PGA300ARHHR [TI]

适用于压力传感器的 PGA300 信号调节器和发送器 | RHH | 36 | -40 to 150;
PGA300ARHHR
型号: PGA300ARHHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于压力传感器的 PGA300 信号调节器和发送器 | RHH | 36 | -40 to 150

PC 传感器 压力传感器 调节器
文件: 总68页 (文件大小:2038K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
PGA300 适用于压力传感器的信号调节器和发送器  
1 特性  
电源:  
片上电源管理,支持 3.3V 30V 的宽电源  
电压范围  
1
模拟 特性  
适用于阻性桥式传感器的模拟前端  
传感器灵敏度可调节范围:1mV/V 135mV/V  
片上温度传感器  
集成反向保护电路  
2 应用  
可编程增益  
压力传感器发送器和换能器  
液位计、流量计  
适用于信号通道的 16 Σ-Δ 模数转换器  
适用于温度通道的 16 Σ-Δ 模数转换器  
14 位输出数模转换器 (DAC)  
阻性现场发送器  
数字 特性  
3 说明  
整个温度范围内的 FSO 精度 < 0.1%  
PGA300 器件提供了一个适用于压阻式和应力计压感  
元件的接口。该器件具有可编程模拟前端 (AFE)、模数  
转换器 (ADC) 和数字信号处理功能。这是一套完整的  
片上系统 (SoC) 解决方案,可直接连接传感元件。此  
外,PGA300 器件还集成了稳压器和振荡器,最大程  
度地减少了外部组件数。该器件采用三阶温度和非线性  
补偿实现高精度。凭借单线制串行接口 (OWI),可以通  
过电源引脚实现外部通信,从而简化系统校准过程。集  
DAC 支持绝对电压、比例电压以及 4mA 20mA  
的电流回路输出。  
系统响应时间 < 220µs  
三阶偏移、增益和非线性温度补偿  
诊断功能  
集成 EEPROM 用于存储器件操作、校准数据和  
用户数据  
外设 特性  
单线接口,可通过电源引脚进行通信,无需额外  
使用线路  
4mA 20mA 电流回路接口  
比例电压输出和绝对电压输出  
电源管理控制  
器件信息(1)  
器件型号  
PGA300  
封装  
VQFN (36)  
封装尺寸(标称值)  
模拟低压检测  
6.00mm x 6.00mm  
通用 特性  
工业温度范围:–40°C 150°C  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
PGA300 简化框图  
PGA300  
BRG+  
Ratiometric  
Bridge Excitation  
Power Management  
OWI  
Reference  
EEPROM  
Bridge  
Sensor  
INP+  
INP–  
16-Bit  
ADC  
PWR  
(3.3 V – 30 V)  
PGA  
Resistive Sensing AFE  
BRG–  
Control  
and Status  
Registers  
14-Bit  
DAC  
INT+  
INT–  
GAIN  
16-Bit  
ADC  
OUT  
PGA  
Temperature Sensing AFE  
Diagnostics  
Third-Order TC and  
Third-Order NL  
Sensor  
Internal  
Oscillator  
Internal  
Temperature  
Sensor  
Optional  
External  
Compensation  
Temperature  
Sensor  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLDS204  
 
 
 
 
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
目录  
Converter ................................................................... 9  
6.15 Electrical Characteristics – One-Wire Interface ...... 9  
6.16 Electrical Characteristics – DAC Output ................. 9  
6.17 Electrical Characteristics – DAC Gain .................... 9  
6.18 Electrical Characteristics – Non-Volatile Memory. 10  
6.19 Electrical Characteristics – Diagnostics................ 10  
6.20 Operating Characteristics...................................... 12  
6.21 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 39  
7.5 Register Maps......................................................... 39  
Application and Implementation ........................ 54  
8.1 Application Information............................................ 54  
Power Supply Recommendations...................... 60  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
7
6.5 Electrical Characteristics – Reverse Voltage  
Protection................................................................... 6  
6.6 Electrical Characteristics – Regulators ..................... 6  
6.7 Electrical Characteristics – Internal Reference......... 6  
6.8 Electrical Characteristics – Bridge Sensor Supply.... 6  
8
9
6.9 Electrical Characteristics – Temperature Sensor  
Supply ........................................................................ 7  
6.10 Electrical Characteristics – Internal Temperature  
Sensor........................................................................ 7  
