F0h): bits 15, 13, 10, 2–0  
Link enhancements register (OHCI function, PCI offset F4h): bits 13, 12, 9–7, 2, 1  
GPIO control register (OHCI function, PCI offset FCh): bits 29, 28, 24, 21, 20, 16, 15, 13, 12, 8, 7, 5, 4, 0  
Global unique ID low/high (OHCI function, PCI offset 24h–28h): bits 31–0  
ExCA identification and revision register (ExCA offset 00h): bits 7–0  
ExCA card status change register (ExCA offset 804h): bits 3–0  
ExCA global control register (ExCA offset 1Eh): bits 3–0  
3–24  
4 PC Card Controller Programming Model  
This section describes the PCI4410 PCI configuration registers that make up the 256-byte PCI configuration header  
for each PCI4410 function. As noted, some bits are global in nature and are accessed only through function 0.  
4.1 PCI Configuration Registers (Functions 0 and 1)  
The PCI4410 is a multifunction PCI device, and the PC Card controller is integrated as PCI functions 0 and 1. The  
configuration header is compliant with the PCI Local Bus Specification as a CardBus bridge header and is PC 99  
compliant as well. Table 4–1 shows the PCI configuration header, which includes both the predefined portion of the  
configuration space and the user-definable registers.  
Table 4–1. PCI Configuration Registers (Functions 0 and 1)  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
PCI class code  
Revision ID  
08h  
BIST  
Header type  
Latency timer  
Cache line size  
0Ch  
10h  
CardBus socket/ExCA base address  
Reserved  
CardBus bus number  
Secondary status  
Capability pointer  
PCI bus number  
14h  
CardBus latency timer  
Subordinate bus number  
18h  
CardBus Memory base register 0  
1Ch  
20h  
CardBus Memory limit register 0  
CardBus Memory base register 1  
CardBus Memory limit register 1  
CardBus I/O base register 0  
CardBus I/O limit register 0  
CardBus I/O base register 1  
CardBus I/O limit register 1  
24h  
28h  
2Ch  
30h  
34h  
38h  
Bridge control  
Subsystem ID  
Interrupt pin  
Interrupt line  
3Ch  
40h  
Subsystem vendor ID  
PC Card 16-bit I/F legacy-mode base address  
44h  
Reserved  
48h–7Ch  
80h  
System control  
Reserved  
Diagnostic  
General control  
General status  
Reserved  
84h  
Reserved  
Multifunction routing  
Device control Card control  
88h–8Bh  
8Ch  
90h  
Retry status  
Socket DMA register 0  
Socket DMA register 1  
Reserved  
94h  
98h  
9Ch  
A0h  
Power management capabilities  
Power management  
Next-item pointer  
Capability ID  
Power management data  
control/status register  
Power management control/status  
A4h  
bridge support extensions  
General-purpose event enable  
General-purpose output  
General-purpose event status  
General-purpose input  
A8h  
ACh  
Reserved  
B0h–FCh  
4–1  
4.2 Vendor ID Register  
This 16-bit register contains a value allocated by the PCI SIG (special interest group) and identifies the manufacturer  
of the PCI device. The vendor ID assigned to TI is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
00h  
104Ch  
4.3 Device ID Register  
This 16-bit register contains a value assigned to the PCI4410 by TI. The device identification for the PCI4410 is  
AC41h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Device ID  
Read-only  
02h  
AC41h  
4–2  
4.4 Command Register  
The command register provides control over the PCI4410 interface to the PCI bus. All bit functions adhere to the  
definitions in PCI Local Bus Specification. See Table 4–2 for the complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Command  
Read-only, Read/Write  
Offset:  
Default:  
04h  
0000h  
Table 4–2. Command Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15–10  
RSVD  
R
Reserved. Bits 15–10 return 0s when read.  
Fast back-to-back enable. The PCI4410 does not generate fast back-to-back transactions; therefore, bit 9  
returns 0 when read.  
9
8
7
6
FBB_EN  
SERR_EN  
STEP_EN  
PERR_EN  
R
System error (SERR) enable. Bit 8 controls the enable for the SERR driver on the PCI interface. SERR can  
be asserted after detecting an address parity error on the PCI bus. Both bits 8 and 6 must be set for the  
PCI4410 to report address parity errors.  
R/W  
R
0 = Disable SERR output driver (default)  
1 = Enable SERR output driver  
Address/data stepping control. The PCI4410 does not support address/data stepping; therefore, bit 7 is  
hardwired to 0.  
Parity error response enable. Bit 6 controls the PCI4410’s response to parity errors through PERR. Data  
parity errors are indicated by asserting PERR, whereas address parity errors are indicated by asserting  
SERR.  
R/W  
0 = PCI4410 ignores detected parity error (default)  
1 = PCI4410 responds to detected parity errors  
VGApalettesnoop. Whenbit5issetto1, palettesnoopingisenabled(thatis, thePCI4410doesnotrespond  
to palette register writes and snoops the data). When bit 5 is 0, the PCI4410 treats all palette accesses like  
all other accesses.  
5
VGA_EN  
R/W  
Memory write and invalidate enable. Bit 4 controls whether a PCI initiator device can generate memory  
write-and-Invalidate commands. The PCI4410 controller does not support memory write and invalidate  
commands. It uses memory write commands instead; therefore, this bit is hardwired to 0.  
4
3
MWI_EN  
SPECIAL  
R
R
Special cycles. Bit 3 controls whether or not a PCI device ignores PCI special cycles. The PCI4410 does  
not respond to special cycle operations; therefore, this bit is hardwired to 0.  
Bus master control. Bit 2 controls whether or not the PCI4410 can act as a PCI bus initiator (master). The  
PCI4410 can take control of the PCI bus only when this bit is set.  
2
MAST_EN  
R/W  
0 = Disables the PCI4410’s ability to generate PCI bus accesses (default)  
1 = Enables the PCI4410’s ability to generate PCI bus accesses  
Memory space enable. Bit 1 controls whether or not the PCI4410 can claim cycles in PCI memory space.  
0 = Disables the PCI4410’s response to memory space accesses (default)  
1 = Enables the PCI4410’s response to memory space accesses  
1
0
MEM_EN  
IO_EN  
R/W  
R/W  
I/O space control. Bit 0 controls whether or not the PCI4410 can claim cycles in PCI I/O space.  
0 = Disables the PCI4410 from responding to I/O space accesses (default)  
1 = Enables the PCI4410 to respond to I/O space accesses  
4–3  
4.5 Status Register  
The status register provides device information to the host system. Bits in this register may be read normally. A bit  
in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit  
functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each function.  
See Table 4–3 for the complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Type:  
Status  
Read-only, Read/Write to Clear  
Offset:  
Default:  
06h  
0210h  
Table 4–3. Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. Bit 15 is set when a parity error is detected (either address or data).  
15  
PAR_ERR  
R/C  
Signaled system error. Bit 14 is set when SERR is enabled and the PCI4410 signals a system error to the  
host.  
14  
13  
SYS_ERR  
MABORT  
R/C  
R/C  
R/C  
R/C  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI4410 on the PCI bus has been  
terminated by a master abort.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI4410 on the PCI bus was terminated  
by a target abort.  
12  
TABT_REC  
TABT_SIG  
PCI_SPEED  
Signaled target abort. Bit 11 is set by the PCI4410 when it terminates a transaction on the PCI bus with a  
target abort.  
11  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b, indicating that the  
PCI4410 asserts PCI_SPEED at a medium speed on nonconfiguration cycle accesses.  
10–9  
Data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred, and the following conditions were met:  
a. PERR was asserted by any PCI device including the PCI4410.  
b. The PCI4410 was the bus master during the data parity error.  
c. The parity error response bit is set in the command.  
8
DATAPAR  
R/C  
Fast back-to-back capable. The PCI4410 cannot accept fast back-to-back transactions; therefore, bit 7 is  
hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable feature support. The PCI4410 does not support the user-definable features; therefore, bit 6  
is hardwired to 0.  
66-MHz capable. The PCI4410 operates at a maximum PCLK frequency of 33 MHz; therefore, bit 5 is  
hardwired to 0.  
66MHZ  
Capabilities list. Bit 4 returns 1 when read. This bit indicates that capabilities in addition to standard PCI  
capabilities are implemented. The linked list of PCI power management capabilities is implemented in this  
function.  
4
CAPLIST  
RSVD  
R
R
3–0  
Reserved. Bits 3–0 return 0s when read.  
4–4  
4.6 Revision ID Register  
The revision ID register indicates the silicon revision of the PCI4410.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Revision ID  
Read-only  
08h  
01h  
4.7 PCI Class Code Register  
The class code register recognizes the PCI4410 as a bridge device (06h) and CardBus bridge device (07h) with a  
00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Name  
PCI class code  
Base class  
Subclass  
Programming interface  
Type  
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default  
Register:  
Type:  
Offset:  
Default:  
PCI class code  
Read-only  
09h  
060700h  
4.8 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Cache line size  
Read/Write  
0Ch  
00h  
4–5  
4.9 Latency Timer Register  
The latency timer register specifies the latency timer for the PCI4410 in units of PCI clock cycles. When the PCI4410  
is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the latency timer expires  
before the PCI4410 transaction has terminated, then the PCI4410 terminates the transaction when its GNT is  
deasserted.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer  
Read/Write  
0Dh  
00h  
4.10 Header Type Register  
This register returns 82h when read, indicating that the PCI4410 configuration spaces adhere to the CardBus bridge  
PCI header. The CardBus bridge PCI header ranges from PCI register 0 to 7Fh, and 80h–FFh are user-definable  
extension registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Header type  
Read-only  
0Eh  
82h  
4.11 BIST Register  
Because the PCI4410 does not support a built-in self-test (BIST), this register returns the value of 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
BIST  
Read-only  
0Fh  
00h  
4–6  
4.12 CardBus Socket/ExCA Base-Address Register  
The CardBus socket/ExCA base-address register is programmed with a base address referencing the CardBus  
socket registers and the memory-mapped ExCA register set. Bits 31–12 are read/write and allow the base address  
to be located anywhere in the 32-bit PCI memory address space on a 4-Kbyte boundary. Bits 11–0 are read-only,  
returning 0s when read. When software writes all 1s to this register, the value read back is FFFF F000h, indicating  
that at least 4K bytes of memory address space are required. The CardBus registers start at offset 000h, and the  
memory-mapped ExCA registers begin at offset 800h.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CardBus socket/ExCA base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus socket/ExCA base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CardBus socket/ExCA base-address  
Read-only, Read/Write  
10h  
0000 0000h  
4.13 Capability Pointer Register  
ThecapabilitypointerregisterprovidesapointerintothePCIconfigurationheaderwherethePCIpowermanagement  
register block resides. PCI header doublewords at A0h and A4h provide the power management (PM) registers. The  
socket has its own capability pointer register. This register returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability pointer  
R
1
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Capability pointer  
Read-only  
14h  
A0h  
4–7  
4.14 Secondary Status Register  
The secondary status register is compatible with the PCI-to-PCI bridge secondary status register and indicates  
CardBus-related device information to the host system. This register is very similar to the PCI status register (offset  
06h); status bits are cleared by writing a 1. See Table 4–4 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Secondary status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Secondary status  
Read-only, Read/Write to Clear  
Offset:  
Default:  
16h  
0200h  
Table 4–4. Secondary Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
CBPARITY  
R/C  
Detected parity error. Bit 15 is set when a CardBus parity error is detected (either address or data).  
Signaled system error. Bit 14 is set when CSERR is signaled by a CardBus card. The PCI4410 does not  
assert CSERR.  
14  
13  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
R/C  
R/C  
R/C  
R/C  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI4410 on the CardBus bus has been  
terminated by a master abort.  
Receivedtarget abort. Bit 12 is set when a cycle initiated by the PCI4410 ontheCardBusbusisterminated  
by a target abort.  
12  
Signaled target abort. Bit 11 is set by the PCI4410 when it terminates a transaction on the CardBus bus  
with a target abort.  
11  
CDEVSEL timing. These bits encode the timing of CDEVSEL and are hardwired 01b, indicating that the  
PCI4410 asserts CB_SPEED at a medium speed.  
10–9  
CardBus data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
b. The PCI4410 was the bus master during the data parity error.  
c. The parity error response bit is set in the bridge control.  
8
CB_DPAR  
R/C  
Fast back-to-back capable. The PCI4410 cannot accept fast back-to-back transactions; therefore, bit 7  
is hardwired to 0.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definablefeaturesupport.ThePCI4410doesnotsupporttheuser-definablefeatures;therefore, bit6  
is hardwired to 0.  
66-MHz capable. The PCI4410 CardBus interface operates at a maximum CCLK frequency of 33 MHz;  
therefore, bit 5 is hardwired to 0.  
5
CB66MHZ  
RSVD  
R
R
4–0  
Reserved. Bits 4–0 return 0s when read.  
4–8  
4.15 PCI Bus Number Register  
This register is programmed by the host system to indicate the bus number of the PCI bus to which the PCI4410 is  
connected. The PCI4410 uses this register in conjunction with the CardBus bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI bus number  
Read/Write  
18h  
00h  
4.16 CardBus Bus Number Register  
This register is programmed by the host system to indicate the bus number of the CardBus bus to which the PCI4410  
is connected. The PCI4410 uses this register in conjunction with the PCI bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
CardBus bus number  
Read/Write  
19h  
00h  
4.17 Subordinate Bus Number Register  
This register is programmed by the host system to indicate the highest-numbered bus below the CardBus bus. The  
PCI4410 uses this register in conjunction with the PCI bus number and CardBus bus number registers to determine  
when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subordinate bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subordinate bus number  
Read/Write  
1Ah  
00h  
4–9  
4.18 CardBus Latency Timer Register  
This register is programmed by the host system to specify the latency timer for the PCI4410 CardBus interface in units  
of CCLK cycles. When the PCI4410 is a CardBus initiator and asserts CFRAME, the CardBus latency timer begins  
counting. If the latency timer expires before the PCI4410 transaction has terminated, then the PCI4410 terminates  
the transaction at the end of the next data phase. A recommended minimum value for this register is 20h, which allows  
most transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
CardBus latency timer  
Read/Write  
1Bh  
00h  
4.19 Memory Base Registers 0, 1  
The memory base registers indicate the lower address of a PCI memory address range. These registers are used  
by the PCI4410 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBuscycle to PCI. Bits 31–12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11–0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register (see Section 4.25) specify whether  
memorywindows0and1areprefetchableornonprefetchable. Thememorybaseregisterorthememorylimitregister  
must be nonzero for the PCI4410 to claim any memory transactions through CardBus memory windows (that is, these  
windows are not enabled by default to pass the first 4K bytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory base registers 0, 1  
Read-only, Read/Write  
1Ch, 24h  
0000 0000h  
4–10  
4.20 Memory Limit Registers 0, 1  
The memory limit registers indicate the upper address of a PCI memory address range. These registers are used  
by the PCI4410 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBuscycle to PCI. Bits 31–12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11–0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register specify whether memory windows  
0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must be nonzero  
for the PCI4410 to claim any memory transactions through CardBus memory windows (that is, these windows are  
not enabled by default to pass the first 4K bytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory limit registers 0, 1  
Read-only, Read/Write  
20h, 28h  
0000 0000h  
4.21 I/O Base Registers 0, 1  
The I/O base registers indicate the lower address of a PCI I/O address range. These registers are used by the  
PCI4410 to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle  
to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page, and the  
upper 16 bits (31–16) are a page register which locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 31–2  
are read/write. Bits 1 and 0 are read-only and always return 0s, forcing I/O windows to be aligned on a natural  
doubleword boundary.  
NOTE: Either the I/O base or the I/O limit register must be nonzero to enable any I/O  
transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O base registers 0, 1  
Read-only, Read/Write  
2Ch, 34h  
0000 0000h  
4–11  
4.22 I/O Limit Registers 0, 1  
TheI/OlimitregistersindicatetheupperaddressofaPCII/Oaddressrange. TheseregistersareusedbythePCI4410  
to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle to PCI.  
The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page, and the upper 16 bits are  
a page register that locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 15–2 are read/write and allow  
the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 31–16 of the appropriate I/O base)  
on doubleword boundaries.  
Bits 31–16 are read-only and always return 0s when read. The page is set in the I/O base register. Bits 1 and 0 are  
read-only and always return 0s, forcing I/O windows to be aligned on a natural doubleword boundary. Write  
transactions to read-only bits have no effect. The PCI4410 assumes that the lower 2 bits of the limit address are 1s.  
NOTE: The I/O base or the I/O limit register must be nonzero to enable an I/O transaction.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O limit registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
I/O limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O limit registers 0, 1  
Read-only, Read/Write  
30h, 38h  
0000 0000h  
4.23 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Register:  
Type:  
Offset:  
Default:  
Interrupt line  
Read/Write  
3Ch  
FFh  
4–12  
4.24 Interrupt Pin Register  
The value read from the interrupt pin register is function dependent and depends on the interrupt signaling mode,  
selected through bits 2–1 (INTMODE field) of the device control register (see Section 4.35). The PCI4410 defaults  
to serialized PCI and ISA interrupt mode.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Interrupt pin  
Read-only  
3Dh  
01h  
4–13  
4.25 Bridge Control Register  
The bridge control register provides control over various PCI4410 bridging functions. See Table 4–5 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bridge control  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Bridge control  
Read-only, Read/Write  
Offset:  
Default:  
3Eh  
0340h  
Table 4–5. Bridge Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15–11  
RSVD  
R
Reserved. Bits 15–11 return 0s when read.  
Write posting enable. Enables write posting to and from the CardBus sockets. Write posting enables  
posting of write data on burst cycles. Operating with write posting disabled inhibits performance on burst  
cycles. Note that bursted write data can be posted, but various write transactions may not.  
10  
9
POSTEN  
R/W  
R/W  
Memory window 1 type. Bit 9 specifies whether or not memory window 1 is prefetchable. This bit is socket  
dependent. Bit 9 is encoded as:  
PREFETCH1  
0 = Memory window 1 is nonprefetchable.  
1 = Memory window 1 is prefetchable (default).  
Memory window 0 type. Bit 8 specifies whether or not memory window 0 is prefetchable. This bit is  
encoded as:  
8
7
6
5
PREFETCH0  
INTR  
R/W  
R/W  
R/W  
R/W  
0 = Memory window 0 is nonprefetchable.  
1 = Memory window 0 is prefetchable (default).  
PCI interrupt – IREQ routing enable. Bit 7 selects whether PC Card functional interrupts are routed to PCI  
interrupts or to the IRQ specified in the ExCA registers.  
0 = Functional interrupts routed to PCI interrupts (default)  
1 = Functional interrupts routed to IRQ interrupts  
CardBus reset. When bit 6 is set, CRST is asserted on the CardBus interface. CRST can also be asserted  
by passing a PRST assertion to CardBus.  
0 = CRST deasserted  
CRST  
1 = CRST asserted (default)  
Master abort mode. Bit 5 controls how the PCI4410 responds to a master abort when the PCI4410 is an  
initiator on the CardBus interface.  
MABTMODE  
0 = Master aborts not signaled (default)  
1 = Signal target abort on PCI. Signal SERR (if enabled)  
4
3
RSVD  
R
Reserved. Bit 4 returns 0 when read.  
VGA enable. Bit 3 affects how the PCI4410 responds to VGA addresses. When this bit is set, accesses  
to VGA addresses are forwarded.  
VGAEN  
R/W  
ISA mode enable. Bit 2 affects how the PCI4410 passes I/O cycles within the 64-Kbyte ISA range. This  
bit is not common between sockets. When this bit is set, the PCI4410 does not forward the last 768 bytes  
of each 1K I/O range to CardBus.  
2
1
0
ISAEN  
R/W  
R/W  
R/W  
CSERR enable. Bit 1 controls the response of the PCI4410 to CSERR signals on the CardBus bus.  
0 = CSERR is not forwarded to PCI SERR.  
CSERREN  
CPERREN  
1 = CSERR is forwarded to PCI SERR.  
CardBusparityerrorresponseenable. Bit0controlstheresponseofthePCI4410toCardBusparityerrors.  
0 = CardBus parity errors are ignored.  
1 = CardBus parity errors are reported using CPERR.  
4–14  
4.26 Subsystem Vendor ID Register  
The subsystem vendor ID register is used for system and option-card identification purposes and may be required  
for certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem vendor ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
40h  
0000h  
4.27 Subsystem ID Register  
The subsystem ID register is used for system and option-card identification purposes and may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
42h  
0000h  
4.28 PC Card 16-Bit I/F Legacy-Mode Base-Address Register  
The PCI4410 supports the index/data scheme of accessing the ExCA registers, which is mapped by this register. An  
address written to this register is the address for the index register and the address + 1 is the data address. Using  
this access method, applications requiring index/data ExCA access can be supported. The base address can be  
mapped anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1 when read. See  
Section 5, ExCA Compatibility Registers, for register offsets.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PC Card 16-bit I/F legacy-mode base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
1
Register:  
Type:  
Offset:  
Default:  
PC Card 16-bit I/F legacy-mode base-address  
Read-only, Read/Write  
44h  
0000 0001h  
4–15  
4.29 System Control Register  
System-level initializations are performed through programming this doubleword register. See Table 4–6 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
System control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/C  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
System control  
R/W  
1
R/W  
0
R
0
R
1
R
0
R
0
R
0
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
System control  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
80h  
0044 9060h  
4–16  
Table 4–6. System Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
SerializedPCIinterruptroutingstep.Bits31and30configuretheserializedPCIinterruptstreamsignaling  
and accomplish an even distribution of interrupts signaled on the four PCI interrupt slots. Bits 31 and 30  
are global to all PCI4410 functions.  
31–30  
SER_STEP  
R/W  
00 = INTA/INTB signal in INTA/INTB slots (default)  
01 = INTA/INTB signal in INTB/INTC slots  
10 = INTA/INTB signal in INTC/INTD slots  
11 = INTA/INTB signal in INTD/INTA slots  
29  
28  
TIE_INTB_INTA  
DIAGNOSTIC  
R/W  
R/W  
Tie INTB to INTA. When bit 29 is set to 1, INTB is tied to INTA (default is 0).  
TI diagnostic (IIC_Test) bit (default is 0).  
Internal oscillator enable.  
27  
OSEN  
R/W  
0 = Internal oscillator disabled (default)  
1 = Internal oscillator enabled.  
SMI interrupt routing. Bit 26 selects whether IRQ2 or CSC is signaled when a write occurs to power a PC  
Card socket.  
26  
SMIROUTE  
R/W  
0 = PC Card power change interrupts routed to IRQ2 (default)  
1 = A CSC interrupt is generated on PC Card power changes.  
SMIinterrupt status. This bit is set when bit 24 (SMIENB) is set and a write occurs to set the socket power.  
Writing a 1 to bit 25 clears the status.  
25  
24  
SMISTATUS  
SMIENB  
R/C  
0 = SMI interrupt signaled (default)  
1 = SMI interrupt not signaled  
SMI interrupt mode enable. When bit 24 is set and a write to the socket power control occurs, the SMI  
interrupt signaling is enabled and generates an interrupt.  
R/W  
PCI Bus Power Management Interface Specification revision 1.1 enable.  
0 = Use PCI Bus Power Management Interface Specification revision 1.0 implementation (default).  
1 = Use PCI Bus Power Management Interface Specification revision 1.1 implementation.  
Note: See power management capability register (PCI offset A2h) (Section 4.41), VERSION bits 2–0 for  
additional information.  
23  
PCIPMEN  
R/W  
CardBus reserved terminals signaling. When a CardBus card is inserted and bit 22 is set, the RSVD  
CardBus terminals are driven low. When this bit is 0, these signals are placed in a high-impedance state.  
0 = 3-state CardBus RSVD  
22  
21  
CBRSVD  
R/W  
R/W  
1 = Drive Cardbus RSVD low (default)  
V
protection enable.  
CC  
0 = V  
VCCPROT  
protection enabled for 16-bit cards (default)  
protection disabled for 16-bit cards  
CC  
CC  
1 = V  
Reduced zoomed video enable. When this bit is enabled, pins A25–A22 of the card interface for PC  
Card-16cards are placed in the high-impedance state. This bit should not be set for normal ZV operation.  
This bit is encoded as:  
20  
REDUCEZV  
R/W  
0 = Reduced zoomed video disabled (default)  
1 = Reduced zoomed video enabled  
PC/PCI DMA card enable. When bit 19 is set, the PCI4410 allows 16-bit PC Cards to request PC/PCI  
DMAusingtheDREQsignaling. DREQ is selected through the socket DMA register 0 (see Section 4.37).  
0 = Ignore DREQ signaling from PC Cards (default)  
19  
18–16  
15  
CDREQEN  
CDMACHAN  
MRBURSTDN  
R/W  
R/W  
R/W  
1 = Signal DMA request on DREQ  
PC/PCI DMA channel assignment. Bits 18–16 are encoded as:  
0–3 = 8-bit DMA channels  
4 = PCI master; not used (default)  
5–7 = 16-bit DMA channels  
Memory read burst enable downstream. When bit 15 is set, memory read transactions are allowed to  
burst downstream.  
0 = Downstream memory read burst is disabled.  
1 = Downstream memory read burst is enabled (default).  
4–17  
Table 4–6. System Control Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Memory read burst enable upstream. When bit 14 is set, the PCI4410 allows memory read transactions  
to burst upstream.  
14  
MRBURSTUP  
R/W  
0 = Upstream memory read burst is disabled (default).  
1 = Upstream memory read burst is enabled.  
Socket activity status. When set, bit 13 indicates access has been performed to or from a PC card and  
is cleared upon read of this status bit.  
0 = No socket activity (default)  
1 = Socket activity  
13  
12  
SOCACTIVE  
RSVD  
R
R
Reserved. Bit 12 returns 1 when read.  
Power stream in progress status bit. When set, bit 11 indicates that a power stream to the power switch  
is in progress and a powering change has been requested. This bit is cleared when the power stream  
