PCM1727E-2 [TI]

SERIAL INPUT LOADING, DAC WITH PROGRAMMABLE PLL, PDSO24, GREEN, SSOP-24;
PCM1727E-2
型号: PCM1727E-2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SERIAL INPUT LOADING, DAC WITH PROGRAMMABLE PLL, PDSO24, GREEN, SSOP-24

输入元件 光电二极管 转换器
文件: 总17页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
49%  
PCM1727  
PCM1727E  
TM  
Stereo Audio  
DIGITAL-TO-ANALOG CONVERTER  
WITH PROGRAMMABLE DUAL PLL  
FEATURES  
ACCEPTS 16-, 20-, OR 24-BIT INPUT DATA  
DESCRIPTION  
The PCM1727 is a complete low cost stereo audio  
digital-to-analog converter (DAC) with a dual phase-  
locked loop (PLL) circuit included. PLL-1 derives a  
fixed 33.8688MHz (768fS, fS = 44.1kHz) system  
clock (SCKO-1), and PLL-2 derives both the 384fS (fS  
= 44.1k/48k/96kHz) system clock (SCKO-2), and the  
768fS (fS = 44.1k/48kHz)/384fS (fS = 96kHz) system  
clock (SCKO-3) from an external 27MHz reference  
frequency. The DAC contains a 3rd-order ∆Σ modula-  
tor, a digital interpolation filter, and an analog output  
amplifier. The PCM1727 can accept 16-, 20-, or 24-bit  
input data in either normal or I2S formats.  
COMPLETE STEREO DAC: Includes Digital  
Filter and Output Amp  
DYNAMIC RANGE: 92dB  
MULTIPLE SAMPLING FREQUENCIES:  
fS = 44.1kHz, 48kHz, 96kHz  
PROGRAMMABLE DUAL PLL CIRCUIT:  
27MHz Master Clock Input  
GENERATED SYSTEM CLOCK  
SCKO1: 33.8688MHz  
SCK02: 384fS  
SCK03: 768fS (44.1k/48kHz)  
384fS (96kHz)  
NORMAL OR I2S DATA INPUT FORMATS  
The digital filter performs an 8X interpolation func-  
tion and includes selectable features such as soft mute,  
digital attenuation and digital de-emphasis.  
SELECTABLE FUNCTIONS:  
Soft Mute, Analog Output Mode  
Digital Attenuator (256 Steps)  
Digital De-emphasis  
The PCM1727 is ideal for applications which combine  
compressed audio and video data such as DVD, DVD  
Audio with CD-DA compatibility, karaoke DSP.  
+5V SINGLE POWER SUPPLY  
Multi-level  
Delta-Sigma  
Modulator  
VOUT  
L
BCKIN  
Serial  
Low-pass  
Filter  
DAC  
DAC  
LRCIN  
Input  
I/F  
8X Oversampling  
Digital Filter  
with Function  
Controller  
DIN  
CAP  
VOUT  
Multi-level  
Delta-Sigma  
Modulator  
R
Low-pass  
Filter  
ML  
MC  
MD  
Mode  
Control  
I/F  
ZERO  
BPZ-Cont.  
384fS  
Open Drain  
RSTB  
PLL2  
PLL1  
Power Supply  
OSC  
SCKO3 SCKO2 SCKO1  
MCKO XT1 XT2  
VCP PGND VCA AGND VDD DGND  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132  
© 1997 Burr-Brown Corporation  
PDS-1407A  
Printed in U.S.A. September, 1997  
SBAS077  
SPECIFICATIONS  
All specifications at +25°C, +VCA = +VDD = +VCP = +5V, fS = 44.1kHz, and 16-bit input data, SYSCLK = 384fS, unless otherwise noted.  
PCM1727  
PARAMETER  
RESOLUTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
16  
Bits  
DATA FORMAT  
Audio Data Interface Format  
Data Bit Length  
Audio Data Format  
Sampling Frequency (fS)  
Standard/I2S  
16/20/24 Selectable  
MSB First, 2’s Comp  
Selectable  
kHz  
44.1  
96  
PLL PERFORMANCE  
Master Clock Input Frequency(4)  
Generated System Clock  
SCKO-1  
SCKO-2  
SCKO-3  
26.73  
27  
27.27  
MHz  
768fS (fS = 44.1k)  
384fS  
768fS (fS = 44.1k/48k), 384fS (fS = 96k)  
IOH = 2mA  
33.8688  
MHz  
MHz  
MHz  
VDC  
VDC  
ps  
16.9344  
33.8688  
VDD – 0.4  
36.8640  
36.8640  
Output Logic Level  
(MCKO, SCKO 1 ~ 3)  
Generated Sysclk Jitter  
VOH  
VOL  
IOL = 4mA  
Standard Dev  
0.5  
±150  
Generated Sysclk Transient(1)  
Power-Up Time  
Generated Sysclk Duty Cycle  
fM = 27MHz  
To Programmed Frequency  
fM = 27MHz, CL = 15pF  
20  
30  
60  
ms  
ms  
%
15  
50  
40  
DIGITAL INPUT LOGIC LEVEL  
TTL  
DYNAMIC PERFORMANCE(2)  
THD+N at fS (0dB)  
fs = 44.1kHz  
fs = 96kHz  
fs = 44.1kHz  
fs = 96kHz  
fs = 44.1kHz  
fs = 96kHz  
fs = 44.1kHz  
fs = 96kHz  
fs = 44.1kHz  
–89  
–87  
–31  
–29  
92  
90  
94  
90  
93  
–80  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
THD+N at –60dB  
Dynamic Range (EIAJ Method)  
Signal-to-Noise Ratio(3) (EIAJ Method)  
Channel Separation  
90  
90  
88  
DC ACCURACY  
Gain Error  
Gain Mismatch, Channel-to-Channel  
Bipolar Zero Error  
±1.0  
±1.0  
±30  
±3.0  
±2.0  
% of FSR  
% of FSR  
mV  
VOUT = VCC/2 at BPZ  
ANALOG OUTPUT  
Output Voltage  
Center Voltage  
Full Scale (–0dB)  
AC Load  
0.62 x VCA  
VCA/2  
Vp-p  
VDC  
kΩ  
Load Impedance  
5
DIGITAL FILTER PERFORMANCE  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Delay Time  
0.445  
fS  
fS  
dB  
dB  
sec  
dB  
0.555  
–35  
±0.17  
11.125/fS  
De-emphasis Error  
–0.2  
+0.55  
INTERNAL ANALOG FILTER  
–3dB Bandwidth  
Passband Response  
100  
–0.16  
kHz  
dB  
f = 20kHz  
POWER SUPPLY REQUIREMENTS  
Voltage Range  
