PCM3060 [TI]

具有 96/192kHz 采样速率的 24 位异步立体声音频编解码器;
PCM3060
型号: PCM3060
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 96/192kHz 采样速率的 24 位异步立体声音频编解码器

编解码器
文件: 总50页 (文件大小:721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
PCM3060  
SLAS533BMARCH 2007REVISED MARCH 2008  
24-BIT, 96/192-kHz ASYNCHRONOUS STEREO AUDIO CODEC  
1
FEATURES  
and DAC  
24-Bit Delta-Sigma ADC and DAC  
ADC, DAC Asynchronous Operation  
Stereo ADC:  
Digital De-Emphasis: 32, 44.1, 48 kHz for  
DAC  
Power Down: ADC/DAC Independently  
Asynchronous/Synchronous Control for  
ADC/DAC Operation  
High Performance: (Typical, 48 kHz)  
THD+N: –93 dB  
SNR: 99 dB  
External Reset and Power-Down Pin:  
ADC/DAC Simultaneously  
Audio Interface Mode:  
ADC/DAC Independent Master/Slave  
Audio Data Format:  
Dynamic Range: 99 dB  
Sampling Rate: 16–96 kHz  
System Clock: 256, 384, 512, 768 fS  
Full Scale Input: 3 Vp-p  
ADC/DAC Independent  
I2S, Left-Justified, Right-Justified  
Antialiasing Filter Included  
1/64 Decimation Filter:  
Dual Power Supplies:  
5-V for Analog and 3.3-V for Digital  
Package: TSSOP-28  
Pass-Band Ripple: ±0.05 dB  
Stop-Band Attenuation: –65 dB  
On-Chip High-Pass Filter: 0.91 Hz at  
fS = 48 kHz  
APPLICATIONS  
Stereo DAC:  
DVD-RW  
Digital TV  
Digital Set-Top Box  
Audio-Visual Applications  
High Performance: (Typical, Differential,  
48 kHz)  
THD+N: –94 dB  
SNR: 105 dB  
DESCRIPTION  
Dynamic Range: 104 dB  
Sampling Rate: 16–192 kHz  
The PCM3060 is  
a low-cost, high-performance,  
single-chip, 24-bit stereo audio codec with  
single-ended analog inputs and differential analog  
outputs.  
System Clock: 128, 192, 256, 384,  
512, 768 fS  
Differential Voltage Output: 8 Vp-p  
Single-Ended Voltage Output: 4 Vp-p  
Analog Low-Pass Filter Included  
4×/8× Oversampling Digital Filter:  
The stereo 24-bit ADC employs  
a
64-times  
delta-sigma modulator. It supports 16–96 kHz  
sampling rates and a 16/24-bit digital audio output  
word on the audio interface.  
Pass-Band Ripple: ±0.04 dB  
The stereo 24-bit DAC employs a 64- or 128-times  
delta-sigma modulator. It supports 16–192 kHz  
sampling rates and a 16/24-bit digital audio input  
word on the audio interface.  
Stop-Band Attenuation: –50 dB  
Zero Flags  
Flexible Mode Control  
The PCM3060 supports fully independent operation  
of the sampling rate and audio interface for the ADC  
and DAC.  
Each audio interface supports I2S, left-justified, and  
right-justified formats with 16/24-bit words.  
3-Wire SPI, 2-Wire I2C Compatible Serial  
Control Interface  
Hardware Control Mode  
Multiple Functions via SPI or I2C Interface:  
Digital Attenuation and Soft Mute for ADC  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2008, Texas Instruments Incorporated  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
DESCRIPTION (CONTINUED)  
The PCM3060 can be software-controlled through a 3-wire SPI-compatible or 2-wire I2C-compatible serial  
interface, which provides access to all functions including digital attenuation, soft mute, de-emphasis etc.  
The PCM3060 can be also used in hardware mode, which provides three basic functions.  
The PCM3060 is fabricated using a highly advanced CMOS process and is available in a small 28-pin TSSOP  
package.  
The PCM3060 is suitable for various sound processing applications for DVD-RW, digital TV, STB, and other AV  
equipment.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
UNIT  
VCC  
VDD  
–0.3 to 6.5  
Supply voltage  
V
–0.3 to 4  
Ground voltage differences AGND1, AGND2, DGND, SGND  
RST, MS, MC, MD, SCKI1, SCKI2, DIN  
±0.1  
–0.3 to 6.5  
V
V
Digital input voltage  
BCK1, BCK2, LRCK1, LRCK2, DOUT  
ZEROL, ZEROR, MODE  
–0.3 to (VDD + 0.3 V) < 4  
–0.3 to (VDD + 0.3 V) < 4  
–0.3 to (VCC + 0.3 V) < 6.5  
±10  
V
V
Analog input voltage  
VINL, VINR, VCOM, VOUTL+, VOUTL–, VOUTR+, VOUTR–  
V
Input current (any pins except supplies)  
Ambient temperature under bias  
Storage temperature  
mA  
°C  
°C  
°C  
°C  
°C  
TA  
–40 to 125  
Tstg  
TJ  
–55 to 150  
Junction temperature  
150  
Lead temperature (soldering)  
Package temperature (IR reflow, peak)  
260, 5 s  
260  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5
MAX UNIT  
VCC Analog supply voltage  
VDD Digital supply voltage  
Digital input interface level  
5.5  
3.6  
V
V
2.7  
3.3  
TTL compatible  
Sampling frequency, LRCK1, LRCK2  
System clock frequency, SCKI1, SCKI2  
16  
96/192  
36.864  
kHz  
MHz  
Vpp  
k  
Digital input clock frequency  
Analog input level  
2.048  
3
AC-coupled  
DC-coupled  
5
Analog output load resistance  
10  
kΩ  
Analog output load capacitance  
Digital output load capacitance  
Operating free-air temperature  
50  
20  
85  
pF  
pF  
–25  
25  
°C  
2
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data (unless otherwise  
noted).  
PCM3060PW  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
DIGITAL INPUT/OUTPUT  
DATA FORMAT  
Audio data interface format  
I2S, LJ, RJ  
16, 24  
Audio data word length  
Audio data format  
Bits  
MSB-first, 2s-complement  
Sampling frequency, ADC  
Sampling frequency, DAC  
System clock frequency  
16  
16  
48  
48  
96  
192  
fS  
kHz  
128, 192, 256, 384, 512, 768 fS  
2.048  
36.864  
MHz  
INPUT LOGIC  
(1)  
VIH  
2
2
VDD  
0.8  
(1)  
VIL  
Input logic level  
VDC  
µA  
(2) (3)  
VIH  
5.5  
(2) (3)  
VIL  
0.8  
(2)  
IIH  
VIN = VDD  
VIN = 0 V  
VIN = VDD  
VIN = 0 V  
±10  
±10  
100  
±10  
(2)  
IIL  
Input logic current  
(1) (3)  
IIH  
65  
(1) (3)  
IIL  
OUTPUT LOGIC  
(4)  
VOH  
IOUT = –4 mA  
IOUT = 4 mA  
2.8  
Output logic level  
VDC  
(4) (5)  
VOL  
REFERENCE OUTPUT  
VCOM output voltage  
0.5  
0.5 VCC  
12.5  
V
VCOM output impedance  
7
18  
±1  
kΩ  
Allowable VCOM output  
source/sink current  
µA  
ADC CHARACTERISTICS  
Resolution  
ANALOG INPUT  
16  
24  
Bits  
Full scale input voltage  
Center voltage  
VINL, VINR = 0 dB  
0.6 VCC  
0.5 VCC  
10  
Vp-p  
V
Input impedance  
kΩ  
Antialiasing filter response  
–3 dB  
300  
kHz  
DC ACCURACY  
Gain mismatch,  
channel-to-channel  
Full-scale input, VINL, VIN  
R
R
±2  
±8 % of FSR  
Gain error  
Full-scale input, VINL, VIN  
±2  
±8 % of FSR  
±2 % of FSR  
Bipolar zero error  
HPF bypass, VINL, VIN  
R
±0.5  
(1) BCK1, BCK2, LRCK1, LRCK2 (in slave mode, Schmitt-trigger input with 50-ktypical internal pulldown resistor)  
(2) SCKI1, SCKI2, DIN, MS/ADR/IFMD, MC/SCL/FMT, MD/SDA/IFMD (Schmitt-trigger input, 5-V tolerant).  
(3) RST (Schmitt-trigger input with 50-ktypical internal pulldown resistor, 5-V tolerant).  
(4) BCK1, BCK2, LRCK1, LRCK2 (in master mode), DOUT, ZEROL, ZEROR  
(5) MD/SDA/IFMD (in I2C mode, open drain LOW output)  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data (unless otherwise  
noted).  
PCM3060PW  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
(6) (7)  
DYNAMIC PERFORMANCE  
VIN = –1 dB, fS = 48 kHz  
–93  
–93  
99  
–85  
THD+N  
Total harmonic distortion + noise  
dB  
dB  
dB  
dB  
dB  
VIN = –1 dB, fS = 96 kHz  
fS = 48 kHz, A-weighted  
fS = 96 kHz, A-weighted  
fS = 48 kHz, A-weighted  
fS = 96 kHz, A-weighted  
fS = 48 kHz  
95  
95  
92  
92  
Dynamic range  
101  
99  
SNR  
Signal-to-noise ratio  
101  
96  
Channel separation  
(between L-ch and R-ch)  
fS = 96 kHz  
98  
fS1 = 48 kHz, fS2 = 44.1 kHz  
fS1 = 96 kHz, fS2 = 44.1 kHz  
96  
Crosstalk from DAC  
98  
DIGITAL FILTER PERFORMANCE  
0.454  
fS  
Pass band  
Hz  
Hz  
0.583  
fS  
Stop band  
Pass-band ripple  
< 0.454 fS  
> 0.583 fS  
±0.05  
dB  
dB  
s
Stop-band attenuation  
Group delay time  
–65  
17.4/fS  
0.019 fS  
/1000  
HPF frequency response  
–3 dB  
Hz  
DAC CHARACTERISTICS  
Resolution  
16  
24  
Bits  
ANALOG OUTPUT  
Single-ended  
Differential  
Single-ended  
Differential  
AC-coupled  
DC-coupled  
f = 20 kHz  
f = 44 kHz  
–3 dB  
0.8 VCC  
1.6 VCC  
0.5 VCC  
0.48 VCC  
Output voltage  
Center voltage  
Load impedance  
Vp-p  
V
5
kΩ  
10  
–0.02  
–0.07  
300  
dB  
LPF frequency response  
kHz  
DC ACCURACY  
Gain mismatch,  
channel-to-channel  
±1  
±4 % of FSR  
±6 % of FSR  
Gain error  
±2  
±1  
±1  
Single-ended  
±2  
Bipolar zero error  
% of FSR  
Differential (VOUTX+ – VOUTX–)  
(6) fIN = 1 kHz, using System Two audio measurement system by Audio Precision, RMS mode with 20-kHz LPF and 400-Hz HPF.  
(7) fS = 96 kHz: SCKI1 = SCKI2 = 256 fS, fS = 192 kHz: SCKI1 = 512 fS at fS = 48 kHz and SCKI2 = 128 fS at fS = 192 kHz.  
4
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data (unless otherwise  
noted).  
PCM3060PW  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
(8) (9) (10)  
DYNAMIC PERFORMANCE (SINGLE-ENDED)  
VOUT = 0 dB, fS = 48 kHz  
–93  
–94  
–94  
103  
103  
103  
104  
104  
104  
101  
101  
101  
101  
101  
101  
–85  
THD+N  
Total harmonic distortion + noise VOUT = 0 dB, fS = 96 kHz  
VOUT = 0 dB, fS = 192 kHz  
dB  
dB  
dB  
dB  
dB  
fS = 48 kHz, EIAJ, A-weighted  
99  
100  
97  
Dynamic range  
fS = 96 kHz, EIAJ, A-weighted  
fS = 192 kHz, EIAJ, A-weighted  
fS = 48 kHz, EIAJ, A-weighted  
fS = 96 kHz, EIAJ, A-weighted  
fS = 192 kHz, EIAJ, A-weighted  
fS = 48 kHz  
SNR  
Signal-to-noise ratio  
Channel separation  
Crosstalk from ADC  
fS = 96 kHz  
fS = 192 kHz  
fS1 = 48 kHz, fS2 = 44.1 kHz  
fS1 = 48 kHz, fS2 = 88.2 kHz  
97  
fS1 = 48 kHz, fS2 = 176.4 kHz  
(8) (9) (11)  
DYNAMIC PERFORMANCE (DIFFERENTIAL)  
VOUT = 0 dB, fS = 48 kHz  
–94  
–95  
–95  
104  
104  
104  
105  
105  
105  
103  
103  
103  
103  
103  
103  
THD+N  
Total harmonic distortion + noise VOUT = 0 dB, fS = 96 kHz  
VOUT = 0 dB, fS = 192 kHz  
dB  
dB  
dB  
dB  
dB  
fS = 48 kHz, EIAJ, A-weighted  
Dynamic range  
fS = 96 kHz, EIAJ, A-weighted  
fS = 192 kHz, EIAJ, A-weighted  
fS = 48 kHz, EIAJ, A-weighted  
fS = 96 kHz, EIAJ, A-weighted  
fS = 192 kHz, EIAJ, A-weighted  
fS = 48 kHz  
SNR  
Signal-to-noise ratio  
Channel separation  
Crosstalk from ADC  
fS = 96 kHz  
fS = 192 kHz  
fS1 = 48 kHz, fS2 = 44.1 kHz  
fS1 = 48 kHz, fS2 = 88.2 kHz  
fS1 = 48 kHz, fS2 = 176.4 kHz  
SHARP ROLLOFF  
DIGITAL FILTER PERFORMANCE  
0.454  
fS  
Pass band  
Hz  
Hz  
0.546  
fS  
Stop band  
Pass-band ripple  
< 0.454 fS  
> 0.546 fS  
±0.04  
dB  
dB  
Stop-band attenuation  
–50  
(8) fS = 96 kHz: SCKI1 = SCKI2 = 256 fS, fS = 192 kHz: SCKI1 = 512 fS at fS = 48 kHz and SCKI2 = 128 fS at fS = 192 kHz.  
(9) fOUT = 1 kHz, using System Two audio measurement system by Audio Precision, RMS mode with 20-kHz LPF and 400-Hz HPF.  
(10) Assumed 5-kAC-coupled second-order LPF and 115-dB or higher- performance buffer.  
(11) Assumed 10-kDC-coupled second-order LPF and 115- dB or higher-performance differential to single-ended converter.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data (unless otherwise  
noted).  
PCM3060PW  
PARAMETER  
TEST CONDITIONS  
SLOW ROLLOFF  
UNIT  
MIN  
TYP  
MAX  
DIGITAL FILTER PERFORMANCE  
0.308  
fS  
Pass band  
Hz  
Stop band  
Pass-band ripple  
0.73 fS  
–35  
Hz  
dB  
dB  
< 0.308 fS  
> 0.73 fS  
±0.5  
Stop-band attenuation  
DIGITAL FILTER PERFORMANCE  
Group delay time  
20/fS  
±0.1  
s
De-emphasis error  
dB  
POWER SUPPLY REQUIREMENTS  
VCC  
4.5  
2.7  
5
3.3  
25  
5.5  
3.6  
36  
Voltage range  
VDD  
VDC  
fS = 48 kHz/ADC, fS = 48 kHz/DAC  
fS = 96 kHz/ADC, fS = 96 kHz/DAC  
fS1 = 48 kHz/ADC, fS2 = 192 kHz/DAC  
fS = 48 kHz/ADC, power down/DAC  
Power down/ADC, fS = 48 kHz/DAC  
mA  
mA  
mA  
mA  
mA  
µA  
25  
25  
ICC  
12  
13  
(12) (13)  
Full power down  
780  
9
Supply current  
fS = 48 kHz/ADC, fS = 48 kHz/DAC  
fS = 96 kHz/ADC, fS = 96 kHz/DAC  
fS1 = 48 kHz/ADC, fS2 = 192 kHz/DAC  
fS = 48 kHz/ADC, power down/DAC  
Power down/ADC, fS = 48 kHz/DAC  
Full power down (12)  
12  
mA  
mA  
mA  
mA  
mA  
µA  
16  
13  
IDD  
5
5
150  
160  
180  
170  
77  
fS = 48 kHz/ADC, fS = 48 kHz/DAC  
fS = 96 kHz/ADC, fS = 96 kHz/DAC  
fS1 = 48 kHz/ADC, fS2 = 192 kHz/DAC  
fS = 48 kHz/ADC, power down/DAC  
Power down/ADC, fS = 48 kHz/DAC  
Full power down (12) (13)  
220  
Power dissipation  
mW  
82  
4.4  
TEMPERATURE RANGE  
Operation temperature  
–25  
85  
°C  
θJA  
Thermal resistance  
105  
°C/W  
(12) Halt SCKI1, SCKI2, BCK1, BCK2, LRCK1, LRCK2  
(13) AC-coupled configuration. If DC-coupled configuration is used, DC current flow to external load is added and it depends on external load  
resistance.  
6
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
 