is complete.  
11  
PWRSTREAM  
R
0 = Power stream is complete and delay has expired.  
1 = Power stream is in progress.  
Power-up delay in progress status. When set, bit 9 indicates that a power-up stream has been sent to  
the power switch and proper power may not yet be stable. This bit is cleared when the power-up delay  
has expired.  
10  
9
DELAYUP  
R
R
Power-down delay in progress status. When set, bit 10 indicates that a power-down stream has been  
sent to the power switch and proper power may not yet be stable. This bit is cleared when the  
power-down delay has expired.  
DELAYDOWN  
Interrogation in progress. When set, bit 8 indicates an interrogation is in progress and clears when  
interrogation completes. This bit is socket dependent.  
0 = Interrogation not in progress (default)  
8
INTERROGATE  
R
1 = Interrogation in progress  
Auto power switch enable.  
0 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (see Section 5.3) is disabled.  
(default).  
1 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (see Section 5.3) is enabled.  
7
6
AUTOPWRSWEN  
PWRSAVINGS  
R/W  
R/W  
Power savings mode enable. When this bit is set, if a CB card is inserted, idle, and without a CB clock,  
then the applicable CB state machine will not be clocked.  
Subsystem ID (see Section 4.27), subsystem vendor ID (see Section 4.26), ExCA identification and  
revision (see Section 5.1) registers read/write enable.  
0 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read/write.  
1 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read-only  
(default).  
5
SUBSYSRW  
R/W  
CardBus data parity error SERR signaling enable  
0 = CardBus data parity error not signaled on PCI SERR  
1 = CardBus data parity eror signaled on PCI SERR  
4
3
CB_DPAR  
CDMA_EN  
R/W  
R/W  
PC/PCI DMA enable. Bit 3 enables PC/PCI DMA when set if MFUNC0–MFUNC6 are configured for  
centralized DMA.  
0 = Centralized DMA disabled (default)  
1 = Centralized DMA enabled  
ExCA power control bit. Enabled by selecting the 82365SL mode.  
2
1
ExCAPower  
KEEPCLK  
R/W  
R/W  
0 = Enables 3.3 V  
1 = Enables 5 V  
Keep clock. This bit works with PCI and CB CLKRUN protocols.  
0 = Allows normal functioning of both CLKRUN protocols (default)  
1 = Does not allow CB clock or PCI clock to be stopped using the CLKRUN protocols  
RI_OUT/PME multiplex enable.  
0 = RI_OUT and PME are both routed to the RI_OUT/PME terminal. If both are enabled at the  
same time, then RI_OUT has precedence over PME.  
1 = Only PME is routed to the RI_OUT/PME terminal.  
0
RIMUX  
R/W  
4–18  
4.30 General Status Register  
Thegeneralstatusregisterprovidesthegeneraldevicestatusinformation. ThestatusoftheserialEEPROMinterface  
is provided through this register. See Table 4–7 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General status  
R
0
R
0
R
0
R
0
R
0
R/U  
X
R
0
R
0
Register:  
Type:  
General status  
Read/UpdateRead-only, Read/Clear  
Offset:  
Default:  
85h (Function 0)  
00h  
Table 4–7. General Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7–3  
RSVD  
R
Reserved. Bits 7–3 return 0s when read.  
Serial EEPROM detect. Serial EEPROM is detected by sampling a logic high on SCL while PRST is low.  
When this bit is set, the serial ROM is detected. This status bit is encoded as:  
0 = EEPROM not detected (default)  
2
1
0
EEDETECT  
DATAERR  
EEBUSY  
R
R/C  
R
1 = EEPROM detected  
Serial EEPROM data error status. This bit indicates when a data error occurs on the serial EEPROM  
interface. This bit may be set due to a missing acknowledge. This bit is cleared by a writeback of 1.  
0 = No error detected (default)  
1 = Data error detected  
Serial EEPROM busy status. This bit indicates the status of the PCI4410 serial EEPROM circuitry. This  
bit is set during the loading of the subsystem ID value.  
0 = Serial EEPROM circuitry is not busy (default).  
1 = Serial EEPROM circuitry is busy.  
4.31 General Control Register  
The general control register provides top level PCI arbitration control. See Table 4–8 for a complete description of  
the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General control  
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
General control  
Read-Only, Read/Write  
Offset:  
Default:  
86h  
00h  
Table 4–8. General Control Register  
BIT  
7–4  
3
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. Bits 7–4 return 0s when read.  
DISABLE_OHCI  
RSVD  
R/W When bit 3 is set, the open HCI 1394 controller function is completely nonaccessible and nonfunctional.  
2
R
Reserved. Bit 2 returns 0 when read.  
Controls top level PCI arbitration.  
00 = 1394 open HCI priority  
01 = CardBus priority  
1–0  
ARB_CTRL  
RW  
10 = Fair round robin  
11 = Reserved (fair round robin)  
4–19  
4.32 Multifunction Routing Register  
The multifunction routing register is used to configure the MFUNC0–MFUNC6 terminals. These terminals may be  
configured for various functions. All multifunction terminals default to the general-purpose input configuration. This  
register is intended to be programmed once at power-on initialization. The default value for this register may also be  
loaded through a serial bus EEPROM. See Table 4–9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Multifunction routing  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multifunction routing  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Multifunction routing  
Read-only, Read/Write  
8Ch  
0000 0000h  
Table 4–9. Multifunction Routing Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–28  
RSVD  
R
Bits 31–28 return 0s when read.  
Multifunction terminal 6 configuration. These bits control the internal signal mapped to the MFUNC6 terminal  
as follows:  
0000 = RSVD  
0001 = CLKRUN  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
27–24  
23–20  
MFUNC6  
MFUNC5  
R/W  
R/W  
Multifunction terminal 5 configuration. These bits control the internal signal mapped to the MFUNC5 terminal  
as follows:  
0000 = GPI4  
0001 = GPO4  
0010 = PCGNT  
0011 = IRQ3  
0100 = IRQ4  
0101 = D3_STAT 1001 = IRQ9  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1100 = LED_SKT  
1101 = Diagnostic setup: OHCI test  
1110 = GPE  
1010 = IRQ10  
1011 = IRQ11  
1111 = IRQ15  
Multifunction terminal 4 configuration. These bits control the internal signal mapped to the MFUNC4 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC4 terminal provides the SCL signaling.  
19–16  
MFUNC4  
R/W  
0000 = GPI3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO3  
0010 = PCI LOCK  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 3 configuration. These bits control the internal signal mapped to the MFUNC3 terminal  
as follows:  
0000 = RSVD  
0001 = IRQSER  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
15–12  
11–8  
MFUNC3  
MFUNC2  
R/W  
R/W  
Multifunction terminal 2 configuration. These bits control the internal signal mapped to the MFUNC2 terminal  
as follows:  
0000 = GPI2  
0001 = GPO2  
0010 = PCREQ  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = D3_STAT  
1110 = GPE  
1111 = IRQ7  
4–20  
Table 4–9. Multifunction Routing Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Multifunction terminal 1 configuration. These bits control the internal signal mapped to the MFUNC1 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC1 terminal provides the SDA signaling.  
7–4  
MFUNC1  
R/W  
0000 = GPI1  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
0001 = GPO1  
0010 = D3_STAT  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 0 configuration. These bits control the internal signal mapped to the MFUNC0 terminal  
as follows:  
0000 = GPI0  
0001 = GPO0  
0010 = INTA  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
3–0  
MFUNC0  
R/W  
1111 = IRQ15  
4.33 Retry Status Register  
The retry status register enables the retry timeout counters and displays the retry expiration status. The flags are set  
15  
when the PCI4410 retries a PCI or CardBus master request and the master does not return within 2 PCI clock  
cycles. The flags are cleared by writing a 1 to the bit. These bits are expected to be incorporated into the PCI  
command, PCI status, and bridge control registers by the PCI SIG. See Table 4–10 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Retry status  
R/W  
1
R/W  
1
R
0
R
0
R/C  
0
R
0
R/C  
0
R
0
Register:  
Type:  
Retry status  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
90h  
C0h  
Table 4–10. Retry Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry timeout counter enable. Bit 7 is encoded:  
7
PCIRETRY  
R/W  
0 = PCI retry counter disabled  
1 = PCI retry counter enabled (default)  
CardBus retry timeout counter enable. Bit 6 is encoded:  
0 = CardBus retry counter disabled  
6
5–4  
3
CBRETRY  
RSVD  
R/W  
R
1 = CardBus retry counter enabled (default)  
Reserved. Bits 5 and 4 return 0s when read.  
CardBus target retry expired. Write a 1 to clear bit 3.  
0 = Inactive (default)  
TEXP_CB  
RSVD  
R/C  
R
1 = Retry has expired.  
2
Reserved. Bit 2 returns 0 when read.  
PCI target retry expired. Write a 1 to clear bit 1.  
0 = Inactive (default)  
1
TEXP_PCI  
RSVD  
R/C  
R
1 = Retry has expired.  
0
Reserved. Bit 0 returns 0 when read.  
4–21  
4.34 Card Control Register  
The card control register is provided for PCI1130 compatibility. RI_OUT is enabled through this register. See  
Table 4–11 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Card control  
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/C  
0
Register:  
Type:  
Card control  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
91h  
00h  
Table 4–11. Card Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ring indicate output enable.  
0 = Disables any routing of RI_OUT signal (default)  
1 = Enables RI_OUT signal for routing to the RI_OUT/PME terminal, when bit 0 (RIMUX) in the  
system control register (see Section 4.29) is set to 0, and for routing to MFUNC2 or MFUNC4.  
7
RIENB  
R/W  
Compatibility ZV mode enable. When set, the PC Card socket interface ZV terminals enter a  
high-impedance state. This bit defaults to 0.  
6
5
ZVENABLE  
R/W  
R/W  
ZV output port enable. When bit 5 is set, the ZV output port is enabled. If bit 6 (ZVENABLE) is set, then  
ZV data from the PC Card interface is routed to the ZV output port. Otherwise, the ZV output port drives  
a stable 0 pattern on all pins.  
ZV  
PORT_ENABLE  
When bit 5 is not set, the ZV output port pins are placed in a high-impedance state. Default is 0.  
Reserved. Bits 4 and 3 return 0 when read.  
4–3  
2
RSVD  
R
CardBus audio-to-IRQMUX. When set, the CAUDIO CardBus signal is routed to the corresponding  
multifunction terminal which may be configured for CAUDPWM.  
AUD2MUX  
R/W  
Speaker out enable. When bit 1 is set, SPKR on the PC Card is enabled and is routed to SPKROUT.  
TheSPKROUTterminaldrivesdataonlywhenthesocket’s SPKROUTEN bit is set. This bit is encoded  
as:  
1
0
SPKROUTEN  
R/W  
R/C  
0 = SPKR to SPKROUT not enabled (default)  
1 = SPKR to SPKROUT enabled  
Interrupt flag. Bit 0 is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. Bit 0 is set when  
a functional interrupt is signaled from a PC Card interface. Write back a 1 to clear this bit.  
0 = No PC Card functional interrupt detected (default)  
IFG  
1 = PC Card functional interrupt detected  
4–22  
4.35 Device Control Register  
The device control register is provided for PCI1130 compatibility. The interrupt mode select and the socket-capable  
force bits are programmed through this register. See Table 4–12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device control  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
Register:  
Type:  
Device control  
Read-only, Read/Write  
Offset:  
Default:  
92h  
66h  
Table 4–12. Device Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socket power lock bit. When this bit is set to 1, software will not be able to power down the PC Card  
socket while in D3. This may be necessary to support wake on LAN or RING if the operating system  
is programmed to power down a socket when the CardBus controller is placed in the D3 state.  
7
SKTPWR_LOCK  
3VCAPABLE  
R/W  
3-V socket capable force  
0 = Not 3-V capable  
6
R/W  
1 = 3-V capable (default)  
5
4
3
IO16V2  
BUS_HOLDER_EN  
TEST  
R/W  
R/W  
R/W  
Diagnostic bit. This bit defaults to 1.  
Bus holder cell enable/disable. Setting bit 4 to 1 enables the bus holder cells on the 1394 link  
interface. Default state is 0, bus holder cells disabled.  
TI test. Only a 0 should be written to bit 3.  
Interrupt signaling mode. Bits 2 and 1 select the interrupt signaling mode. The interrupt signaling  
mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Parallel IRQ and parallel PCI interrupts  
10 = IRQ serialized interrupts and parallel PCI interrupt  
11 = IRQ and PCI serialized interrupts (default)  
2–1  
0
INTMODE  
RSVD  
R/W  
R/W  
Reserved. Bit 0 is reserved for test purposes. Only 0 should be written to this bit.  
4–23  
4.36 Diagnostic Register  
The diagnostic register is provided for internal TI test purposes. In additon, the diagnostic register can be used to  
control CSC interrupt routing, enable asynchronous interrupts, and alter the PCI vendor ID and device ID register  
fields. See Table 4–13 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Diagnostic  
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Register:  
Type:  
Offset:  
Default:  
Diagnostic  
Read/Write  
93h  
61h  
Table 4–13. Diagnostic Register  
BIT  
7
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
FUNCTION  
This bit defaults to 0. Ths bit will cause software to fail to recognize the PCI4410 when set to 1. This  
bit is encoded as:  
R/W  
R/W  
R/W  
0 = Reads true values from the PCI vendor ID and PCI device ID registers (default)  
1 = Reads all 1s from the PCI vendor ID and PCI device ID registers  
6
Reserved. Bit 6 returns 0 when read.  
CSC interrupt routing control  
0 = CSC interrupts routed to PCI if ExCA 803 (see Section 5.4) bit 4 = 1.  
1 = CSC interrupts routed to PCI if ExCA 805 (see Section 5.6) bits 7–4 = 0000b (default).  
In this case, the setting of ExCA 803 bit 4 is a don’t care.  
5
CSC  
4
3
2
1
DIAG4  
DIAG3  
DIAG2  
DIAG1  
R/W  
R/W  
R/W  
R/W  
Diagnostic RETRY_DIS. Delayed transaction disabled.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , reset = 2  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , reset = 2  
Asynchronous interrupt enable.  
0
ASYNCINT  
R/W  
0 = CSC interrupt is not generated asynchronously.  
1 = CSC interrupt is generated asynchronously (default).  
4–24  
4.37 Socket DMA Register 0  
The socket DMA register 0 provides control over the PC Card DMA request (DREQ) signaling. See Table 4–14 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket DMA register 0  
Read-only, Read/Write  
94h  
0000 0000h  
Table 4–14. Socket DMA Register 0  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–2  
RSVD  
R
Reserved. Bits 31–2 return 0s when read.  
DMA request (DREQ). Bits 1 and 0 indicate which pin on the 16-bit PC Card interface acts as DREQ during  
DMA transfers. This field is encoded as:  
00 = Socket not configured for DMA (default).  
01 = DREQ uses SPKR.  
1–0  
DREQPIN  
R/W  
10 = DREQ uses IOIS16.  
11 = DREQ uses INPACK.  
4–25  
4.38 Socket DMA Register 1  
The socket DMA register 1 provides control over the distributed DMA (DDMA) registers and the PCI portion of DMA  
transfers. The DMA base address locates the DDMA registers in a 16-byte region within the first 64K bytes of PCI  
I/O address space. See Table 4–15 for a complete description of the register contents.  
NOTE: 32-bit transfers are not supported; the maximum transfer possible for 16-bit PC Cards  
is 16 bits.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket DMA register 1  
Read-only, Read/Write  
98h  
0000 0000h  
Table 4–15. Socket DMA Register 1  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–16  
RSVD  
R
Reserved. Bits 31–16 return 0s when read.  
DMA base address. Locates the socket’s DMA registers in PCI I/O space. This field represents a 16-bit PCI  
I/O address. The upper 16 bits of the address are hardwired to 0, forcing this window to within the lower 64K  
bytes of I/O address space. The lower 4 bits are hardwired to 0 and are included in the address decode.  
Thus, the window is aligned to a natural 16-byte boundary.  
15–4  
3
DMABASE  
EXTMODE  
R/W  
R
Extended addressing. This feature is not supported by the PCI4410 and always returns a 0.  
Transfer size. Bits 2 and 1 specify the width of the DMA transfer on the PC Card interface and are  
encoded as:  
00 = Transfers are 8 bits (default).  
01 = Transfers are 16 bits.  
10 = Reserved  
2–1  
XFERSIZE  
DDMAEN  
R/W  
R/W  
11 = Reserved  
DDMA registers decode enable. Enables the decoding of the distributed DMA registers based on the value  
of bits 15–4 (DMABASE field).  
0 = Disabled (default)  
1 = Enabled  
0
4–26  
4.39 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID  
Read-only  
A0h  
01h  
4.40 Next-Item Pointer Register  
The next-item pointer register indicates the next item in the linked list of the PCI power management capabilities.  
Because the PCI4410 functions include only one capabilities item, this register returns 0s when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next-item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Next-item pointer  
Read-only  
A1h  
00h  
4–27  
4.41 Power Management Capabilities Register  
This register contains information on the capabilities of the PC Card function related to power management. Both  
PCI4410 CardBus bridge functions support D0, D1, D2, and D3 power states. See Table 4–16 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
R/W  
1
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Power management capabilities  
Read/Write, Read-only  
Offset:  
Default:  
A2h  
FE31h  
Table 4–16. Power Management Capabilities Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the PCI4410 device functions may  
assert PME. A 0 (zero) for any bit indicates that the function cannot assert the PME signal while in that  
power state. These five bits return 11111b when read. Each of these bits is described below:  
15  
PME_SUPPORT  
PME_SUPPORT  
R/W  
R
Bit 15 defaults to the value 1 indicating the PME signal can be asserted from the D3  
state. This bit  
iscontingentonthesystemprovidinganauxiliarypower  
cold  
isR/Wbecausewake-upsupportfromD3  
cold  
terminals. If the system designer chooses not to provide an auxiliary power source  
source to the V  
to the V  
CC  
CC  
terminals for D3  
wake-up support, then BIOS should write a 0 to this bit.  
cold  
14–11  
Bit 14 contains the value 1, indicating that the PME signal can be asserted from D3  
hot  
state.  
Bit 13 contains the value 1, indicating that the PME signal can be asserted from D2 state.  
Bit 12 contains the value 1, indicating that the PME signal can be asserted from D1 state.  
Bit 11 contains the value 1, indicating that the PME signal can be asserted from the D0 state.  
D2 support. Bit 10 returns a 1 when read, indicating that the CardBus function supports the D2 device  
power state.  
10  
D2_SUPPORT  
R
D1 support. Bit 9 returns a 1 when read, indicating that the CardBus function supports the D1 device  
power state.  
9
D1_SUPPORT  
RSVD  
R
R
8–6  
Reserved. Bits 8–6 return 0s when read.  
Device-specific initialization. Bit 5 returns 1 when read, indicating that the CardBus controller function  
requires special initialization (beyond the standard PCI configuration header) before the generic class  
device driver is able to use it.  
5
DSI  
R
Auxiliary power source. Bit 4 is meaningful only if bit 15 (PME_Support, D3  
set, it indicates that support for PME in D3  
cold  
of a proprietary delivery vehicle. When bit 4 is 0, it indicates that the function supplies its own auxiliary  
power source. Because the PCI4410 requires an auxiliary power supply, this bit returns 1.  
) is set. When bit 4 is  
requires auxiliary power supplied by the system by way  
cold  
4
3
AUX_PWR  
PMECLK  
R
R
PME clock. Bit 3 returns 0 when read, indicating that no host bus clock is required for the PCI4410 to  
generate PME.  
Version. Bits 2–0 return 001b when read, indicating that there are four bytes of general-purpose power  
management (PM) registers as described in the PCI Bus Power Management Interface Specification.  
Seesystemcontrolregister(PCIoffset80h)(Section4.29),PCIPMENbit23,foradditionalinformation.  
It is recommended that the PCIPMEN bit be set by BIOS. If PCIPMEN is set, then VERSION bits 2–0  
will return 010b, indicating support for version 1.1 of the PCI Bus Power Management Interface  
Specification.  
2–0  
VERSION  
R
4–28  
4.42 Power Management Control/Status Register  
The power management control/status register determines and changes the current power state of the PCI4410  
CardBus function. The contents of this register are not affected by the internally generated reset caused by the  
transition from D3  
to D0 state. All PCI, ExCA, and CardBus registers are reset as a result of a D3  
to D0 state  
hot  
hot  
transition. TI-specificregisters, PCIpowermanagementregisters, andthelegacybaseaddressregisterarenotreset.  
See Table 4–17 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status  
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control/status  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
A4h  
0000h  
Table 4–17. Power Management Control/Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. Bit 15 is set when the CardBus function would normally assert PME, independent  
of the state of bit 8 (PME_EN). Bit 15 is cleared by a writeback of 1, and this also clears the PME  
signal if PME was asserted by this function. Writing a 0 to this bit has no effect.  
15  
PMESTAT  
R/C  
Data scale. This 2-bit field returns 0s when read. The CardBus function does not return any  
dynamic data as indicated by bit 4 (DYN_DATA_PME_EN).  
14–13  
12–9  
DATASCALE  
DATASEL  
R
R
Data select. This 4-bit field returns 0s when read. The CardBus function does not return any  
dynamic data as indicated by bit 4 (DYN_DATA_PME_EN).  
PME enable. When set to 1, bit 8 enables the function to assert PME. When reset to 0, the  
assertion of PME is disabled.  
8
PME_EN  
RSVD  
R/W  
R
7–5  
4
Reserved. Bits 7–5 return 0s when read.  
Dynamic data PME enable. Bit 4 returns 0 when read because the CardBus function does not  
report dymanic data.  
DYN_DATA_PME_EN  
RSVD  
R
3–2  
R
Reserved. Bits 3–2 return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and  
to set the function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
1–0  
PWR_STATE  
R/W  
11 = D3  
hot  
4–29  
4.43 Power Management Control/Status Register Bridge Support Extensions  
The power management control/status register bridge support extensions support PCI-bridge-specific functionality.  
See Table 4–18 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status register bridge support extensions  
R
1
R/W  
1
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management control/status register bridge support extensions  
Read-only  
A6h  
C0h  
Table 4–18. Power Management Control/Status Register Bridge Support Extensions  
BIT  
SIGNAL  
TYPE  
FUNCTION  
BPCC_Enable. Bus power/clock control enable. This bit returns 1 when read.  
This bit is encoded as:  
0 = Bus power/clock control is disabled.  
1 = Bus power/clock control is enabled (default).  
7
BPCC_EN  
R
A 0 indicates that the bus power/clock control policies defined in the PCI Bus Power Management  
Interface Specification are disabled. When the bus power/clock control enable mechanism is disabled,  
the bridge’s power management control/status register power state field (see Section 4.42, bits 1–0)  
cannot be used by the system software to control the power or the clock of the bridge’s secondary bus.  
A 1 indicates that the bus power/clock control mechanism is enabled.  
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programmingthefunctiontoD3 .Thisbitisonlymeaningfulifbit7(BPCC_EN)isa1.Thisbitisencoded  
hot  
as:  
6
B2_B3  
RSVD  
R/W  
R
0 = When the bridge is programmed to D3 , its secondary bus will have its power removed (B3).  
hot  
1 = When the bridge function is programmed to D3 , its secondary bus’s PCI clock will be  
hot  
stopped (B2). (Default)  
5–0  
Reserved. Bits 5–0 return 0s when read.  
4.44 Power Management Data Register  
The power management data register returns 0s when read, because the CardBus functions do not report dynamic  
data.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management data  
Read-only  
A7h  
00h  
4–30  
4.45 General-Purpose Event Status Register  
The general-purpose event status register contains status bits that are set by different events. The bits in this register  
andthecorrespondingGPEareclearedbywritinga1tothecorrespondingbitlocation. SeeTable4–19foracomplete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event status  
R/C  
0
R
0
R
0
R
0
R/C  
0
R
0
R
0
R/C  
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Type:  
General-purpose event status  
Read-only, Read/Write to Clear  
Offset:  
Default:  
A8h  
0000h  
Table 4–19. General-Purpose Event Status Register  
BIT  
15  
SIGNAL  
ZV_STS  
RSVD  
TYPE  
R/C  
R
FUNCTION  
PC card ZV status. Bit 15 is set on a change in status of bit 6 (ZVENABLE) in the card control register (see  
Section 4.34).  
14–12  
11  
Reserved. Bits 14–12 return 0s when read.  
Power change status. Bit 11 is set when software has changed the power state of the socket. A change  
PWR_STS  
RSVD  
R/C  
R
in either V  
CC  
or V  
for the socket causes this bit to be set.  
PP  
10–9  
8
Reserved. Bits 10 and 9 return 0s when read.  
12-V V request status. Bit 8 is set when software has changed the requested Vpp level to or from 12 V  
PP  
VPP12_STS  
RSVD  
R/C  
R
for the PC Card socket.  
7–5  
4
Reserved. Bits 7–5 return 0s when read.  
GPI4Status. Bit4issetonachangeinstatusoftheMFUNC5terminalinputlevel. Thisbitdoesnotdepend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GP4_STS  
R/C  
GPI3Status. Bit3issetonachangeinstatusoftheMFUNC4terminalinputlevel. Thisbitdoesnotdepend  
upon the state of a corresponding bit in the general-purpose event enable register.  
3
2
1
0
GP3_STS  
GP2_STS  
GP1_STS  
GP0_STS  
R/C  
R/C  
R/C  
R/C  
GPI2Status. Bit2issetonachangeinstatusoftheMFUNC2terminalinputlevel. Thisbitdoesnotdepend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GPI1Status. Bit1issetonachangeinstatusoftheMFUNC1terminalinputlevel. Thisbitdoesnotdepend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GPI0Status. Bit0issetonachangeinstatusoftheMFUNC0terminalinputlevel. Thisbitdoesnotdepend  
upon the state of a corresponding bit in the general-purpose event enable register.  
4–31  
4.46 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable a GPE signal. The GPE signal is driven  
until the corresponding status bit is cleared and the event is serviced. The GPE can only be signaled if one of the  
multifunction terminals, MFUNC6–MFUNC0, is configured for GPE signaling. See Table 4–20 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event enable  
R/W  
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
General-purpose event enable  
Read-only, Read/Write  
Offset:  
Default:  
AAh  
0000h  
Table 4–20. General-Purpose Event Enable Register  
BIT  
15  
SIGNAL  
ZV_EN  
TYPE  
R/W  
R
FUNCTION  
PCcardsocketZVenable. Whenbit15isset, aGPEissignaledonachangeinstatusofbit6(ZVENABLE)  
in the card control register (see Section 4.34).  
14–12  
11  
RSVD  
Reserved. Bits 14–12 return 0s when read.  
Power change enable. When bit 11 is set, a GPE is signaled when software has changed the power state  
of the socket.  
PWR_EN  
RSVD  
R/W  
R
10–9  
8
Reserved. Bits 10 and 9 return 0s when read.  
12 V V  
request enable. When bit 8 is set, a GPE is signaled when software has changed the requested  
level to or from 12 V for the card socket.  
PP  
VPP12_EN  
RSVD  
R/W  
R
V
PP  
7–5  
4
Reserved. Bits 7–5 return 0s when read.  
GPI4 enable. When bit 4 is set, a GPE is signaled when there has been a change in status of the MFUNC5  
terminal input level if configured as GPI4.  
GP4_EN  
R/W  
GPI3 enable. When bit 3 is set, a GPE is signaled when there has been a change in status of the MFUNC4  
terminal input level if configured as GPI3.  
3
2
1
0
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
R/W  
R/W  
R/W  
R/W  