10 Layout................................................................... 60  
10.1 Layout Guidelines ................................................. 60  
10.2 Layout Example .................................................... 60  
11 器件和文档支持 ..................................................... 62  
11.1 ....................................................................... 62  
11.2 静电放电警告......................................................... 62  
11.3 Glossary................................................................ 62  
12 机械、封装和可订购信息....................................... 62  
6.11 Electrical Characteristics – P Gain (Chopper  
Stabilized) .................................................................. 7  
6.12 Electrical Characteristics – P Analog-to-Digital  
Converter ................................................................... 8  
6.13 Electrical Characteristics – T Gain (Chopper  
Stabilized) .................................................................. 8  
6.14 Electrical Characteristics – T Analog-to-Digital  
4 修订历史记录  
Changes from Original (October 2014) to Revision A  
Page  
已将数据表状态由产品预览改为量产数据” .......................................................................................................................... 1  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
5 Pin Configuration and Functions  
RHH Package  
36-Pin VQFN With Thermal Pad  
Top View  
NU  
DVDD_MEM  
DVDD  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
NU  
NU  
NU  
NU  
NU  
Thermal  
Pad  
PWR  
AVSS  
INT–  
INT+  
NU  
DACCAP  
NU  
OUT  
AVDD  
NU  
NU – Make no external connection  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AVDD  
NO.  
9
O
O
O
I
AVDD regulator output  
AVSS  
BRG+  
BRG–  
COMP  
DACCAP  
DVDD  
DVDD_MEM  
DVSS  
FB+  
23  
15  
14  
13  
6
Analog ground  
Bridge drive, positive  
Bridge drive, negative  
Output amplifier compensation  
DAC capacitor  
O
O
O
I
3
DVDD regulator output  
Power supply for EEPROM and OTP  
Digital ground  
2
32  
12  
11  
10  
18  
17  
21  
22  
Feedback, positive  
FB–  
I
Feedback, negative  
GND  
I
Ground  
INP+  
Resistive sensor positive input  
Resistive sensor negative input  
INP–  
I
INT+  
I
External temperature sensor positive input  
External temperature sensor negative input  
INT–  
I
1, 4, 7, 19,  
20,  
24 to 31, 33  
to 36  
NU  
Do not connect  
OUT  
8
5
O
I
DAC gain output  
PWR  
Input power supply  
REFCAP  
Thermal pad  
16  
O
ADC reference capacitor  
Connect to analog ground  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–28  
–0.3  
MAX  
33  
UNIT  
V
PWR  
Supply voltage  
Voltage at sensor input pins: INP+, INP–, INT+, INT–  
2
V
Voltage at AVDD, AVSS, BRG+, BRG–, COMP, DACCAP, DVDD, DVDD_MEM,  
DVSS, FB–, GATE, REFCAP  
–0.3  
3.6  
V
Voltage at FB+ pin  
Voltage at OUT pin  
–2  
VPWR + 0.3  
33  
V
V
-0.3  
IPWR, short  
on OUT pin  
Supply current  
25  
mA  
TJmax  
Tstg  
Maximum junction temperature  
Storage temperature  
155  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
30  
UNIT  
VPWR  
Power supply voltage  
Slew rate  
3.3  
V
VDD = 0 to 30 V  
0.5  
V/µs  
Power supply current - normal operation No load on BRG, no load on DAC  
2.5  
While EEPROM is being  
Power supply current - EEPROM  