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
PIN ASSIGNMENTS  
PCM3060  
PW (TSSOP) PACKAGE  
(TOP VIEW)  
1
MC/SCL/FMT  
MD/SDA/DEMP  
DOUT  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MODE  
2
MS/ADR/IFMD  
VINR  
3
4
LRCK1  
BCK1  
VINL  
5
VCC  
SCKI1  
AGND1  
6
7
VDD  
AGND2  
VCOM  
DGND  
8
SCKI2  
9
VOUTL+  
VOUTL–  
BCK2  
10  
11  
12  
13  
14  
LRCK2  
DIN  
VOUTR+  
VOUTR–  
SGND  
RST  
ZEROR  
ZEROL  
P0043-03  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Table 1. TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
PIN  
23  
22  
5
AGND1  
AGND2  
BCK1  
ADC analog ground  
DAC analog ground  
I/O(1) Audio data bit clock input/output for ADC  
I/O(1) Audio data bit clock input/output for DAC  
BCK2  
10  
8
DGND  
I(2)  
O
Digital ground  
DIN  
12  
3
Audio data digital input for DAC  
Audio data digital output for ADC  
DOUT  
LRCK1  
LRCK2  
MC/SCL/FMT  
MD/SDA/DEMP  
4
I/O(1) Audio data left/right clock input/output for ADC  
I/O(1) Audio data left/right clock input/output for DAC  
11  
1
I (2)  
Mode control, clock for SPI, clock for I2C, format for H/W mode(5)  
2
I/O(3) Mode control, data for SPI, data for I2C, de-emphasis for H/W mode  
This pin provides four operation modes according to its input connection. Connected directly to  
VDD: SPI mode. Connected to VDD through 220-kpullup resistor: H/W mode, single-ended  
VOUTX. Connected to DGND through 220-kpulldown resistor: H/W mode, differential VOUTX.  
Connected directly to DGND : I2C mode.  
(4)  
MODE  
28  
I
MS/ADR/IFMD  
RST  
27  
15  
6
I (2)  
Mode control, select for SPI with low active, address for I2C, I/F mode for H/W mode  
Reset and power-down control input, active-low  
System clock input for ADC  
(5)  
I
SCKI1  
SCKI2  
SGND  
VCC  
I(2)  
I(2)  
9
System clock input for DAC  
16  
24  
21  
7
Shield analog ground  
ADC, DAC analog power supply, 5-V  
VCOM  
ADC, DAC voltage common decoupling  
VDD  
Digital power supply, 3.3-V  
VIN  
L
25  
26  
19  
20  
14  
13  
17  
18  
I
Analog input to ADC, L-channel  
VINR  
I
Analog input to ADC, R-channel  
VOUTL–  
VOUTL+  
ZEROL  
ZEROR  
VOUTR–  
VOUTR+  
O
O
O
O
O
O
Analog output from DAC, L-channel – in differential mode, must be open in single-ended mode  
Analog output from DAC, L-channel + in differential mode, L-channel in single-ended mode  
Zero flag, L-channel  
Zero flag, R-channel  
Analog output from DAC, R-channel – in differential mode, must be open in single-ended mode  
Analog output from DAC, R-channel + in differential mode, R-channel in single-ended mode  
(1) Schmitt-trigger input/output with 50-ktypical internal pulldown resistor  
(2) Schmitt-trigger input, 5-V tolerant  
(3) Schmitt-trigger input, 5 V tolerant for SPI, H/W mode and Schmitt-trigger input/open drain LOW output, 5-V tolerant for I2C  
(4) VDD/2 biased, quad-state input  
(5) Schmitt-trigger input with 50-ktypical internal pulldown resistor, 5-V tolerant  
8
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
BLOCK DIAGRAM  
SE to Diff.  
Converter  
Delta-Sigma  
Modulator  
VINL  
VDD  
Decimation Filter  
with HPF  
DGND  
SE to Diff.  
Converter  
Delta-Sigma  
Modulator  
VINR  
DOUT  
LRCK1  
VCC  
BCK1  
Audio  
AGND1  
SGND  
Common  
and  
Reference  
Interface  
and  
Clock  
SCK1  
SCK2  
BCK2  
LRCK2  
DIN  
Voltage Common and Reference  
AGND2  
VCOM  
Control  
ZEROR  
VOUTR–  
Multi-Level  
Delta-Sigma  
Modulator  
LPF and  
Buffer  
VOUTR+  
RST  
Interpolation Filter  
with Digital Function  
MODE  
Mode  
Control  
MS/ADR/IFMD  
MC/SCL/FMT  
MD/SDA/DEMP  
V
OUTL+  
Multi-Level  
Delta-Sigma  
Modulator  
LPF and  
Buffer  
VOUTL–  
ZEROL  
B0229-01  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL PERFORMANCE CURVES OF ADC INTERNAL FILTER  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data,  
unless otherwise noted.  
DIGITAL FILTER  
DECIMATION FILTER, STOP-BAND CHARACTERISTICS  
DECIMATION FILTER, PASS-BAND CHARACTERISTICS  
0.1  
0
−20  
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−40  
−60  
−80  
−100  
−120  
−140  
−160  
0
8
16  
24  
32  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency [×f ]  
Normalized Frequency [×f ]  
S
S
G001  
G002  
Figure 1.  
Figure 2.  
ANALOG FILTER  
HIGH-PASS FILTER CHARACTERISTICS  
ANTIALIASING FILTER CHARACTERISTICS  
0
−5  
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
0.0  
0.1  
0.2  
0.3  
0.4  
1
10  
100  
1k  
10k  
f − Frequency − kHz  
Normalized Frequency [×f /1000]  
S
G004  
G003  
Figure 3.  
Figure 4.  
10  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL PERFORMANCE CURVES OF DAC INTERNAL FILTER  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data,  
unless otherwise noted.  
DIGITAL FILTER  
INTERPOLATION FILTER, STOP BAND  
INTERPOLATION FILTER, PASS BAND  
(SHARP-ROLL OFF)  
(SHARP-ROLL OFF)  
0.1  
0.0  
0
−20  
−40  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−60  
−80  
−100  
−120  
−140  
−160  
0
1
2
3
4
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency [×f ]  
Normalized Frequency [×f ]  
S
S
G005  
G006  
Figure 5.  
Figure 6.  
ANALOG FILTER  
DE-EMPHASIS FILTER CHARACTERISTICS  
(fS = 44.1 kHz)  
LOW-PASS FILTER CHARACTERISTICS  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0
−10  
−20  
−30  
−40  
−50  
0
2
4
6
8
10 12 14 16 18 20  
1
10  
100  
1k  
10k  
f − Frequency − kHz  
f − Frequency − kHz  
G007  
G008  
Figure 7.  
Figure 8.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL ADC PERFORMANCE CURVES  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data,  
unless otherwise noted.  
THD+N at –1 dB vs TEMPERATURE  
DYNAMIC RANGE and SNR vs TEMPERATURE  
−88  
−90  
−92  
−94  
−96  
−98  
−100  
104  
102  
100  
98  
V
IN  
= –0.5 dB  
Dynamic Range  
SNR  
96  
94  
92  
−25  
−25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
G009  
G010  
Figure 9.  
Figure 10.  
THD+N at –1 dB vs SUPPLY VOLTAGE  
DYNAMIC RANGE and SNR vs SUPPLY VOLTAGE  
−88  
−90  
−92  
−94  
−96  
−98  
−100  
104  
102  
100  
98  
V
IN  
= –1 dB  
Dynamic Range  
SNR  
96  
94  
92  
4.50  
4.50  
4.75  
V
5.00  
5.25  
5.50  
4.75  
V
5.00  
5.25  
5.50  
− Supply Voltage − V  
− Supply Voltage − V  
CC  
CC  
G011  
G012  
Figure 11.  
Figure 12.  
12  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL DAC PERFORMANCE CURVES  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data,  
unless otherwise noted.  
THD+N vs TEMPERATURE  
DYNAMIC RANGE and SNR vs TEMPERATURE  
−90  
−92  
110  
108  
106  
104  
102  
100  
98  
SNR  
−94  
−96  
Dynamic Range  
−98  
−100  
−102  
−25  
0
25  
50  
75  
100  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
G013  
G014  
Figure 13.  
Figure 14.  
THD+N vs SUPPLY VOLTAGE  
DYNAMIC RANGE and SNR vs SUPPLY VOLTAGE  
−90  
−92  
110  
108  
106  
104  
102  
100  
98  
−94  
SNR  
−96  
Dynamic Range  
−98  
−100  
−102  
4.50  
4.75  
V
5.00  
5.25  
5.50  
4.50  
4.75  
V
5.00  
5.25  
5.50  
− Supply Voltage − V  
− Supply Voltage − V  
CC  
CC  
G015  
G016  
Figure 15.  
Figure 16.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL PERFORMANCE CURVES  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, fS = 48 kHz, SCKI1 = SCKI2 = 512 fS, 24-bit data,  
unless otherwise noted.  
ADCs OUTPUT SPECTRUM  
OUTPUT SPECTRUM (–1 dB, N=32768)  
OUTPUT SPECTRUM (–60 dB, N=32768)  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−100  
−120  
−140  
0
5
10  
15  
20  
0
5
10  
15  
20  
f − Frequency − kHz  
f − Frequency − kHz  
G017  
G018  
Figure 17.  
Figure 18.  
DAC OUTPUT SPECTRUM  
OUTPUT SPECTRUM (0 dB, N=32768)  
OUTPUT SPECTRUM (–60 dB, N=32768)  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−100  
−120  
−140  
0
5
10  
15  
20  
0
5
10  
15  
20  
f − Frequency − kHz  
f − Frequency − kHz  
G019  
G020  
Figure 19.  
Figure 20.  
14  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
DEVICE DESCRIPTION  
ASYNCHRONOUS OPERATION  
The PCM3060 supports complete asynchronous operation between the ADC and DAC by receiving two  
independent system clocks on SCKI1 and SCKI2.  
Also, the PCM3060 supports synchronous operation between ADC and DAC by receiving one common system  
clock on either SCKI1 or SCKI2 and controlling the system clock configuration through register 67 or 72 in serial  
mode control.  
SYSTEM CLOCK  
The PCM3060 requires two system clocks for operating the ADC and DAC blocks independently, or it requires  
one common clock for synchronous ADC and DAC operation.  
The system clock for the ADC of the PCM3060 must be 256, 384, 512, or 768 fS, where fS is the audio sampling  
rate for the ADC, 16 to 96 kHz.  
The system clock for the DAC of the PCM3060 must be 128, 192, 256, 384, 512, or 768 fS, where fS is the audio  
sampling rate for the DAC, 16 to 192 kHz.  
Table 2 lists the typical system clock frequencies, fSCKI1 and fSCKI2 for common audio sampling rates, and  
Figure 21 shows the timing requirements for the system clock inputs.  
Table 2. System Clock Frequencies for Common Audio Sampling Clock Frequencies  
SAMPLING  
FREQUENCY  
(kHz)  
SYSTEM CLOCK FREQUENCY, fSCKI1, fSCKI2 [MHz]  
(1)  
(1)  
128 fS  
192 fS  
256 fS  
384 fS  
512 fS  
768 fS  
16  
32  
2.048  
4.096  
3.072  
6.144  
4.096  
8.192  
6.144  
12.288  
16.9344  
18.432  
33.8688  
36.864  
See (2)  
See (2)  
8.192  
16.384  
22.5792  
24.576  
See (2)  
See (2)  
See (2)  
See (2)  
12.288  
24.576  
33.8688  
36.864  
See (2)  
See (2)  
See (2)  
See (2)  
44.1  
48  
5.6488  
6.144  
8.4672  
9.216  
11.2896  
12.288  
22.5792  
24.576  
88.2  
11.2896  
12.288  
22.5792  
24.576  
16.9344  
18.432  
33.8688  
36.864  
96  
176.4 (1)  
192 (1)  
See  
(2)  
See (2)  
(1) This combination of sampling clock frequency and system clock frequency is supported only for the DAC.  
(2) This system clock frequency is not supported for the given sampling clock frequency.  
tw(SCH)  
H
2 V  
System Clock  
(SCK1, SCK2)  
0.8 V  
L
tw(SCL)  
t(SCY)  
T0005-14  
SYMBOL  
t(SCY)  
PARAMETERS  
MIN  
25  
MAX  
UNIT  
System clock cycle time  
System clock high time  
System clock low time  
System clock duty cycle  
ns  
ns  
ns  
tw(SCH)  
tw(SCL)  
0.4 t(SCY)  
0.4 t(SCY)  
40%  
60%  
Figure 21. System Clock Input Timing  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PCM3060  
 