GPI2 enable. When bit 2 is set, a GPE is signaled when there has been a change in status of the MFUNC2  
terminal input if configured as GPI2.  
GPI1 enable. When bit 1 is set, a GPE is signaled when there has been a change in status of the MFUNC1  
terminal input if configured as GPI1.  
GPI0 enable. When bit 0 is set, a GPE is signaled when there has been a change in status of the MFUNC0  
terminal input if configured as GPI0.  
4–32  
4.47 General-Purpose Input Register  
The general-purpose input register provides the logical value of the data input from the GPI terminals, MFUNC5,  
MFUNC4, and MFUNC2–MFUNC0. See Table 4–21 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose input  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
General-purpose input  
Read-only  
ACh  
00XXh  
Table 4–21. General-Purpose Input Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15–5  
RSVD  
R
Reserved. Bits 15–5 return 0s when read.  
GPI4 data bit. The value read from bit 4 represents the logical value of the data input from the MFUNC5  
terminal.  
4
3
2
1
0
GPI4_DATA  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
R
R
R
R
R
GPI3 data bit. The value read from bit 3 represents the logical value of the data input from the MFUNC4  
terminal.  
GPI2 data bit. The value read from bit 2 represents the logical value of the data input from the MFUNC2  
terminal.  
GPI1 data bit. The value read from bit 1 represents the logical value of the data input from the MFUNC1  
terminal.  
GPI0 data bit. The value read from bit 0 represents the logical value of the data input from the MFUNC0  
terminal.  
4–33  
4.48 General-Purpose Output Register  
The general-purpose output register is used for control of the general-purpose outputs. See Table 4–22 for a  
complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose output  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
General-purpose output  
Read-only, Read/Write  
AEh  
0000h  
Table 4–22. General-Purpose Output Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15–5  
RSVD  
R
Reserved. Bits 15–5 return 0s when read.  
GPO4 data bit. The value written to bit 4 represents the logical value of the data driven to the MFUNC5  
terminal if configured as GPO4. Read transactions return the last data value written.  
4
3
2
1
0
GPO4_DATA  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
R/W  
R/W  
R/W  
R/W  
R/W  
GPIO3 data bit. The value written to bit 3 represents the logical value of the data driven to the MFUNC4  
terminal if configured as GPO3. Read transactions return the last data value written.  
GPO2 data bit. The value written to bit 2 represents the logical value of the data driven to the MFUNC2  
terminal if configured as GPO2. Read transactions return the last data value written.  
GPO1 data bit. The value written to bit 1 represents the logical value of the data driven to the MFUNC1  
terminal if configured as GPO1. Read transactions return the last data value written.  
GPO0 data bit. The value written to bit 0 represents the logical value of the data driven to the MFUNC0  
terminal if configured as GPO0. Read transactions return the last data value written.  
4–34  
5 ExCA Compatibility Registers  
The ExCA registers implemented in the PCI4410 are register-compatible with the Intel 82365SL–DF PCMCIA  
controller. ExCA registers are identified by an offset value that is compatible with the legacy I/O index/data scheme  
used on the Intel 82365 ISA controller. The ExCA registers are accessed through this scheme by writing the register  
offset value into the index register (I/O base) and reading or writing the data register (I/O base + 1). The I/O base  
address used in the index/data scheme is programmed in the PC Card 16-bit I/F legacy-mode base address register  
(see Section 4.28). The offsets from this base address run contiguously from 00h to 3Fh for the socket. See  
Figure 5–1 for an ExCA I/O mapping illustration.  
PCI4410 Configuration Registers  
Host I/O Space  
Offset  
Offset  
00h  
PC Card  
ExCA  
10h  
Registers  
Index  
Data  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
3Fh  
44h  
Figure 5–1. ExCA Register Access Through I/O  
The TI PCI4410 also provides a memory-mapped alias of the ExCA registers by directly mapping them into PCI  
memory space. They are located through the CardBus socket/ExCA base address register (see Section 4.12) at  
memory offset 800h. See Figure 5–2 for an ExCA memory mapping illustration. This illustration also identifies the  
CardBus socket register mapping, which is mapped into the same 4K window at memory offset 0h.  
Host  
Memory Space  
PCI4410 Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 5–2. ExCA Register Access Through Memory  
5–1  
As defined by the 82365SL–DL Specification, the interrupt registers in the ExCA register set control such card  
functions as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing  
registers and the host interrupt signaling method selected for the PCI4410 to ensure that all possible PCI4410  
interrupts can potentially be routed to the programmable interrupt controller. The ExCA registers that are critical to  
the interrupt signaling are the ExCA interrupt and general control register (see Section 5.4) and the ExCA card  
status-change-interrupt configuration register (see Section 5.6).  
Access to I/O mapped 16-bit PC Cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this section. I/O windows have byte granularity.  
Access to memory mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this section. Table 5–1 identifies each  
ExCA register and its respective ExCA offset. Memory windows have 4-Kbyte granularity.  
Table 5–1. ExCA Registers and Offsets  
CARDBUS SOCKET  
ExCA OFFSET  
EXCA REGISTER NAME  
ADDRESS OFFSET  
(HEX)  
(HEX)  
Identification and revision  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
80A  
80B  
80C  
80D  
80E  
80F  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
81A  
81B  
81C  
81D  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Interface status  
Power control  
Interrupt and general control  
Card status change  
Card status-change-interrupt configuration  
Address window enable  
I / O window control  
I / O window 0 start-address low byte  
I / O window 0 start-address high byte  
I / O window 0 end-address low byte  
I / O window 0 end-address high byte  
I / O window 1 start-address low byte  
I / O window 1 start-address high byte  
I / O window 1 end-address low byte  
I / O window 1 end-address high byte  
Memory window 0 start-address low byte  
Memory window 0 start-address high byte  
Memory window 0 end-address low byte  
Memory window 0 end-address high byte  
Memory window 0 offset-address low byte  
Memory window 0 offset-address high byte  
Card detect and general control  
Reserved  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
Memory window 1 start-address low byte  
Memory window 1 start-address high byte  
Memory window 1 end-address low byte  
Memory window 1 end-address high byte  
Memory window 1 offset-address low byte  
Memory window 1 offset-address high byte  
5–2  
Table 5–1. ExCA Registers and Offsets (Continued)  
CARDBUS SOCKET  
ADDRESS OFFSET  
(HEX)  
ExCA OFFSET  
(HEX)  
EXCA REGISTER NAME  
Global control  
81E  
81F  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
82A  
82B  
82C  
82D  
82E  
82F  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
841  
842  
843  
844  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
Reserved  
Memory window 2 start-address low byte  
Memory window 2 start-address high byte  
Memory window 2 end-address low byte  
Memory window 2 end-address high byte  
Memory window 2 offset-address low byte  
Memory window 2 offset-address high byte  
Reserved  
Reserved  
Memory window 3 start-address low byte  
Memory window 3 start-address high byte  
Memory window 3 end-address low byte  
Memory window 3 end-address high byte  
Memory window 3 offset-address low byte  
Memory window 3 offset-address high byte  
Reserved  
Reserved  
Memory window 4 start-address low byte  
Memory window 4 start-address high byte  
Memory window 4 end-address low byte  
Memory window 4 end-address high byte  
Memory window 4 offset-address low byte  
Memory window 4 offset-address high byte  
I/O window 0 offset-address low byte  
I/O window 0 offset-address high byte  
I/O window 1 offset-address low byte  
I/O window 1 offset-address high byte  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page 0  
Memory window page 1  
Memory window page 2  
Memory window page 3  
Memory window page 4  
5–3  
5.1 ExCA Identification and Revision Register  
The ExCA identification and revision register provides host software with information on 16-bit PC Card support and  
Intel 82365SL-DF compatibility. This register is read-only or read/write, depending on the setting of bit 5  
(SUBSYSRW) in the system control register (see Section 4.29). See Table 5–2 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA identification and revision  
R
1
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
Register:  
Type:  
ExCA identification and revision  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 800h; ExCA offset 00h  
84h  
Table 5–2. ExCA Identification and Revision Register  
BIT  
7–6  
5–4  
SIGNAL  
IFTYPE  
RSVD  
TYPE  
R
FUNCTION  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
PCI4410. The PCI4410 supports both I/O and memory 16-bit PC cards.  
R/W  
Reserved.  
Intel 82365SL-DF revision. This field stores the Intel 82365SL-DF revision supported by the PCI4410. Host  
software can read this field to determine compatibility to the Intel 82365SL-DF register set. Writing 0010b to  
this field puts the controller in 82365SL mode. This field defaults to 0100b upon PCI4410 reset.  
3–0  
365REV  
R/W  
5–4  
5.2 ExCA Interface Status Register  
The ExCA interface status register provides information on the current status of the PC Card interface. An X in the  
default bit value indicates that the value of the bit after reset depends on the state of the PC Card interface. See  
Table 5–3 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interface status  
R
0
R
0
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
ExCA interface status  
Read-only  
Offset:  
Default:  
CardBus socket address + 801h; ExCA offset 01h  
00XX XXXXb  
Table 5–3. ExCA Interface Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
Card Power. Bit 6 indicates the current power status of the PC Card socket. This bit reflects how the ExCA  
power control register (see Section 5.3) is programmed. Bit 6 is encoded as:  
6
5
CARDPWR  
READY  
R
R
0 = V  
1 = V  
and V  
and V  
to the socket turned off (default)  
to the socket turned on  
CC  
CC  
PP  
PP  
Ready. Bit 5 indicates the current status of the READY signal at the PC Card interface.  
0 = PC Card not ready for data transfer  
1 = PC Card ready for data transfer  
Card write protect. Bit 4 indicates the current status of WP at the PC Card interface. This signal reports to  
the PCI4410 whether or not the memory card is write protected. Furthermore, write protection for an entire  
PCI4410 16-bit memory window is available by setting the appropriate bit in the ExCA memory window  
offset-address high-byte register.  
4
CARDWP  
R
0 = WP is 0. PC Card is read/write.  
1 = WP is 1. PC Card is read-only.  
Card detect 2. Bit 3 indicates the status of CD2 at the PC Card interface. Software may use this and bit 2  
(CDETECT1) to determine if a PC Card is fully seated in the socket.  
0 = CD2 is 1. No PC Card is inserted.  
3
2
CDETECT2  
CDETECT1  
R
R
1 = CD2 is 0. PC Card is at least partially inserted.  
Card detect 1. Bit 2 indicates the status of CD1 at the PC Card interface. Software may use this and bit 3  
(CDETECT2) to determine if a PC Card is fully seated in the socket.  
0 = CD1 is 1. No PC Card is inserted.  
1 = CD1 is 0. PC Card is at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltagedetect signals (BVD1, BVD2) at the PC Card interface, where bit 1 reflects the BVD2 status and bit 0  
reflects BVD1.  
00 = Battery dead  
01 = Battery dead  
10 = Battery low; warning  
11 = Battery good  
1–0  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of SPKR (bit 1) and STSCHG (bit 0) at the  
PC Card interface. In this case, the two bits in this field directly reflect the current state of these card outputs.  
5–5  
5.3 ExCA Power Control Register  
TheExCApowercontrolregisterprovidesPCCardpowercontrol. Bit7(COE)ofthisregistercontrolsthe16-bitoutput  
enables on the socket interface, and can be used for power management in 16-bit PC Card applications. See  
Table 5–4 and Table 5–5 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA power control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 802h; ExCA offset 02h  
00h  
Table 5–4. ExCA Power Control Register 82365SL Support  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI4410. This bit is  
encoded as:  
7
COE  
R/W  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6
5
RSVD  
R
Reserved. Bit 6 returns 0 when read.  
Auto power switch enable. This bit is enabled by bit 7 of the system control register (see Section 4.29).  
0 = Automatic socket power switching based on card detects is disabled.  
AUTOPWRSWEN  
R/W  
1 = Automatic socket power switching based on card detects is enabled.  
PC Card power enable.  
0 = V  
1 = V  
= V  
= V = No connection  
PP2  
CC  
CC  
PP1  
is enabled and controlled by bit 2 (ExCAPower) of the system control register  
and V are controlled according to bits 1–0 (EXCAVPP field).  
4
CAPWREN  
RSVD  
R/W  
R
(see Section 4.29), V  
PP1  
Reserved. Bits 3 and 2 return 0s when read.  
PC Card V power control. Bits 1 and 0 are used to request changes to card V . The PCI4410 ignores  
PP2  
3–2  
PP  
PP  
to the socket is enabled (that is, 5 V or 3.3 V). This field is encoded as:  
this field unless V  
CC  
00 = No connection (default)  
01 = V  
1–0  
EXCAVPP  
R/W  
CC  
10 = 12 V  
11 = Reserved  
Table 5–5. ExCA Power Control Register 82365SL-DF Support  
BIT  
7
SIGNAL  
COE  
TYPE  
R/W  
R
FUNCTION  
Cardoutput enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI4410. This bit is encoded as:  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6–5  
RSVD  
Reserved. Bits 6 and 5 return 0s when read.  
V
CC  
. Bits 4 and 3 are used to request changes to card V . This field is encoded as:  
CC  
00 = 0 V (default)  
01 = 0 V reserved  
10 = 5 V  
4–3  
2
EXCAVCC  
RSVD  
R/W  
R
11 = 3 V  
Reserved. Bit 2 returns 0 when read.  
V
. Bits 1 and 0 are used to request changes to card V . The PCI4410 ignores this field unless V to  
PP PP CC  
the socket is enabled. This field is encoded as:  
00 = No connection (default)  
1–0  
EXCAVPP  
R/W  
01 = V  
10 = 12 V  
CC  
11 = Reserved  
5–6  
5.4 ExCA Interrupt and General Control Register  
The ExCA interrupt and general control register controls interrupt routing for I/O interrupts, as well as other critical  
16-bit PC Card functions. See Table 5–6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interrupt and general control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA interrupt and general control  
Read/Write  
Offset:  
Default:  
CardBus socket address + 803h; ExCA offset 03h  
00h  
Table 5–6. ExCA Interrupt and General Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Bit 7 enables the ring indicate function of BVD1/RI. This bit is encoded as:  
0 = Ring indicate disabled (default)  
7
RINGEN  
R/W  
1 = Ring indicate enabled  
Card reset. Bit 6 controls the 16-bit PC Card RESET, and allows host software to force a card reset. Bit 6  
affects 16-bit cards only. This bit is encoded as:  
6
5
RESET  
R/W  
R/W  
0 = RESET signal asserted (default)  
1 = RESET signal deasserted  
Card type. Bit 5 indicates the PC card type. This bit is encoded as:  
0 = Memory PC Card installed (default)  
CARDTYPE  
1 = I/O PC Card installed  
PCI Interrupt CSC routing enable bit. When bit 4 is set (high), the card status change interrupts are routed  
to PCI interrupts. When low, the card status-change interrupts are routed using bits 7–4 (CSCSELECT field)  
in the ExCA card status-change-interrupt configuration register (see Section 5.6). This bit is encoded as:  
0 = CSC interrupts are routed by ExCA registers (default).  
4
CSCROUTE  
R/W  
1 = CSC interrupts are routed to PCI interrupts.  
Card interrupt select for I/O PC Card functional interrupts. Bits 3–0 select the interrupt routing for I/O  
PC Card functional interrupts. This field is encoded as:  
0000 = No interrupt routing (default) . CSC interrupts routed to PCI interrupts. These bit settings, along  
with bit 4 (CSCROUTE) are combined through an OR function for backwards compatibility.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
3–0  
INTSELECT  
R/W  
0100 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
5–7  
5.5 ExCA Card Status-Change Register  
The ExCA card status-change register controls interrupt routing for I/O interrupts as well as other critical 16-bit PC  
Card functions. The register enables these interrupt sources to generate an interrupt to the host. When the interrupt  
source is disabled, the corresponding bit in this register always reads 0. When an interrupt source is enabled, the  
corresponding bit in this register is set to indicate that the interrupt source is active. After generating the interrupt to  
the host, the interrupt service routine must read this register to determine the source of the interrupt. The interrupt  
service routine is responsible for resetting the bits in this register as well. Resetting a bit is accomplished by one of  
two methods: a read of this register or an explicit writeback of 1 to the status bit. The choice of these two methods  
is based on bit 2 (interrupt flag clear mode select) in the ExCA global control register (see Section 5.22). See  
Table 5–7 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
ExCA card status-change  
Read-only  
Offset:  
Default:  
CardBus socket address + 804h; ExCA offset 04h  
00h  
Table 5–7. ExCA Card Status-Change Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–4  
RSVD  
R
Reserved. Bits 7–4 return 0s when read.  
Card detect change. Bit 3 indicates whether a change on CD1 or CD2 occurred at the PC Card  
interface. This bit is encoded as:  
3
2
CDCHANGE  
R
R
0 = No change detected on either CD1 or CD2  
1 = Change detected on either CD1 or CD2  
Ready change. When a 16-bit memory is installed in the socket, bit 2 includes whether the source of  
a PCI4410 interrupt was due to a change on READY at the PC Card interface, indicating that the  
PC Card is now ready to accept new data. This bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition detected on READY (default)  
1 = Detected low-to-high transition on READY  
When a 16-bit I/O card is installed, bit 2 is always 0.  
Battery warning change. When a 16-bit memory card is installed in the socket, bit 1 indicates whether  
the source of a PCI4410 interrupt was due to a battery-low warning condition. This bit is encoded as:  
0 = No battery warning condition (default)  
1
0
BATWARN  
R
R
1 = Detected battery warning condition  
When a 16-bit I/O card is installed, bit 1 is always 0.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, bit 0 indicates  
whether the source of a PCI4410 interrupt was due to a battery dead condition. This bit is encoded as:  
0 = STSCHG deasserted (default)  
BATDEAD//RI  
1 = STSCHG asserted  
Ringindicate.WhenanI/OcardisinstalledinthesocketandthePCI4410isconfiguredforring-indicate  
operation, bit 0 indicates the status of RI.  
5–8  
5.6 ExCA Card Status-Change-Interrupt Configuration Register  
The ExCA card status-change-interrupt configuration register controls interrupt routing for card status-change  
interrupts, as well as masking CSC interrupt sources. See Table 5–8 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA status-change-interrupt configuration  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA card status-change-interrupt configuration  
Read/Write  
Offset:  
Default:  
CardBus socket address + 805h; ExCA offset 05h  
00h  
Table 5–8. ExCA Card Status-Change-Interrupt Configuration Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. Bits 7–4 select the interrupt routing for card status change  
interrupts.  
0000 = CSC interrupts routed to PCI interrupts if bit 5 (CSC) of the diagnostic register is set to 1 (see  
Section 4.36). In this case bit 4 (CSCROUTE) of the ExCA interrupt and general control register is a “don’t  
care” (see Section 5.4). This is the default setting.  
0000 = No ISA interrupt routing if bit 5 (CSC) of the diagnostic register is set to 0 (see Section 4.36). In  
this case, CSC interrupts are routed to PCI interrupts by setting bit 4 (CSCROUTE) of the ExCA interrupt  
and general control register to 1 (see Section 5.4).  
7–4  
CSCSELECT  
R/W  
This field is encoded as:  
0000 = No interrupt routing (default)  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
Card detect enable. Bit 3 enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
3
2
CDEN  
R/W  
R/W  
1 = Enables interrupts on CD1 or CD2 line changes  
Ready enable. Bit 2 enables/disables a low-to-high transition on PC Card READY to generate a host  
interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
0 = Disables host interrupt generation (default)  
READYEN  
1 = Enables host interrupt generation  
Battery warning enable. Bit 1 enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1
0
BATWARNEN  
BATDEADEN  
R/W  
R/W  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery dead enable. Bit 0 enables/disables the generation of a CSC interrupt for a battery dead contition  
(16-bit memory PC card) or assertion of the STSCHG signal (16-bit I/O PC card).  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
5–9  
5.7 ExCA Address Window Enable Register  
The ExCA address window enable register enables/disables the memory and I/O windows to the 16-bit PC Card. By  
default, all windows to the card are disabled. The PCI4410 does not acknowledge PCI memory or I/O cycles to the  
card if the corresponding enable bit in this register is 0, regardless of the programming of the memory or I/O window  
start/end/offset address registers. See Table 5–9 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA address window enable  
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA address window enable  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 806h; ExCA offset 06h  
00h  
Table 5–9. ExCA Address Window Enable Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. Bit 7 enables/disables I/O window 1 for the PC Card. This bit is encoded as:  
0 = I/O window 1 disabled (default)  
7
IOWIN1EN  
R/W  
1 = I/O window 1 enabled  
I/O window 0 enable. Bit 6 enables/disables I/O window 0 for the PC Card. This bit is encoded as:  
0 = I/O window 0 disabled (default)  
6
5
IOWIN0EN  
RSVD  
R/W  
R
1 = I/O window 0 enabled  
Reserved. Bit 5 returns 0 when read.  
Memory window 4 enable. Bit 4 enables/disables memory window 4 for the PC Card. This bit is  
encoded as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = Memory window 4 disabled (default)  
1 = Memory window 4 enabled  
Memory window 3 enable. Bit 3 enables/disables memory window 3 for the PC Card. This bit is  
encoded as:  
0 = Memory window 3 disabled (default)  
1 = Memory window 3 enabled  
Memory window 2 enable. Bit 2 enables/disables memory window 2 for the PC Card. This bit is  
encoded as:  
0 = Memory window 2 disabled (default)  
1 = Memory window 2 enabled  
Memory window 1 enable. Bit 1 enables/disables memory window 1 for the PC Card. This bit is  
encoded as:  
0 = Memory window 1 disabled (default)  
1 = Memory window 1 enabled  
Memory window 0 enable. Bit 0 enables/disables memory window 0 for the PC Card. This bit is  
encoded as:  
0 = Memory window 0 disabled (default)  
1 = Memory window 0 enabled  
5–10  
5.8 ExCA I/O Window Control Register  
The ExCA I/O window control register contains parameters related to I/O window sizing and cycle timing. See  
Table 5–10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O window control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA I/O window control  
Read/Write  
Offset:  
Default:  
CardBus socket address + 807h; ExCA offset 07h  
00h  
Table 5–10. ExCA I/O Window Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 wait state. Bit 7 controls the I/O window 1 wait state for 16-bit I/O accesses. Bit 7 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
7
WAITSTATE1  
R/W  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 1 zero wait state. Bit 6 controls the I/O window 1 wait state for 8-bit I/O accesses. Bit 6 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
6
ZEROWS1  
R/W  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/Owindow1IOIS16source. Bit5controlstheI/Owindow1automaticdatasizingfeaturethatusesIOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width determined by DATASIZE1, bit 4 (default).  
5
4
IOSIS16W1  
DATASIZE1  
R/W  
R/W  
1 = Window data width determined by IOIS16.  
I/O window 1 data size. Bit 4 controls the I/O window 1 data size. Bit 4 is ignored if bit 5 (IOSIS16W1) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
I/O window 0 wait state. Bit 3 controls the I/O window 0 wait state for 16-bit I/O accesses. Bit 3 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
R/W  
R/W  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 0 zero wait state. Bit 2 controls the I/O window 0 wait state for 8-bit I/O accesses. Bit 2 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/Owindow0IOIS16source. Bit1controlstheI/Owindow0automaticdatasizingfeaturethatusesIOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width is determined by DATASIZE0, bit 0 (default).  
1
0
IOSIS16W0  
DATASIZE0  
R/W  
R/W  
1 = Window data width is determined by IOIS16.  
I/O window 0 data size. Bit 0 controls the I/O window 0 data size. Bit 0 is ignored if bit 1 (IOSIS16W0) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
5–11  
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 start-address low byte  
CardBus socket address + 808h; ExCA offset 08h  
ExCA I/O window 1 start-address low byte  
CardBus socket address + 80Ch; ExCA offset 0Ch  
Read/Write  
Default:  
Size:  
00h  
One byte  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 start-address high byte  
CardBus socket address + 809h; ExCA offset 09h  
ExCA I/O window 1 start-address high byte  
CardBus socket address + 80Dh; ExCA offset 0Dh  
Read/write  
00h  
One byte  
Default:  
Size:  
5–12  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 end-address low byte  
CardBus socket address + 80Ah; ExCA offset 0Ah  
ExCA I/O window 1 end-address low byte  
CardBus socket address + 80Eh; ExCA offset 0Eh  
Read/Write  
Default:  
Size:  
00h  
One byte  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 end-address high byte  
CardBus socket address + 80Bh; ExCA offset 0Bh  
ExCA I/O window 1 end-address high byte  
CardBus socket address + 80Fh; ExCA offset 0Fh  
Read/write  
00h  
One byte  
Default:  
Size:  
5–13  
5.13 ExCA Memory Windows 0–4 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 start-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address low byte  
CardBus socket address + 810h; ExCA offset 10h  
ExCA memory window 1 start-address low byte  
CardBus socket address + 818h; ExCA offset 18h  
ExCA memory window 2 start-address low byte  
CardBus socket address + 820h; ExCA offset 20h  
ExCA memory window 3 start-address low byte  
CardBus socket address + 828h; ExCA offset 28h  
ExCA memory window 4 start-address low byte  
CardBus socket address + 830h; ExCA offset 30h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
5–14  
5.14 ExCA Memory Windows 0–4 Start-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23–A20 of the start address. In addition, the memory  
window data width and wait states are set in this register. See Table 5–11 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 start-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address high byte  
CardBus socket address + 811h; ExCA offset 11h  
ExCA memory window 1 start-address high byte  
CardBus socket address + 819h; ExCA offset 19h  
ExCA memory window 2 start-address high byte  
CardBus socket address + 821h; ExCA offset 21h  
ExCA memory window 3 start-address high byte  
CardBus socket address + 829h; ExCA offset 29h  
ExCA memory window 4 start-address high byte  