programmed, no load on BRG, no  
programming  
IPWR  
mA mA  
9(1)  
load on DAC  
TA  
Operating ambient temperature  
–40  
–40  
150  
140  
°C  
°C  
Programming temperature  
EEPROM  
Start-up time (including analog and  
digital)  
VPWR ramp rate 0.5 V/µs  
1
ms  
nF  
Capacitor on PWR pin  
10  
(1) Programming of the EEPROM results in an additional 6 mA of current on the PWR pin.  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
6.4 Thermal Information  
PGA300  
RHH (VQFN)  
36 PINS  
30.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.4  
5.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.4  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics – Reverse Voltage Protection  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MAX  
UNIT  
V
Reverse voltage  
–28  
Voltage drop across reverse voltage  
protection element  
20  
mV  
6.6 Electrical Characteristics – Regulators  
PARAMETER  
AVDD voltage  
DVDD voltage – operating  
TEST CONDITIONS  
MIN  
TYP  
3
UNIT  
V
VAVDD  
VDVDD  
CAVDD = 100 nF  
CDVDD = 100 nF  
1.8  
V
6.7 Electrical Characteristics – Internal Reference  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
MAX  
UNIT  
V
High-voltage reference voltage(1)  
Accurate reference voltage  
Capacitor value on REFCAP pin  
2.5  
V
100  
nF  
(1) TEMP_DRIFT = [(Value at TEMP – Value at 25³C) / (Value at 25³C × ΔTEMP)] × 106  
6.8 Electrical Characteristics – Bridge Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BRG SUPPLY FOR RESISTIVE BRIDGE SENSORS  
Bridge supply control bit = 0b00, no  
load  
2.5  
2
V
V
V
VBRG+  
VBRG–  
Bridge supply control bit = 0b01, no  
load  
Bridge supply voltage  
Bridge supply control bit = 0b10, no  
load  
1.25  
IBRG  
Current supply to the bridge  
Capacitive load  
1.5  
2
mA  
nF  
CBRG  
RBRG = 20 kΩ  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
6.9 Electrical Characteristics – Temperature Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ITEMP SUPPLY FOR TEMPERATURE SENSOR  
Control bit = 0b000  
Control bit = 0b001  
25  
50  
µA  
ITEMP  
Current supply to temperature sensor Control bit = 0b010  
Control bit = 0b011  
100  
500  
OFF  
Control bit = 0b1xx  
CTEMP  
Capacitive load  
100  
nF  
Output impedance  
15  
MΩ  
6.10 Electrical Characteristics – Internal Temperature Sensor  
PARAMETER  
TEST CONDITIONS  
MIN  
–40  
TYP  
MAX  
150  
UNIT  
Temperature range  
°C  
6.11 Electrical Characteristics – P Gain (Chopper Stabilized)  
PARAMETER  
TEST CONDITIONS  
00000, at dc  
MIN  
TYP  
MAX  
UNIT  
5
5.48  
5.97  
6.56  
7.02  
8
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
9.09  
10  
10.53  
11.11  
12.5  
13.33  
14.29  
16  
17.39  
18.18  
19.05  
20  
Gain steps (5 bits)  
V/V  
22.22  
25  
30.77  
36.36  
40  
44.44  
50  
57.14  
66.67  
80  
100  
133.33  
200  
400  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Electrical Characteristics – P Gain (Chopper Stabilized) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gain bandwidth product  
10  
MHz  
f = 0.1 Hz to 2 kHz, gain = 400 V/V,  
sampling rate = 128 µs, across  
temperature  
Input-referred noise density(1)  
15  
nV/Hz  
Input offset voltage  
Input bias current  
Frequency response  
10  
5
µV  
nA  
Gain = 400 V/V, <1 kHz  
±0.1  
%V/V  
Depends  
on  
selected  