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
POWER-ON RESET AND EXTERNAL RESET SEQUENCE  
The PCM3060 has both an internal power-on reset circuit and an external reset circuit. The sequences for both  
resets are shown in the following.  
Figure 22 illustrates the timing of the internal power-on reset. Initialization (reset) is done automatically at the  
time when VDD exceeds 2.2 V typical.  
Internal reset is released 1024 SCKIx (x = 1, 2) after power on if the H/W control mode is selected and RST is  
kept HIGH; then the PCM3060 begins normal operation. If the S/W control mode is selected and RST is kept  
HIGH, internal reset is released 1024 SCKIx after the reset of ADPSV and DAPSV through serial control port;  
then the PCM3060 begins normal operation. If RST is kept LOW, internal reset is held and the reset sequence is  
frozen until RST is changed from LOW to HIGH. VOUTL and VOUTR from the DAC are forced to the VCOM (= 0.5  
VCC) level as VCC rises. If synchronization is maintained among SCKIx, BCKx, and LRCKx, VOUTL and VOUTR go  
into the fade-in sequence after tDACDLY1 = 2048/fS from internal reset release. Then VOUTL and VOUTR provide  
outputs corresponding to DIN after tDACDLY2 = 1616/fS from the start of fade-in. Similarly, DOUT from the ADC is  
enabled and goes into the fade-in sequence after tADCDLY1 = 2048/fS from internal reset release, and then DOUT  
provides an output corresponding to VINL and VINR after tADCDLY2 = 1936/fS from the start of fade-in. If  
synchronization is not held, the internal reset is not released and operation mode is kept on reset and  
power-down state. After resynchronization, the DAC begins its fade-in sequence, and the ADC also begins  
fade-in operation after internal initialization and an initial delay.  
Figure 23 is the timing chart of the external reset. The RST pin initiates external forced reset when RST is held  
LOW for at least tRST = 2048/fS; it resets the device places it in the power-down state, which is the lowest-power  
dissipation state in the PCM3060.  
When RST transitions from HIGH to LOW while SCKIx, BCKx, and LRCKx are synchronized, VOUTL and VOUT  
R
are forced to the VCOM (= 0.5 VCC) level after the fade-out sequence lasting tDACDLY2 = 1616/fS, and DOUT is  
forced to ZERO after tADCDLY2 = 1936/fS fade-out sequence. After that, the internal reset becomes LOW, the  
PCM3060 resets and enters into the power-down state, finally all registers and memory except mode control  
registers are reset. To resume into normal operation, changing RST to HIGH again is required, and the sequence  
shown in Figure 22 is performed. It is possible to halt SCKIx, BCKx and LRCKx during the power-down state, but  
all clocks must be resumed prior to starting the power-up sequence. The same fade-in/-out sequence of VOUTL/R  
and DOUT can be obtained by setting the ADPSV and DAPSV bits through serial mode control port.  
16  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
POWER-ON RESET AND EXTERNAL RESET SEQUENCE (Continued)  
(VDD = 3.3 V typ.)  
(VDD = 2.7 V min.)  
VDD  
(VDD = 2.2 V typ.)  
0 V  
SCKIx,  
BCKx,  
LRCKx  
Synchronous Clocks  
MODE  
RST  
ADPSV  
DAPSV  
(1)  
1024 SCKIx  
1024 SCKIx  
Power Down  
Internal  
Reset  
Normal Operation  
t(DACDLY1)  
2048/fS  
t(DACDLY2)  
1616/fS  
VOUTL+/–  
VOUTR+/–  
0.5 VCC  
VCOM (0.5 VCC  
)
t(ADCDLY1)  
2048/fS  
t(ADCDLY2)  
1936/fS  
DOUT  
ZERO  
Fade-in  
T0097-02  
NOTE: Release from the power-save mode is required if the software control mode is selected.  
Figure 22. DAC Output and ADC Output for Power-On Reset  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
(VDD = 3.3 V typ.)  
VDD  
0 V  
SCKIx,  
BCKx,  
LRCKx  
Synchronous Clocks  
Synchronous Clocks  
MODE  
RST  
tRST  
2048/fS min.  
2048/fS min.  
ADPSV  
DAPSV  
(1)  
1024 SCKIx  
Internal  
Reset  
Normal Operation  
Normal Operation  
Power Down  
t(DACDLY1)  
2048/fS  
t(DACDLY2)  
1616/fS  
t(DACDLY2)  
1616/fS  
VOUTL+/–  
VOUTR+/–  
0.5 VCC  
VCOM (0.5 VCC  
)
t(ADCDLY2)  
1936/fS  
t(ADCDLY1)  
2048/fS  
t(ADCDLY2)  
1936/fS  
DOUT  
Fade-out  
ZERO  
Fade-in  
T0098-02  
(1) ADPSV and DAPSV control VOUTL/R and DOUT, respectively, with fade-in/out the same as for RST.  
Figure 23. DAC Output and ADC Output for External Reset  
18  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
PCM AUDIO INTERFACE  
Audio Interface Mode and Timing  
The digital audio data can be interfaced in either slave or master mode, and this interface mode is selectable  
using the serial mode control described in the Mode Control section.  
The interface mode is also selectable independently for the ADC and the DAC. DIN is always input to the  
PCM3060 and DOUT is always an output from the PCM3060. Slave mode is the default mode for both the ADC  
and the DAC.  
In slave mode, BCK1/2 and LRCK1/2 are inputs to the PCM3060, and BCK1/2 must be either 64 fS or 48 fS. DIN  
is sampled on the rising edge of BCK2, and DOUT is changed on the falling edge of BCK1. The default timing  
specification is shown in Figure 24.  
In master mode, BCK1/2 and LRCK1/2 are outputs from the PCM3060. BCK1/2 and LRCK1/2 are generated by  
the PCM3060 from SCKI1/2, and BCK1/2 is fixed at 64 fS. DIN is sampled on the rising edge of BCK2, and  
DOUT is changed on the falling edge of BCK1. The detailed timing specification is shown in Figure 25.  
t(BCH)  
t(BCL)  
BCK1/2  
(Input)  
1.4 V  
t(BCY)  
t(LRH)  
t(LRS)  
LRCK1/2  
(Input)  
1.4 V  
t(DOD)  
0.5 VDD  
DOUT  
t(DIS)  
t(DIH)  
DIN  
1.4 V  
T0247-01  
SYMBOL  
t(BCY)  
DESCRIPTION  
MIN  
75  
35  
35  
10  
10  
10  
10  
15  
TYP  
MAX  
UNIT  
ns  
BCK1/2 cycle time  
tw (BCH)  
tw (BCL)  
t(LRS)  
BCK1/2 high time  
BCK1/2 low time  
ns  
ns  
LRCK1/2 set-up time to BCK1/2 rising edge  
LRCK1/2 hold time to BCK1/2 rising edge  
DIN setup time to BCK1/2 rising edge  
DIN hold time to BCK1/2 rising edge  
ns  
t(LRH)  
t(DIS)  
ns  
ns  
t(DIH)  
ns  
t(DOD)  
DOUT delay time from BCK1/2 falling edge  
70  
ns  
NOTE: Load capacitance of output is 20 pF.  
Figure 24. Audio Data Interface Timing (Slave Mode: BCK1/2 and LRCK1/2 Work as Inputs)  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
SCKI1/2  
(Input)  
1.4 V  
t(BCH)  
t(BCD)  
t(BCL)  
t(BCD)  
BCK1/2  
(Output)  
0.5 VDD  
0.5 VDD  
0.5 VDD  
t(BCY)  
t(LRD)  
LRCK1/2  
(Output)  
t(DOD)  
DOUT  
t(DIS)  
t(DIH)  
DIN  
1.4 V  
T0248-01  
SYMBOL  
t(BCY)  
PARAMETERS  
MIN  
TYP  
MAX  
UNIT  
BCK1/2 cycle time  
1/64 fS  
tw(BCH)  
tw(BCL)  
t(LRD)  
t(DIS)  
BCK1/2 high time  
BCK1/2 low time  
0.4 t(BCY)  
0.5 t(BCY) 0.6 t(BCY)  
0.5 t(BCY) 0.6 t(BCY)  
30  
0.4 t(BCY)  
LRCK1/2 delay time from BCK1/2 falling edge  
DIN setup time to BCK1/2 rising edge  
0
ns  
ns  
ns  
ns  
ns  
10  
10  
0
t(DIH)  
DIN hold time to BCK1/2 rising edge  
t(DOD)  
t(BCD)  
DOUT delay time from BCK1/2 falling edge  
BCK1/2 delay time from SCKI1/2 rising edge(1)  
30  
40  
10  
NOTE: Load capacitance of output is 20 pF.  
(1) This specification applies for SCKI1/2 when the frequency is less than 25 MHz.  
Figure 25. Audio Data Interface Timing (Master Mode: BCK1/2 and LRCK1/2 work as Outputs)  
Audio Interface Format  
The PCM3060 supports the following four interface formats in both slave and master modes, and they are  
selectable independently for the ADC and DAC using serial mode control.  
24-bit I2S format  
24-bit left-justified format  
24-bit right-justified format  
16-bit right-justified format  
All formats are provided in MSB-first, 2s complement data format.  
20  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
FMT1/2[1:0] = 00  
24-Bit, MSB-First, I2S  
LRCK1/2  
Right-Channel  
Left-Channel  
Left-Channel  
Left-Channel  
Left-Channel  
BCK1/2  
DIN  
1
2
3
3
22 23 24  
LSB  
1
2
3
3
22 23 24  
LSB  
MSB  
MSB  
DOUT  
1
2
22 23 24  
LSB  
1
2
22 23 24  
LSB  
MSB  
MSB  
FMT1/2[1:0] = 01  
24-Bit, MSB-First, Left-Justified  
LRCK1/2  
Right-Channel  
BCK1/2  
DIN  
1
2
3
3
22 23 24  
1
2
3
22 23 24  
LSB  
1
1
MSB  
LSB  
MSB  
DOUT  
1
2
22 23 24  
LSB  
1
2
3
22 23 24  
LSB  
MSB  
MSB  
FMT1/2[1:0] = 10  
24-Bit, MSB-First, Right-Justified  
LRCK1/2  
Right-Channel  
BCK1/2  
DIN 24  
DOUT 24  
1
2
3
3
22 23 24  
LSB  
1
2
3
3
22 23 24  
LSB  
MSB  
MSB  
1
2
22 23 24  
LSB  
1
2
22 23 24  
LSB  
MSB  
MSB  
FMT1/2[1:0] = 11  
16-Bit, MSB-First, Right-Justified  
LRCK1/2  
Right-Channel  
BCK1/2  
DIN 16  
DOUT 16  
1
2
3
3
14 15 16  
LSB  
1
2
3
3
14 15 16  
LSB  
MSB  
MSB  
1
2
14 15 16  
LSB  
1
2
14 15 16  
LSB  
MSB  
MSB  
T0016-18  
Figure 26. Audio Data Input/Output Format  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
SYNCHRONIZATION WITH DIGITAL AUDIO SYSTEM  
As the PCM3060 operates under the system clock (SCKI1/2) and the audio sampling clock (LRCK1/2), SCKI1/2  
and LRCK1/2 must have a specific relationship in slave mode. The PCM3060 does not need a specific phase  
relationship between audio the interface clocks (LRCK1/2, BCK1/2) and system clock (SCKI1/2), but does  