CardBus socket address + 831h; ExCA offset 31h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
Table 5–11. ExCA Memory Windows 0–4 Start-Address High-Byte Registers  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Data size. Bit 7 controls the memory window data width. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
7
DATASIZE  
R/W  
1 = Window data width is 16 bits.  
Zerowaitstate.Bit6controlsthememorywindowwaitstatefor8-and16-bitaccesses.Thiswait-statetiming  
emulates the ISA wait state used by the Intel 82365SL-DF. This bit is encoded as:  
0 = 8- and 16-bit cycles have standard length (default).  
6
ZEROWAIT  
R/W  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
16-bit cycles are reduced to equivalent of two ISA cycles.  
5–4  
3–0  
SCRATCH  
STAHN  
R/W  
R/W  
Scratch pad bits. Bits 5 and 4 have no effect on memory window operation.  
Start-address high nibble. Bits 3–0 represent the upper address bits A23–A20 of the memory window  
start address.  
5–15  
5.15 ExCA Memory Windows 0–4 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 end-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address low byte  
CardBus socket address + 812h; ExCA offset 12h  
ExCA memory window 1 end-address low byte  
CardBus socket address + 81Ah; ExCA offset 1Ah  
ExCA memory window 2 end-address low byte  
CardBus socket address + 822h; ExCA offset 22h  
ExCA memory window 3 end-address low byte  
CardBus socket address + 82Ah; ExCA offset 2Ah  
ExCA memory window 4 end-address low byte  
CardBus socket address + 832h; ExCA offset 32h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
5–16  
5.16 ExCA Memory Windows 0–4 End-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23–A20 of the end address. In addition, the memory  
window wait states are set in this register. See Table 5–12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 end-address high byte  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address high byte  
CardBus socket address + 813h; ExCA offset 13h  
ExCA memory window 1 end-address high byte  
CardBus socket address + 81Bh; ExCA offset 1Bh  
ExCA memory window 2 end-address high byte  
CardBus socket address + 823h; ExCA offset 23h  
ExCA memory window 3 end-address high byte  
CardBus socket address + 82Bh; ExCA offset 2Bh  
ExCA memory window 4 end-address high byte  
CardBus socket address + 833h; ExCA offset 33h  
Read-only, Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
Table 5–12. ExCA Memory Windows 0–4 End-Address High-Byte Registers  
BIT  
7–6  
5–4  
3–0  
SIGNAL  
MEMWS  
RSVD  
TYPE  
R/W  
R
FUNCTION  
Wait state. Bits 7 and 6 specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these two bits.  
Reserved. Bits 5 and 4 return 0s when read.  
End-address high nibble. Bits 3–0 represent the upper address bits A23–A20 of the memory window end  
address.  
ENDHN  
R/W  
5–17  
5.17 ExCA Memory Windows 0–4 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 offset-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address low byte  
CardBus socket address + 814h; ExCA offset 14h  
ExCA memory window 1 offset-address low byte  
CardBus socket address + 81Ch; ExCA offset 1Ch  
ExCA memory window 2 offset-address low byte  
CardBus socket address + 824h; ExCA offset 24h  
ExCA memory window 3 offset-address low byte  
CardBus socket address + 82Ch; ExCA offset 2Ch  
ExCA memory window 4 offset-address low byte  
CardBus socket address + 834h; ExCA offset 34h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
5–18  
5.18 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25–A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register. See Table 5–13 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 offset-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address high byte  
CardBus socket address + 815h; ExCA offset 15h  
ExCA memory window 1 offset-address high byte  
CardBus socket address + 81Dh; ExCA offset 1Dh  
ExCA memory window 2 offset-address high byte  
CardBus socket address + 825h; ExCA offset 25h  
ExCA memory window 3 offset-address high byte  
CardBus socket address + 82Dh; ExCA offset 2Dh  
ExCA memory window 4 offset-address high byte  
CardBus socket address + 835h; ExCA offset 35h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
Size:  
00h  
One byte  
Table 5–13. ExCA Memory Windows 0–4 Offset-Address High-Byte Registers  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Write protect. Bit 7 specifies whether write operations to this memory window are enabled. This bit is  
encoded as:  
7
WINWP  
R/W  
0 = Write operations are allowed (default).  
1 = Write operations are not allowed.  
Bit 6 specifies whether this memory window ismappedtocardattributeorcommonmemory. This bit is encoded  
as:  
6
REG  
R/W  
R/W  
0 = Memory window is mapped to common memory (default).  
1 = Memory window is mapped to card attribute memory.  
Offset-address high byte. Bits 5–0 represent the upper address bits A25–A20 of the memory window  
offset address.  
5–0  
OFFHB  
5–19  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 is always 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 offset-address low byte  
CardBus socket address + 836h; ExCA offset 36h  
ExCA I/O window 1 offset-address low byte  
CardBus socket address + 838h; ExCA offset 38h  
Read-only, Read/Write  
Default:  
Size:  
00h  
One byte  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Type:  
ExCA I/O window 0 offset-address high byte  
CardBus socket address + 837h; ExCA offset 37h  
ExCA I/O window 1 offset-address high byte  
CardBus socket address + 839h; ExCA offset 39h  
Read/Write  
Default:  
Size:  
00h  
One byte  
5–20  
5.21 ExCA I/O Card Detect and General Control Register  
The ExCA card detect and general control register controls how the ExCA registers for the socket respond to card  
removal, as well as reports the status of VS1 and VS2 at the PC Card interface. See Table 5–14 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O card detect and general control  
R
X
R
X
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R
0
Register:  
Type:  
ExCA card detect and general control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 816h; ExCA offset 16h  
XX00 0000b  
Table 5–14. ExCA I/O Card Detect and General Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2 state. Bit 7 reports the current state of VS2 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS2 low  
7
VS2STAT  
R
1 = VS2 high  
VS1 state. Bit 6 reports the current state of VS1 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS1 low  
6
5
VS1STAT  
SWCSC  
R
1 = VS1 high  
Software card detect interrupt. If bit 3 (CDEN) in the ExCA card status-change-interrupt configuration  
register is set (see Section 5.6), then writing a 1 to bit 5 causes a card-detect card-status change interrupt  
for the associated card socket. If bit 3 (CDEN) in the ExCA card status-change-interrupt configuration  
register is cleared to 0 (see Section 5.6), then writing a 1 to bit 5 has no effect. A read operation of this  
bit always returns 0.  
R/W  
Card detect resume enable. If bit 4 is set to 1, then once a card detect change has been detected on CD1  
and CD2 inputs, RI_OUT goes from high to low. RI_OUT remains low until bit 0 (card status change) in  
the ExCA card status-change register is cleared (see Section 5.5). If this bit is a 0, then the card detect  
resume functionality is disabled.  
4
CDRESUME  
R/W  
0 = Card detect resume disabled (default)  
1 = Card detect resume enabled  
3–2  
1
RSVD  
REGCONFIG  
RSVD  
R
R/W  
R
Reserved. Bits 3 and 2 return 0s when read.  
Registerconfiguration on card removal. Bit 1 controls how the ExCA registers for the socket react to a card  
removal event. This bit is encoded as:  
0 = No change to ExCA registers on card removal (default)  
1 = Reset ExCA registers on card removal  
0
Reserved. Bit 0 returns 0 when read.  
5–21  
5.22 ExCA Global Control Register  
The ExCA global control register controls the PC Card socket. The host interrupt mode bits in this register are retained  
for Intel 82365SL-DF compatibility. See Table 5–15 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA global control  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA global control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 81Eh; ExCA offset 1Eh  
00h  
Table 5–15. ExCA Global Control Register  
FUNCTION  
BIT  
7–5  
4
SIGNAL  
RSVD  
TYPE  
R
Reserved. Bits 7–5 return 0s when read.  
This bit has no assigned function.  
No function  
R/W  
Level/edge interrupt mode select. Bit 3 selects the signaling mode for the PCI4410 host interrupt. This bit  
is encoded as:  
3
2
1
INTMODE  
IFCMODE  
CSCMODE  
R/W  
R/W  
R/W  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Interrupt flag clear mode select. Bit 2 selects the interrupt flag clear mechanism for the flags in the ExCA  
card status-change register (see Section 5.5). This bit is encoded as:  
0 = Interrupt flags are cleared by read of CSC register (default).  
1 = Interrupt flags are cleared by explicit writeback of 1.  
Card status change level/edge mode select. Bit 1 selects the signaling mode for the PCI4410 host interrupt  
for card status changes. This bit is encoded as:  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Power-downmode select. When bit 0 is set to 1, the PCI4410 is in power-down mode. In power-down mode,  
the PCI4410 card outputs are high impedance until an active cycle is executed on the card interface.  
Followingan active cycle, the outputs are again high impedance. The PCI4410 still receives DMA requests,  
functional interrupts, and/or card status change interrupts; however, an actual card access is required to  
wake up the interface. This bit is encoded as:  
0
PWRDWN  
R/W  
0 = Power-down mode is disabled (default).  
1 = Power-down mode is enabled.  
5.23 ExCA Memory Windows 0–4 Page Register  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when addresses for  
16-bit memory windows are decoded. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software can locate 16-bit memory windows in any 1 of 256  
16-Mbyte regions in the 4-Gbyte PCI address space. These registers are only accessible when the ExCA registers  
are memory mapped; that is, these registers cannot be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA memory windows 0–4 page  
Read/Write  
Offset:  
Default:  
CardBus socket address + 840h, 841h, 842h, 843h, 844h  
00h  
5–22  
6 CardBus Socket Registers  
The 1997 PC Card Standard requires a CardBus socket controller to provide five 32-bit registers that report and  
control socket-specific functions. The PCI4410 provides the CardBus socket/ExCA base-address register (see  
Section 4.12) to locate these CardBus socket registers in PCI memory address space. Each socket has a separate  
base address register for accessing the CardBus socket registers (see Figure 6–1). Table 6–1 gives the location of  
the socket registers in relation to the CardBus socket/ExCA base address.  
The PCI4410 implements an additional register at offset 20h that provides power management control for the socket.  
Host  
Memory Space  
PCI4410 Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 6–1. Accessing CardBus Socket Registers Through PCI Memory  
Table 6–1. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present state  
Socket force event  
Socket control  
Reserved  
08h  
0Ch  
10h  
14h  
Reserved  
18h  
Reserved  
1Ch  
20h  
Socket power management  
6–1  
6.1 Socket Event Register  
The socket event register indicates a change in socket status has occurred. These bits do not indicate what the  
change is, only that one has occurred. Software must read the socket present state register (see Section 6.3) for  
current status. Each bit in this register can be cleared by writing a 1 to that bit. The bits in this register can be set to  
a 1 by software by writing a 1 to the corresponding bit in the socket force event register (see Section 6.4). All bits in  
this register are cleared by PCI reset. They can be immediately set again, if, when coming out of PC Card reset, the  
bridge finds the status unchanged (that is, CSTSCHG reasserted or card detect is still true). Software must clear this  
register before enabling interrupts. If it is not cleared when interrupts are enabled, then an interrupt is generated (but  
not masked) based on any bit set. See Table 6–2 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Type:  
Offset:  
Default:  
Socket event  
Read-only, Read/Write to Clear  
CardBus socket address + 00h  
0000 0000h  
Table 6–2. Socket Event Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–4  
RSVD  
R
Reserved. Bits 31–4 return 0s when read.  
Power cycle. Bit 3 is set when the PCI4410 detects that bit 3 (PWRCYCLE) in the socket present state  
register (see Section 6.3) has changed state. This bit is cleared by writing a 1.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
R/C  
R/C  
R/C  
CCD2. Bit 2 is set when the PCI4410 detects that bit 2 (CDETECT2) in the socket present state register  
(see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CCD1. Bit 1 is set when the PCI4410 detects that bit 1 (CDETECT1) in the socket present state register  
(see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CSTSCHG. Bit 0 is set when bit 0 (CARDSTS) in the socket present state register (see Section 6.3) has  
changed state. For CardBus cards, bit 0 is set on the rising edge of CSTSCHG. For 16-bit PC Cards, bit 0  
is set on both transitions of CSTSCHG. This bit is reset by writing a 1.  
0
CSTSEVENT  
R/C  
6–2  
6.2 Socket Mask Register  
The socket mask register allows software to control the CardBus card events that generate a status change interrupt.  
The state of these mask bits does not prevent the corresponding bits from reacting in the socket event register (see  
Section 6.1). See Table 6–3 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket mask  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 04h  
0000 0000h  
Table 6–3. Socket Mask Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–4  
RSVD  
R
Reserved. Bits 31–4 return 0s when read.  
Power cycle. Bit 3 masks bit 3 (PWRCYCLE) in the socket present state register (see Section 6.3) from  
causing a status change interrupt.  
3
2–1  
0
PWRMASK  
CDMASK  
R/W  
R/W  
R/W  
0 = PWRCYCLE event does not cause CSC interrupt (default).  
1 = PWRCYCLE event causes CSC interrupt.  
Card detect mask. Bits 2 and 1 mask bits 1 and 2 (CDETECT1 and CDETECT2) in the socket present state  
register (see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal does not cause CSC interrupt (default).  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
11 = Insertion/removal causes CSC interrupt.  
CSTSCHG mask. Bit 0 masks bit 0 (CARDSTS) in the socket present state register (see Section 6.3) from  
causing a CSC interrupt.  
CSTSMASK  
0 = CARDSTS event does not cause CSC interrupt (default).  
1 = CARDSTS event causes CSC interrupt.  
6–3  
6.3 Socket Present State Register  
The socket present state register reports information about the socket interface. Write transactions to the socket force  
event register (see Section 6.4) are reflected here, as well as general socket interface status. Information about PC  
Card V support and card type is only updated at each insertion. Also note that the PCI4410 uses CCD1 and CCD2  
CC  
during card identification, and changes on these signals during this operation are not reflected in this register. See  
Table 6–4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket present state  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket present state  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
0
R
0
R
0
R
X
R
X
R
X
Register:  
Type:  
Socket present state  
Read-only  
Offset:  
Default:  
CardBus socket address + 08h  
3000 00XXh  
Table 6–4. Socket Present State Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
YV socket. Bit 31 indicates whether or not the socket can supply V  
does not support Y.Y-V V ; therefore, this bit is hardwired to 0.  
CC  
= Y.Y V to PC Cards. The PCI4410  
= X.X V to PC Cards. The PCI4410  
= 3.3 V to PC Cards. The PCI4410  
CC  
31  
YVSOCKET  
R
XV socket. Bit 30 indicates whether or not the socket can supply V  
does not support X.X-V V ; therefore, this bit is hardwired to 0.  
CC  
CC  
30  
29  
XVSOCKET  
3VSOCKET  
R
R
3-V socket. Bit 29 indicates whether or not the socket can supply V  
does support 3.3-V V ; therefore, this bit is always set unless overridden by the socket force event  
CC  
register (see Section 6.4).  
CC  
5-V socket. Bit 28 indicates whether or not the socket can supply V  
doessupport 5-V V ; therefore, this bit is always set unless overridden by the socket force event register  
CC  
(see Section 6.4).  
= 5 V to PC Cards. The PCI4410  
CC  
28  
5VSOCKET  
R
27–14  
13  
RSVD  
R
R
R
R
R
Reserved. Bits 27–14 return 0s when read.  
YVCARD  
XVCARD  
3VCARD  
5VCARD  
YV card. Bit 13 indicates whether or not the PC Card inserted in the socket supports V  
XV card. Bit 12 indicates whether or not the PC Card inserted in the socket supports V  
= Y.Y V.  
= X.X V.  
= 3.3 V.  
= 5 V.  
CC  
12  
CC  
11  
3-V card. Bit 11 indicates whether or not the PC Card inserted in the socket supports V  
5-V card. Bit 10 indicates whether or not the PC Card inserted in the socket supports V  
CC  
10  
CC  
Bad V  
invalid voltage.  
request. Bit 9 indicates that the host software has requested that the socket be powered at an  
CC  
9
8
7
BADVCCREQ  
DATALOST  
R
R
R
0 = Normal operation (default)  
1 = Invalid V  
CC  
request by host software  
Data lost. Bit 8 indicates that a PC Card removal event may have caused lost data because the cycle did  
not terminate properly or because write data still resides in the PCI4410.  
0 = Normal operation (default)  
1 = Potential data loss due to card removal  
Not a card. Bit 7 indicates that an unrecognizable PC Card has been inserted in the socket. This bit is not  
updated until a valid PC Card is inserted into the socket.  
0 = Normal operation (default)  
NOTACARD  
1 = Unrecognizable PC Card detected  
6–4  
Table 6–4. Socket Present State Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
READY(IREQ)//CINT. Bit 6 indicates the current status of READY(IREQ)//CINT at the PC Card interface.  
0 = READY(IREQ)//CINT low  
6
IREQCINT  
R
1 = READY(IREQ)//CINT high  
CardBus card detected. Bit 5 indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5
4
CBCARD  
R
R
16-bit card detected. Bit 4 indicates that a 16-bit PC Card is inserted in the socket. This bit is not updated  
until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. Bit 3 indicates that the status of each card powering request. This bit is encoded as:  
0 = Socket powered down (default)  
3
2
PWRCYCLE  
CDETECT2  
R
R
1 = Socket powered up  
CCD2. Bit 2 reflects the current status of CCD2 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
0 = CCD2 low (PC Card may be present)  
1 = CCD2 high (PC Card not present)  
CCD1. Bit 1 reflects the current status of CCD1 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
1
0
CDETECT1  
CARDSTS  
R
R
0 = CCD1 low (PC Card may be present)  
1 = CCD1 high (PC Card not present)  
CSTSCHG. Bit 0 reflects the current status of CSTSCHG at the PC Card interface.  
0 = CSTSCHG low  
1 = CSTSCHG high  
6–5  
6.4 Socket Force Event Register  
The socket force event register is used to force changes to the socket event register (see Section 6.1) and the socket  
present state register (see Section 6.3). Bit 14 (CVSTEST) in this register must be written when forcing changes that  
require card interrogation. See Table 6–5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket force event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket force event  
R
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
R
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
Socket force event  
Read-only, Write-only  
Offset:  
Default:  
CardBus socket address + 0Ch  
0000 0000h  
Table 6–5. Socket Force Event Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–15  
RSVD  
R
Reserved. Bits 31–15 return 0s when read.  
Card VS test. When bit 14 is set, the PCI4410 re-interrogates the PC Card, updates the socket present state  
register (see Section 6.3), and enables the socket control register (see Section 6.5).  
14  
13  
12  
11  
10  
9
CVSTEST  
FYVCARD  
W
W
W
W
W
W
W
Force YV card. Write transactions to bit 13 cause bit 13 (YVCARD) in the socket present state register to  
be written (see Section 6.3). When set, this bit disables the socket control register (see Section 6.5).  
Force XV card. Write transactions to bit 12 cause bit 12 (XVCARD) in the socket present state register to  
be written (see Section 6.3). When set, this bit disables the socket control register (see Section 6.5).  
FXVCARD  
Force 3-V card. Write transactions to bit 11 cause bit 11 (3VCARD) in the socket present state register to  
be written (see Section 6.3). When set, this bit disables the socket control register (see Section 6.5).  
F3VCARD  
Force 5-V card. Write transactions to bit 10 cause bit 10 (5VCARD) in the socket present state register to  
be written (see Section 6.3). When set, this bit disables the socket control register (see Section 6.5).  
F5VCARD  
Force bad V  
CC  
request. Changes to bit 9 (BADVCCREQ) in the socket present state register (see  
Section 6.3) can be made by writing to bit 9.  
FBADVCCREQ  
FDATALOST  
Force data lost. Write transactions to bit 8 cause bit 8 (DATALOST) in the socket present state register to  
be written (see Section 6.3).  
8
Force not a card. Write transactions to bit 7 cause bit 7 (NOTACARD) in the socket present state register  
to be written (see Section 6.3).  
7
6
5
FNOTACARD  
RSVD  
W
R
Reserved. Bit 6 returns 0 when read.  
Force CardBus card. Write transactions to bit 5 cause bit 5 (CBCARD) in the socket present state register  
to be written (see Section 6.3).  
FCBCARD  
W
Force 16-bit card. Write transactions to bit 4 cause bit 4 (16BITCARD) in the socket present state register  
to be written (see Section 6.3).  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Write transactions to bit 3 cause bit 3 (PWREVENT) in the socket event register to be  
written (see Section 6.1), and bit 3 (PWRCYCLE) in the socket present state register is unaffected (see  
Section 6.3).  
Force CCD2. Write transactions to bit 2 cause bit 2 (CD2EVENT) in the socket event register to be written  
(see Section 6.1), and bit 2 (CDETECT2) in the socket present state register is unaffected (see Section 6.3).  
2
1
FCDETECT2  
FCDETECT1  
W
W
Force CCD1. Write transactions to bit 1 cause bit 1 (CD1EVENT) in the socket event register to be written  
(see Section 6.1), and bit 1 (CDETECT1) in the socket present state register is unaffected (see Section 6.3).  
Force CSTSCHG. Write transactions to bit 0 cause bit 0 (CSTSEVENT) in the socket event register to be  
written (see Section 6.1), and bit 0 (CARDSTS) in the socket present state register is unaffected (see  
Section 6.3).  
0
FCARDSTS  
W
6–6  
6.5 Socket Control Register  
The socket control register provides control of the voltages applied to the socket and instructions for CB CLKRUN  
protocol. The PCI4410 ensures that the socket is powered up only at acceptable voltages when a CardBus card is  
inserted. See Table 6–6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 10h  
0000 0000h  
Table 6–6. Socket Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–8  
RSVD  
R
Reserved. Bits 31–8 return 0s when read.  
CB CLKRUN protocol instructions.  
0 = CB CLKRUN protocol can only attempt to stop/slow the CB clock if the socket is idle and the  
PCI CLKRUN protocol is preparing to stop/slow the PCI bus clock.  
7
STOPCLK  
R/W  
1 = CB CLKRUN protocol can attempt to stop/slow the CB clock if the socket is idle.  
V
CC  
control. Bits 6–4 request card V  
000 = Request power off (default)  
001 = Reserved  
changes.  
CC  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
CC  
CC  
6–4  
3
VCCCTRL  
RSVD  
R/W  
R
010 = Request V  
011 = Request V  
= 5 V  
= 3.3 V  
CC  
CC  
Reserved. Bit 3 returns 0 when read.  
control. Bits 2–0 request card V  
V
changes.  
PP  
000 = Request power off (default)  
PP  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
PP  
PP  
001 = Request V  
010 = Request V  
= 12 V  
= 5 V  
2–0  
VPPCTRL  
R/W  
PP  
PP  
PP  
011 = Request V  
= 3.3 V  
6–7  
6.6 Socket Power Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle. See Table 6–7 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R/W  
0
15  
14  
13  
12  
11  
10  
0
Name  
Type  
Default  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket power management  
Read-only, Read/Write  
CardBus socket address + 20h  
0000 0000h  
Table 6–7. Socket Power Management Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–26  
RSVD  
R
Reserved. Bits 31–26 return 0s when read.  
Socket access status. This bit provides information on when a socket access has occurred. This bit is  
cleared by a read access.  
25  
SKTACCES  
R
0 = A PC Card access has not occurred (default).  
1 = A PC Card access has occurred.  
Socket mode status. This bit provides clock mode information.  
0 = Clock is operating normally.  
24  
23–17  
16  
SKTMODE  
RSVD  
R
R
1 = Clock frequency has changed.  
Reserved. Bits 23–17 return 0s when read.  
CardBus clock control enable. When bit 16 is set, bit 0 (CLKCTRL) is enabled.  
0 = Clock control is disabled (default).  
CLKCTRLEN  
RSVD  
R/W  
R
1 = Clock control is enabled.  
15–1  
Reserved. Bits 15–1 return 0s when read.  
CardBus clock control. This bit determines whether the CB CLKRUN protocol stops or slows the CB clock  
during idle states. Bit 16 (CLKCTRLEN) enables this bit.  
0
CLKCTRL  
R/W  
0 = Allows CB CLKRUN protocol to stop the CB clock (default).  
1 = Allows CB CLKRUN protocol to slow the CB clock by a factor of 16.  
6–8  
7 Distributed DMA (DDMA) Registers  
The DMA base address, programmable in PCI configuration space at offset 98h, points to a 16-byte region in PCI  
I/O space where the DDMA registers reside. The names and locations of these registers are summarized in  
Table 7–1. These PCI4410 register definitions are identical in function, but differ in location, to the 8237 DMA  
controller. The similarity between the register models retains some level of compatibility with legacy DMA and  
simplifies the translation required by the master DMA device when it forwards legacy DMA writes to DMA channels.  
While the DMA register definitions are identical to those in the 8237 of the same name, some register bits defined  
in the 8237 do not apply to distributed DMA in a PCI environment. In such cases, the PCI4410 implements these  
obsolete register bits as read-only nonfunctional bits. The reserved registers shown in Table 7–1 are implemented  
as read-only and return 0s when read. Write transactions to reserved registers have no effect.  
Table 7–1. Distributed DMA Registers  
DDMA BASE  
ADDRESS OFFSET  
TYPE  
REGISTER NAME  
R
W
R
Current address  
Base address  
Current count  
Base count  
00h  
Reserved  
Reserved  
Page  
04h  
08h  
0Ch  
Reserved  
Reserved  
Reserved  
W
R
N/A  
Mode  
N/A  
Status  
W
R
Request  
N/A  
Command  
Multichannel  
Mask  
Reserved  
W
Master clear  
7.1 DDMA Current Address/Base-Address Register  
The DDMA current address/base-address register sets the starting (base) memory address of a DDMA transfer.  
Read transactions from this register indicate the current memory address of a direct memory transfer.  
For the 8-bit DDMA transfer mode, the current address register contents are presented on AD15–AD0 of the PCI bus  
during the address phase. Bits 7–0 of the DDMA page register (see Section 7.2) are presented on AD23–AD16 of  
the PCI bus during the address phase.  
For the 16-bit DDMA transfer mode, the current address register contents are presented on AD16–AD1 of the PCI  
bus during the address phase, and AD0 is driven to logic 0. Bits 7–1 of the DDMA page register (see Section 7.2)  
are presented on AD23–AD17 of the PCI bus during the address phase, and bit 0 is ignored.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DDMA current address/base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA current address/base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DDMA current address/base-address  
Read/Write  
Offset:  
Default:  
Size:  
DDMA base address + 00h  