Supply Current: ICC + IDD + ICP  
mA  
VCC = VDD = VCP  
fS = 44.1kHz  
4.5  
5
25  
5.5  
27  
VDC  
TEMPERATURE RANGE  
Operation  
Storage  
–25  
–55  
+85  
+125  
°C  
°C  
NOTES: (1) Sysclk transient is the maximum frequency lock time when the PLL frequency is changed. (2) Dynamic performance specs are tested with 20kHz low  
pass filter and THD+N specs are tested with 30kHz LPF, 400Hz HPF, Average-Mode. (3) SNR is tested at Infinite Zero Detection off. (4) PLL evaluations tested  
with 1ns maximum jitter on the 27MHz input clock.  
®
2
PCM1727  
PIN CONFIGURATION  
PIN ASSIGNMENTS  
TOP VIEW  
SSOP  
PIN NAME  
I/O  
IN  
DESCRIPTION  
1
2
XT1  
PGND  
VCP  
27MHz Crystal or External Clock Input  
PLL Ground  
XT1  
PGND  
VCP  
1
2
3
4
5
6
7
8
9
24 XT2  
3
PLL Power Supply (+5V)  
23 DGND  
22 VDD  
4
MCKO  
RSV  
OUT  
Buffered Clock Output of Crystal Oscillator  
Reserve; This pin should be open.  
System Clock Out 3; This output is 768fS or 384fS.  
Latch Enable Input for Serial Interface Mode(2)  
Bit Clock Input for Serial Interface Mode(2)  
Serial Data Input for Serial Interface Mode(2)  
5
6
SCKO3  
ML  
OUT  
IN  
MCKO  
RSV  
21 SCKO1  
20 SCKO2  
19 LRCIN  
18 DIN  
7
8
MC  
IN  
9
MD  
IN  
SCKO3  
ML  
10  
RSTB  
IN  
Reset; When this pin is low, the DF and modu-  
lator are held in reset.  
11  
V
OUTR  
OUT  
Right Channel, Analog Voltage Output of Audio  
Signal  
MC  
17 BCKIN  
16 ZERO  
15 CAP  
12  
13  
14  
AGND  
VCA  
Analog Ground  
MD  
Analog Power Supply (+5V)  
RSTB 10  
VOUT  
11  
VOUT  
L
OUT  
Left Channel, Analog Voltage Output of Audio  
Signal  
R
14 VOUT  
L
15  
16  
CAP  
Common Pin of Analog Output Amp  
AGND 12  
13 VCA  
ZERO  
OUT  
Zero Data Flag; This pin is low when the input  
data is continuously zero for more than 65,535  
cycles of BCKIN(1)  
.
17  
18  
19  
20  
BCKIN  
DIN  
IN  
IN  
Bit Clock Input for Serial Audio Data(3)  
Serial Audio Data Input(3)  
Left and Right Clock (sampling rate–fS)(3)  
LRCIN  
SCKO2  
IN  
PACKAGE INFORMATION  
OUT  
System Clock Out 2; This output is 256fS or  
384fS system clock.  
PACKAGE DRAWING  
NUMBER(1)  
PRODUCT  
PACKAGE  
21  
SCKO1  
OUT  
System Clock Out 1; This output is 33.8688MHz  
system clock.  
PCM1727E  
24-Pin SSOP  
338  
22  
23  
24  
VDD  
DGND  
XT2  
Digital Power (+5V)  
Digital Ground  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
27MHz Crystal. Connected to GND at external  
clock.  
Note: (1) Open Drain Output. (2) Schmitt triger input with internal pull-up  
resistors. (3) Schmitt triger input.  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Voltage....................................................................... +6.5V  
+VCC to +VDD Difference ................................................................... ±0.1V  
Input Logic Voltage .................................................. –0.3V to (VDD + 0.3V)  
Input Current (except power supply) ............................................... ±10mA  
Power Dissipation .......................................................................... 300mW  
Operating Temperature Range ......................................... –25°C to +85°C  
Storage Temperature ...................................................... –55°C to +125°C  
Lead Temperature (soldering, 5s) .................................................. +260°C  
Thermal Resistance, θJA ....................................................................................... +70°C/W  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no  
responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice.  
No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN  
product for use in life support devices and/or systems.  
®
3
PCM1727  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VCC = VDD = VCP = +5V, fS = 44.1kHz, 16-bit input data, 384fS, unless otherwise noted. Measurement bandwidth is 20kHz.  
DYNAMIC PERFORMANCE  
THD+N (0dB) vs TEMPERATURE and  
VCC = 5V, 384fS  
THD+N (0dB) vs POWER SUPPLY VOLTAGE  
TA = 25°C, 384fS  
–70  
–75  
–80  
–85  
–90  
–95  
–70  
–75  
–80  
–85  
–90  
–95  
f
S = 96k  
f
S = 96k  
fS = 44.1k  
fS = 44.1k  
–25  
0
25  
50  
75  
85  
4.5  
5.0  
5.5  
Temperature (°C)  
Power Supply Voltage (V)  
POWER SUPPLY CURRENT vs SAMPLING RATE (fS)  
VCC = 5V, TA = 25°C  
THD+N (0dB) vs SAMPLING RATE (fS)  
VCC = 5V, TA = 25°C  
35  
30  
25  
20  
15  
–70  
–75  
–80  
–85  
–90  
–95  
44.1k  
48k  
96k  
44.1k  
48k  
96k  
Sampling Rate, fS (Hz)  
Sampling Rate, fS (Hz)  
®
4
PCM1727  
TYPICAL PERFORMANCE CURVES  
DIGITAL FILTER  
OVERALL FREQUENCY CHARACTERISTIC  
0