require a frequency synchronization of LRCK1/2, BCK1/2, and SCKI1/2.  
If the relationship between SCKI2 and LRCK2 changes more than ±6 BCK2s (BCK2 = 64 fS) or ±5 BCK2s (BCK2  
= 48 fS) due to jitter or frequency change, etc., internal operation of DAC halts within 2/fS, and analog output is  
forced to VCOM (0.5VCC) until resynchronization of SCKI2 to LRCK2 and BCK2 is completed and then tDACDLY3  
passes by.  
If the relationship between SCKI1 and LRCK1 changes more than ±6 BCK1s (BCK1 = 64 fS) or ±5 BCK1s (BCK1  
= 48 fS) due to jitter, frequency change, etc., internal operation of ADC halts within 2/fS, and digital output is  
forced into ZERO code until resynchronization of SCKI1 to LRCK1 and BCK1 is completed and then tADCDLY3  
passes by.  
In case of changes less than ±5 BCK1/2s (BCK1/2 = 64) or ±4 BCK1/2s (BCK1/2 = 48), resynchronization does  
not occur, and previously described analog/digital output control and discontinuity do not occur.  
Figure 27 illustrates the DAC analog output and ADC digital output for loss of synchronization.  
During undefined data, it may generate some noise in audio signal. Also, the transition of normal to undefined  
data and undefined or zero data to normal creates a discontinuity in the data on the analog and digital outputs,  
which may generate some noise in the audio signal.  
The ADC output, DOUT and DAC outputs, and VOUTX hold the previous state if the system clock halts.  
State of Synchronization  
Synchronous  
Asynchronous  
Synchronous  
t(DACDLY3)  
(22/fS)  
Within 2/fS  
Normal  
VCOM  
(0.5 VCC  
)
Undefined  
Data  
DAC VOUTX+/–  
Normal  
t(ADCDLY3)  
(32/fS)  
Undefined  
Data  
ADC DOUT  
Normal  
Zero  
Normal  
T0020-08  
Figure 27. DAC Output and ADC Output for Loss of Synchronization  
22  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
ANALOG INPUTS TO ADC  
The PCM3060 has two independent input channels, VINL and VINR. These are single-ended (unbalanced) inputs,  
each capable of 0.6-VCC Vpp input with 10-kinput resistance, typically.  
ANALOG OUTPUTS FROM DAC  
The PCM3060 has two independent output channels, VOUTL and VOUTR. These are differential, (balanced)  
outputs, each capable of driving 0.8-VCC Vpp (1.6-Vpp in differential) typical with a 10-kdc-coupled load. The  
internal output amplifiers for VOUTL+, VOUTL– and VOUTR+, VOUTR– are biased to VCOM, described as follows.  
The output amplifiers include an RC continuous-time filter, which helps to reduce the out-of-band noise energy  
present at the DAC outputs due to the noise shaping characteristics of the PCM3060 delta-sigma modulators.  
The frequency response of this filter is shown in the typical performance curves. This filter is not enough to  
attenuate the out-of-band noise to an acceptable level for many applications in general. An external low-pass  
filter is used if further out-of-band noise rejection in required.  
VOUTX+, VOUTX– configuration can be changed to single-ended (unbalanced) output via a MODE pin setting or  
serial mode control, and VOUTX+ is assigned as an output pin in single-ended mode.  
VCOM OUTPUT  
One unbuffered common voltage output pin, VCOM (pin 20) is brought out for decoupling purposes. This pin is  
internally biased to a dc voltage level of 0.5 VCC nominal, and is used as an internal common voltage and  
reference voltage for the ADC and DAC. This pin can be used to bias an external circuit, but the load impedance  
must be high enough for operation with the output resistance of this pin, which is 12.5 k, typically.  
OVERSAMPLING RATE CONTROL  
The oversampling rate of ADC of PCM3060 is fixed at 64 fS, but the oversampling rate of DAC of PCM3060 is  
one of 64 fS, 32 fS or 16 fS, and this is automatically selected by the ratio of system clock frequency and sampling  
frequency. And it can be also set to double rate, i.e., one of 128 fS, 64 fS or 32 fS, through serial control.  
ZERO FLAGS  
Zero-Detect Condition  
For each DAC channel, the PCM3060 has a zero-detect circuit that recognizes zero detection when 1024  
consecutive zeros have been sampled on DIN.  
Zero-Flag Outputs  
There are two zero-flag outputs, ZEROL and ZEROR. These pins can be used to operate external mute circuits,  
or used as status indicators for a microcontroller, audio signal processor, etc. These pins can be programmed in  
following two modes using the serial control port as described in the MODE CONTROL section.  
DESCRIPTION  
AZRO  
ZEROL  
ZEROR  
0 (default)  
1
L-ch zero detection  
R-ch zero detection  
L-ch and R-ch zero detection  
L-ch and R-ch zero detection  
For zero detection, these pins are set to HIGH (1) by default, but the polarity of the zero-flag outputs can be  
inverted through the serial control port.  
ZREV  
0 (default)  
1
DESCRIPTION  
HIGH for zero detection  
LOW for zero detection  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
MODE CONTROL  
The PCM3060 supports the following three types of mode control interface and four types of operation  
configuration, according to the input state of MODE (pin 28) as follows. The pullup or pulldown resistor must be  
220 k±5%.  
MODE  
Tie to DGND  
MODE CONTROL INTERFACE  
2-wire (I2C) serial control, selectable VOUTX configuration  
Pulldown resistor to DGND  
Pullup resistor to VDD  
Tie to VDD  
3-wire parallel control, differential VOUT  
3-wire parallel control, single-ended VOUT  
3-wire (SPI) serial control, selectable VOUTX configuration  
X
X
The input state of the MODE pin is sampled during power-on reset or external reset; therefore, an input change  
after reset is ignored until the next reset is performed.  
The definitions (assignments) of the following three pins are changed by this control mode setting.  
DEFINITION  
PIN  
SPI  
MD  
MC  
MS  
I2C  
H/W  
DEMP  
FMT  
2
1
SDA  
SCL  
ADR  
27  
IFMD  
In serial mode control, the actual mode control is performed by register write (and read) through an SPI- or  
I2C-compatible serial control port.  
In parallel mode control, three specific functions are controlled directly through high/low settings of three specific  
pins.  
PARALLEL HARDWARE CONTROL  
IFMD (Interface Mode)  
DESCRIPTION  
LOW  
HIGH  
Slave mode for ADC, slave mode for DAC  
Master (256 fS) mode for ADC, slave mode for DAC  
The audio interface of the ADC and DAC can be independent from each other, but mode selection is applied on  
both.  
FMT (Interface Format)  
DESCRIPTION  
LOW  
HIGH  
24-bit I2S for ADC and DAC  
24-bit left-justified for ADC and DAC  
The audio interface of the ADC and DAC can be independent from each other, but format selection is applied on  
both.  
DEMP (De-emphasis)  
DESCRIPTION  
LOW  
HIGH  
De-emphasis off  
(1)  
De-emphasis on  
(1) The 44.1-kHz de-emphasis filter is always selected.  
3-WIRE (SPI) SERIAL CONTROL  
The PCM3060 supports SPI-compatible serial ports, which operate asynchronously to the audio serial interface.  
The control interface consists of MD, MC, and MS. MD is the serial data input, used to program the mode control  
registers. MC is the serial bit clock, used to shift the data into the control port. MS is the select input, used to  
enable the mode control port.  
24  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Register Write Operation  
All single-write operations via the serial control port use 16-bit data words. Figure 28 shows the control data word  
format. The most significant bit must be a 0. There are seven bits, labeled IDX[6:0], that set the register index  
(address) for the write operation. The least significant eight bits, D[7:0], contain the data to be written to the  
register specified by IDX[6:0].  
Figure 29 shows the functional timing diagram for single-write operations on the serial control port. MS is held in  
the High state until a register is to be written. To start the register write cycle, MS is set to the Low state. Sixteen  
clocks are then provided on MC, corresponding to the 16 bits of the control data word on MD. After the sixteenth  
clock cycle has completed, MS is set to High to latch the data into the indexed mode control register.  
The PCM3060 supports the multiple-write operation in addition to the single-write operation. Multiple write is  
performed by sending N-sets of 8-bit register data after the first 16 bits of register address and register data,  
while keeping the MC clock and MS in the Low state. Closing the multiple-write operation is done by setting MS  
to the High state.  
LSB  
D0  
MSB  
0
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
Register Index (or Address)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Register Data  
R0001-01  
Figure 28. Control Data Word Format for MD  
MS  
MC  
MD  
X
0
D7 D6 D5 D4 D3 D2  
D1 D0  
X
X
0
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
IDX6  
T0048-01  
Figure 29. Register Write Operation  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): PCM3060  
 