0000h  
Two bytes  
7–1  
7.2 DDMA Page Register  
The DDMA page register sets the upper byte of the address of a DDMA transfer. Details of the address represented  
by this register are explained in Section 7.1, DDMA Current Address/Base Address Register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DDMA page  
Read/Write  
Offset:  
Default:  
Size:  
DDMA base address + 02h  
00h  
One byte  
7.3 DDMA Current Count/Base Count Register  
The DDMA current count/base count register sets the total transfer count, in bytes, of a direct memory transfer. Read  
transactions to this register indicate the current count of a direct memory transfer. In the 8-bit transfer mode, the count  
is decremented by 1 after each transfer, and the count is decremented by 2 after each transfer in the 16-bit transfer  
mode.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DDMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DDMA current count/base count  
Read/Write  
Offset:  
Default:  
Size:  
DDMA base address + 04h  
0000h  
Two bytes  
7–2  
7.4 DDMA Command Register  
The DDMA command register enables and disables the DDMA controller. Bit 2 (DMAEN) defaults to 0 enabling the  
DDMA controller. All other bits are reserved. See Table 7–2 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA command  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Size:  
DDMA command  
Read-only, Read/Write  
DDMA base address + 08h  
00h  
One byte  
Table 7–2. DDMA Command Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–3  
RSVD  
R
Reserved. Bits 7–3 return 0s when read.  
DDMA controller enable. Bit 2 enables and disables the distributed DMA slave controller in the PCI4410 and  
defaults to the enabled state.  
2
DMAEN  
RSVD  
R/W  
R
0 = DDMA controller enabled (default)  
1 = DDMA controller disabled  
1–0  
Reserved. Bits 1 and 0 return 0s when read.  
7.5 DDMA Status Register  
The DDMA status register indicates the terminal count and DMA request (DREQ) status. See Table 7–3 for a  
complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA status  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
DDMA status  
Read-only  
Offset:  
Default:  
Size:  
DDMA base address + 08h  
00h  
One byte  
Table 7–3. DDMA Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Channel request. In the 8237, bits 7–4 indicate the status of DREQ of each DMA channel. In the PCI4410,  
these bits indicate the DREQ status of the single socket being serviced by this register. All four bits are set  
to 1 when the PC Card asserts DREQ and are reset to 0 when DREQ is deasserted. The status of bit 0  
(MASKBIT) in the DDMA multichannel/mask register (see Section 7.9) has no effect on these bits.  
7–4  
DREQSTAT  
R
Channel terminal count. The 8327 uses bits 3–0 to indicate the TC status of each of its four DMA channels.  
InthePCI4410, thesebitsreportinformationaboutasingleDMAchannel;therefore, allfouroftheseregister  
bits indicate the TC status of the single socket being serviced by this register. All four bits are set to 1 when  
the TC is reached by the DMA channel. These bits are reset to 0 when read or when the DMA channel is  
reset.  
3–0  
TC  
R
7–3  
7.6 DDMA Request Register  
The DDMA request register requests a DDMA transfer through software. Any write to this register enables software  
requests, and this register is to be used in block mode only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA request  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DDMA request  
Write-only  
Offset:  
Default:  
Size:  
DDMA base address + 09h  
00h  
One byte  
7.7 DDMA Mode Register  
The DDMA mode register sets the DDMA transfer mode. See Table 7–4 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA mode  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Size:  
DDMA mode  
Read-only, Read/Write  
DDMA base address + 0Bh  
00h  
One byte  
Table 7–4. DDMA Mode Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Mode select. The PCI4410 uses bits 7 and 6 to determine the transfer mode.  
00 = Demand mode select (default)  
01 = Single mode select  
7–6  
DMAMODE  
R/W  
10 = Block mode select  
11 = Reserved  
Address increment/decrement. The PCI4410 uses bit 5 to select the memory address in the DDMA current  
address/base address register to increment or decrement after each data transfer. This is in accordance  
with the 8237 use of this register bit and is encoded as follows:  
0 = Addresses increment (default).  
5
4
INCDEC  
R/W  
R/W  
1 = Addresses decrement.  
Auto initialization  
AUTOINIT  
0 = Auto initialization disabled (default)  
1 = Auto initialization enabled  
Transfertype. Bits3and2selectthetypeofdirectmemorytransfertobeperformed. Amemorywritetransfer  
moves data from the PCI4410 PC Card interface to memory and a memory read transfer moves data from  
memory to the PCI4410 PC Card interface. The field is encoded as:  
00 = No transfer selected (default)  
01 = Write transfer  
3–2  
1–0  
XFERTYPE  
RSVD  
R/W  
R
10 = Read transfer  
11 = Reserved  
Reserved. Bits 1 and 0 return 0s when read.  
7–4  
7.8 DDMA Master Clear Register  
The DDMA master clear register resets the DDMA controller and all DDMA registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA master clear  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DDMA master clear  
Write-only  
Offset:  
Default:  
Size:  
DDMA base address + 0Dh  
00h  
One byte  
7.9 DDMA Multichannel/Mask Register  
The PCI4410 uses only the least significant bit of this register to mask the PC Card DMA channel. The PCI4410 sets  
the mask bit to 1 when the PC Card is removed. Host software is responsible for either resetting the socket DMA  
controller or enabling the mask bit. See Table 7–5 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DDMA multichannel/mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Size:  
DDMA multichannel/mask  
Read-only, Read/Write  
DDMA base address + 0Fh  
00h  
One byte  
Table 7–5. DDMA Multichannel/Mask Register  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–1  
RSVD  
R
Reserved. Bits 7–1 return 0s when read.  
Mask select. Bit 0 masks incoming DREQ signals from the PC Card. When set to 1, the socket ignores DMA  
requests from the card. When cleared (or reset to 0), incoming DREQ assertions are serviced normally.  
0 = DDMA service provided on card DREQ  
0
MASKBIT  
R/W  
1 = Socket DREQ signal ignored (default)  
7–5  
7–6  
8 OHCI-Lynx Controller Programming Model  
This section describes the internal registers used to program the link function, including both PCI configuration  
registers and open HCI registers. All registers are detailed in the same format. A brief description is provided for each  
register, followed by the register offset and a bit table describing the reset state for each register.  
A bit description table is typically included that indicates bit signal names, a detailed field description, and field access  
tags. Table 8–1 describes the field access tags.  
Table 8–1. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field may be read by software.  
R
W
S
Field may be written by software to any value.  
Field may be set to 1 by a write of 1. Writes of 0 have no effect.  
Field may be reset to 0 by a write of 1. Writes of 0 have no effect.  
C
Clear  
8.1 PCI Configuration Registers  
The PCI4410 link function configuration header is compliant with the PCI specification as a standard header.  
Table 8–2 illustrates the PCI configuration header which includes both the predefined portion of the configuration  
space and the user-definable registers. The registers that are labeled reserved are read-only, returning 0 when read,  
and are not applicable to the link function or have been reserved by the PCI specification for future use.  
Table 8–2. PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Open HCI registers base address  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
TI extension registers base address  
14h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
18h  
1Ch  
20h  
24h  
28h  
Subsystem ID  
Subsystem vendor ID  
2Ch  
30h  
Reserved  
Reserved  
Capabilites pointer  
34h  
Reserved  
38h  
Max latency  
Min grant  
Interrupt pin  
Interrupt line  
Capability ID  
3Ch  
40h  
PCI OHCI control  
Next item pointer  
Power management capabilities  
PM data PMCSR_BSE  
44h  
Power management CSR  
48h  
Reserved  
PCI miscellaneous configuration  
4C–ECh  
F0h  
8–1  
Table 8–2. PCI Configuration Register Map (Continued)  
REGISTER NAME  
OFFSET  
F4h  
Link_enhancements  
Subsystem ID alias  
Subsystem vendor ID alias  
GPIO1 GPIO0  
F8h  
GPIO3  
GPIO2  
FCh  
8.2 Vendor ID Register  
This 16-bit read-only register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI  
device. The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vender ID  
Read-only  
00h  
104Ch  
8.3 Device ID Register  
This 16-bit read-only register contains a value assigned to the PCI4410 by Texas Instruments. The device  
identification for the PCI4410 OHCI controller function is 8017h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
1
R
1
R
1
Register:  
Type:  
Offset:  
Default:  
Device ID register  
Read-only  
02h  
8017h  
8–2  
8.4 PCI Command Register  
The command register provides control over the PCI4410 link interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, as seen in the following bit descriptions. See Table 8–3 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
PCI command  
Read-only, Read/Write  
Offset:  
Default:  
04h  
0000h  
Table 8–3. PCI Command Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15–10  
RSVD  
R
Reserved. These bits return 0s when read.  
Fast back-to-back enable. The PCI4410 will not generate fast back-to-back transactions; thus, this bit  
returns 0 when read.  
9
8
7
6
5
4
FBB_ENB  
SERR_ENB  
STEP_ENB  
PERR_ENB  
VGA_ENB  
MWI_ENB  
R
R/W  
R
SERR enable. When this bit is set to 1, the PCI4410 SERR driver is enabled. SERR can be asserted after  
detecting an address parity error on the PCI bus.  
Address/data stepping control. The PCI4410 does not support address/data stepping, and this bit is  
hardwired to 0.  
Parity error enable. When this bit is set to 1, the PCI4410 is enabled to drive PERR response to parity  
errors through the PERR signal.  
R/W  
R
VGA palette snoop enable. The PCI4410 does not feature VGA palette snooping. This bit returns 0 when  
read.  
Memorywriteandinvalidateenable. Whenthisbitissetto1, thePCI4410isenabledtogenerateMWIPCI  
bus commands. If reset to 0, the PCI4410 will generate memory write commands instead.  
R/W  
Specialcycleenable.ThePCI4410doesnotrespondtospecialcycletransactions.Thisbitreturns0when  
read.  
3
2
1
SPECIAL  
R
MASTER_ENB  
MEMORY_ENB  
R/W  
R/W  
Bus master enable. When this bit is set to 1, the PCI4410 is enabled to initiate cycles on the PCI bus.  
Memory response enable. Setting this bit to 1 enables the PCI4410 to respond to memory cycles on the  
PCI bus. This bit must be set to 1 to access OHCI registers.  
I/O space enable. The PCI4410 link does not implement any I/O mapped functionality; thus, this bit  
returns 0 when read.  
0
IO_ENB  
R
8–3  
8.5 PCI Status Register  
The PCI status register provides device information to the host system. Bits in this register may be read normally. A  
bit in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All  
bit functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each  
function. See Table 8–4 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
0
0
0
0
0
0
Register:  
Type:  
PCI status  
Read-only, Read/Clear/Update  
Offset:  
Default:  
06h  
0210h  
Table 8–4. PCI Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
PAR_ERR  
RCU  
Detectedparityerror. Thisbitissetto1whenaparityerrorisdetected, eitheraddressordataparityerrors.  
Signaledsystemerror. Thisbitissetto1whenSERRisenabledandthePCI4410signaledasystemerror  
to the host.  
14  
13  
SYS_ERR  
MABORT  
RCU  
RCU  
RCU  
RCU  
R
Received master abort. This bit is set to 1 when a cycle initiated by the PCI4410 on the PCI bus has been  
terminated by a master abort.  
Received target abort. This bit is set to 1 when a cycle initiated by the PCI4410 on the PCI bus is  
terminated by a target abort.  
12  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
Signaled target abort. This bit is set to 1 by the PCI4410 when it terminates a transaction on the PCI bus  
with a target abort.  
11  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b indicating that the  
PCI4410 asserts this signal at a medium speed on non-configuration cycle accesses.  
10–9  
Data parity error detected. This bit is set to 1 when the following conditions have been met:  
a. PERR was asserted by any PCI device including the PCI4410.  
b. The PCI4410 was the bus master during the data parity error.  
8
DATAPAR  
RCU  
c. The parity error response bit is set to 1 in the command register.  
Fast back-to-back capable. The PCI4410 cannot accept fast back-to-back transactions; thus, this bit is  
hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
UDF supported. The PCI4410 does not support the user-definable features; thus, this bit is hardwired to  
0.  
66-MHz capable. The PCI4410 operates at a maximum PCLK frequency of 33 MHz; therefore, this bit is  
hardwired to 0.  
66MHZ  
Capabilitieslist. Thisbitreturns1whenread, andindicatesthatcapabilitiesadditionaltostandardPCIare  
implemented. The linked list of PCI power management capabilities is implemented in this function.  
4
CAPLIST  
RSVD  
R
R
3–0  
Reserved. These bits return 0s when read.  
8–4  
8.6 Class Code and Revision ID Register  
This read-only register categorizes the PCI4410 as a serial bus controller (0Ch), controlling an IEEE1394 bus (00h),  
with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in the lower byte. See  
Table 8–5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
1
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Class code and revision ID  
Read-only  
08h  
0C00 1001h  
Table 8–5. Class Code and Revision ID Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus  
controller.  
31–24  
BASECLASS  
R
Sub class. This field returns 00h when read, which specifically classifies the function as controlling an  
IEEE1394 serial bus.  
23–16  
SUBCLASS  
R
Programming interface. This field returns 10h when read, which indicates that the programming model is  
compliant with the 1394 OHCI specification.  
15–8  
7–0  
PGMIF  
R
R
CHIPREV  
Silicon revision. This field returns the silicon revision of the PCI4410.  
8.7 Latency Timer and Class Cache Line Size Register  
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size  
and the latency timer associated with the PCI4410. See Table 8–6 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer and class cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer and class cache line size  
Read/Write  
0Ch  
0000h  
Table 8–6. Latency Timer and Class Cache Line Size Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI latency timer. The value in this register specifies the latency timer for the PCI4410, in units of PCI  
clock cycles. When the PCI4410 is a PCI bus initiator and asserts FRAME, the latency timer begins  
countingfromzero. IfthelatencytimerexpiresbeforethePCI4410transactionhasterminated, thenthe  
PCI4410 terminates the transaction when its GNT is deasserted.  
15–8  
LATENCY_TIMER  
R/W  
Cache line size. This value is used by the PCI4410 during memory write and invalidate, memory read  
line, and memory read multiple transactions.  
7–0  
CACHELINE_SZ  
R/W  
8–5  
8.8 Header Type and BIST Register  
The header type and BIST register indicates that this function is part of a multifunction device, and has a standard  
PCI header type and no built-in self-test. See Table 8–7 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type and BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Header type and BIST  
Read-only  
0Eh  
0000h  
Table 8–7. Header Type and BIST Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15–8  
BIST  
R
Built-in self-test. The PCI4410 does not include a built-in self-test, and this field returns 00h when read.  
PCI header type. The PCI4410 includes the standard PCI header, and this is communicated by returning  
00h when this field is read.  
7–0  
HEADER_TYPE  
R
8.9 Open HCI Registers Base Address Register  
The open HCI registers base address register is programmed with a base address referencing the memory mapped  
OHCI control. When BIOS writes all 1s to this register, the value read back is FFFF F800h, indicating that at least  
2K bytes of memory address space are required for the OHCI registers. See Table 8–8 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Open HCI registers base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Open HCI registers base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Open HCI registers base address  
Read-only, Read/Write  
10h  
0000 0000h  
Table 8–8. Open HCI Registers Base Address Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–11  
OHCIREG_PTR  
R/W  
Open HCI register pointer. Specifies the upper 21 bits of the 32-bit OHCI register base address.  
Open HCI register size. This field returns 0s when read, and indicates that the OHCI registers require  
a 2-Kbyte region of memory.  
10–4  
3
OHCI_SZ  
OHCI_PF  
R
R
R
OHCI register prefetch. This bit returns 0, indicating the OHCI registers are nonprefetchable.  
Open HCI memory type. This field returns 0s when read, and indicates that the base register is 32 bits  
wide and mapping can be done anywhere in the 32-bit memory space.  
2–1  
OHCI_MEMTYPE  
OHCI memory indicator. This bit returns 0, indicating the OHCI registers are mapped into system  
memory space.  
0
OHCI_MEM  
R
8–6  
8.10 TI Extension Base-Address Register  
The TI extension base-address register is programmed with a base address referencing the memory-mapped TI  
extension registers. See Table 8–9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
TI extension base-address  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
TI extension base-address  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
TI extension base-address  
Read-only  
14h  
0000 0000h  
Table 8–9. TI Extension Base-Address Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
TI extension register pointer. Specifies the upper 20 bits of the 32-bit TI extension register base  
address.  
31–11  
TI_EXTREG_PTR  
R
R
R
R
R
TIextensionregistersize. Thisfieldreturns0swhenread,andindicatesthattheTIextensionregisters  
require a 2-Kbyte region of memory.  
10–4  
3
TI_SZ  
TI_PF  
TI extension register prefetch. This bit returns 0, indicating the TI extension registers are  
nonprefetchable.  
TI memory type. This field returns 0s when read, and indicates that the base register is 32 bits wide  
and mapping can be done anywhere in the 32-bit memory space.  
2–1  
0
TI_MEMTYPE  
TI_MEM  
TI memory indicator. This bit returns 0, indicating the TI extension registers are mapped into system  
memory space.  
8–7  
8.11 PCI Subsystem Identification Register  
The PCI subsystem identification register is used for subsystem and option card identification purposes. This register  
can be initialized from the serial EEPROM or can be written using the subsystem access register. See Table 8–10  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
Register:  
Type:  
PCI subsystem identification  
Read/Update  
Offset:  
Default:  
2Ch  
0000 0000h  
Table 8–10. PCI Subsystem Identification Register  
BIT  
31–16  
15–0  
SIGNAL  
TYPE  
RU  
FUNCTION  
OHCI_SSID  
OHCI_SSVID  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
RU  
8.12 PCI Power Management Capabilities Pointer Register  
The PCI power management capabilities pointer register provides a pointer into the PCI configuration header where  
the PCI power management register block resides. PCI4410 configuration header doublewords at 44h and 48h  
provide the power management registers. This register is read-only and returns 44h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI power management capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI power management capabilities pointer  
Read-only  
34h  
44h  
8–8  
8.13 Interrupt Line and Interrupt Pin Registers  
The interrupt line and interrupt pin registers are used to communicate interrupt line routing information. See  
Table 8–11 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line and interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Registers: Interrupt line and interrupt pin  
Type:  
Read-only, Read/Write  
Offset:  
Default:  
3Ch  
0200h  
Table 8–11. Interrupt Line and Interrupt Pin Registers  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt pin register. This register returns 01h or 02h when read, indicating that the PCI4410 link function  
signalsinterrupts on the INTA or INTBterminal, respectively. If TIE_INTB_INTA (offset 80h, bit 29) is setto  
1, then INTR_PIN byte reads 0000 0001b,which indicates the OHCI function is signaling on INTA.  
15–8  
INTR_PIN  
R
Interrupt line register. This register is programmed by the system and indicates to the software which  
interrupt line the PCI4410 INTA is connected to.  
7–0  
INTR_LINE  
R/W  
8.14 MIN_GNT and MAX_LAT Registers  
These registers are used to communicate to the system the desired setting of the latency timer register. If a serial  
ROM is detected, then the contents of this register are loaded through the serial ROM interface after a PCI reset. If  
no serial ROM is detected, then these registers return a default value that corresponds to MIN_GNT = 3,  
MAX_LAT = 4. See Table 8–12 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
MIN_GNT and MAX_LAT  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
1
Registers: MIN_GNT and MAX_LAT  
Type:  
Offset:  
Default:  
Read/Update  
3Eh  
0403h  
Table 8–12. MIN_GNT and MAX_LAT Registers  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Maximum latency. The contents of this register may be used by host BIOS to assign an arbitration priority  
level to the PCI4410. The default for this register indicates that the PCI4410 may need to access the PCI  
bus as often as every 1/4 µs; thus, an extremely high priority level is requested. The contents of this field  
may also be loaded through the serial ROM.  
15–8  
MAX_LAT  
RU  
Minimum grant. The contents of this register may be used by host BIOS to assign a latency timer register  
value to the PCI4410. The default for this register indicates that the PCI4410 may need to sustain burst  
transfers for nearly 64 µs, thus requesting a large value be programmed in the PCI4410 latency timer  
register.  
7–0  
MIN_GNT  
RU  
8–9  
8.15 PCI OHCI Control Register  
The PCI OHCI control register contains IEEE1394 Open HCI specific control bits. All bits in this register are read-only  
and return 0s, because no OHCI-specific control bits have been implemented.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI OHCI control  
Read-only  
40h  
0000h  
8.16 Capability ID and Next Item Pointer Registers  
The capability ID and next item pointer registers identify the linked list capability item, and provide a pointer to the  
next capability item, respectively. See Table 8–13 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID and next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID and next item pointer  
Read-only  
44h  
0001h  
Table 8–13. Capability ID and Next Item Pointer Registers  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Next item pointer. The PCI4410 supports only one additional capability that is communicated to  
the system through the extended capabilities list; thus, this field returns 00h when read.  
15–8  
NEXT_ITEM  
R
Capability identification. This field returns 01h when read, which is the unique ID assigned by the PCI  
SIG for PCI power management capability.  
7–0  
CAPABILITY_ID  
R
8–10  
8.17 Power Management Capabilities Register  
The power management capabilities register indicates the capabilities of the PCI4410 related to PCI power  
management. In summary, the D0, D2, and D3  
description of the register contents.  
device states are supported. See Table 8–14 for a complete  
hot  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RU  
0
RU  
1
RU  
1
RU  
0
RU  
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Power management capabilities  
Read/Update  
46h  
6411h  
Table 8–14. Power Management Capabilities Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support from D3  
D3  
software using the PCI miscellaneous configuration register.  
. When this bit is set to 1, the PCI4410 generates a PME wake event from  
cold  
. ThisbitstateisdependentuponPCI4410V  
15  
PME_D3COLD  
RU  
RU  
implementationandmaybeconfiguredbyhost  
cold  
aux  
PME support. This four-bit field indicates the power states from which the PCI4410 may assert  
PME. These four bits return a value of 1100b by default, indicating that PME may be asserted from the  
14–11  
PME_SUPPORT  
D3  
and D2 power states. Bit 13 may be modified by host software using the PCI miscellaneous  
hot  
configuration register.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
R
R
D2 support. This bit returns a 1 when read, indicating that the PCI4410 supports the D2 power state.  
D1 support. This bit returns a 0 when read, indicating that the PCI4410 does not support the D1 power  
state.  
Dynamic data support. This bit returns a 0 when read, indicating that the PCI4410 does not report  
dynamic power consumption data.  
8
DYN_DATA  
RSVD  
R
R
7–6  
Reserved. These bits return 0s when read.  
Device-specific initialization. This bit returns 0 when read, indicating that the PCI4410 does not  
require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
5
DSI  
R
Auxiliary power source. Since the PCI4410 supports PME generation in the D3  
cold  
device state and  
4
3
AUX_PWR  
PME_CLK  
R
R
requires V  
aux  
, this bit returns 1 when read.  
PME clock. This bit returns 0 when read indicating that no host bus clock is required for the PCI4410 to  
generate PME.  
Power management version. This field returns 001b when read, indicating that the PCI4410  
is compatible with the registers described in the revision 1.0 PCI Bus Power Management  
Specification.  
2–0  
PM_VERSION  
R
8–11  
8.18 Power Management Control and Status Register  
The power management control and status register implements the control and status of the PCI power management  
function. This register is not affected by the internally generated reset caused by the transition from the D3 to D0  
hot  
state. See Table 8–15 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control and status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control and status  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
48h  
0000h  
Table 8–15. Power Management Control and Status Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Thisbitissetto1whenthePCI4410wouldnormallybeassertingthePMEsignal, independentofthestateof  
bit 8 (PME_ENB). This bit is cleared by a writeback of 1, and this also clears the PME signal driven by the  
PCI4410. Writing a 0 to this bit has no effect.  
15  
PME_STS  
RC  
Dynamic data control. This bit field returns 0s when read because the PCI4410 does not report dynamic  
data.  
14–9  
DYN_CTRL  
R
8
PME_ENB  
RSVD  
R/W  
R
PME enable. This bit enables the function to assert PME. If the bit is reset to 0, assertion of PME is disabled.  
Reserved. These bits return 0s when read.  
7–5  
4
DYN_DATA  
RSVD  
R
Dynamic data. This bit returns 0 when read because the PCI4410 does not report dynamic data.  
Reserved. These bits return 0s when read.  
3–2  
R
Power state. This two-bit field is used to set the PCI4410 device power state, and is encoded as follows:  
00 = Current power state is D0.  
01 = Current power state is D1.  
1–0  
PWR_STATE  
R/W  
10 = Current power state is D2.  
11 = Current power state is D3  
hot.  
8–12  
8.19 Power Management Extension Register  
The power management extension register provides extended power management features not applicable to the  
PCI4410; thus, it is read-only and returns 0 when read. See Table 8–16 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management extension  
Read-only  
4Ah  
0000h  
Table 8–16. Power Management Extension Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Power management data. This bit field returns 0s when read because the PCI4410 does not report  
dynamic data.  
15–8  
PM_DATA  
R