PASSBAND RIPPLE CHARACTERISTIC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–20  
–40  
–60  
–80  
–100  
0
0.4536fS  
1.3605fS  
2.2675fS  
3.1745fS  
4.0815fS  
0
0.1134fS  
0.2268fS  
0.3402fS  
0.4535fS  
Frequency (Hz)  
Frequency (Hz)  
DE-EMPHASIS FREQUENCY RESPONSE (44.1kHz)  
DE-EMPHASIS ERROR (44.1kHz)  
0
–2  
0.6  
0.4  
–4  
0.2  
–6  
0
–8  
–10  
–12  
–0.2  
–0.4  
–0.6  
0
5k  
10k  
15k  
20k  
25k  
0
4999.8375  
9999.675  
14999.5125  
19999.35  
Frequency (Hz)  
Frequency (Hz)  
DE-EMPHASIS FREQUENCY RESPONSE (48kHz)  
DE-EMPHASIS ERROR (48kHz)  
0
–2  
0.6  
0.4  
–4  
0.2  
–6  
0
–8  
–10  
–12  
–0.2  
–0.4  
–0.6  
0
5k  
10k  
15k  
20k  
25k  
0
5442  
10884  
16326  
21768  
Frequency (Hz)  
Frequency (Hz)  
®
5
PCM1727  
TYPICAL CONNECTION DIAGRAM  
DUAL PLL CIRCUIT  
Figure 1 illustrates the typical connection diagram for  
PCM1727 in an DVD Audio application. The 27MHz mas-  
ter video clock (fM) drives XT1 (pin 1) of PCM1727. A  
programmable system clock is generated by the PCM1727  
PLL, with SCKO2 used to drive the MPEG2 decoder’s  
system clock input. SCKO1 used to drive the CD-DA DSP’s  
system clock input, SCKO3 used to drive Karaoke DSP’s  
system clock input. The standard audio signals (data, bit  
clock, and word clock) are generated in the decoder from  
PCM1727’s system clock, providing synchronization of  
audio and video signals.  
PCM1727 has a programmable internal DUAL PLL circuit,  
as shown in Figure 2. The PLL is designed to accept a  
27MHz master clock or crystal oscillator and generate all  
internal system clocks required to operate the digital filter  
and ∆Σ modulator, at 384fS. If an external master clock is  
used, XT2 should be connected to ground. The PLL will  
directly track any variations in the master clock’s frequency,  
and jitter on the system clock is specified at 150ps typical.  
Figure 3 illustrates the timing requirements for the 27MHz  
master clock. Figure 4 illustrates the system clock connec-  
tions for an external clock or crystal oscillator.  
+5V Analog  
2
23  
22  
VDD VCP  
VOUT  
CAP  
3
PGND DGND  
DIN  
18  
17  
19  
20  
14  
15  
Analog  
Mute  
Post  
LPF  
L
DATA  
BCK  
Lch Analog Out  
Rch Analog Out  
MPEG  
Decoder  
BCKIN  
+
10µF  
LRCIN  
LRCK  
SCI  
SCKO2  
11  
16  
Analog  
Mute  
Post  
LPF  
VOUT  
R
Buffer  
384fS  
ZERO  
Buffer  
CD-DA  
21  
SCKO1  
DSP  
33.8688M  
Buffer  
PCM1727  
Karaoke  
DSP  
6
1
SCKO3  
768/384fS  
27MHz  
Master  
Clock  
7
XT1  
XT2  
STRB  
SCKO  
SDO  
PIO  
ML  
MC  
8
27MHz CLK OUT  
System  
Controller  
24  
9
MD  
10  
RSTB  
AGND  
12  
VCA  
13  
+5V Analog  
FIGURE 1. Connection Diagram for External Master Clock in a Typical MPEG2 Application.  
Frequency Control  
Internal  
System  
Clock  
PLL2  
N Counter  
Phase Detector  
and Loop Filter  
Data  
ROM  
VCO  
VCO  
M Counter  
PLL1  
Counter P  
M Counter  
N Counter  
Phase Detector  
and Loop Filter  
Oscillator  
24  
XT2  
1
4
21  
6
20  
XT1  
MCKO  
27MHz  
SCKO1  
33.8688MHz  
SCKO3  
768fs/384fs  
SCKO2  
384fs  
FIGURE 2. PLL Block Diagram.  
®
6
PCM1727  
1/27MHz  
tCH: 10ns (min)  
tCL: 15ns (min)  
I
IH (VIH = VDD) : 4mA max  
tCH  
IIL (VIL = 0) : 700µA max  
XT1  
2.0V  
0.8V  
tCL  
FIGURE 3. XT1 Input Timing.  
MCKO  
MCKO  
27MHz  
Out  
Buffer  
27MHz Internal Master Clock  
27MHz Internal Master Clock  
C1  
X’tal  
XT1  
XT2  
XT1  
XT2  
External Clock  
R
R
C2  
C1, C2 = 10 to 33pF  
PCM1727  
PCM1727  
EXTERNAL CLOCK INPUT  
CRYSTAL RESONATOR CONNECTION  
FIGURE 4. System Clock Connection.  
1/fS  
L_ch  
R_ch  
LRCIN (pin 19)  
BCKIN (pin 17)  
AUDIO DATA WORD = 16-BIT  
DIN (pin 18)  
14 15 16  
14 15 16  
14 15 16  
1
3
2
3
1
3
2
3
MSB  
LSB  
MSB  
LSB  
AUDIO DATA WORD = 20-BIT  
DIN (pin 18)  
18 19 20  
1
1
2
2
18 19 20  
1
1
2
2
18 19 20  
MSB  
3
LSB  
MSB  
3
LSB  
AUDIO DATA WORD = 24-BIT  
DIN (pin 18)  
23 24  
22 23 24  
22 23 24  
MSB  
LSB  
MSB  
LSB  
FIGURE 5. “Normal” Data Input Timing.  
®
7
PCM1727  
1/fS  
L_ch  
R_ch  
LRCIN (pin 19)  
BCKIN (pin 17)  
AUDIO DATA WORD = 16-BIT  
DIN (pin 18)  
1
1
1
2
2
2
3
14 15 16  
LSB  
1
1
1
2
2
2
3
14 15 16  
LSB  
1
1
1
2
2
2
MSB  
3
MSB  
3
AUDIO DATA WORD = 20-BIT  
DIN (pin 18)  
18 19 20  
18 19 20  
MSB  
3
LSB  
MSB  
3
LSB  
AUDIO DATA WORD = 24-BIT  
DIN (pin 18)  
22 23 24  
22 23 24  
MSB  
LSB  
MSB  
LSB  
FIGURE 6. “I2S” Data Input Timing.  
LRCKIN  
1.4V  
1.4V  
tBCH  
tBCL  
tLB  
BCKIN  
tBL  
tBCY  
1.4V  
DIN  
tDS  
tDH  
BCKIN Pulse Cycle Time  
BCKIN Pulse Width High  
BCKIN Pulse Width Low  
: tBCY  
: 100ns (min)  
: tBCH  
: tBCL  
: 50ns (min)  
: 50ns (min)  
: 30ns (min)  
: 30ns (min)  
: 30ns (min)  