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Timing Requirements  
Figure 30 shows a detailed timing diagram for the 3-wire serial control interface. These timing parameters are  
critical for proper control port operation.  
t(MHH)  
1.4 V  
MS  
MC  
MD  
t(MSS)  
t(MCH)  
t(MCL)  
t(MSH)  
1.4 V  
t(MCY)  
LSB  
1.4 V  
t(MDS)  
t(MDH)  
T0013-10  
SYMBOL  
t(MCY)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
MC cycle time  
100  
40  
tw(MCL)  
tw (MCH)  
t(MHH)  
t(MSS)  
t(MSH)  
t(MDH)  
t(MDS)  
MC low-level time  
MC high-level time  
MS high-level time  
ns  
40  
ns  
t(MCY)  
15  
ns  
MS falling edge to MC rising edge  
ns  
MS rising edge from MC rising edge for LSB(1)  
15  
ns  
MD hold time  
15  
ns  
MD setup time  
15  
ns  
(1) MC rise edge for LSB to MS rise edge.  
Figure 30. Control Interface Timing for SPI  
TWO-WIRE (I2C) SERIAL CONTROL  
The PCM3060 supports the I2C-compatible serial bus and the data transmission protocol for standard-mode and  
fast-mode (CB max = 100 pF) as a slave device. This protocol is explained in the well-known I2C 2.0  
specification.  
Slave Address  
MSB  
LSB  
R/W  
1
0
0
0
1
1
ADR  
26  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
The PCM3060 has 7 bits for its own slave address. The first six bits (MSBs) of the slave address are factory  
preset to 10 0011. The next bit of the address byte is the device select bit, which can be user-defined by the  
ADR pin (pin 27). Two PCM3060s at maximum can be connected on the same bus at one time. Each PCM3060  
responds when it receives its own slave address.  
Packet Protocol  
A master device must control packet protocol, which consists of a start condition, slave address with read/write  
bit, data if write or acknowledgment if read, and stop condition. The PCM3060 supports the slave receiver  
function.  
SDA  
Sp  
SCL  
St  
1-7  
8
9
1-8  
9
1-8  
9
9
Slave Address  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
R/W  
Start  
Condition  
Stop  
Condition  
R/W: Read Operation if 1; Otherwise, Write Operation  
ACK: Acknowledgement of a Byte if 0, not Acknowledgement of a Byte if 1  
DATA: 8 Bits (Byte)  
T0049-06  
Write Operation  
The PCM3060 supports the receiver function. A master can write to any PCM3060 registers using single or  
multiple accesses. The master sends a PCM3060 slave address with a write bit, a register address, and the  
data. If multiple access is required, the address is that of the starting register, followed by the data to be  
transferred. When the data are received properly, the index register is incremented by 1 automatically. When the  
index register reaches 4Ah, the next value is 40h. When undefined registers are accessed, the PCM3060 does  
not send an acknowledgment. Figure 31 is a diagram of the write operation. The register address and the write  
data are 8-bit in MSB-first format.  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
M
S
S
M
Reg Address  
Sp  
St Slave Address  
ACK  
ACK  
Write Data 1 ACK  
Write Data 2 ACK  
ACK  
W
M: Master Device S: Slave Device St: Start Condition W: Write ACK: Acknowledgement Sp: Stop Condition  
R0002-04  
Figure 31. Framework for Write Operation  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Timing Diagram  
The detailed timing diagram for SCL and SDA is shown as follows.  
Start  
Repeated Start  
Stop  
t(D-HD)  
t(SDA-F)  
t(P-SU)  
t(BUF)  
t(D-SU)  
t(SDA-R)  
SDA  
t(SCL-R)  
t(S-HD)  
t(GW)  
t(LOW)  
SCL  
t(S-HD)  
t(HI)  
t(S-SU)  
t(SCL-F)  
T0050-04  
Timing Characteristics  
STANDARD MODE  
FAST MODE  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
f(SCL)  
SCL clock frequency  
100  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
pF  
V
t(BUF)  
t(LOW)  
t(HI)  
Bus free time between STOP and START conditions  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for START/repeated START condition  
Hold time for START/repeated START condition  
Data setup time  
4.7  
4.7  
4
1.3  
1.3  
0.6  
t(S-SU)  
t(S-HD)  
t(D-SU)  
t(D-HD)  
t(SCL-R)  
t(SCL-F)  
t(SDA-R)  
t(SDA-F)  
t(P-SU)  
t(GW)  
4.7  
4
0.6  
0.6  
250  
0
100  
Data hold time  
3450  
1000  
1000  
1000  
1000  
0
900  
300  
300  
300  
300  
Rise time of SCL signal  
20 + 0.1 CB  
20 + 0.1 CB  
20 + 0.1 CB  
20 + 0.1 CB  
0.6  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Allowable glitch width  
4
N/A  
400  
50  
CB  
Capacitive load for SDA and SCL lines  
100  
Noise margin at high level for each connected device (including hysteresis)  
Noise margin at low level for each connected device (including hysteresis)  
Hysteresis of Schmitt-trigger input  
0.2 VDD  
0.1 VDD  
N/A  
0.2 VDD  
0.1 VDD  
0.05 VDD  
V
V
Figure 32. Control Interface Timing for I2C  
28  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
MODE CONTROL REGISTERS  
The PCM3060 has many user-programmable functions which are accessed via control registers, and they are  
programmed through the SPI or I2C serial control port. Table 3 lists the available mode control functions along  
with reset default conditions and associated register addresses. The register map is shown in Table 3.  
Table 3. User-Programmable Mode Control Functions  
FUNCTION RESET  
Mode control register reset (ADC and DAC)  
System reset (ADC and DAC)  
DEFAULT  
Normal operation  
Normal operation  
Power save  
REGISTER  
LABEL  
MRST  
SRST  
ADPSV  
DAPSV  
S/E  
64  
64  
64  
64  
64  
ADC power-save control (ADC)  
DAC power-save control (DAC)  
Power save  
VOUT configuration control (DAC)  
Differential  
Digital attenuation control, 0 dB to –100 dB in 0.5-dB steps  
(DAC)  
0 dB, no attenuation  
65 and 66  
AT21[7:0], AT22[7:0]  
Clock select for DAC operation (DAC)  
Master/slave mode for DAC audio interface (DAC)  
Interface format for DAC audio interface (DAC)  
Oversampling rate control (DAC)  
Output phase select (DAC)  
CLK2 enable  
Slave  
67  
67  
67  
68  
68  
68  
69  
69  
69  
69  
69  
CSEL2  
M/S 2[2:0]  
FMT2[1:0]  
OVER  
I2S  
Low (x64/x32/x16)  
Normal  
DREV2  
Soft-mute control (DAC)  
Mute disabled  
Sharp rolloff  
MUT22, MUT21  
FLT  
Digital filter rolloff control (DAC)  
De-emphasis sampling rate selection (DAC)  
De-emphasis function control (DAC)  
Zero-flag polarity control (DAC)  
44.1 kHz  
DMF[1:0]  
DMC  
De-emphasis disabled  
High for detection  
L-ch, R-ch independent  
ZREV  
Zero-flag form select (DAC)  
AZRO  
Digital attenuation control, 20 dB to –100 dB in 0.5-dB steps  
(ADC)  
0 dB, no attenuation  
70 and 71  
AT11[7:0], AT12[7:0]  
Clock select for ADC operation (ADC)  
Master/slave mode for ADC audio interface (ADC)  
Interface format for ADC audio interface (ADC)  
Zero-cross detection disable for digital attenuation control (ADC)  
HPF bypass control (ADC)  
CLK1 enable  
Slave  
72  
72  
72  
73  
73  
73  
73  
CSEL1  
M/S1[2:0]  
FMT1[1:0]  
ZCDD  
I2S  
Zero-cross detection enabled  
Bypass disabled  
Normal  
BYP  
Input phase select (ADC)  
DREV1  
Soft-mute control (ADC)  
Mute disabled  
MUT12, MUT11  
Table 4. Register Map  
REGISTER ADDRESS  
DATA  
HEX  
DEC  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSV(1)  
AT212  
AT222  
RSV(1)  
AT211  
AT221  
40h  
Register 64  
0
1
0
0
0
0
0
0
MRST  
SRST  
ADPSV DAPSV  
RSV(1)  
S/E  
41h  
42h  
Register 65  
Register 66  
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
0
AT217  
AT227  
AT216  
AT226  
AT215  
AT225  
AT214  
AT224  
AT213  
AT223  
AT210  
AT220  
RSV(1)  
RSV(1)  
RSV(1)  
43h  
44h  
45h  
Register 67  
Register 68  
Register 69  
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
CSEL2  
M/S 22  
OVER  
DMF1  
M/S 21  
M/S 20  
FMT21  
FMT20  
RSV(1)  
FLT  
RSV(1)  
DMF0  
RSV(1)  
DMC  
DREV2 MUT22 MUT21  
RSV(1)  
AT113  
AT123  
RSV(1)  
AT112  
AT122  
ZREV  
AZRO  
46h  
47h  
Register 70  
Register 71  
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
1
AT117  
AT127  
AT116  
AT126  
AT115  
AT125  
AT114  
AT124  
AT111  
AT121  
AT110  
AT120  
RSV(1)  
BYP  
RSV(1)  
48h  
49h  
Register 72  
Register 73  
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
CSEL1  
RSV(1)  
M/S 12  
RSV(1)  
M/S 11  
RSV(1)  
M/S 10  
ZCDD  
FMT11  
FMT10  
DREV1 MUT12 MUT11  
(1) RSV means reserved for factory use or future extension, and these bits should be set to 0 during regular operation. Do not write any  
values in addresses other than those listed.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
REGISTER DEFINITIONS  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 64  
0
1
0
0
0
0
MRST  
SRST  
ADPSV DAPSV  
RSV  
RSV  
RSV  
S/E  
MRST: Mode Control Register Reset (ADC and DAC)  
Default value: 1  
MRST = 0  
MRST = 1  
Set default value  
Normal operation (default)  
The MRST bit controls reset of the mode control registers to their default values. Pop noise may be generated.  
Returning the MRST bit to 1 is not required, as the MRST bit is automatically set to 1 after a mode control  
register reset.  
SRST: System Reset (ADC and DAC)  
Default value: 1  
SRST = 0  
SRST = 1  
Resynchronization  
Normal operation (default)  
The SRST bit controls system reset, the relation between system clock and sampling clock is re-synchronized,  
and ADC operation and DAC operation is restarted. The mode control register is not reset and the PCM3060  
does not go into power down state, but pop-noise may be generated. Returning the SRST bit to 1 is not required,  
as the SRST bit is automatically set to 1 after triggering a system reset.  
ADPSV: ADC Power-Save Control (ADC)  
Default value: 1  
ADPSV = 0  
ADPSV = 1  
Normal operation  
Power-save mode (default)  
The ADPSV bit controls the ADC power-save mode. In power-save mode, DOUT is forced to ZERO with a  
fade-out sequence, the internal ADC data are reset, and the ADC goes into the power-down state. For  
power-save mode release, a fade-in sequence is applied on DOUT during the resume process. The serial mode  
control is enabled during this mode. A waiting time of more than 2048/fS is required for the proper status change  
by this power save control on/off. As the default state after power on is the power-save mode and DOUT is  
disabled (ZERO), release from the power-save mode is required for normal operation. The detailed sequence  
and timing for ADPSV control is shown Figure 22 and Figure 23.  
NOTE:  
It is recommended that changing/stopping clocks or changing the audio interface  
mode be performed in power-down mode in order to avoid unexpected pop/click noise  
and performance degradation.  
30  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
DAPSV: DAC Power-Save Control (DAC)  
Default value: 1  
DAPSV = 0  
DAPSV = 1  
Normal operation  
Power-save mode (default)  
The DAPSV bit controls DAC power-save mode. In power-save mode, DAC outputs are forced to Vcom with a  
fade-out sequence, the internal DAC data are reset and the DAC goes into the power-down state. For  
power-save mode release, a fade-in sequence is applied on the DAC outputs in resume process. The serial  
mode control is enabled during this mode. A waiting time of more than 2048/fS is required for the proper status  
change by this power-save control on/off. As the default state after power on is the power-save mode and the  
DAC outputs are disabled (VCOM), release from the power-save mode is required for normal operation. The  
detailed sequence and timing for DAPSV control is shown Figure 22 and Figure 23.  
NOTE:  
It is recommended that changing/stopping clocks or changing the audio interface  
mode be performed in power-down mode in order to avoid unexpected pop/click noise  
and performance degradation.  
S/E: DAC Output Configuration Control (DAC)  
Default value: 0  
S/E = 0  
S/E = 1  
Differential (default)  
Single-ended  
The S/E bit allows the user to select the configuration of the DAC output on the VOUTX pins according to  
application circuit.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 65  
Register 66  
0
1
0
0
0
0
0
1
AT217  
B7  
AT216  
B6  
AT215  
B5  
AT214  
B4  
AT213 AT212 AT211  
AT210  
B0  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B3  
B2  
B1  
0
1
0
0
0
0
1
0
AT227  
AT226  
AT225  
AT224  
AT223 AT222 AT221  
AT220  
AT2x[7:0]: Digital Attenuation Level Setting (DAC)  
Where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) and VOUTR (x = 2).  
Default value: 1111 1111b  
AT2x[7:0]  
1111 1111b  
1111 1110b  
1111 1101b  
:
DECIMAL VALUE  
ATTENUATION LEVEL SETTING  
255  
254  
253  
:
0 dB, no attenuation (default)  
–0.5 dB  
–1 dB  
:
1000 0001b  
1000 0000b  
0111 1111b  
:
129  
128  
127  
:
–63 dB  
–63.5 dB  
–64 dB  
:
0011 1000b  
0011 0111b  
0011 0110b  
:
56  
55  
54  
:
–99.5 dB  
–100 dB  
Mute  
:
0000 0000b  
0
Mute  
Each DAC channel (VOUTL and VOUTR) has a digital attenuator function. The attenuation level may be set from 0  
dB to –100 dB in 0.5-dB steps, and also may be set to infinite attenuation (mute). The attenuation level change  
from current value to target value is performed by incrementing or decrementing one 0.5-dB step for every 8/fS  
time interval. While the attenuation level change sequence is in progress, new commands for attenuation level  
change are not processed, but the new command overwrites the previous command in the command buffer. The  
last command for attenuation level change is performed after the present attenuation level change sequence is  
finished.  
The attenuation level for each channel can be set individually using the following formula, and the foregoing table  
shows attenuation levels for various settings:  
Attenuation level (dB) = 0.5 × (AT2x[7:0]DEC – 255), where AT2x[7:0]DEC = 0 through 255 for AT2x[7:0]DEC = 0  
through 54, the level is set to infinite attenuation (mute).  