gain,  
bridge  
Common-mode voltage range  
V
supply and  
sensor  
(2)  
span  
Common-mode rejection ratio  
Input impedance  
fCM = 50 Hz at gain = 5 V/V  
110  
dB  
10  
MΩ  
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise  
(2) Common Mode at P Gain Input and Output: There are two constraints:  
(a) The single-ended voltage of the positive and negative pins at the P gain input must be between 0.3 V and 1.8 V  
(b) The single-ended voltage of the positive and negative pins at the P gain output must be between 0.1 V and 2 V  
6.12 Electrical Characteristics – P Analog-to-Digital Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V
Sigma-delta modulator frequency  
ADC voltage input range  
Number of bits  
1
–2.5  
2.5  
16  
bits  
ADC 2s complement code for –2.5-  
V differential input  
8000hex  
ADC 2s complement code for 0-V  
differential input  
0000hex  
7FFFhex  
ADC 2s complement code for 2.5-V  
differential input  
INL  
Integral nonlinearity  
±0.5  
LSB  
6.13 Electrical Characteristics – T Gain (Chopper Stabilized)  
PARAMETER  
TEST CONDITIONS  
Gain control bits = 0b00 at dc  
Gain control bits = 0b01  
Gain control bits = 0b10  
Gain control bits = 0b11  
MIN  
TYP  
MAX  
UNIT  
1.33  
2
Gain steps (2 bits)  
V/V  
5
20  
350  
Gain bandwidth product  
Noise density(1)  
kHz  
f = 0.1 Hz to 100 Hz  
at gain = 5 V/V, across temperature  
110  
nV/Hz  
Input offset voltage  
Input bias current  
Frequency response  
95  
5
µV  
nA  
Gain = 20 V/V, <100 Hz  
0.335  
%V/V  
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Electrical Characteristics – T Gain (Chopper Stabilized) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Depends  
on  
selected  
gain and  
current  
Common mode voltage range  
(2)  
supply  
Common-mode rejection ratio  
Input impedance  
fCM = 50 Hz  
110  
dB  
1
MΩ  
(2) Common Mode at T Gain Input and Output: There are two constraints:  
(a) The single-ended voltage of positive/negative pin at the T gain input should be between 5 m V and 1.8 V  
(b) The single-ended voltage of positive/negative pin at the T gain output should be between 0.1 V and 2 V  
6.14 Electrical Characteristics – T Analog-to-Digital Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V
Sigma-delta modulator frequency  
ADC voltage input range  
Number of bits  
1
–2.5  
2.5  
16  
bits  
ADC 2s complement code for –2.5-V  
differential input  
2s complement  
8000hex  
LSB  
LSB  
ADC 2s complement code for 0-V  
differential input  
0000hex  
7FFFhex  
ADC 2s complement code for 2.5-V  
differential input  
LSB  
LSB  
INL  
Integral nonlinearity  
±0.5  
6.15 Electrical Characteristics – One-Wire Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits per  
second  
Communication Baud Rate(1)  
600  
9600  
OWI_ENH  
OWI_ENL  
OWI_VIH  
OWI_VIL  
OWI_IOH  
OWI_IOL  
OWI activation high  
5.95  
V
V
OWI activation low  
5.75  
5.1  
OWI transceiver Rx threshold for high  
OWI transceiver Rx threshold for low  
OWI transceiver Tx threshold for high  
OWI transceiver Tx threshold for low  
4.8  
3.9  
500  
2
V
4.2  
V
1379  
5
µA  
µA  
(1) OWI over power line does not work if there is an LDO between the supply to the sensor and the PWR pin, or if the OWI high  
and low voltages are greater than the regulated voltage.  