: 30ns (min)  
BCKIN Rising Edge to LRCIN Edge : tBL  
LRCIN Edge to BCKIN Rising Edge : tLB  
DIN Set-up Time  
DIN Hold Time  
: tDS  
: tDH  
FIGURE 7. Audio Data Input Timing.  
PCM1727’s internal PLL can be programmed for three  
different sampling frequencies (LRCIN), as shown in Table  
I. The internal sampling clocks generated by the various  
programmed frequencies are shown in Table II. The system  
clock output frequency for PCM1727 is 100% accurate.  
Sampling Frequencies-LRCIN (kHz)  
Standard Sampling Freq  
44.1  
48  
96  
Double of Standard Sampling Freq  
TABLE I. Sampling Frequencies.  
Frequency error of generated system clock by programmed  
PLL is less than ±0.03ppm due to high accuracy PLL  
construction.  
Sampling  
Frequency  
(LRCIN)  
44.1kHz  
48kHz  
SCKO2  
SCKO3  
System Clock  
System Clock  
16.9344MHz  
18.4320MHz  
36.8640MHz  
To provide MCKO clock and SCKO1, SCKO2, SCKO3  
clocks for external circuits, an external buffer may be used  
to avoid degrading audio performance (as shown in the  
connection diagram, in Figure 1).  
Standard  
Standard  
Double  
33.8688MHz  
36.8640MHz  
36.8640MHz  
96kHz  
TABLE II. Sampling Frequencies vs Internal System Clock  
(= Output Frequencies of Dual PLL).  
®
8
PCM1727  
MAPPING OF PROGRAM REGISTERS  
B15  
res  
B14  
res  
B13  
res  
B12  
res  
B11  
res  
B10  
A1  
B9  
A0  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MODE0  
MODE1  
MODE2  
MODE3  
LDL  
AL7  
AL6  
AL5  
AL4  
AL3  
AL2  
AL1  
AL0  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
A1  
A1  
A1  
A0  
A0  
A0  
LDR  
PL3  
IZD  
AR7  
PL2  
SF1  
AR6  
PL1  
SF0  
AR5  
PL0  
AR4  
IW1  
AR3  
IW0  
res  
AR2  
OPE  
ATC  
AR1  
AR0  
DEM MUT  
LRP  
I2S  
DSR1 DSR0  
SPECIAL FUNCTIONS  
REGISTER  
NAME  
BIT  
NAME  
DESCRIPTION  
DAC Attenuation Data for Lch  
Attenuation Data Load Control for Lch  
Register Address  
PCM1727 includes several special functions, including digi-  
tal attenuation, digital de-emphasis, soft mute, data format  
selection and input word resolution. These functions are  
controlled using a three-wire interface. MD (pin 9) is used  
for the program data, MC (pin 8) is used to clock in the  
program data, and ML (pin 7) is used to latch in the program  
data. Table III lists the selectable special functions.  
Register 0  
Register 1  
Register 2  
AL (7:0)  
LDL  
A (1:0)  
Res  
Reserved, should be “L”  
AR (7:0)  
LDL  
A (1:0)  
Res  
DAC Attenuation Data for Rch  
Attenuation Data Load Control for Rch  
Register Address  
Reserved, should be “L”  
MUT  
DEM  
Left and Right DACs Soft Mute Control  
De-emphasis Control  
OPE  
Left and Right DACs Operation Control  
Input Audio Data Bit Select  
Output Mode Select  
Register Address  
Reserved, should be “L”  
FUNCTION  
DEFAULT MODE  
IW (1:0)  
PL (3:0)  
A (1:0)  
res  
Input Audio Data Format Selection  
Normal Format  
I2S Format  
Normal Format  
Input Audio Data Bit Selection  
16/20/24 Bits  
Register 3  
I2S  
LRP  
ATC  
DSR (1:0)  
SF (1:0)  
IZD  
A (1:0)  
Res  
Audio Data Format Select  
Polarity of LRCIN (pin 19) Select  
Attenuator Control  
Double Sampling Rate Select  
Sampling Rate Select  
Infinite Zero Detection Circuit Control  
Register Address  
Reserved, should be “L”  
16 Bits  
Input LRCIN Polarity Selection  
Lch/Rch = High/Low  
Lch/Rch = Low/High  
Lch/Rch = High/Low  
De-emphasis Control  
Soft Mute Control  
OFF  
OFF  
Attenuation Control  
Lch, Rch Individually  
Lch, Rch Common  
0dB  
Lch, Rch Individually Fixed  
TABLE IV. Internal Register Mapping.  
Infinite Zero Detection Circuit Control  
Operation Enable (OPE)  
OFF  
REGISTER 0 (A1 = 0, A0 = 0)  
Enabled  
Sampling Rate Selection  
Standard Sampling Rate—44.1/48kHz  
Double Sampling Rate—96kHz  
Sampling Frequency  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
res res res res res A1 A0 LDL AL7 AL6 AL5 AL4 AL3 AL2 AL1 AL0  
Standard Sampling Rate  
44.1kHz  
44.1kHz Group  
Register 0 is used to control left channel attenuation. Bits  
0 - 7 (AL0 - AL7) are used to determine the attenuation  
level. The level of attenuation is given by:  
48kHz Group  
Analog Output Mode  
L, R, Mono, Mute  
Stereo  
TABLE III. Selectable Functions.  
ATT = [20 log10 (ATT_DATA/255)] dB  
PROGRAM REGISTER BIT MAPPING  
ATTENUATION DATA LOAD CONTROL  
Bit 8 (LDL) is used to control the loading of attenuation data  
in B0:B7. When LDL is set to 0, attenuation data will be  
loaded into AL0:AL7, but it will not affect the attenuation  
level until LDL is set to 1. LDR in Register 1 has the same  
function for right channel attenuation.  