Power management CSR – bridge support extensions. This field returns 0s because the PCI4410 does  
not provide P-to-P bridging.  
7–0  
PMCSR_BSE  
R
8–13  
8.20 PCI Miscellaneous Configuration Register  
The PCI miscellaneous configuration register provides miscellaneous PCI-related configuration. See Table 8–17 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI miscellaneous configuration  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI miscellaneous configuration  
R/W  
0
R
0
R/W  
1
R
0
R
0
R/W  
1
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI miscellaneous configuration  
Read-only, Read/Write  
F0h  
0000 2400h  
Table 8–17. PCI Miscellaneous Configuration Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Reserved. These bits return 0s when read.  
PME support from D3 . This bit is used to program the corresponding read-only value read  
from power management capabilities. This bit retains state through PCI reset and D3–D0  
transitions.  
31–16  
RSVD  
PME_D3COLD  
RSVD  
R
cold  
15  
14  
R/W  
R
Reserved. This bit returns 0 when read.  
PME support. This bit is used to program the corresponding read-only value read from power  
management capabilities. If wake up from the D2 power state implemented in PCI4410 is not  
desired, then this bit may be reset to 0 to indicate to power management software that wake up  
from D2 is not supported. This bit retains state through PCI reset and D3 – D0 transitions.  
13  
12–11  
10  
PME_SUPPORT_D2  
RSVD  
R/W  
R
Reserved. These bits return 0s when read.  
D2 support. This bit is used to program the corresponding read-only value read from power  
management capabilities. If the D2 power state implemented in PCI4410 is not desired, then  
this bit may be reset to 0 to indicate to power management software that D2 is not supported.  
This bit retains state through PCI reset and D3–D0 transitions.  
D2_SUPPORT  
R/W  
9–5  
4
RSVD  
R
Reserved. Bits 9–5 return 0s when read.  
DISABLE_PCI_  
TARGET_ABORT  
When bit 4 is set to 1, the OSCI function returns indeterminate data instead of signaling target  
abort. The default (0) allows the OSCI function to signal target abort.  
R/W  
3
2
1
RSVD  
R/W  
R/W  
R/W  
Reserved. This bit defaults to 0.  
DISABLE_SCLKGATE  
DISABLE_PCIGATE  
When this bit is set to 1, the internal SCLK runs identically with the chip input.  
When this bit is set to 1, the internal PCI clock runs identically with the chip input.  
When this bit is set to 1, the PCI clock is always kept running through the CLKRUN protocol.  
When reset to 0, the PCI clock may be stopped using CLKRUN.  
0
KEEP_PCLK  
R/W  
8–14  
8.21 Link Enhancement Control Register  
The link enhancement control register implements TI proprietary bits that are initialized by software or by a serial  
EEPROM if present. After these bits are set to 1, their functionality is enabled only if the APHYENHANCEENABLE  
bit (bit 22) in the host controller control register (offset 50h/54h, see Section 9.16) is set to 1. See Table 8–18 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement control  
R
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Offset:  
Default:  
Link enhancement control  
Read-only, Read/Write  
F4h  
0000 1000h  
Table 8–18. Link Enhancement Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Reserved. These bits return 0 when read.  
31–14  
RSVD  
R
This bit field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When  
PCI4410 retries the packet, it uses a 2K-byte threshold resulting in store-and-forward operation.  
00 = Threshold ~ 2 Kbytes resulting in store-and-forward operation  
01 = Threshold ~ 1.7 Kbytes (default)  
13–12  
ATX_THRESH  
R/W  
10 = Threshold ~ 1 K  
11 = Threshold ~ 512 bytes  
11–10  
9
RSVD  
R
Reserved. This bit returns 0 when read.  
Enable audio/music CIP timestamp enhancement. When this bit is set to 1, the enhancement is  
enabled for audio/music CIP transmit streams (FMT = 10h).  
ENAB_AUDIO_TS  
R/W  
Enable DV CIP timestamp enhancement. When this bit is set to 1, the enhancement is enabled  
for DV CIP transmit streams (FMT = 00h).  
8
7
ENAB_DV_TS  
ENAB_UNFAIR  
R/W  
R/W  
Enable asynchronous priority requests. OHCI-Lynx (TSB12LV22) compatible.  
This reserved field will not be assigned in PCI4410 follow-on products since this bit location  
loaded by the serial ROM from the enhancements field corresponds to  
HCControl.programPhyEnable in open HCI register space.  
6
RSVD  
R
5–3  
2
RSVD  
ENAB_INSERT_IDLE  
ENAB_ACCEL  
RSVD  
R
Reserved. These bits return 0 when read.  
R/W  
R/W  
R
Enable insert idle. OHCI-Lynx (TSB12LV22) compatible.  
Enable acceleration enhancements. OHCI-Lynx (TSB12LV22) compatible.  
Reserved. This bit returns 0 when read.  
1
0
8–15  
8.22 Subsystem Access Identification Register  
The subsystem access identification register is used for system and option card identification purposes. The contents  
of this register are aliased to subsystem identification register at address 2Ch. See Table 8–19 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem access identification  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access identification  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subsystem access identification  
Read/Write  
F8h  
0000 0000h  
Table 8–19. Subsystem Access Identification Register  
BIT  
31–16  
15–0  
SIGNAL  
TYPE  
FUNCTION  
SUBDEV_ID  
SUBVEN_ID  
R/W  
R/W  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
8–16  
8.23 GPIO Control Register  
The GPIO control register has the control and status bits for GPIO0, GPIO1, GPIO2 and GPIO3 ports. Upon reset,  
GPIO0 and GPIO1 default to bus manager contender (BMC) and link power status terminals, respectively. The BMC  
terminal can be configured as GPIO0 by setting bit 7 (DISABLE_BMC) to 1. The LPS terminal can be configured as  
GPIO1 by setting bit 15 (DISABLE_LPS) to 1. See Table 8–20 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GPIO control  
R
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R
0
9
R/W  
0
R
0
7
R
0
6
R/W  
0
R/W  
0
R
0
3
R
0
2
R
0
1
R/W  
0
15  
14  
13  
12  
11  
10  
8
5
4
0
Name  
Type  
Default  
GPIO control  
R/W  
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
GPIO control  
Read-only, Read/Write  
FCh  
0000 1010h  
Table 8–20. GPIO Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–30  
RSVD  
R
Reserved. These bits return 0s when read.  
GPIO3 polarity invert. This bit controls the input/output polarity control of GPIO3.  
29  
28  
GPIO_INV3  
GPIO_ENB3  
R/W  
R/W  
0 = Noninverted (default)  
1 = Inverted  
GPIO3 enable control. This bit controls the output enable for GPIO3.  
0 = High-impedance output (default)  
1 = Output enabled  
27–25  
24  
RSVD  
GPIO_DATA3  
RSVD  
R
R/W  
R
Reserved. These bits return 0s when read.  
GPIO3 data. When GPIO3 output is enabled, the value written to this bit represents the logical data  
driven to the GPIO3 terminal.  
23–22  
Reserved. These bits return 0s when read.  
GPIO2 polarity invert. This bit controls the input/output polarity control of GPIO2.  
21  
20  
GPIO_INV2  
GPIO_ENB2  
R/W  
R/W  
0 = Noninverted (default)  
1 = Inverted  
GPIO2 enable control. This bit controls the output enable for GPIO2.  
0 = High-impedance output (default)  
1 = Output enabled  
19–17  
16  
RSVD  
R
Reserved. These bits return 0s when read.  
GPIO2 data. When GPIO2 output is enabled, the value written to this bit represents the logical data  
driven to the GPIO2 terminal.  
GPIO_DATA2  
R/W  
Disable link power status (LPS). This bit configures this terminal as  
15  
14  
DISABLE_LPS  
RSVD  
R/W  
R
0 = LPS (default)  
1 = GPIO1  
Reserved. This bit returns 0 when read.  
GPIO1 polarity invert. When DISABLE_LPS bit is set to 1, this bit controls the input/output polarity  
control of GPIO1.  
0 = Noninverted (default)  
1 = Inverted  
13  
GPIO_INV1  
R/W  
8–17  
Table 8–20. GPIO Control Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
GPIO1 enable control. When the DISABLE_LPS bit is set to 1, this bit controls the output enable for  
GPIO1  
12  
GPIO_ENB1  
R/W  
0 = High-impedance output  
1 = Output enabled (default)  
11–9  
8
RSVD  
R
Reserved. These bits return 0s when read.  
GPIO1 data. When the DISABLE_LPS bit is set to 1 and GPIO1 output is enabled, the value written to  
this bit represents the logical data driven to the GPIO1 terminal.  
GPIO_DATA1  
R/W  
Disable bus manager contender (BMC). This bit configures this terminals as bus master contender or  
GPIO0.  
7
6
5
DISABLE_BMC  
RSVD  
R/W  
R
0 = BMC (default)  
1 = GPIO0  
Reserved. This bit returns 0 when read.  
GPIO0 polarity invert. When bit 7 (DISABLE_BMC) is set to 1, this bit controls the input/output polarity  
control of for GPIO0.  
0 = Non-inverted (default)  
1 = Inverted  
GPIO_INV0  
R/W  
GPIO0 enable control. When DISABLE_BMC bit is set to 1, this bit controls the output enable for GPIO0  
4
GPIO_ENB0  
R/W  
0 = High-impedance output  
1 = Output enabled (default)  
3–1  
0
RSVD  
R
Reserved. These bits return 0s when read.  
GPIO0 data. When the DISABLE_BMC bit is set to 1 and GPIO0 output is enabled, the value written to  
this bit represents the logical data driven to the GPIO0 terminal.  
GPIO_DATA0  
R/W  
8–18  
9 Open HCI Registers  
The open HCI registers defined by the IEEE1394 Open HCI Specification are memory-mapped into a 2-Kbyte region  
of memory pointed to by the OHCI base address register at offset 10h in PCI configuration space. These registers  
are the primary interface for controlling the PCI4410 IEEE1394 link function.  
This section provides the register interface and bit descriptions. There are several set and clear register pairs in this  
programming model, which are implemented to solve various issues with typical read-modify-write control registers.  
There are two addresses for a set/clear register: RegisterSet and RegisterClear. See Table 9–1 for a register listing.  
A 1 written to RegisterSet causes the corresponding bit in the set/clear register to be set to 1, whereas a 0 leaves  
the corresponding bit unaffected. A 1 written to RegisterClear causes the corresponding bit in the set/clear register  
to be reset to 0, whereas a 0 leaves the corresponding bit in the set/clear register unaffected.  
Typically, a read from either RegisterSet or RegisterClear returns the value of the set/clear register. However,  
sometimes reading the RegisterClear provides a masked version of the set/clear register. The interrupt event register  
is an example of this behavior.  
Table 9–1. Open HCI Register Map  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
00h  
OHCI version  
Version  
Global unique ID ROM  
Asynchronous transmit retries  
CSR data  
GUID_ROM  
ATRetries  
04h  
08h  
CSRData  
0Ch  
10h  
CSR compare data  
CSR control  
CSRCompareData  
CSRControl  
ConfigROMhdr  
BusID  
14h  
Configuration ROM header  
Bus identification  
Bus options  
18h  
1Ch  
20h  
BusOptions  
GUIDHi  
Global unique ID high  
Global unique ID low  
Reserved  
24h  
GUIDLo  
28h  
2Ch  
30h  
Reserved  
Configuration ROM map  
Posted write address low  
Posted write address high  
Vendor identification  
Reserved  
ConfigROMmap  
PostedWriteAddressLo  
PostedWriteAddressHi  
VendorID  
34h  
38h  
3Ch  
40h  
44h – 4Ch  
9–1  
Table 9–1. Open HCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
Host controller control  
ABBREVIATION  
OFFSET  
50h  
HCControlSet  
HCControlClr  
54h  
Reserved  
58h  
Reserved  
5Ch  
Self ID  
Reserved  
60h  
Self ID buffer  
Self ID count  
Reserved  
SelfIDBuffer  
64h  
SelfIDCount  
68h  
6Ch  
IRChannelMaskHiSet  
IRChannelMaskHiClear  
IRChannelMaskLoSet  
IRChannelMaskLoClear  
IntEventSet  
70h  
Isochronous receive channel mask high  
Isochronous receive channel mask low  
Interrupt event  
74h  
78h  
7Ch  
80h  
IntEventClear  
84h  
IntMaskSet  
88h  
Interrupt mask  
IntMaskClear  
8Ch  
IsoXmitIntEventSet  
IsoXmitIntEventClear  
IsoXmitIntMaskSet  
IsoXmitIntMaskClear  
IsoRecvIntEventSet  
IsoRecvIntEventClear  
IsoRecvIntMaskSet  
IsoRecvIntMaskClear  
90h  
Isochronous transmit interrupt event  
Isochronous transmit interrupt mask  
Isochronous receive interrupt event  
Isochronous receive interrupt mask  
94h  
98h  
9Ch  
A0h  
A4h  
A8h  
ACh  
B0–D8h  
DCh  
E0h  
Reserved  
Fairness control  
FairnessControl  
LinkControlSet  
Link control  
LinkControlClear  
E4h  
Node identification  
PHY layer control  
Isochronous cycle timer  
Reserved  
NodeID  
E8h  
PhyControl  
ECh  
F0h  
IsoCycleTimer  
F4h – FCh  
100h  
104h  
108h  
10Ch  
110h  
114h  
118h  
11Ch  
120h  
124h – 17Ch  
AsyncRequestFilterHiSet  
AsyncRequestFilterHiClear  
AsyncRequestFilterLoSet  
AsyncRequestFilterloClear  
PhysicalRequestFilterHiSet  
PhysicalRequestFilterHiClear  
PhysicalRequestFilterLoSet  
PhysicalRequestFilterloClear  
PhysicalUpperBound  
Asynchronous request filter high  
Asynchronous request filter low  
Physical request filter high  
Physical request filter low  
Physical upper bound  
Reserved  
9–2  
Table 9–1. Open HCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
180h  
ContextControlSet  
ContextControlClear  
Context control  
Asynchronous  
request transmit  
[ ATRQ ]  
184h  
Reserved  
188h  
Command pointer  
Reserved  
CommandPtr  
18Ch  
190h – 19Ch  
1A0h  
ContextControlSet  
ContextControlClear  
Asynchronous  
response transmit  
[ ATRS ]  
Context control  
1A4h  
Reserved  
1A8h  
Command pointer  
Reserved  
CommandPtr  
1ACh  
1B0h – 1BCh  
1C0h  
ContextControlSet  
ContextControlClear  
Asynchronous  
request receive  
[ ARRQ ]  
Context control  
1C4h  
Reserved  
1C8h  
Command pointer  
Reserved  
CommandPtr  
1CCh  
1D0h – 1DCh  
1E0h  
ContextControlSet  
ContextControlClear  
Asynchronous  
response receive  
[ ARRS ]  
Context control  
1E4h  
Reserved  
1E8h  
Command pointer  
Reserved  
CommandPtr  
1ECh  
1F0h – 1FCh  
200h + 16*n  
204h + 16*n  
208h + 16*n  
20Ch + 16*n  
400h + 32*n  
404h + 32*n  
408h + 32*n  
40Ch + 32*n  
410h + 32*n  
Isochronous  
transmit context n  
n = 0, 1, 2, 3, 7  
ContextControlSet  
ContextControlClear  
Context control  
Reserved  
Command pointer  
CommandPtr  
ContextControlSet  
ContextControlClear  
Isochronous  
receive context n  
n = 0, 1, 2, 3, 4  
Context control  
Reserved  
Command pointer  
Context match  
CommandPtr  
ContextMatch  
9–3  
9.1 OHCI Version Register  
This register indicates the OHCI version support, and whether or not the serial ROM is present. See Table 9–2 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
OHCI version  
Read-only  
00h  
0001 0000h  
Table 9–2. OHCI Version Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–25  
RSVD  
R
Reserved. Bits 31–25 return 0s when read.  
The PCI4410 sets this bit to 1 if the serial ROM is detected. If the serial ROM is present, then the  
Bus_Info_Block is automatically loaded on hardware reset.  
24  
GUID_ROM  
R
Major version of the open HCI. The PCI4410 is compliant with the OHCI specification version 1.00; thus,  
this field reads 01h.  
23–16  
15–8  
7–0  
VERSION  
RSVD  
R
R
R
Reserved. Bits 15–8 return 0s when read.  
Minor version of the open HCI. The PCI4410 is compliant with the OHCI specification version 1.00; thus,  
this field reads 00h.  
REVISION  
9–4  
9.2 GUID ROM Register  
This register is used to access the serial ROM and is only applicable if the GUID_ROM bits are set to 1. See Table 9–3  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Xit  
GUID ROM  
RSU  
0
R
0
R
0
R
0
R
0
R
0
RSU  
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GUID ROM  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
GUID ROM  
Read-only, Read/Set/Update, Read/Update  
Offset:  
Default:  
04h  
00XX 0000h  
Table 9–3. GUID ROM Register  
BIT  
31  
SIGNAL  
ADDRRESET  
RSVD  
TYPE  
RSU  
R
FUNCTION  
Software sets this bit to 1 to reset the GUID ROM address to 0. When the PCI4410 completes the reset, it  
clears this bit. The PCI4410 does not automatically fill bits 23–16 (RDDATA field) with the 0 byte.  
th  
30–26  
25  
Reserved. Bits 30–26 return 0s when read.  
A read of the currently addressed byte is started when this bit is set to 1. This bit is automatically cleared  
when the PCI4410 completes the read of the currently addressed GUID ROM byte.  
RDSTART  
RSU  
24  
RSVD  
RDDATA  
RSVD  
R
RU  
R
Reserved. Bit 24 returns 0 when read.  
23–16  
15–0  
This field represents the data read from the GUID ROM.  
Reserved. Bits 15–0 return 0s when read.  
9–5  
9.3 Asynchronous Transmit Retries Register  
This register indicates the number of times the PCI4410 will attempt a retry for asynchronous DMA request transmit  
and for asynchronous physical and DMA response transmit. See Table 9–4 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Asynchronous transmit retries  
Read-only, Read/Write  
08h  
0000 0000h  
Table 9–4. Asynchronous Transmit Retries Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
R
The second limit field returns 0 when read, because outbound dual-phase retry is not  
implemented.  
31–29  
SECONDLIMIT  
R
The cycle limit field returns 0 when read, because outbound dual-phase retry is not imple-  
mented.  
28–16  
15–12  
CYCLELIMIT  
RSVD  
R
Reserved. Bits 15–12 return 0 when read.  
R/W  
The MAXPHYSRESPRETRIES field tells the physical response unit how many times to  
attemptto retry the transmit operation for the response packet when a busy acknowledge or  
ack_data_error is received from the target node.  
11–8  
7–4  
3–0  
MAXPHYSRESPRETRIES  
MAXATRESPRETRIES  
MAXATREQRETRIES  
R/W  
R/W  
The MAXATRESPRETRIES field tells the asynchronous transmit response unit how many  
times to attempt to retry the transmit operation for the response packet when a busy ac-  
knowledge or ack_data_error is received from the target node.  
The MAXATREQRETRIES field tells the asynchronous transmit DMA request unit how  
many times to attempt to retry the transmit operation for the response packet when a busy  
acknowledge or ack_data_error is received from the target node.  
9–6  
9.4 CSR Data Register  
This register is used to access the bus management CSR registers from the host through compare-swap operations.  
This register contains the data to be stored in a CSR if the compare is successful.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CSR data  
Read-only  
0Ch  
0000 0000h  
9.5 CSR Compare Register  
This register is used to access the bus management CSR registers from the host through compare-swap operations.  
This register contains the data to be compared with the existing value of the CSR resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR compare  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR compare  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CSR compare  
Read-only  
10h  
0000 0000h  
9–7  
9.6 CSR Control Register  
This register is used to access the bus management CSR registers from the host through compare-swap operations.  
This register is used to control the compare-swap operation and select the CSR resource. See Table 9–5 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR control  
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
CSR control  
Read-only, Read/Update, Read/Write  
Offset:  
Default:  
14h  
0000 0000h  
Table 9–5. CSR Control Register  
BIT  
31  
SIGNAL  
CSRDONE  
RSVD  
TYPE  
R/C  
R
FUNCTION  
This bit is set to 1 by the PCI4410 when a compare-swap operation is complete. It is reset to 0 whenever  
this register is written.  
30–2  
Reserved. Bits 30–2 return 0s when read.  
This field selects the CSR resource as follows:  
00 = BUS_MANAGER_ID  
01 = BANDWIDTH_AVAILABLE  
10 = CHANNELS_AVAILABLE_HI  
11 = CHANNELS_AVAILABLE_LO  
1–0  
CSRSEL  
R/W  
9–8  
9.7 Configuration ROM Header Register  
This register externally maps to the first quadlet of the 1394 configuration ROM, offset FFFF F000 0400h. See  
Table 9–6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM header  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM header  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Configuration ROM header  
Read/Write  
Offset:  
Default:  
18h  
0000 XXXXh  
Table 9–6. Configuration ROM Header Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–24  
23–16  
INFO_LENGTH  
CRC_LENGTH  
R/W  
R/W  
IEEE1394 bus management field. Must be valid when HCControl.linkEnable bit is set to 1.  
IEEE1394 bus management field. Must be valid when HCControl.linkEnable bit is set to 1.  
IEEE1394bus management field. Must be valid at any time the HCControl.linkEnable bit is set to 1.  
The reset value is undefined if no serial ROM is present. If a serial ROM is present, then this field is  
loaded from the serial ROM.  
15–0  
ROM_CRC_VALUE  
R/W  
9.8 Bus Identification Register  
This register externally maps to the first quadlet in the Bus_Info_Block, and contains the constant 3133 3934h, which  
is the ASCII value of 1394.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus identification  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
1
5
R
1
4
R
0
3
R
0
2
R
1
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Bus identification  
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
1
R
0
R
0
Register:  
Type:  
Bus identification  
Read-only  
Offset:  
Default:  
1Ch  
3133 3934h  
9–9  
9.9 Bus Options Register  
This register externally maps to the second quadlet of the Bus_Info_Block. See Table 9–7 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus options  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
0
R
0
R
0
9
R
0
8
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bus options  
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Bus options  
Read-only, Read/Write  
20h  
X0XX A0X2h  
Table 9–7. Bus Options Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Isochronous resource manager capable. IEEE1394 bus management field. Must be valid when  
HCControl.linkEnable bit is set to 1.  
31  
IRMC  
R/W  
Cyclemastercapable. IEEE1394busmanagementfield. MustbevalidwhenHCControl.linkEnablebit  
is set to 1.  
30  
29  
28  
CMC  
ISC  
R/W  
R/W  
R/W  
Isochronous support capable. IEEE1394 bus management field. Must be valid when  
HCControl.linkEnable bit is set to 1.  
Busmanagercapable.IEEE1394busmanagementfield.MustbevalidwhenHCControl.linkEnablebit  
is set to 1.  
BMC  
27  
PMC  
R/W  
R
IEEE1394 bus management field. Must be valid when HCControl.linkEnable bit is set to 1.  
Reserved. Bits 26–24 return 0 when read.  
26–24  
RSVD  
Cyclemasterclockaccuracyinpartspermillion. IEEE1394busmanagementfield. Mustbevalidwhen  
HCControl.linkEnable bit is set to 1.  
23–16  
CYC_CLK_ACC  
R/W  
IEEE 1394 bus management field. Hardware initializes this field to indicate the maximum number  
of bytes in a block request packet that is supported by the implementation. This value, max_rec_bytes  
must be 512 or greater, and is calculated by 2^(max_rec + 1). Software may change max_rec;  
however, this field must be valid at any time the HCControl.linkEnable bit is set to 1. A received block  
write request packet with a length greater than max_rec_bytes may generate an ack_type_error. This  
field is not affected by a soft reset and defaults to a value indicating 2048 bytes on hard reset.  
15–12  
MAX_REC  
R/W  
11–8  
7–6  
5–3  
2–0  
RSVD  
G
R
R/W  
R
Reserved. Bits 11–8 return 0s when read.  
Generationcounter. This field is incremented if any portion of the configuration ROM has incremented  
since the prior bus reset.  
RSVD  
LNK_SPD  
Reserved. Bits 5–3 return 0s when read.  
Link speed. This field returns 010, indicating that the link speeds of 100, 200, and 400 Mbits/s are  
supported.  
R
9–10  
9.10 GUID High Register  
This register represents the upper quadlet in a 64-bit global unique ID (GUID) which maps to the third quadlet in the  
Bus_Info_Block. This register contains node_vendor_ID and chip_ID_hi fields. This register initializes to 0s on a  
hardwarereset, whichisanillegalGUIDvalue. IfaserialROMisdetected, thenthecontentsofthisregisterareloaded  
through the serial ROM interface after a PCI reset. At that point, the contents of this register cannot be changed. If  
no serial ROM is detected, then this register may be written once to set the value of this register. At that point, the  
contents of this register cannot be changed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID high  
Read-only  
24h  
0000 0000h  
9.11 GUID Low Register  
This register represents the lower quadlet in a 64-bit global unique ID (GUID) which maps to chip_ID_lo in the  
Bus_Info_Block. This register initializes to 0s on a hardware reset and behaves identically to the GUID high register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID low  
Read-only  
28h  
0000 0000h  
9–11  
9.12 Configuration ROM Mapping Register  
This register contains the start address within system memory that will map to the start address of 1394 configuration  
ROM for this node. See Table 9–8 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Configuration ROM mapping  
Read-only, Read/Write  
34h  
0000 0000h  
Table 9–8. Configuration ROM Mapping Register  
BIT  
31–10  
9–0  
SIGNAL  
TYPE  
FUNCTION  
If a quadlet read request to 1394 offset FFFF F000 0400h through offset FFFF F000 07FFh  
is received, then the low order 10 bits of the offset are added to this register to determine the host  
memory address of the read request.  
CONFIGROMADDR  
RSVD  
R/W  
R
Reserved. Bits 9–0 return 0s when read.  
9.13 Posted Write Address Low Register  
This register is used to communicate error information if a write request is posted and an error occurs while the posted  
data packet is being written. See Table 9–9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Default:  
Posted write address low  
Read/Update  
38h  
XXXX XXXXh  
Table 9–9. Posted Write Address Low Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–0  
OFFSETLO  
RU  
The lower 32 bits of the 1394 destination offset of the write request that failed  
9–12  
9.14 Posted Write Address High Register  
This register is used to communicate error information if a write request is posted and an error occurs while the posted  
data packet is being written. See Table 9–10 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Posted write address high  
Read/Update  
Offset:  
Default:  
3Ch  
XXXX XXXXh  
Table 9–10. Posted Write Address High Register  
BIT  
31–16  
15–0  
SIGNAL  
SOURCEID  
OFFSETHI  
TYPE  
RU  
FUNCTION  
This bus and node number of the node that issued the write request that failed  
The upper 16 bits of the 1394 destination offset of the write request that failed  
RU  
9.15 Vendor ID Register  
The vendor ID register holds the company ID of an organization that specifies any vendor-unique registers. The  
PCI4410 does not implement Texas Instruments unique behavior with regards to open HCI. Thus this register is  
read-only and returns 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
40h  
0000 0000h  
9–13  
9.16 Host Controller Control Register  
This set/clear register pair provides flags for controlling the PCI4410 link function. See Table 9–11 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Host controller control  
R
0
RSC  
X
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RC  
0
RSC  
R
0
5
R
0
4
RSC RSC RSC RSCU  
0
0
X
0
0
15  
14  
13  
12  
11  
10  
7
6
3
2
1
0
Name  
Type  
Default  
Host controller control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Host controller control  
Read/Set/Clear/Update  
Offset:  
50h  
54h  
set register  
clear register  
Default:  
X00X 0000h  
Table 9–11. Host Controller Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31  
RSVD  
NOBYTESWAPDATA  
RSVD  
R
Reserved. Bit 31 returns 0 when read.  
ThisbitisusedtocontrolwhetherphysicalaccessestolocationsoutsidethePCI4410itselfas  
well as any other DMA data accesses should be swapped.  
30  
RSC  
R
29–24  
Reserved. Bits 29–24 return 0s when read.  
This bit informs upper level software that lower level software has consistently configured the  
p1394a enhancements in the Link and PHY. When this bit is 1, generic software such as the  
OHCI driver is responsible for configuring p1394a enhancements in the PHY and the  
APHYENHANCEENABLEbit in the PCI4410. When this bit is 0, the generic software may not  
modify the p1394a enhancements in the PCI4410 or PHY and cannot interpret the setting of  
APHYENHANCEENABLE. This bit can be initialized from serial EEPROM.  
23  
PROGRAMPHYENABLE  
RC  