6.16 Electrical Characteristics – DAC Output  
PARAMETER  
TEST CONDITIONS  
Reference bit = 1  
Reference bit = 0 (ratiometric)  
MIN  
TYP  
1.25  
MAX  
UNIT  
V
DAC reference voltage  
DAC resolution  
0.25 × VPWR  
14  
bits  
6.17 Electrical Characteristics – DAC Gain  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
UNIT  
2×  
4×  
4
Buffer gain (see Figure 16)  
V/V  
6.67×  
10×  
6.67  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Electrical Characteristics – DAC Gain (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1001  
1
MAX  
UNIT  
mA/mA  
MHz  
mV  
Current loop gain  
Gain-bandwidth product  
Zero-code voltage (gain = 4×)  
Full-code voltage (gain = 4×)  
DAC code = 0000h, IDAC = 2.5 mA  
DAC code is 1FFFh, IDAC = –2.5 mA  
20  
4.8  
V
DAC code = 1FFFh , DAC code =  
0000h  
Output current  
±2.5  
mA  
Short-circuit source current  
Short-circuit sink current  
DAC code = 1FFFh  
DAC code = 0000h  
Without compensation  
With compensation  
27  
27  
mA  
mA  
pF  
100  
100  
Maximum capacitance  
nF  
6.18 Electrical Characteristics – Non-Volatile Memory  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bytes  
Cycles  
ms  
Size  
128  
Erase-write cycles  
Programming time  
Data retention  
1000  
8
EEPROM  
1 8-byte page  
10  
Years  
6.19 Electrical Characteristics – Diagnostics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
Oscillator circuit  
supply overvoltage  
threshold  
OSC_PWR  
_OV  
3.3  
V
Oscillator circuit  
OSC_PWR supply  
2.7  
10  
V
_UV  
undervoltage  
threshold  
Resistive bridge  
sensor supply  
overvoltage  
threshold  
BRG_OV  
%. VBRG  
Resistive bridge  
sensor supply  
undervoltage  
threshold  
%Prog.  
VBRG  
BRG_UV  
–10  
AVDD overvoltage  
threshold  
AVDD_OV  
AVDD_UV  
DVDD_OV  
DVDD_UV  
3.3  
2.7  
2
V
V
V
V
AVDD  
undervoltage  
threshold  
DVDD overvoltage  
threshold  
DVDD  
undervoltage  
threshold  
1.53  
Reference  
overvoltage  
threshold  
REF_OV  
REF_UV  
2.75  
2.25  
V
V
Reference  
undervoltage  
threshold  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Electrical Characteristics – Diagnostics (continued)  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
PD2  
PD1  
P gain input  
P_DIAG_P diagnostics  
0
0
1
1
0
1
0
1
1
2
3
4
MΩ  
U
pulldown resistor  
value  
INP+ and INP– each has threshold  
comparator  
THRS[2] THRS[1] THRS[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
72.5  
70  
VBRG = 2.5 V  
P gain input  
overvoltage  
threshold value  
65  
INP_OV  
% VBRG  
90  
VBRG = 2 V  
87.5  
82.5  
100  
95  
VBRG = 1.25 V  
INP+ and INP– each has threshold  
comparator  
THRS[2] THRS[1] THRS[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7.5  
10.0  
15.0  
10.0  
12.5  
17.5  
17.5  
22.5  
VBRG = 2.5 V  
P gain input  
undervoltage  
threshold value  
INP_UV  
% VBRG  
VBRG = 2.V  
VBRG = 1.25 V  
T gain input  
overvoltage  
INT_OV  
INT+ and INT– each has threshold comparator  
2.1  
V
V
Output overvoltage  
(single-ended)  
threshold for P  
gain  
PGAIN_OV  
2.25  
Output  
undervoltage  
PGAIN_UV (single-ended)  
threshold for P  
gain  
0.15  
V
Output overvoltage  
TGAIN_OV (single-ended)  
threshold for T gain  
2.25  
0.15  
V
V
Output  
undervoltage  
(single-ended)  
TGAIN_UV  
threshold for T gain  
Open-wire leakage  
HARNESS_ current 1. Open  
2
µA  
µA  
FAULT1  
PWR with pullup  
on OUT  
Open-wire leakage  
HARNESS_ current 2. Open  
20  
FAULT2  
GND with pulldown  
on OUT  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
6.20 Operating Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
Start-up time(1)  
TEST CONDITIONS  
No IIR filter,  
MIN  
TYP  
180  
MAX  
UNIT  
µs  
Start-up time(2)  
IIR filter = 1000 Hz  
1158  
128  
µs  
Output rate  
µs  
Response time(3)  
Response time(4)  
No IIR filter  
211  
µs  
IIR filter = 1000 Hz  
1050  
0.2  
µs  
Absolute-voltage mode, overall accuracy 3 pressure - 1 temperature calibration,  
%FSO  
(PGA300 only, no sense element)(5)  
overall accuracy calculated using points  
different from points used for calibration  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.1  
%FSO  
%FSO  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.08  
Ratiometric-voltage mode, overall  
accuracy (PGA300, no sense  
element)(5)  
3 pressure - 1 temperature calibration,  
overall accuracy calculated using points  
different from points used for calibration  