PCM1727’s special functions are controlled using four pro-  
gram registers which are 16 bits long. These registers are all  
loaded using MD. After the 16 data bits are clocked in, ML  
is used to latch in the data to the appropriate register. Table  
IV shows the complete mapping of the four registers and  
Figure 8 illustrates the serial interface timing.  
®
9
PCM1727  
Attenuation Level (ATT) can be controlled as following  
Resistor set AL (R) (7:0).  
SOFTWARE  
MODE  
INPUT  
DATA INPUT  
DAC OUTPUT  
AL (R) (7:0)  
ATT LEVEL  
Zero  
Other  
Zero  
Controlled by OPE and IZD  
Controlled by OPE and IZD  
Forced to BPZ(1)  
Enabled  
Enabled  
Disabled  
Disabled  
RSTB = “HIGH”  
RSTB = “LOW”  
00h  
01h  
.
dB (Mute)  
–48.16dB  
Other  
Forced to BPZ(1)  
.
TABLE VII. Reset (RSTB) Function.  
NOTE: (1) ∆∑ is disconnected from output amplifier. (2) ∆∑ is connected to  
output amplifier.  
.
.
.
.
FEh  
FFh  
–0.07dB  
0dB  
Bits 3 (IW0) and 4 (IW1) are used to determine input word  
resolution. PCM1727 can be set up for input word resolu-  
tions of 16, 20, or 24 bits:  
REGISTER 1 (A1 = 0, A0 = 1)  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
res res res res res A1 A0 LDR AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0  
Bit 4 (IW1)  
Bit 3 (IW0)  
Input Resolution  
0
0
1
1
0
1
0
1
16-bit Data Word  
20-bit Data Word  
24-bit Data Word  
Reserved  
Register 1 is used to control right channel attenuation. As  
in Register 1, bits 0 - 7 (AR0 - AR7) control the level of  
attenuation.  
Bits 5, 6, 7, and 8 (PL0:3) are used to control output format.  
The output of PCM1727 can be programmed for 16 different  
states, as shown in Table VIII.  
REGISTER 2 (A1 = 1, A0 = 0)  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3  
B2 B1 B0  
res res res res res A1 A0 PL3 PL2 PL1 PL0 IW1 IW0 OPE DEM MUTE  
PL0 PL1 PL2 PL3 Lch OUTPUT  
Rch OUTPUT  
NOTE  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MUTE  
MUTE  
MUTE  
Register 2 is used to control soft mute, de-emphasis, opera-  
tion enable, input resolution, and output format. Bit 0 is used  
for soft mute: a “HIGH” level on bit 0 will cause the output  
to be muted (this is ramped down in the digital domain, so  
no “click” is audible). Bit 1 is used to control de-emphasis.  
A “LOW” level on bit 1 disables de-emphasis, while a  
“HIGH” level enables de-emphasis.  
MUTE  
R
MUTE  
L
MUTE  
(L + R)/2  
R
MUTE  
R
R
R
L
(L + R)/2  
MUTE  
R
REVERSE  
STEREO  
R
L
L
Bit 2, (OPE) is used for operational control. Table V illus-  
trates the features controlled by OPE.  
L
L
L
(L + R)/2  
MUTE  
R
(L + R)/2  
(L + R)/2  
(L + R)/2  
(L + R)/2  
SOFTWARE MODE  
DATA INPUT  
DAC OUTPUT  
INPUT  
L
Zero  
Other  
Zero  
Forced to BPZ(1)  
Forced to BPZ(1)  
Controlled by IZD  
Normal  
Enabled  
Enabled  
Enabled  
Enabled  
OPE = 1  
OPE = 0  
(L + R)/2  
MONO  
TABLE VIII. Programmable Output Format.  
Other  
TABLE V. Operation Enable (OPE) Function.  
REGISTER 3 (A1 = 1, A0 = 1)  
OPE controls the operation of the DAC: when OPE is  
“LOW”, the DAC will convert all non-zero input data. If the  
input data is continuously zero for 65, 536 cycles of BCKIN,  
the output will be forced to zero only if IZD is “HIGH”.  
When OPE is “HIGH”, the output of the DAC will be forced  
to bipolar zero, irrespective of any input data.  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
res res res res res A1 A0 IZD SF1 SF0 DSR1 DSR0 YES ATC LRP I2S  
Register 3 is used to control input data format and polarity,  
attenuation channel control, system clock frequency, sam-  
pling frequency and infinite zero detection.  
Bits 0 (I2S) and 1 (LRP) are used to control the input data  
format. A “LOW” on bit 0 sets the format to “Normal”  
(MSB-first, right-justified Japanese format) and a “HIGH”  
sets the format to I2S (Philips serial data protocol). Bit 1  
(LRP) is used to select the polarity of LRCIN (sample rate  
clock). When bit 1 is “LOW”, left channel data is assumed  
DATA INPUT  
DAC OUTPUT  
Zero  
Other  
Zero  
Forced to BPZ(1)  
Normal  
IZD = 1  
IZD = 0  
Zero(2)  
Other  
Normal  
TABLE VI. Infinite Zero Detection (IZD) Function.  
®
10  
PCM1727  
when LRCIN is in a “HIGH” phase and right channel data  
is assumed when LRCIN is in a “LOW” phase. When bit  
1 is “HIGH”, the polarity assumption is reversed.  
SF1  
SF0  
Sampling Frequency  
0
0
1
1
0
1
0
1
44.1kHz group  
44.1kHz  
48/96kHz  
Reserved  
Reserved  
48kHz group  
Reserved  
Bit 2 (ATC) is used for controlling the attenuator. When  
bit 2 is “HIGH”, the attenuation data loaded in program  
Register 0 is used for both left and right channels. When  