32  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
1
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 67  
0
1
0
0
0
0
CSEL2 M/S 22  
M/S 21  
M/S 20  
RSV  
RSV  
FMT21 FMT20  
CSEL2: Clock Select for DAC Operation  
Default value: 0 (SCKI2, BCK2, LRCK2 enabled for DAC operation)  
CSEL2 = 0  
CSEL2 = 1  
SCKI2, BCK2, LRCK2 enabled for DAC operation (default)  
SCKI1, BCK1, LRCK1 enabled for DAC operation  
The CSEL2 bit controls system clock and audio interface clocks for the DAC operation.  
SCKI2, BCK2, LRCK2 are used for the DAC portion if CSEL2 = 0 (default), and SCKI1, BCK1, LRCK1 are used  
for DAC operation if CSEL2 = 1.  
M/S 2[2:0]: Audio Interface Mode for DAC  
Default value: 000 (slave mode)  
M/S 2[2:0]  
0 0 0  
Audio Interface Mode for DAC  
Slave mode (default)  
Master mode, 768 fS  
Master mode, 512 fS  
Master mode, 384 fS  
Master mode, 256 fS  
Master mode, 192 fS  
Master mode, 128 fS  
Reserved  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
The M/S 2[2:0] bits control the audio interface mode for the DAC.  
FMT2[1:0]: Audio Interface Format for DAC  
Default value: 00 (I2S Mode)  
FMT2[1:0]  
0 0  
Audio Interface Format for DAC  
24-bit I2S format (default)  
24-bit left-justified format  
0 1  
1 0  
24-bit right-justified format  
16-bit right-justified format  
1 1  
The FMT2[1:0] bits control the audio interface format for the DAC.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 68  
0
1
0
0
0
1
RSV  
OVER  
RSV  
RSV  
RSV  
DREV2  
MUT22  
MUT21  
OVER: Oversampling Rate Control (DAC)  
Default value: 0  
OVER  
System clock = 512 fS or 768 fS  
×64 Oversampling (default)  
×128 Oversampling  
System clock = 256 fS or 384 fS  
×32 Oversampling (default)  
×64 Oversampling  
System clock = 128 fS or 192 fS  
×16 Oversampling (default)  
×32 Oversampling  
OVER = 0  
OVER = 1  
The OVER bit is used to control the oversampling rate of the delta-sigma D/A converters.  
Setting OVER = 1 might improve out-of-band noise characteristics in some application environments, but it might  
also slightly affect baseband performance.  
Writing over this bit during normal operation may generate pop noise.  
DREV2: Output Phase Select (DAC)  
Default value: 0  
DREV2 = 0  
DREV2 = 1  
Normal output (default)  
Inverted output  
The DREV2 bit is used to control the phase of the analog signal outputs (VOUTL and VOUTR).  
MUT2x: Soft Mute Control (DAC)  
where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) and VOUTR (x = 2).  
Default value: 0  
MUT2x = 0  
MUT2x = 1  
Mute disabled (default)  
Mute enabled  
The mute bits, MUT21 and MUT22, are used to enable or disable the soft mute function for the corresponding  
DAC outputs, VOUTL and VOUTR. The soft mute function is incorporated into the digital attenuators. When mute is  
disabled (MUT2x = 0), the attenuator and DAC operate normally. When mute is enabled by setting MUT2x = 1,  
the digital attenuator for the corresponding output is decreased from the current setting to infinite attenuation at  
the rate of one 0.5-dB step for every 8/fS time interval. By setting MUT2x = 0, the attenuator is increased to the  
previously programmed attenuation level at the rate of one 0.5-dB step for every 8/fS time interval. This provides  
pop-free muting of the DAC output.  
34  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 69  
0
1
0
0
0
1
FLT  
DMF1  
DMF0  
DMC  
RSV  
RSV  
ZREV  
AZRO  
FLT: Digital Filter Rolloff Control (DAC)  
Default value: 0  
FLT = 0  
FLT = 1  
Sharp rolloff (Default)  
Slow rolloff  
The FLT bit allows the user to select the digital filter roll-off that is best suited to their application. Sharp and Slow  
filter roll-off selections are available. The filter responses for these selections are shown in the Typical  
Performance Curves section of this data sheet.  
DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function (DAC)  
Default value: 00  
DMF[1:0]  
0 0  
De-Emphasis Sampling Rate Selection  
44.1 kHz (default)  
48 kHz  
0 1  
1 0  
32 kHz  
1 1  
Reserved  
The DMF[1:0] bits are used to select the sampling frequency of the digital de-emphasis function when it is  
enabled.  
DMC: Digital De-Emphasis Function Control (DAC)  
Default value: 0  
DMC = 0  
DMC = 1  
De-emphasis disabled (default)  
De-emphasis enabled  
The DMC bit is used to enable or disable the digital de-emphasis function. See the plots shown in the Typical  
Performance Curves section of this data sheet for frequency characteristics.  
ZREV: Zero-Flag Polarity Select (DAC)  
Default value: 0  
ZREV = 0  
ZREV = 1  
High for zero detect (default)  
Low for zero detect  
The ZREV bit is used to control the polarity of zero flag pins.  
AZRO: Zero-Flag Function Select (DAC)  
Default value: 0  
AZRO = 0  
AZRO = 1  
ZEROL: L-ch ZERO detection (default)  
ZEROL: L and R ZERO detection  
ZEROR: R-ch ZERO detection (default)  
ZEROR: L and R ZERO detection  
The AZRO bit is used to select the function of zero flag pins.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 70  
Register 71  
0
1
0
0
0
1
1
0
AT117  
B7  
AT116  
B6  
AT115  
B5  
AT114  
B4  
AT113 AT112 AT111  
AT110  
B0  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B3  
B2  
B1  
0
1
0
0
0
1
1
1
AT127  
AT126  
AT125  
AT124  
AT123 AT122 AT121  
AT120  
AT1x[7:0]: Digital Attenuation Level Setting (ADC)  
where x = 1 or 2, corresponding to the ADC output L-ch part of DOUT (x = 1) or R-ch part of DOUT (x = 2).  
Default value: 1101 0111b  
AT1x[7:0]  
1111 1111b  
1111 1110b  
1111 1101b  
:
DECIMAL VALUE  
ATTENUATION LEVEL SETTING  
255  
254  
253  
:
20 dB  
19.5 dB  
19 dB  
:
1101 1000b  
1101 0111b  
1101 0110b  
:
216  
215  
214  
:
0.5 dB  
0 dB, no attenuation (default)  
–0.5 dB  
:
0001 0000b  
0000 1111b  
0000 1110b  
:
16  
15  
14  
:
–99.5 dB  
–100 dB  
Mute  
:
0000 0000b  
0
Mute  
Each ADC channel has a digital attenuator function with 20-dB gain. The attenuation level may be set from 20 dB  
to –100 dB in 0.5-dB steps, and also may be set to infinite attenuation (mute). The attenuation level change from  
the current value to the target value is performed by incrementing or decrementing one by 0.5-dB step at the  
timing of zero-cross detection on the input signal which is sampled for every 1/fS time interval, or for every 8/fS  
time interval if the zero-cross detection mode is disabled by ZCDD setting. If a zero-crossing is not detected for  
512/fS, actual level change is done for every 1/fS time interval until a zero-crossing is detected again. While the  
attenuation level change sequence is in progress, new commands for attenuation level change are not  
processed, but the new command overwrites the previous command in the command buffer. The last command  
for attenuation level change is performed after the present attenuation level change sequence is finished.  
The attenuation level for each channel can be set individually using the following formula, and the above table  
shows attenuation levels for various settings:  
Attenuation level (dB) = 0.5 × (AT1x[7:0]DEC – 215), where AT1x[7:0]DEC = 0 through 255 for AT1x[7:0]DEC = 0  
through 14, the level is set to infinite attenuation (mute).  
36  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 72  
0
1
0
0
1
0
CSEL1 M/S 12  
M/S 11  
M/S 10  
RSV  
RSV  
FMT11 FMT10  
CSEL1: Clock Select for ADC Operation  
Default value: 0 (SCKI1, BCK1, LRCK1 enabled for ADC operation)  
CSEL1 = 0  
CSEL1 = 1  
SCKI1, BCK1, LRCK1 enabled for ADC operation (default)  
SCKI2, BCK2, LRCK2 enabled for ADC operation  
The CSEL1 bit controls the system clock and audio interface clocks for the ADC operation.  
SCKI1, BCK1, LRCK1 are used for ADC portion if CSEL1 = 0 (default), and SCKI2, BCK2, LRCK2 are used for  
ADC portion if CSEL1 = 1.  
M/S 1[2:0]: Audio Interface Mode for ADC  
Default value: 000 (slave mode)  
M/S 1[2:0]  
0 0 0  
Audio Interface Mode for ADC  
Slave mode (default)  
Master mode, 768 fS  
Master mode, 512 fS  
Master mode, 384 fS  
Master mode, 256 fS  
Reserved  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
Reserved  
1 1 1  
Reserved  
The M/S 1[2:0] bits control the audio interface mode for the ADC.  
FMT1[1:0]: Audio Interface Format for ADC  
Default value: 00 (I2S mode)  
FMT1[1:0]  
0 0  
Audio Interface Format for ADC  
24-bit I2S format (default)  
24-bit left-justified format  
0 1  
1 0  
24-bit right-justified format  
16-bit right-justified format  
1 1  
The FMT1[1:0] bits control the audio interface mode for ADC.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 73  
0
1
0
0
1
0
RSV  
RSV  
RSV  
ZCDD  
BYP  
DREV1 MUT12 MUT11  
ZCDD: Zero-Cross Detection Disable for Digital Attenuation (ADC)  
Default value: 0  
ZCDD = 0  
ZCDD = 1  
Zero-cross detection enabled (default)  
Zero-cross detection disabled  
The ZCDD bit controls the zero-cross detect function for digital attenuation and mute. When zero-cross detection  
is enabled, the actual level change for digital attenuation and mute is done at the timing of zero-cross detection  
on the input signal which is sampled for every 1/fS time interval. If zero-crossing is not detected for 512/fS, the  
actual level change is done for every 1/fS time interval until a zero-crossing is detected again as timeout control  
for no zero-crossing input signal. When zero-cross detection is disabled, the actual level change is done at the  
timing of 8/fS time interval.  
BYP: HPF Bypass Control (ADC)  
Default value: 0  
BYP = 0  
BYP = 1  
Normal output, HPF enabled (default)  
Bypassed output, HPF disabled  
The BYP bit controls the HPF function; the dc component of the input signal and the internal dc offset are  
converted in bypass mode.  
DREV1: Input Phase Select (ADC)  
Default value: 0  
DREV1 = 0  
DREV1 = 1  
Normal input (default)  
Inverted input  
The DREV1 bit is used to control the phase of analog signal inputs (VINL and VINR).  
MUT1x: Soft Mute Control (ADC)  
where x = 1 or 2, corresponding to the ADC output L-ch part of DOUT (x = 1) and R-ch part of DOUT (x = 2).  
Default value: 0  
MUT1x = 0  
MUT1x = 1  
Mute disabled (default)  
Mute enabled  
The mute bits, MUT11 and MUT12, are used to enable or disable the soft mute function for the corresponding  
ADC outputs, DOUT. The soft mute function is incorporated into the digital attenuators. When mute is disabled  
(MUT1x = 0), the attenuator and ADC operate normally. When mute is enabled by setting MUT1x = 1, the digital  
attenuator for the corresponding output is decreased from the current setting to infinite attenuation in 0.5 dB step  
at the timing of zero-cross detection on the input signal which is sampled for every 1/fS time interval, or for every  
8/fS time interval if zero-cross detection mode is disabled by ZCDD setting. If a zero-crossing is not detected for  
512/fS, actual level change is done for every 1/fS time interval until zero-crossing is detected again. By setting  
MUT1x = 0, the attenuator is increased to the previously programmed attenuation level in 0.5 dB step in the  
same manner as for decreasing. This provides pop-free muting for the ADC input.  
38  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
TYPICAL CIRCUIT CONNECTION  
Figure 33 illustrates typical circuit connection.  
Control MCU  
1
2
3
4
5
6
7
8
9
MC/FMT/SCL  
MODE  
28  
27  
Termination  
MD/DEMP/SDA  
MS/IFMD/ADR  
C5  
VIN  
VIN  
VCC  
R
DOUT  
LRCK1  
BCK1  
SCKI1  
VDD  
26  
25  
24  
Analog Input  
L
Audio  
Receiver  
/Encoder  
C4  
5 V  
C1  
AGND1 23  
AGND2 22  
0 V  
C2  
3.3 V  
0 V  
VCOM  
VOUTL+  
VOUTL–  
VOUTR+  
VOUTR–  
DGND  
SCKI2  
21  
20  
19  
18  
17  
C3  
Analog Output  
Post LPF  
and  
10 BCK2  
11 LRCK2  
12 DIN  
Audio  
Transmitter  
/Decoder  
Buffer  
13 ZEROR  
14 ZEROL  
SGND 16  
RST 15  
Note: C1, C2: 0.1-mF ceramic capacitor and 10-mF electrolytic capacitor, depend on power supply.  
C3: 0.1-mF ceramic capacitor and 10-mF electrolytic capacitor is recommended.  
C4, C5: 4.7-mF electrolytic capacitor is recommended for 3-Hz cutoff frequency.  
The termination for mode/configuration control.  
Either one of following circuits has to be applied according to necessary mode/configuration.  
Resistor value must be 220 kW, ±5 % tolerance.  
28  
28  
3.3 V  
3.3 V  
28  
28  
0 V  
0 V  
(1)  
(2)  
(3)  
(4)  
S0257-01  
Figure 33. Typical Application Diagram  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): PCM3060  
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Application Examples for Analog Input and Output  
a) Example of VCOM-biased buffering for 2-Vrms input with overvoltage protection.  
R2  
C2  
Example of C, R values with  
gain (G) and corner frequency (fC)  
+V  
C1  
R1  
R1: 20 kW  
R2: 10 kW  
R3: 1 kW  
C1: 10 mF  
C2: 330 pF  
C3: 0.1 mF  
G: 0.5  
R3  
Input  
VIN  
X
–V  
VCOM  
fC: 48 kHz  
C3  
b) Example of capless differential to single-ended converter with LPF and gain for 2-Vrms standard output.  
R3  
Example of C, R values with  
gain (G) and corner frequency (fC)  
C2  
R1, R2: 10 kW  
R3, R4: 7.5 kW  
R5, R6: 820 W  
R7: 100 W  
+V  
R1  
C1  
R2  
R5  
R6  
R7  
VOUTX+  
VOUTX–  
Output  
–V  
C1: 1500 pF  
C2, C3: 470 pF  
G: 0.75 (Differential to S/E)  
fC: 54 kHz  
R4  
C3  
c) Example of VCOM-biased single-supply single-ended application with LPF and MUTE control for 1-Vrms output.  
R2  
C2  
Example of C, R values with  
gain (G) and corner frequency (fC)  
+V  
R1  
R3  
R1: 10 kW  
R2: 7.5 kW  
R3: 750 W  
C1: 3300 pF  
C2: 470 pF  
C3: 0.1 mF  
C4: 10 mF  
G: 0.75  
C4  
VOUTX+  
VCOM  
Output  
Mute  
C1  
C3  
fC: 54 kHz  
ZEROx  
Mute  
OR  
S0258-01  
Figure 34. Application Examples for Analog Input and Output  
40  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
 