When bits 23 (PROGRAMPHYENABLE) and 17 (LINKENABLE) are 1, the OHCI driver can  
set this bit to 1 to use all p1394a enhancements. When bit 23 (PROGRAMPHYENABLE) is 0,  
the software does not change PHY enhancements or the APHYENHANCEENABLE bit.  
22  
APHYENHANCEENABLE  
RSC  
21–20  
19  
RSVD  
LPS  
R
Reserved. Bits 21 and 20 return 0s when read.  
This bit is used to control the link power status. Software must set this bit to 1 to permit the  
link-PHY communication. A 0 prevents link-PHY communication.  
RSC  
This bit is used to enable (1) or disable (0) posted writes. Software should change this bit only  
when bit 17 (LINKENABLE) is 0.  
18  
17  
POSTEDWRITEENABLE  
LINKENABLE  
RSC  
RSC  
This bit is cleared to 0 by a hardware reset or software reset. Software must set this bit to 1  
when the system is ready to begin operation and then force a bus reset. This bit is necessary  
to keep other nodes from sending transactions before the local system is ready. When this bit  
is cleared, the PCI4410 is logically and immediately disconnected from the 1394 bus, no  
packets are received or processed, and no packets are transmitted.  
When this bit is set to 1, all PCI4410 states are reset, all FIFO’s are flushed, and all OHCI  
registers are set to their hardware reset values unless otherwise specified. PCI registers are  
not affected by this bit. This bit remains set to 1 while the soft reset is in progress and reverts  
back to 0 when the reset has completed.  
16  
SOFTRESET  
RSVD  
RSCU  
R
15–0  
Reserved. Bits 15–0 return 0s when read.  
9–14  
9.17 Self ID Buffer Pointer Register  
This register points to the 2-Kbyte aligned base address of the buffer in host memory where the self ID packets will  
be stored during bus initialization. Bits 31–11 are read/write accessible.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self ID buffer pointer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self ID buffer pointer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self ID buffer pointer  
Read-only, Read/Write  
64h  
0000 0000h  
9.18 Self ID Count Register  
This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors,  
and keeps a count of the amount of self ID data in the self ID buffer. See Table 9–12 for a complete description of  
the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self ID count  
RU  
X
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self ID count  
R
0
R
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self ID count  
Read/Update  
68h  
X0XX 0000h  
Table 9–12. Self ID Count Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
When this bit is 1, an error was detected during the most recent self ID packet reception. The  
contents of the self ID buffer are undefined. This bit is cleared after a self ID reception in which no  
errors are detected. Note that an error can be a hardware error or a host bus write error.  
31  
SELFIDERROR  
RU  
30–24  
23–16  
15–11  
RSVD  
SELFIDGENERATION  
RSVD  
R
RU  
R
Reserved. Bits 30–24 return 0s when read.  
The value in this field increments each time a bus reset is detected. This field rolls over to 0 after  
reaching 255.  
Reserved. Bits 15–11 return 0s when read.  
This field indicates the number of quadlets that have been written into the self ID buffer for the  
currentSELFIDGENERATION. ThisincludestheheaderquadletandtheselfIDdata. Thisfieldis  
cleared to 0 when the self-ID reception begins.  
10–2  
1–0  
SELFIDSIZE  
RSVD  
RU  
R
Reserved. Bits 1 and 0 return 0s when read.  
9–15  
9.19 ISO Receive Channel Mask High Register  
This set/clear register is used to enable packet receives from the upper 32 isochronous data channels. A read from  
either the set register or clear register returns the value of the IRChannelMaskHi register. See Table 9–13 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
ISO receive channel mask high  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ISO receive channel mask high  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
Register:  
Type:  
ISO receive channel mask high  
Read/Set/Clear  
Offset:  
70h  
74h  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 9–13. ISO Receive Channel Mask High Register  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
SIGNAL  
TYPE  
FUNCTION  
ISOCHANNEL63  
ISOCHANNEL62  
ISOCHANNEL61  
ISOCHANNEL60  
ISOCHANNEL59  
ISOCHANNEL58  
ISOCHANNEL57  
ISOCHANNEL56  
ISOCHANNEL55  
ISOCHANNEL54  
ISOCHANNEL53  
ISOCHANNEL52  
ISOCHANNEL51  
ISOCHANNEL50  
ISOCHANNEL49  
ISOCHANNEL48  
ISOCHANNEL47  
ISOCHANNEL46  
ISOCHANNEL45  
ISOCHANNEL44  
ISOCHANNEL43  
ISOCHANNEL42  
ISOCHANNEL41  
ISOCHANNEL40  
ISOCHANNEL39  
ISOCHANNEL38  
ISOCHANNEL37  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 63.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 62.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 61.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 60.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 59.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 58.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 57.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 56.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 55.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 54.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 53.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 52.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 51.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 50.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 49.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 48.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 47.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 46.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 45.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 44.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 43.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 42.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 41.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 40.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 39.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 38.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 37.  
8
7
6
5
9–16  
Table 9–13. ISO Receive Channel Mask High Register (Continued)  
BIT  
4
SIGNAL  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
FUNCTION  
ISOCHANNEL36  
ISOCHANNEL35  
ISOCHANNEL34  
ISOCHANNEL33  
ISOCHANNEL32  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 36.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 35.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 34.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 33.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 32.  
3
2
1
0
9.20 ISO Receive Channel Mask Low Register  
This set/clear register is used to enable packet receives from the lower 32 isochronous data channels. See  
Table 9–14 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
ISO receive channel mask low  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ISO receive channel mask low  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
Register:  
Type:  
ISO receive channel mask low  
Read/Set/Clear  
Offset:  
78h  
7Ch  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 9–14. ISO Receive Channel Mask Low Register  
BIT  
31  
30  
L
SIGNAL  
ISOCHANNEL31  
ISOCHANNEL30  
L
TYPE  
FUNCTION  
RSC  
RSC  
L
When set to 1, the PCI4410 is enabled to receive from ISO channel number 31.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 30.  
Bits 29 through 2 follow the same pattern  
1
ISOCHANNEL1  
ISOCHANNEL0  
RSC  
RSC  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 1.  
When set to 1, the PCI4410 is enabled to receive from ISO channel number 0.  
0
9–17  
9.21 Interrupt Event Register  
This set/clear register reflects the state of the various PCI4410 interrupt sources. The interrupt bits are set to 1 by  
an asserting edge of the corresponding interrupt signal, or by writing a 1 in the corresponding bit in the set register.  
The only mechanism to reset the bits in this register to 0 is to write a 1 to the corresponding bit in the clear register.  
See Table 9–15 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt event  
R
0
R
X
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt event  
Read/Set/Clear/Update  
Offset:  
80h  
84h  
set register  
clear register (returns IntEvent and IntMask when read)  
Default:  
XXXX 0XXXh  
Table 9–15. Interrupt Event Register  
BIT  
31  
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. Bit 31 returns 0 when read.  
Vendor defined.  
30  
VENDORSPECIFIC  
RSVD  
R
R
29–27  
Reserved. Bits 29–27 return 0s when read.  
The PCI4410 has received a PHY register data byte which can be read from the PHY control  
register.  
26  
PHYREGRCVD  
RSCU  
If LinkControl.cycleMaster is set to 1, this indicates that over 125 µs elapsed between the start of  
25  
CYCLETOOLONG  
RSCU sending a cycle start packet and the end of a subaction gap. LinkControl.cycleMaster is cleared  
by this event.  
ThiseventoccurswhenthePCI4410encountersanyerrorthatforcesittostopoperationsonany  
UNRECOVERABLEER  
ROR  
or all of its subunits, for example, when a DMA context sets its dead bit to 1. While  
UNRECOVERABLEERROR is set to 1, all normal interrupts for the context(s) that caused this  
interrupt are blocked from being set to 1.  
24  
23  
RSCU  
A cycle start was received that had an isochronous cycleTimer.seconds and isochronous  
cycleTimer.count different from the value in the CycleTimer register.  
CYCLEINCONSISTENT RSCU  
A lost cycle is indicated when no cycle_start packet is sent/received between two successive  
cycleSynch events. A lost cycle can be predicted when a cycle_start packet does not  
immediatelyfollow the first subaction gap after the cycleSynch event or if anarbitrationresetgap  
is detected after a cycleSynch event without an intervening cycle start. CYCLELOST may be set  
to 1 either when a lost cycle occurs or when logic predicts that it will occur.  
22  
CYCLELOST  
RSCU  
th  
21  
20  
CYCLE64SECONDS  
CYCLESYNCH  
RSCU Indicates that the 7 bit of the cycle second counter has changed.  
Indicates that a new isochronous cycle has started and is set to 1 when the low order bit of the  
cycle count toggles.  
RSCU  
19  
18  
17  
PHY  
RSVD  
RSCU Indicates the PHY requests an interrupt through a status transfer.  
R
Reserved. Bit 18 returns 0 when read.  
BUSRESET  
RSCU Indicates that the PHY chip has entered bus reset mode.  
A self ID packet stream has been received. It is generated at the end of the bus initialization  
RSCU  
16  
SELFDCOMPLETE  
RSVD  
process. This bit is turned off simultaneously when IntEvent.busReset is turned on.  
15–10  
R
Reserved. Bits 15–10 return 0s when read.  
9–18  
Table 9–15. Interrupt Event Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Indicates that the PCI4410 sent a lock response for a lock request to a serial bus register, but did  
not receive an ack_complete.  
9
LOCKRESPERR  
RSCU  
Indicatesthat a host bus error occurred while the PCI4410 was trying to write a 1394 write request,  
which had already been given an ack_complete, into system memory.  
8
7
POSTEDWRITEERR  
ISOCHRX  
RSCU  
RU  
Isochronous receive DMA interrupt. Indicates that one or more isochronous receive contexts have  
generated an interrupt. This is not a latched event; it is the OR’ing of all bits in (isoRecvIntEvent  
and isoRecvIntMask). The isoRecvIntEvent register indicates which contexts have interrupted.  
6
ISOCHTX  
RU  
Isochronous transmit DMA interrupt. Indicates that one or more isochronous transmit contexts  
have generated an interrupt. This is not a latched event, it is the OR’ing of all bits in  
(isoXmitIntEvent and isoXmitIntMask). The isoXmitIntEvent register indicates which contexts  
have interrupted.  
5
4
3
2
1
0
RSPKT  
RQPKT  
RSCU Indicates that a packet was sent to an asynchronous receive response context buffer and the  
descriptor’s xferStatus and resCount fields have been updated.  
RSCU Indicates that a packet was sent to an asynchronous receive request context buffer and the  
descriptor’s xferStatus and resCount fields have been updated.  
ARRS  
RSCU AsynchronousreceiveresponseDMAinterrupt. Thisbitisconditionallysetto1uponcompletionof  
an ARRS DMA context command descriptor.  
ARRQ  
RSCU Asynchronous receive request DMA interrupt. This bit is conditionally set to 1 upon completion of  
an ARRQ DMA context command descriptor.  
RESPTXCOMPLETE  
REQTXCOMPLETE  
RSCU Asynchronous response transmit DMA interrupt. This bit is conditionally set to 1 upon completion  
of an ATRS DMA command.  
RSCU Asynchronous request transmit DMA interrupt. This bit is conditionally set to 1 upon completion of  
an ATRQ DMA command.  
9.22 Interrupt Mask Register  
This set/clear register is used to enable the various PCI4410 interrupt sources. Reads from either the set register or  
the clear register always return IntMask. In all cases except masterIntEnable (bit 31), the enables for each interrupt  
eventalignwiththeeventregisterbitsdetailedinTable 9–15. See Table 9–16 for a complete descriptionoftheregister  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt mask  
RSC  
0
R
X
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt mask  
Read/Set/Clear/Update, Read-only  
Offset:  
88h  
8Ch  
set register  
clear register  
Default:  
XXXX 0XXXh  
Table 9–16. Interrupt Mask Register  
BIT  
31  
SIGNAL  
MASTERINTENABLE  
TYPE  
FUNCTION  
Whenthisbitissetto1, externalinterruptsaregeneratedinaccordancewiththeIntMaskregister.  
If this bit is reset to 0, no external interrupts are generated.  
RSC  
30–0  
See Table 9–15.  
9–19  
9.23 Isochronous Transmit Interrupt Event Register  
This set/clear register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on  
behalf of an isochronous transmit context if an OUTPUT_LAST command completes and its interrupt bits are set to 1.  
Upon determining that the IntEvent.isochTx interrupt has occurred, software can check this register to determine  
which context(s) caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding  
interrupt signal, or by writing a 1 in the corresponding bit in the set register. The only mechanism to reset the bits in  
this register to 0 is to write a 1 to the corresponding bit in the clear register. See Table 9–17 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous transmit interrupt event  
Read/Set/Clear, Read-only  
Offset:  
90h  
84h  
set register  
clear register (returns IsoXmitEvent and IsoXmitMask when read)  
Default:  
0000 00XXh  
Table 9–17. Isochronous Transmit Interrupt Event Register  
BIT  
SIGNAL  
RSVD  
TYPE  
R
FUNCTION  
31–8  
Reserved. Bits 31–8 return 0s when read.  
7
6
5
4
3
2
1
0
ISOXMIT7  
ISOXMIT6  
ISOXMIT5  
ISOXMIT4  
ISOXMIT3  
ISOXMIT2  
ISOXMIT1  
ISOXMIT0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Isochronous transmit channel 7 caused the isochTx interrupt.  
Isochronous transmit channel 6 caused the isochTx interrupt.  
Isochronous transmit channel 5 caused the isochTx interrupt.  
Isochronous transmit channel 4 caused the isochTx interrupt.  
Isochronous transmit channel 3 caused the isochTx interrupt.  
Isochronous transmit channel 2 caused the isochTx interrupt.  
Isochronous transmit channel 1 caused the isochTx interrupt.  
Isochronous transmit channel 0 caused the isochTx interrupt.  
9–20  
9.24 Isochronous Transmit Interrupt Mask Register  
This set/clear register is used to enable the isochTx interrupt source on a per channel basis. Reads from either the  
set register or the clear register always return IsoXmitIntMask. In all cases the enables for each interrupt event align  
with the event register bits detailed in Table 9–17.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous transmit interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
98h  
9Ch  
set register  
clear register  
Default:  
0000 00XXh  
9.25 Isochronous Receive Interrupt Event Register  
This set/clear register reflects the interrupt state of the isochronous receive contexts. An interrupt is generated on  
behalf of an isochronous receive context if an INPUT_* command completes and its interrupt bits are set to 1. Upon  
determining that the IntEvent.isochRx interrupt has occurred, software can check this register to determine which  
context(s) caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding interrupt  
signal, or by writing a 1 in the corresponding bit in the set register. The only mechanism to reset the bits in this register  
to0istowritea1tothecorrespondingbitintheclearregister. SeeTable 9–18 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous receive interrupt event  
Read/Set/Clear, Read-only  
Offset:  
A0h  
A4h  
set register  
clear register (returns IsoRecvEvent and IsoRecvMask when read)  
Default:  
0000 000Xh  
Table 9–18. Isochronous Receive Interrupt Event Register  
BIT  
SIGNAL  
RSVD  
TYPE  
R
FUNCTION  
31–4  
Reserved. These bits return 0s when read.  
3
2
1
0
ISORECV3  
ISORECV2  
ISORECV1  
ISORECV0  
RSC  
RSC  
RSC  
RSC  
Isochronous receive channel 3 caused the isochRx interrupt.  
Isochronous receive channel 2 caused the isochRx interrupt.  
Isochronous receive channel 1 caused the isochRx interrupt.  
Isochronous receive channel 0 caused the isochRx interrupt.  
9–21  
9.26 Isochronous Receive Interrupt Mask Register  
This set/clear register is used to enable the isochRx interrupt source on a per channel basis. Reads from either the  
set register or the clear register always return IsoRecvIntMask. In all cases the enables for each interrupt event align  
with the event register bits detailed in Table 9–18.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous receive interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
A8h  
ACh  
set register  
clear register  
Default:  
0000 000Xh  
9.27 Fairness Control Register (Optional Register)  
Thisregisterprovidesamechanismbywhichsoftwarecandirectthehostcontrollertotransmitmultipleasynchronous  
requests during a fairness interval. See Table 9–19 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Fairness control  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Fairness control  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Fairness control  
Read-only  
Offset:  
Default:  
DCh  
XXXX XX00h  
Table 9–19. Fairness Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–8  
RSVD  
R
Reserved.  
Thisfieldspecifiesthemaximumnumberofpriorityarbitrationrequestsforasynchronousrequestpackets  
that the link is permitted to make of the PHY during fairness interval.  
7–0  
PRI_REQ  
R
9–22  
9.28 Link Control Register  
This set/clear register provides the control flags that enable and configure the link core protocol portions of the  
PCI4410. Itcontainscontrolsforthereceiverandcycletimer. SeeTable 9–20 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
RSC RSCU RSC  
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
6
5
4
Name  
Type  
Default  
Link control  
R
0
R
0
R
0
R
0
R
0
RSC RSC  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
X
X
Register:  
Type:  
Link control  
Read/Set/Clear/Update, Read/Set/Clear, Read-only  
Offset:  
E0h  
E4h  
set register  
clear register  
Default:  
00X0 0X00h  
Table 9–20. Link Control Register  
BIT  
SIGNAL  
RSVD  
TYPE  
FUNCTION  
Reserved. Bits 31–23 return 0s when read.  
31–23  
R
When this bit is 1, the cycle timer uses an external source (CYCLEIN) to determine when to roll  
over the cycle timer. When this bit is 0, the cycle timer rolls over when the timer reaches 3072  
cycles of the 24.576-MHz clock (125 µs).  
22  
21  
20  
CYCLESOURCE  
RSC  
RSCU  
RSC  
When this bit is set to 1 and the PHY has notified the PCI4410 that it is root, the PCI4410  
generatesa cycle start packet every time the cycletimerrollsover, based on the setting of bit 22  
(CYCLESOURCE). When this bit is 0, the OHCILynx accepts received cycle start packets to  
maintainsynchronization with the node which is sending them. This bit is automatically reset to  
0 when the cycleTooLong event occurs and cannot be set to 1 until the IntEvent.cycleTooLong  
bit is cleared.  
CYCLEMASTER  
When this bit is 1, the cycle timer offset counts cycles of the 24.576-MHz clock and rolls over at  
the appropriate time based on the settings of the above bits. When this bit is 0, the cycle timer  
offset does not count.  
CYCLETIMERENABLE  
19–11  
10  
RSVD  
R
Reserved. Bits 19–11 return 0s when read.  
When this bit is 1, the receiver accepts incoming PHY packets into the AR request context if the  
AR request context is enabled. This does not control receipt of self-identification packets.  
RCVPHYPKT  
RSC  
When this bit is 1, the receiver accepts incoming self-identification packets. Before setting this  
bit to 1, software must ensure that the self ID buffer pointer register contains a valid address.  
9
RCVSELFID  
RSVD  
RSC  
R
8–0  
Reserved. Bits 8–0 return 0s when read.  
9–23  
9.29 Node Identification Register  
This register contains the address of the node on which the OHCILynx chip resides, and indicates the valid node  
number status. The 16-bit combination of busNumber and NodeNumber is referred to as the node ID. See Table 9–21  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Node identification  
RU  
0
RU  
0
R
0
R
0
RU  
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Node identification  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
1
1
1
1
1
1
1
1
1
1
Register:  
Type:  
Node identification  
Read/Write/Update, Read/Update, Read-only  
Offset:  
Default:  
E8h  
0000 11XXh  
Table 9–21. Node Identification Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit indicates whether or not the PCI4410 has a valid node number. It is reset to 0 when a 1394 bus  
reset is detected and set to 1 when the PCI4410 receives a new node number from the PHY.  
31  
IDVALID  
RU  
30  
ROOT  
RSVD  
CPS  
RU  
R
This bit is set to 1 during the bus reset process if the attached PHY is root.  
Reserved. Bits 29 and 28 return 0s when read.  
29–28  
27  
RU  
R
This bit is set to 1 if the PHY is reporting that cable power status is OK (VP 8V).  
Reserved. Bits 26–16 return 0s when read.  
26–16  
RSVD  
This number is used to identify the specific 1394 bus the PCI4410 belongs to when multiple  
1394-compatible buses are connected via a bridge.  
15–6  
5–0  
BUSNUMBER  
RWU  
This number is the physical node number established by the PHY during self-identification. It is  
automatically set to the value received from the PHY after the self-identification phase. If the PHY  
sets the nodeNumber to 63, then software should not set ContextControl.run for either of the AT DMA  
contexts.  
NODENUMBER  
RU  
9–24  
9.30 PHY Control Register  
ThisregisterisusedtoreadorwriteaPHYregister. SeeTable 9–22 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PHY control  
RU  
X
R
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PHY control  
RWU RWU  
R
0
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
0
0
Register:  
Type:  
PHY control  
Read/Write/Update, Read/Update, Read-only  
Offset:  
Default:  
ECh  
XXXX 0XXXh  
Table 9–22. PHY Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit is cleared to 0 by the PCI4410 when either bit 15 (rdReg) or bit 14 (wrReg) is set to 1. This bit is set  
to 1 when a register transfer is received from the PHY.  
31  
RDDONE  
RU  
30–28  
27–24  
23–16  
RSVD  
R
Reserved. Bits 30–28 return 0s when read.  
RDADDR  
RDDATA  
RU  
RU  
This is the address of the register most recently received from the PHY.  
This field is the contents of a PHY register which has been read.  
This bit is set to 1 by software to initiate a read request to a PHY register, and is cleared by hardware  
when the request has been sent. The wrReg and rdReg bits must be used exclusively.  
15  
14  
RDREG  
WRREG  
RWU  
RWU  
This bit is set to 1 by software to initiate a write request to a PHY register, and is reset to 0 by hardware  
when the request has been sent. The wrReg and rdReg bits must be used exclusively.  
13–12  
11–8  
7–0  
RSVD  
R
Reserved. Bits 13 and 12 return 0 when read.  
REGADDR  
WRDATA  
R/W  
R/W  
This field is the address of the PHY register to be written or read.  
This field is the data to be written to a PHY register, and is ignored for reads.  
9–25  
9.31 Isochronous Cycle Timer Register  
This read/write register indicates the current cycle number and offset. When the PCI4410 is cycle master, this register  
is transmitted with the cycle start message. When the PCI4410 is not cycle master, this register is loaded with the  
data field in an incoming cycle start. In the event that the cycle start message is not received, the fields can continue  
incrementing on their own (if programmed) to maintain a local time reference. See Table 9–23 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Default:  
Isochronous cycle timer  
Read/Write/Update  
F0h  
XXXX XXXXh  
Table 9–23. Isochronous Cycle Timer Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This field counts seconds (cycleCount rollovers) modulo 128.  
This field counts cycles (cycleOffset rollovers) modulo 8000.  
31–25  
24–12  
CYCLESECONDS  
CYCLECOUNT  
RWU  
RWU  
This field counts 24.576-MHz clocks modulo 3072, that is, 125 µs. If an external 8-kHz clock  
configurationisbeingused, thenCYCLEOFFSETmustberesetto0ateachtickoftheexternalclock.  
11–0  
CYCLEOFFSET  
RWU  
9–26  
9.32 Asynchronous Request Filter High Register  
This set/clear register is used to enable asynchronous receive requests on a per node basis, and handles the upper  
node IDs. When a packet is destined for either the physical request context or the ARRQ context, the source node  
ID is examined. If the bit corresponding to the node ID is not set to 1 in this register, then the packet is not  
acknowledged and the request is not queued. The node ID comparison is done if the source node is on the same  
bus as the PCI4410. All nonlocal bus-sourced packets are not acknowledged unless bit 31 in this register is set to  
1. See Table 9–24 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Asynchronous request filter high  
Read/Set/Clear  
Offset:  
100h set register  
104h clear register  
0000 0000h  
Default:  
Table 9–24. Asynchronous Request Filter High Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If set to 1, all asynchronous requests received by the PCI4410 from nonlocal bus nodes are  
accepted.  
31  
ASYNREQALLBUSES  
ASYNREQRESOURCE62  
ASYNREQRESOURCE61  
ASYNREQRESOURCE60  
ASYNREQRESOURCE59  
ASYNREQRESOURCE58  
ASYNREQRESOURCE57  
ASYNREQRESOURCE56  
ASYNREQRESOURCE55  
ASYNREQRESOURCE54  
ASYNREQRESOURCE53  
ASYNREQRESOURCE52  
RSC  
If set to 1 for local bus node number 62, asynchronous requests received by the PCI4410  
from that node are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If set to 1 for local bus node number 61, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 60, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 59, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 58, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 57, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 56, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 55, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 54, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 53, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 52, asynchronous requests received by the PCI4410  
from that node are accepted.  
9–27  
Table 9–24. Asynchronous Request Filter High Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If set to 1 for local bus node number 51, asynchronous requests received by the PCI4410  
from that node are accepted.  
19  
ASYNREQRESOURCE51  
RSC  
If set to 1 for local bus node number 50, asynchronous requests received by the PCI4410  
from that node are accepted.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
ASYNREQRESOURCE50  
ASYNREQRESOURCE49  
ASYNREQRESOURCE48  
ASYNREQRESOURCE47  
ASYNREQRESOURCE46  
ASYNREQRESOURCE45  
ASYNREQRESOURCE44  
ASYNREQRESOURCE43  
ASYNREQRESOURCE42  
ASYNREQRESOURCE41  
ASYNREQRESOURCE40  
ASYNREQRESOURCE39  
ASYNREQRESOURCE38  
ASYNREQRESOURCE37  
ASYNREQRESOURCE36  
ASYNREQRESOURCE35  
ASYNREQRESOURCE34  
ASYNREQRESOURCE33  