bit 2 is “LOW”, the attenuation data for each register is  
applied separately to left and right channels.  
Reserved  
Bit 8 is used to control the infinite zero detection function  
(IZD).  
Bits 4 (DSR0) and 5 (DSR1) are used to control multiples  
of the sampling rate:  
When IZD is “LOW”, the zero detect circuit is off. Under  
this condition, no automatic muting will occur if the input  
is continuously zero. When IZD is “HIGH”, the zero detect  
feature is enabled. If the input data is continuously zero for  
65, 536 cycles of BCKIN, the output will be immediately  
forced to a bipolar zero state (VCC/2). The zero detection  
feature is used to avoid noise which may occur when the  
input is DC. When the output is forced to bipolar zero,  
there may be an audible click. PCM1727 allows the zero  
detect feature to be disabled so the user can implement an  
external muting circuit.  
DSR1  
DSR0  
Multiple  
0
0
1
1
0
1
0
1
Normal  
Double  
Reserved  
Reserved  
44.1/48kHz  
96kHz  
Reserved  
Reserved  
Bits 6 (SF0) and 7 (SF1) are used to select the sampling  
frequency:  
ML (pin 7)  
MC (pin 8)  
MD (pin 9)  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
FIGURE 8. Three-Wire Serial Interface.  
tMLH  
tMLH  
tMLS  
1.4V  
1.4V  
ML  
tMCH  
tMCL  
tMLL  
MC  
tMCY  
LSB  
MD  
1.4V  
tMDS  
tMDH  
MC Pulse Cycle Time  
MC Pulse Width LOW  
MC Pulse Width HIGH  
MD Setup Time  
tMCY  
tMCL  
tMCH  
tMDS  
tMDH  
tMLL  
tMLH  
tMLS  
tMLH  
100ns (min)  
40ns (min)  
40ns (min)  
40ns (min)  
40ns (min)  
40ns + 1SYSCLK (min)  
40ns + 1SYSCLK (min)  
40ns (min)  
MD Hold Time  
ML Low Level Time  
ML High Level Time  
ML Setup Time  
ML Hold Time  
40ns (min)  
SYSCLK: 1/384fS  
FIGURE 9. Program Register Input Timing.  
®
11  
PCM1727  
OUTPUT FILTERING  
APPLICATION  
CONSIDERATIONS  
DELAY TIME  
For testing purposes all dynamic tests are done on the  
PCM1727 using a 20kHz low pass filter. This filter limits  
the measured bandwidth for THD+N, etc. to 20kHz. Failure  
to use such a filter will result in higher THD+N and lower  
SNR and Dynamic Range readings than are found in the  
specifications. The low pass filter removes out of band  
noise. Although it is not audible, it may affect dynamic  
specification numbers.  
There is a finite delay time in delta-sigma converters. In A/D  
converters, this is commonly referred to as latency. For a  
delta-sigma D/A converter, delay time is determined by the  
order number of the FIR filter stage, and the chosen sampling  
rate. The following equation expresses the delay time of  
PCM1727:  
The performance of the internal low pass filter from DC to  
24kHz is shown in Figure 10. The higher frequency rolloff  
of the filter is shown in Figure 11. If the user’s application  
has the PCM1727 driving a wideband amplifier, it is recom-  
mended to use an external low pass filter. A simple 3rd-  
order filter is shown in Figure 12. For some applications, a  
passive RC filter or 2nd-order filter may be adequate.  
TD = 11.125 x 1/fS  
For fS = 44.1kHz, TD = 11.125/44.1kHz = 251.4µs  
Applications using data from a disc or tape source, such as  
CD audio, DVD audio, Video CD, DAT, Minidisc, etc.,  
generally are not affected by delay time.  
INTERNAL ANALOG FILTER FREQUENCY RESPONSE  
(10Hz~10MHz)  
INTERNAL ANALOG FILTER FREQUENCY RESPONSE  
(20Hz~24kHz, Expanded Scale)  
10  
5
0
1.0  
0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0
–0.5  
–1.0  
10  
100  
1k  
10k  
100k  
1M  
10M  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 11. Low Pass Filter Wideband Frequency Response.  
FIGURE 10. Low Pass Filter Frequency Response.  
GAIN vs FREQUENCY  
90  
6
Gain  
–14  
–34  
–54  
–74  
–94  
0
1500pF  
OPA604  
–90  
+
10kΩ  
10kΩ  
10kΩ  
–180  
Phase  
VSIN  
680pF  
100pF  
–270  
–360  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 12. 3rd-Order LPF.  
®
12  
PCM1727  
Reset  
+5V power supply for all three power pins. If separate  
supplies are used without a common connection, the delta  
between the supplies during ramp-up time must be less than  
0.3V. An application circuit to avoid a power-on latch-up  
condition is shown in Figure 15.  
PCM1727 has both internal power-on reset circuit and the  
RSTB pin (pin 10) which accepts an external forced reset by  
RSTB = LOW. For internal power on reset, initialize (reset)  
is done automatically at power on VDD >2.2V (typ). During  
internal reset = LOW, the output of the DAC is invalid and  
the analog outputs are forced to VCC/2. Figure 13 illustrates  
the timing of the internal power on reset.  
PCM1727 accepts an external forced reset when RSTB = L.  