 
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
DESIGN AND LAYOUT CONSIDERATIONS IN APPLICATION  
Power Supply Pins (VCC, VDD  
)
The digital and analog power supply lines to the PCM3060 should be bypassed to the corresponding ground pins  
with 0.1-µF ceramic and 10-µF electrolytic capacitors as close to the pins as possible to maximize the dynamic  
performance of the ADC and DAC.  
Although the PCM3060 has two power lines to maximize the potential of dynamic performance, using one  
common source, 5-V power supply for VCC and a 3.3-V power supply for VDD which is generated from the 5-V  
power supply for VCC, is recommended to avoid unexpected problems, such as latch-up, from incorrect power  
supply sequencing.  
Grounding (AGND1, AGND2, SGND, DGND)  
To maximize the dynamic performance of the PCM3060, the analog and digital grounds are not connected  
internally. These points should have very low impedance to avoid digital noise and signal components feeding  
back into the analog ground. So, they should be connected directly to each other under the parts to reduce the  
potential of noise problems.  
VINL, VINR Pins  
A 4.7-µF electrolytic capacitor is recommended as the ac coupling capacitor, which gives a 3-Hz cutoff  
frequency. If higher full-scale input voltage is required, it can be adjusted by adding only one series resistor to  
the VINX pins, although a small gain error is added due to variations of absolute input resistance of the  
PCM3060. For example, adding 9.1 kgives 2 Vrms full-scale with about 10% gain error.  
VCOM Pin  
Ceramic 0.1-µF and electrolytic 10-µF capacitors are recommended between VCOM and AGND to ensure low  
source impedance of the ADC and DAC references. These capacitors should be located as close as possible to  
the VCOM pins to reduce dynamic errors on ADC and DAC references.  
VOUTL+, VOUTL–, VOUTR+, VOUTR– Pins  
The differential to single-ended buffer with post LPF can be directly (without capacitor) connected to these output  
pins, thereby minimizing the use of coupling capacitors for the 2-Vrms outputs. The output pins in single-ended  
mode are assigned to VOUTL+ and VOUTR+ ; in single-ended mode, the VOUTL– and VOUTR– pins must be open.  
MODE Pin  
This pin is a logic input with quad-state input capability.  
The pin is connected to VDD for High, to DGND for Low, and pulled up or pulled down through an external  
resistor and for the two mid-states in order to distinguish the four input states. The pullup or pulldown resistor  
must be 220 k, ±5% tolerance.  
System Clocks  
The quality of SCKI1/2 may influence dynamic performance, as the PCM3060 (both ADC and DAC) operates  
based on SCKI1/2. Therefore, it may be required to consider the jitter, duty, rise and fall time, etc. of the system  
clocks.  
The PCM3060 supports asynchronous operation between the ADC and DAC. Therefore, there is no restriction  
on the relationship between SCKI1 and SCKI2 for digital operation, but it is strongly recommended to use a  
common clock if the application does not require different base clock frequencies, like 44.1 kHz and 48 kHz.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): PCM3060  
PCM3060  
www.ti.com  
SLAS533BMARCH 2007REVISED MARCH 2008  
Audio Interface Clocks  
In slave mode, PCM3060 does not require specific timing relationship between BCK1/LRCK1 and SCKI1,  
BCK2/LRCK2 and SCKI2, but there is a possibility of performance degradation with a certain timing relationship  
between them. In that case, specific timing-relationship control might solve this performance degradation.  
In master mode, there is a possibility of performance degradation due to heavy loads on BCK1/LRCK1,  
BCK2/LRCK2 and DOUT. It is recommended to load these pins as lightly as possible.  
External Mute Control  
For power-down ON/OFF control without the pop noise which is generated by a dc level change on the DAC  
output, the external mute control is generally required. Use of the following control sequence is recommended:  
external mute ON, codec power down ON, SCKI1/SCKI2 stop and resume if necessary, codec power down OFF,  
and external mute OFF.  
xxxxxx  
xxxxxx  
xxxxxx  
xxxxxx  
REVISION HISTORY  
Changes from Original (March 2007) to Revision A ....................................................................................................... Page  
Changed Figure 34(a), (b), and (c). Updated the Example of C, R values. ........................................................................ 40  
Changes from Revision A (February 2008) to Revision B ............................................................................................. Page  
Changed Supply Current - fS = 48 kHz/ADC, fS = 48 kHz/DAC max value From: 30 mA To: 36 mA ................................... 6  
Changed Power dissipation - fS = 48 kHz/ADC, fS = 48 kHz/DAC max valueFrom: 190 mW To: 220 mW.......................... 6  
42  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCM3060  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM3060PW  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-25 to 85  
-25 to 85  
PCM3060  
PCM3060  
Samples  
Samples  
PCM3060PWR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM3060PWR  
TSSOP  
PW  
28  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
PCM3060PWR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM3060PW  
28  
50  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