ASYNREQRESOURCE32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If set to 1 for local bus node number 49, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 48, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 47, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 46, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 45, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 44, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 43, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 42, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 41, asynchronous requests received by the PCI4410  
from that node are accepted.  
If set to 1 for local bus node number 40, asynchronous requests received by the PCI4410  
from that node are accepted.  
8
If set to 1 for local bus node number 39, asynchronous requests received by the PCI4410  
from that node are accepted.  
7
If set to 1 for local bus node number 38, asynchronous requests received by the PCI4410  
from that node are accepted.  
6
If set to 1 for local bus node number 37, asynchronous requests received by the PCI4410  
from that node are accepted.  
5
If set to 1 for local bus node number 36, asynchronous requests received by the PCI4410  
from that node are accepted.  
4
If set to 1 for local bus node number 35, asynchronous requests received by the PCI4410  
from that node are accepted.  
3
If set to 1 for local bus node number 34, asynchronous requests received by the PCI4410  
from that node are accepted.  
2
If set to 1 for local bus node number 33, asynchronous requests received by the PCI4410  
from that node are accepted.  
1
If set to 1 for local bus node number 32, asynchronous requests received by the PCI4410  
from that node are accepted.  
0
9–28  
9.33 Asynchronous Request Filter Low Register  
This set/clear register is used to enable asynchronous receive requests on a per node basis, and handles the lower  
node IDs. Other than filtering different node IDs, this register behaves identically to the asynchronous request filter  
high register. See Table 9–25 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Asynchronous request filter low  
Read/Set/Clear  
Offset:  
108h set register  
10Ch clear register  
0000 0000h  
Default:  
Table 9–25. Asynchronous Request Filter Low Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If set to 1 for local bus node number 31, asynchronous requests received by the PCI4410  
from that node are accepted.  
31  
ASYNREQRESOURCE31  
RSC  
If set to 1 for local bus node number 30, asynchronous requests received by the PCI4410  
from that node are accepted.  
30  
L
ASYNREQRESOURCE30  
RSC  
L
L
Bits 29 through 2 follow the same pattern.  
Ifsetto1forlocalbusnodenumber1,asynchronousrequestsreceivedbythePCI4410from  
that node are accepted.  
1
ASYNREQRESOURCE1  
RSC  
Ifsetto1forlocalbusnodenumber0,asynchronousrequestsreceivedbythePCI4410from  
that node are accepted.  
0
ASYNREQRESOURCE0  
RSC  
9–29  
9.34 Physical Request Filter High Register  
This set/clear register is used to enable physical receive requests on a per node basis, and handles the upper node  
IDs. When a packet is destined for the physical request context, and the node ID has been compared against the  
ARRQ registers, then the comparison is done again with this register. If the bit corresponding to the node ID is not  
set to 1 in this register, then the request is handled by the ARRQ context instead of the physical request context. See  
Table 9–26 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Physical request filter high  
Read/Set/Clear  
Offset:  
110h set register  
114h clear register  
0000 0000h  
Default:  
Table 9–26. Physical Request Filter High Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ifsetto1, thenallasynchronousrequestsreceivedbythePCI4410fromnonlocalbusnodes  
are accepted.  
31  
PHYSREQALLBUSSES  
PHYSREQRESOURCE62  
PHYSREQRESOURCE61  
PHYSREQRESOURCE60  
PHYSREQRESOURCE59  
PHYSREQRESOURCE58  
PHYSREQRESOURCE57  
PHYSREQRESOURCE56  
PHYSREQRESOURCE55  
PHYSREQRESOURCE54  
PHYSREQRESOURCE53  
PHYSREQRESOURCE52  
PHYSREQRESOURCE51  
PHYSREQRESOURCE50  
RSC  
If set to 1 for local bus node number 62, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If set to 1 for local bus node number 61, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 60, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 59, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 58, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 57, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 56, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 55, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 54, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 53, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 52, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 51, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 50, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
9–30  
Table 9–26. Physical Request Filter High Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If set to 1 for local bus node number 49, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
17  
PHYSREQRESOURCE49  
RSC  
If set to 1 for local bus node number 48, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
16  
15  
14  
13  
12  
11  
10  
9
PHYSREQRESOURCE48  
PHYSREQRESOURCE47  
PHYSREQRESOURCE46  
PHYSREQRESOURCE45  
PHYSREQRESOURCE44  
PHYSREQRESOURCE43  
PHYSREQRESOURCE42  
PHYSREQRESOURCE41  
PHYSREQRESOURCE40  
PHYSREQRESOURCE39  
PHYSREQRESOURCE38  
PHYSREQRESOURCE37  
PHYSREQRESOURCE36  
PHYSREQRESOURCE35  
PHYSREQRESOURCE34  
PHYSREQRESOURCE33  
PHYSREQRESOURCE32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If set to 1 for local bus node number 47, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 46, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 45, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 44, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 43, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 42, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 41, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
If set to 1 for local bus node number 40, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
8
If set to 1 for local bus node number 39, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
7
If set to 1 for local bus node number 38, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
6
If set to 1 for local bus node number 37, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
5
If set to 1 for local bus node number 36, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
4
If set to 1 for local bus node number 35, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
3
If set to 1 for local bus node number 34, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
2
If set to 1 for local bus node number 33, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
1
If set to 1 for local bus node number 32, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
0
9–31  
9.35 Physical Request Filter Low Register  
This set/clear register is used to enable physical receive requests on a per node basis, and handles the lower node  
IDs. When a packet is destined for the physical request context, and the node ID has been compared against the  
asynchronous request filter registers, then the node ID comparison is done again with this register. If the bit  
corresponding to the node ID is not set to 1 in this register, then the request is handled by the asynchronous request  
context instead of the physical request context. See Table 9–27 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Physical request filter low  
Read/Set/Clear  
Offset:  
118h set register  
11Ch clear register  
0000 0000h  
Default:  
Table 9–27. Physical Request Filter Low Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If set to 1 for local bus node number 31, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
31  
PHYSREQRESOURCE31  
RSC  
If set to 1 for local bus node number 30, then physical requests received by the PCI4410  
from that node are handled through the physical request context.  
30  
L
PHYSREQRESOURCE30  
RSC  
L
L
Bits 29 through 2 follow the same pattern.  
If set to 1 for local bus node number 1, then physical requests received by the PCI4410 from  
that node are handled through the physical request context.  
1
PHYSREQRESOURCE1  
RSC  
If set to 1 for local bus node number 0, then physical requests received by the PCI4410 from  
that node are handled through the physical request context.  
0
PHYSREQRESOURCE0  
RSC  
9.36 Physical Upper Bound Register (Optional Register)  
This register is an optional register and is not implemented. This register is read-only and returns all 0s.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Physical upper bound  
Read-only  
Offset:  
Default:  
120h  
0000 0000h  
9–32  
9.37 Asynchronous Context Control Register  
This set/clear register controls the state and indicates status of the DMA context. See Table 9–28 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous context control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Asynchronous context control  
Read/Set/Clear/Update, Read/Set/Update, Read/Update, Read-only  
180h set register [ATRQ]  
184h clear register [ATRQ]  
1A0h set register [ATRS]  
1A4h clear register [ATRS]  
1C0h set register [ARRQ]  
1C4h clear register [ARRQ]  
1E0h set register [ATRS]  
1E4h clear register [ATRS]  
0000 X0XXh  
Default:  
Table 9–28. Asynchronous Context Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–16  
RSVD  
R
Reserved. Bits 31–16 return 0s when read.  
Thisbitissetto1bysoftwaretoenabledescriptorprocessingforthecontextandclearedbysoftwaretostop  
descriptor processing. The PCI4410 will only change this bit on a hardware or software reset.  
15  
14–13  
12  
RUN  
RSVD  
WAKE  
RSCU  
R
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to 1 to cause the PCI4410 to continue or resume descriptor processing. The PCI4410  
will reset this bit to 0 on every descriptor fetch.  
RSU  
The PCI4410 sets this bit to 1 when it encounters a fatal error and resets the bit to 0 when software resets  
the RUN bit to 0.  
11  
DEAD  
RU  
10  
ACTIVE  
RSVD  
RU  
R
The PCI4410 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
9–8  
This field indicates the speed at which a packet was received or transmitted, and only contains meaningful  
information for receive contexts. This field is encoded as:  
000b = 100 Mbits/sec  
7–5  
4–0  
SPD  
RU  
RU  
001b = 200 Mbits/sec  
010b = 400 Mbits/sec. All other values are reserved.  
This field holds the acknowledge sent by the link core for this packet or an internally generated error code if  
the packet was not transferred successfully.  
EVENTCODE  
9–33  
9.38 Asynchronous Context Command Pointer Register  
This register contains a pointer to the address of the first descriptor block that the PCI4410 will access when software  
enables the context by setting the ContextControl.run bit to 1. See Table 9–29 for a complete description of the  
register contents.  
Bit  
31  
30  
29  
28  
27  
26  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Asynchronous context command pointer  
Read/Write/Update  
19Ch [ATRQ]  
1ACh [ATRS]  
1CCh [ATRQ]  
1ECh [ATRS]  
Default:  
XXXX XXXXh  
Table 9–29. Asynchronous Context Command Pointer Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Contains the upper 28 bits of the address of a 16-byte aligned descriptor block.  
31–4  
DESCRIPTORADDRESS  
RWU  
Indicates the number of contiguous descriptors at the address pointed to by the descriptor  
address. If Z is 0, it indicates that the descriptorAddress is not valid.  
3–0  
Z
RWU  
9–34  
9.39 Isochronous Transmit Context Control Register  
This set/clear register controls options, state, and status for the isochronous transmit DMA contexts. The n value in  
the following register addresses indicates the context number (n = 0, 1, 2, 3, ). See Table 9–30 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context control  
RSCU RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous transmit context control  
RSC  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous transmit context control  
Read/Set/Clear/Update, Read/Set/Clear, Read-only, Read/Update  
Offset:  
200h + (16 * n)  
204h + (16 * n)  
XXXX X0XXh  
set register  
clear register  
Default:  
Table 9–30. Isochronous Transmit Context Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
When set to 1, processing will occur such that the packet described by the first descriptor block  
ofthecontextistransmittedinthecyclewhosenumberisspecifiedintheCYCLEMATCHfieldof  
this register. The 13-bit CYCLEMATCH field must match the 13-bit cycleCount field in the cycle  
start packet that is sent or received immediately before isochronous transmission begins.  
31  
CYCLEMATCHENABLE RSCU  
Contains a 15-bit value, corresponding to the lower order 2 bits of cycleSeconds and 13-bit  
cycleCount field. If CYCLEMATCHENABLE is set to 1, then this IT DMA context becomes  
enabled for transmits when the bus cycleCount value equals the CYCLEMATCH value.  
30–16  
15  
CYCLEMATCH  
RUN  
RSC  
RSC  
This bit is set to 1 by software to enable descriptor processing for the context and cleared by  
software to stop descriptor processing. The PCI4410 only changes this bit on a hardware or  
software reset.  
14–13  
12  
RSVD  
WAKE  
R
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to 1 to cause the PCI4410 to continue or resume descriptor processing.  
The PCI4410 resets this bit to 0 on every descriptor fetch.  
RSU  
The PCI4410 sets this bit to 1 when it encounters a fatal error, and resets the bit to 0 when  
software resets the RUN bit to 0.  
11  
DEAD  
RU  
10  
ACTIVE  
RSVD  
SPD  
RU  
R
The PCI4410 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0 when read.  
9–8  
7–5  
RU  
This field is not meaningful for isochronous transmit contexts.  
Following an OUTPUT_LAST* command, the error code is indicated in this field. Possible  
values are: ack_complete, evt_descriptor_read, evt_data_read, and evt_unknown.  
4–0  
EVENT CODE  
RU  
9–35  
9.40 Isochronous Transmit Context Command Pointer Register  
This register contains a pointer to the address of the first descriptor block that the PCI4410 will access when software  
enables an ISO transmit context by setting the ContextControl.run bit to 1. The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3, ).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous transmit context command pointer  
Read-only  
Offset:  
Default:  
20Ch + (16 * n)  
XXXX XXXh  
9–36  
9.41 Isochronous Receive Context Control Register  
This set/clear register controls options, state, and status for the isochronous receive DMA contexts. The n value in  
the following register addresses indicates the context number (n = 0, 1, 2, 3, ). See Table 9–31 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context control  
RSC  
X
RSC RSCU RSC  
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous receive context control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
400h + (32 * n)  
404h + (32 * n)  
X000 X0XXh  
set register  
clear register  
Default:  
Table 9–31. Isochronous Receive Context Control Register  
BIT  
SIGNAL  
TYPE  
FUNCTION  
When set to 1, received packets are placed back to back to completely fill each receive buffer.  
When reset to 0, each received packet is placed in a single buffer. If the MULTICHANMODE bit  
is set to 1, this bit must also be set to 1. The value of BUFFERFILL must not be changed while  
ACTIVE or RUN is set to 1.  
31  
BUFFERFILL  
RSC  
When set to 1, received isochronous packets will include the complete 4-byte isochronous  
packet header seen by the link layer. The end of the packet is marked with xferStatus in the first  
doublet, and a 16-bit timeStamp indicating the time of the most recently received (or sent)  
cycleStart packet. When clear, the packet header is stripped from received isochronous  
packets. The packet header, if received, immediately precedes the packet payload. The value  
of isochHeader must not be changed while ACTIVE or RUN is set to 1.  
30  
29  
ISOCHHEADER  
RSC  
When set to 1, the context begins running only when the 13-bit cycleMatch field in the  
contextMatch register matches the 13-bit cycleCount in the cycleStart packet. The effects of  
this bit, however, are impacted by the values of other bits in this register. Once the context has  
become active, hardware clears the CYCLEMATCHENABLE bit. The value of  
CYCLEMATCHENABLE must not be changed while ACTIVE or RUN is set to 1.  
CYCLEMATCHENABLE RSCU  
When set to 1, the corresponding isochronous receive DMA context receives packets for all  
isochronous channels enabled in the IRChannelMaskHi and IRChannelMaskLo registers. The  
isochronous channel number specified in the IRDMA context match register is ignored. When  
0, the IRDMA context receives packets for that single channel. Only one IRDMA context may  
use the IRChannelMask registers. If more that one IRDMA context control register has the  
multiChanMode bit set to 1, then results are undefined. The value of MULTICHANMODE must  
not be changed while ACTIVE or RUN is set to 1.  
28  
MULTICHANMODE  
RSC  
R
27–16  
15  
RSVD  
RUN  
Reserved. Bits 27–16 return 0s when read.  
This bit is set by software to enable descriptor processing for the context and cleared by  
RSCU software to stop descriptor processing. The PCI4410 only changes this bit on a hardware or  
software reset.  
14–13  
12  
RSVD  
WAKE  
R
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to cause the PCI4410 to continue or resume descriptor processing. The  
PCI4410 clears this bit on every descriptor fetch.  
RSU  
The PCI4410 sets this bit to 1 when it encounters a fatal error, and resets the bit to 0 when  
software resets the RUN bit to 0.  
11  
10  
DEAD  
RU  
RU  
ACTIVE  
The PCI4410 sets this bit to 1 when it is processing descriptors.  
9–37  
Table 9–31. Isochronous Receive Context Control Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Reserved. Bits 9 and 8 return 0 when read.  
9–8  
RSVD  
R
This field indicates the speed at which the packet was received.  
000b = 100 Mbits/sec  
7–5  
4–0  
SPD  
RU  
RU  
001b = 200 Mbits/sec,  
010b = 400 Mbits/sec. All other values are reserved.  
EVENT CODE  
Following an INPUT* command, the error code is indicated in this field.  
9.42 Isochronous Receive Context Command Pointer Register  
This register contains a pointer to the address of the first descriptor block that the PCI4410 will access when software  
enables an ISO receive context by setting the ContextControl.run bit. The n value in the following register addresses  
indicates the context number (n = 0, 1, 2, 3, ).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous receive context command pointer  
Read-only  
Offset:  
Default:  
40Ch + (32 * n)  
XXXX XXXXh  
9–38  
9.43 Isochronous Receive Context Match Register  
This register is used to start an isochronous receive context running on a specified cycle number, to filter incoming  
isochronous packets based on tag values, and to wait for packets with a specified sync value. The n value in the  
following register addresses indicates the context number (n = 0, 1, 2, 3, ). See Table 9–32 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R
0
R
0
9
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Offset:  
Default:  
Isochronous receive context match  
Read/Write, Read-only  
410Ch + (32 * n)  
XXXX XXXXh  
Table 9–32. Isochronous Receive Context Match Register  
BIT  
31  
SIGNAL  
TYPE  
R/W  
R/W  
R/W  
R/W  
R
FUNCTION  
TAG3  
TAG2  
TAG1  
TAG0  
RSVD  
If this bit is set, then this context will match on ISO receive packets with a tag field of 11b.  
If this bit is set, then this context will match on ISO receive packets with a tag field of 10b.  
If this bit is set, then this context will match on ISO receive packets with a tag field of 01b.  
If this bit is set, then this context will match on ISO receive packets with a tag field of 00b.  
Reserved. Bits 27–25 return 0s when read.  
30  
29  
28  
27–25  
Contains a 13-bit value, corresponding to the 13-bit cycleCount field in the cycleStart packet. If  
cycleMatchEnable is set, then this context is enabled for receives when the bus cycleCount value  
equals the cycleMatch value.  
24–12  
CYCLEMATCH  
R/W  
This 4-bit field is compared to the sync field of each iso packet for this channel when the command  
descriptor’s w field is set to 11b.  
11–8  
7
SYNC  
RSVD  
R/W  
R
Reserved. Bit 7 returns 0 when read.  
Ifthisbitandbit29(TAG1)areset, thenpacketswithtag01bareacceptedintothecontextifthetwo  
most significant bits of the packets sync field are 00b. Packets with tag values other than 01b are  
filtered according to TAG0, TAG2 and TAG3 without any additional restrictions.  
6
TAG1SYNCFILTER  
CHANNELNUMBER  
R/W  
R/W  
If clear, this context will match on isochronous receive packets as specified in the TAG0–3 bits with  
no additional restrictions.  
This 6-bit field indicates the isochronous channel number for which this IR DMA context accepts  
packets.  
5–0  
9–39  
9–40  
10 Electrical Characteristics  
10.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Clamping voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
CC  
, V  
, V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
CCCB CCI CCL CCP,  
Input voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
CCA  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
ZV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
TTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Miscellaneous and PHY I/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CC  
CC  
CC  
CC  
Output voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
O
CC  
CCA  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
ZV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
TTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Miscellaneous and PHY I/F . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CC  
CC  
CC  
CC  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
OK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O O CC  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals are measured with  
I
CC  
respecttoV  
CCP  
insteadofV .PCCardterminalsaremeasuredwithrespecttoV  
. The limit specified applies for a dc condition.  
.Miscellaneoussignalsaremeasuredwith  
CCCB  
CC  
respect to V  
CCI  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals are measured  
O
CC  
withrespecttoV  
with respect to V  
insteadofV .PCCardterminalsaremeasuredwithrespecttoV  
.Miscellaneoussignalsaremeasured  
CCCB  
CCP  
CC  
. The limit specified applies for a dc condition.  
CCI  
10–1  
10.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
NOM  
MAX  
UNIT  
V
V
Commercial  
Commercial  
3.3 V  
3
3.3  
3.6  
V
Core voltage  
CC  
3.3 V  
5 V  
3
3.3  
5
3.6  
PCI I/O clamp voltage, ZV Port I/O  
voltage  
V
V
CCP  
4.75  
5.25  
V
V
V
3.3 V  
5 V  
3
3.3  
5
3.6  
CCCB  
CCI  
CCL  
Commercial  
PCI  
PC Card I/O clamp voltage  
High-level input voltage  
4.75  
5.25  
3.3 V  
5 V  
0.5 V  
V
CCP  
CCP  
2
V
CCP  
3.3 V  
5 V  
0.475 V  
V
V
V
CCA/B  
CCA/B  
PC Card  
PHY I/F  
2.4  
V
CCA/B  
IH  
2
2
V
V
V
CC  
CC  
CC  
TTL  
V
V
§
Fail safe  
2.4  
3.3 V  
5 V  
0
0
0
0
0
0
0
0.3 V  
CCP  
0.8  
0.325 V  
PCI  
3.3 V  
5 V  
V
CCA/B  
PC Card  
PHY I/F  
V
IL  
0.8  
0.8  
0.8  
0.8  
Low-level input voltage  
TTL  
V
V
§
Fail safe  
PCI  
3.3 V  
5 V  
0
0
0
0
0
V
CCP  
PC Card  
PHY I/F  
V
CCA/B  
V
V
CC  
V
V
Input voltage  
I
TTL  
V
V
V
CC  
CC  
§
Fail safe  
PCI  
V
3.3 V  
5 V  
0
0
0
0
0
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
4
PC Card  
PHY I/F  
V
Output voltage  
O
TTL  
V
V
§
Fail safe  
PCI and PC Card  
TTL and fail safe  
1
0
t
t
Input transition time (t and t )  
ns  
r
f
6
T
Operating ambient temperature range  
Virtual junction temperature  
0
0
25  
25  
70  
°C  
°C  
A
#
T
J
115  
Applies to external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are 70, 62, 59, 60, 61, 64, 65, 67, 68, and 69 for the PGE packaged device; L11, M9, L8, K8, N9, K9, N10, L10, N11,  
and M11 for the GGU packaged device; and W12, U10, P9, W10, V10, P10, W11, U11, P11, and R11 for the GHK packaged device (SUSPEND,  
SPKROUT, RI_OUT, multifunction terminals (MFUNC0–MFUNC6), and power switch control terminals).  
Fail-safe terminals are 75, 117, 131, and 137 for the PGE packaged device; L12, D9, C6, and A4 for the GGU packaged device; and L19, E13,  
F11, and A9 for the GHK packaged device (card detect and voltage sense pins).  
§
#
Applies to external output buffers  
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
NOTE 3: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
10–2  
10.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
PINS  
OPERATION TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
= –0.5 mA  
= –2 mA  
= –0.15 mA  
= –0.15 mA  
= –4 mA  
= –8 mA  
= –4 mA  
= –8 mA  
= 1.5 mA  
= 6 mA  
0.9V  
3.3 V  
5 V  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
CC  
2.4  
PCI  
0.9V  
3.3 V  
5 V  
CC  
2.4  
PC Card  
PHY I/F  
TTL  
V
OH  
V
High-level output voltage  
2.8  
3.3 V  
3.3 V  
V
CC  
V
CC  
V
CC  
–0.6  
–0.6  
–0.6  
0.1V  
3.3 V  
5 V  
CC  
PCI  
0.55  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1V  
CC  
3.3 V  
5 V  
PC Card  
PHY I/F  
0.55  
0.5  
0.5  
0.5  
0.5  
0.5  
–1  
3.3 V  
3.3 V  
V
OL  
V
Low-level output voltage  
= 8 mA  
= 4 mA  
TTL  
= 8 mA  
= 8 mA  
SERR  
3.6 V  
5.25 V  
3.6 V  
V = V  
I
Output  
terminals  
CC  
CC  
CC  
CC  
3-state output, high-impedance state  
output current (see Note 4)  
I
I
I
µA  
µA  
µA  
OZL  
OZH  
IL  
V = V  
I
–1  
10  
V = V  
I
Output  
terminals  
3-state output, high-impedance state  
output current  
5.25 V  
25  
V = V  
I
Input terminals  
I/O terminals  
V = GND  
I
–1  
Low-level input current  
High-level input current  
V = GND  
I
–10  
10  
3.6 V  
5.25 V  
3.6 V  
V = V  
Input  
terminals  
I
CC  
CC  
CC  
CC  
20  
V = V  
I
V = V  
10  
I
I
IH  
µA  
I/O terminals  
5.25 V  
V = V  
25  
I
Fail-safe  
terminals  
3.6 V  
V = V  
I
10  
CC  
For PCI pins, V = V  
For I/O pins, input leakage (I and I ) includes I  
. For PC Card pins, V = V  
. For miscellaneous pins, V = V  
CCCB  
.
CCI  
I
CCP  
I
I
leakage of the disabled output.  
IL IH  
OZ  
10–3  
10.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration (width), PCLK high  
Pulse duration (width), PCLK low  
Slew rate, PCLK  
t
high  
wH  
wL  
t
ns  
low  
t , t  
v/t  
4
V/ns  
ms  
ms  
r f  
t
t
Pulse duration (width), PRST  
Setup time, PCLK active at end of PRST  
t
1
w
rst  
t
100  
su  
rst-clk  
10.5 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 4  
ns  
pd  
See Note 4  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTE 4: PCI shared signals are AD31–AD0, C/BE3–C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
10–4  
11 Mechanical Information  
The PCI4410 is packaged in either a 209-ball GHK MicroStar BGA or a 208-pin PDV package. The PCI4410 is a  
single-socket CardBus bridge with an integrated OHCI link. The following shows the mechanical dimensions for the  
GHK and PDV packages.  
GHK (S-PBGA-N209)  
PLASTIC BALL GRID ARRAY  
16,10  
15,90  
SQ  
14,40 TYP  
0,80  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
0,80  
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
4145273–2/B 12/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Micro Star BGA configuration.  
Micro Star is a trademark of Texas Instruments Incorporated.  
11–1  
PDV (S-PQFP-G208)  
PLASTIC QUAD FLATPACK  
156  
105  
157  
104  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
208  
53  
1
52  
Gage Plane  
25,50 TYP  
0,25  
28,05  
SQ  
0,05 MIN  
0°ā7°  
27,95  
30,20  
SQ  
29,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4087729/D 11/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
11–2  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

PCI4410PDV

PC Card and OHCI Controller
TI

PCI4450

PC Card and OHCI Controller
TI

PCI4450GFN

PC Card and OHCI Controller
TI

PCI4450GJG

PC Card and OHCI Controller
TI

PCI4451

PC CARD AND OHCI CONTROLLER
TI

PCI4451GFN

PC CARD AND OHCI CONTROLLER
TI

PCI4451GJG

PC CARD AND OHCI CONTROLLER
TI

PCI4510

PC CARD AND INTEGRATED 1394A-2000 OHCI TWO PORT PHY/LINK LAYER CONTROLLER
TI

PCI4510A

PC Card and Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller
TI

PCI4510AGHK

PC Card and Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller
TI

PCI4510APDV

PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, QFP-208
TI

PCI4510AZHK

PC Card and Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller
TI