When RSTB = L, the output of the DAC is invalid and the  
analog outputs are forced to VCC/2 after internal initialization  
(1024 system clocks count after RSTB = H.) Figure 14  
illustrates the timing of the RSTB reset pin.  
Digital  
Power Supply  
Analog  
Power Supply  
For system applications, the power-up time of the internal  
PLL circuit to provide a stable system clock output, is  
approximately 1024 system clocks plus a 15ms transient  
time.  
VDD  
VCP VCA  
AGND  
DGND  
POWER SUPPLY  
CONNECTIONS  
FIGURE 15. Latch-up Prevention Circuit.  
PCM1727 has three power supply connections: digital (VDD),  
analog (VCA), and PLL (VCP). Each connection also has a  
separate ground return pin. It is acceptable to use a common  
2.6V  
2.2V  
1.8V  
VCC/VDD  
Reset  
Reset Removal  
Internal Reset  
SCKO2 Clock  
1024 system (SCKO2) clocks  
FIGURE 13. Internal Power-On Reset Timing.  
RSTB  
50% of VDD  
(1)  
tRST  
Reset  
Reset Removal  
Internal Reset  
1024 system (SCKO2) clocks  
SCKO2 Clock  
NOTE: (1) tRST = 20ns min  
FIGURE 14. RSTB-Pin Reset Timing.  
®
13  
PCM1727  
BYPASSING POWER SUPPLIES  
The combined oversampling rate of the delta-sigma modu-  
lator and the internal 8X interpolation filter is 48fS for a  
384fS system clock. The theoretical quantization noise per-  
formance of the 5-level delta-sigma modulator is shown in  
Figure 17.  
The power supplies should be bypassed as close as  
possible to the unit. Refer to Figure 18 for optimal values of  
bypass capacitors. Its is also recommended to include a  
0.1µF ceramic capacitor in parallel with the 10µF tantalum  
capacitor.  
THEORY OF OPERATION  
The delta-sigma section of PCM1727 is based on a 5-level  
amplitude quantizer and a 3rd-order noise shaper. This  
section converts the oversampled input data to 5-level delta-  
sigma format.  
AC-3 APPLICATION CIRCUIT  
A typical application for PCM1727 is AC-3 5.1 channel  
audio decoding and playback. This circuit uses PCM1727 to  
develop the audio system clock from the 27MHz video  
clock, with the SCKO2 pin used to drive the AC-3 decoder  
and two PCM1720 units, the non-PLL version of PCM1723  
and PCM1727.  
A block diagram of the 5-level delta-sigma modulator is  
shown in Figure 16. This 5-level delta-sigma modulator has  
the advantage of stability and clock jitter sensitivity over the  
typical one-bit (2 level) delta-sigma modulator.  
+
+
+
+
+
+
Z–1  
Z–1  
Z–1  
In  
8fS  
18-Bit  
+
+
+
5-level Quantizer  
4
3
2
1
0
Out  
48fS (384fS)  
FIGURE 16. 5-Level ∆Σ Modulator Block Diagram.  
3rd ORDER ∆Σ MODULATOR  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
5
10  
15  
20  
25  
Frequency (kHz)  
FIGURE 17. Quantization Noise Spectrum.  
®
14  
PCM1727  
(1)  
+5V Analog  
20  
GNDD  
BCKIN  
19  
VDD  
Post  
Low Pass  
Filter  
14  
16  
15  
12  
13  
Analog  
Mute  
Left-Channel  
Front Speaker  
BCK  
V
OUTL  
AC-3  
Audio  
Decoder  
LRCIN  
DIN  
LRCK  
CAP  
DO_0  
DO_1  
DO_2  
+
10µF  
PCM1720  
Post  
Low Pass  
Filter  
9
Analog  
Mute  
Right-Channel  
Front Speaker  
2
6
5
4
7
V
OUTR  
SCKI  
MD  
SYSCKI  
10kΩ  
+5V Analog  
MC  
8
Mute  
Control  
ZERO  
ML  
17  
TEST  
11  
RSTB  
GNDA  
10  
VCA  
(1)  
+5V Analog  
(1)  
+5V Analog  
20  
GNDD  
BCKIN  
19  
VDD  
OUTL  
Post  
Low Pass  
Filter  
14  
16  
15  
12  
13  
Analog  
Mute  
Left-Channel  
Surround Speaker  
V
LRCIN  
DIN  
CAP  
+
10µF  
PCM1720  
Post  
Low Pass  
Filter  
9
Analog  
Mute  
Left-Channel  
Surround Speaker  
2
6
5
4
7
VOUT  
SCKI  
MD  
MPU  
SDO  
SCO  
10kΩ  
+5V Analog  
MC  
8
Mute  
Control  
ZERO  
STROBE_0  
RESET  
ML  
17  
TEST  
11  
RSTB  
GNDA  
VCA  
10  
STROBE_1  
STROBE_2  
(1)  
+5V Analog  
(1)  
+5V Analog  
23  
22  
21  
3
PGND DGND VDD VDP  
Post  
Low Pass  
Filter  
17  
19  
18  
9
14  
15  
Analog  
Mute  
BCKIN  
LRCIN  
DIN  
V
OUTL  
CAP  
Center Channel  
+
10µF  
MD  
8
7
MC  
PCM1727  
Post  
Low Pass  
Filter  
11  
ML  
Analog  
Mute  
VOUT  
Sub-Woofer  
10  
20  
RSTB  
10kΩ  
Buffer  
Buffer  
SCKO2  
+5V Analog  
16  
24  
1
Mute  
Control  
ZERO  
Signal  
Processor  
21  
6
SCKO1  
SCKO3  
XT2  
XT1  
Buffer  
27MHz Master Clock Input  
+5V Analog  
VCA  
Signal  
Processor  
GNDA  
12  
13  
(1)  
NOTE: (1) Bypass Capacitor, 1µF ~ 10µF + 0.1µ.  
FIGURE 18. Connection Diagram for a 6-Channel AC-3 Application.  
15  
®
PCM1727  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jan-2004  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
PCM1727E  
PCM1727E-2  
PCM1727E/2K  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
24  
24  
24  
58  
58  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