PCM3060PW

24-BIT, 96/192-kHz ASYNCHRONOUS STEREO AUDIO CODEC
BB

PCM3060PW

具有 96/192kHz 采样速率的 24 位异步立体声音频编解码器 | PW | 28 | -25 to 85
TI

PCM3060PWG4

24-bit Asynchronous Stereo Audio Codec with 96/192kHz sampling rate 28-TSSOP -25 to 85
TI

PCM3060PWR

24-BIT, 96/192-kHz ASYNCHRONOUS STEREO AUDIO CODEC
BB

PCM3060PWR

具有 96/192kHz 采样速率的 24 位异步立体声音频编解码器 | PW | 28 | -25 to 85
TI

PCM3070

Stereo Audio Codec With Embedded miniDSP
TI

PCM3070IRHBR

Stereo Audio Codec With Embedded miniDSP
TI

PCM3070IRHBT

Stereo Audio Codec With Embedded miniDSP
TI

PCM3070RHBT

暂无描述
TI

PCM3070_14

Stereo Audio Codec
TI

PCM3120-Q1

汽车类、立体声、106dB SNR、768kHz、低功耗、软件控制的音频 ADC
TI

PCM3120QRTERQ1

汽车类、立体声、106dB SNR、768kHz、低功耗、软件控制的音频 ADC | RTE | 20 | -40 to 125
TI