PCM1727E/2K

SERIAL INPUT LOADING, DAC WITH PROGRAMMABLE PLL, PDSO24, GREEN, SSOP-24
TI

PCM1727E/2K

D/A Converter, 1 Func, Serial Input Loading, PDSO24, GREEN, SSOP-24
BB

PCM1727E/2KG4

SERIAL INPUT LOADING, DAC WITH PROGRAMMABLE PLL, PDSO24, GREEN, SSOP-24
TI

PCM1727E2K

DIGITAL-TO-ANALOG CONVERTER With Programmable Dual PLL
TI

PCM1727EG4

DIGITAL-TO-ANALOG CONVERTER With Programmable Dual PLL
TI

PCM1728

24-Bit, 96kHz Sampling CMOS Delta-Sigma Stereo Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM1728

DIGITAL-TO-ANALOG CONVERTER
TI

PCM1728E

DIGITAL-TO-ANALOG CONVERTER
TI

PCM1728E/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PDSO28, GREEN, SSOP-28
TI

PCM1728EG4

106dB SNR Stereo DAC 28-SSOP
TI

PCM1730

24-BIT, 192-kHz SAMPLING ADVANCED SEGMENT, AUDIO STEREO DIGITAL-TO-ANALOG CONVERTER
TI

PCM1730E

24-BIT, 192-kHz SAMPLING ADVANCED SEGMENT, AUDIO STEREO DIGITAL-TO-ANALOG CONVERTER
TI