0.5  
%FSO  
%FSO  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.25  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.2  
%FSO  
Current mode, overall accuracy  
(PGA300, no sense element)(5)  
3 pressure - 1 temperature calibration,  
overall accuracy calculated using points  
different from points used for calibration  
0.2  
0.1  
%FSO  
%FSO  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.09  
%FSO  
(1) Time from power up to reach 90% of valid output  
(2) Time from power up to reach valid output, including settling time  
(3) Time to reach 90% of valid output  
(4) Time to reach valid output, including settling time  
(5) Sense element held at constant temperature while the PGA300 device was calibrated at –25ºC, 25ºC, 85ºC and 125ºC. Accuracy was  
then measured at –40ºC, 50ºC and 150 ºC.  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
6.21 Typical Characteristics  
2800000  
2600000  
2400000  
2200000  
2000000  
1800000  
1600000  
1400000  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
D003  
Figure 1. Temperature Sensor Code vs Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The PGA300 device can be used in a variety of applications. The most common ones are for pressure and  
temperature measurement. Depending on the application, the device itself can be configured in different modes.  
The following sections provide details regarding these configurations.  
The PGA300 device is a high-accuracy, low-drift, low-noise, low-power, and easily programmable signal-  
conditioner device for resistive bridge pressure and temperature sensing applications. The PGA300 device  
implements a third-order temperature coefficient (TC) and nonlinearity (NL) algorithm to linearize the analog  
output. The PGA300 device accommodates various sensing element types, such as piezoresistive, ceramic film,  
and steel membrane. It supports the sensing element spans from 1 mV/V to 135 mV/V. The typical applications  
supported are pressure sensor transmitter, transducer, liquid-level meter, flow meter, strain gauge, weight scale,  
thermocouple, thermistor, 2-wire resistance thermometer (RTD), and resistive field transmitters. The device can  
also be used in accelerometer and humidity sensor signal-conditioning applications.  
The PGA300 device provides bridge excitation voltages of 2.5 V, 2 V, and 1.25 V, all ratiometric to the ADC  
reference level. The PGA300 device has the unique one-wire interface (OWI) that supports communication and  
configuration through the power-supply line during the calibration process. This feature minimizes the number of  
wires needed for an application.  
The PGA300 device contains two separated analog front-end (AFE) chains for resistive-bridge inputs and  
temperature-sensing inputs. Each AFE chain has its own gain amplifier and a 16-bit ADC at a 7.8-kHz output  
rate. The resistive-bridge input AFE chain consists of a programmable gain with 32 steps from 5 V/V to 400 V/V.  
For the temperature-sensing AFE input chain, the PGA300 device provides a current source that can supply up  
to 500 µA for optional external temperature sensing. This current source can also be used as constant-current  
bridge excitation. The programmable gain in the temperature sensing chain has four steps from 1.33 V/V to 20  
V/V. In addition, the PGA300 device integrates an internal temperature sensor which can be configured as the  
input of the temperature-sensing AFE chain.  
A 128-byte EEPROM is integrated in the PGA300 device to store the calibration coefficients and the PGA300  
configuration settings as needed. The PGA300 device has a 14-bit DAC followed by a buffer gain stage of 2 V/V  
to 10 V/V. The device supports industrial-standard ratiometric-voltage output, absolute-voltage output, and 4-mA  
to 20-mA current loop.  
The diagnostic function monitors the operating condition of the PGA300 device. The device can operate with a  
3.3-V to 30-V power supply directly, without using an external LDO. The PGA300 device has a wide ambient-  
temperature operating range from –40°C to 150°C. The package form is 6-mm × 6-mm 36-pin VQFN. Within this  
small package size, the PGA300 device has integrated all the functions needed for resistive-bridge sensing  
applications to minimize PCB area and simplify the overall application design.  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.2 Functional Block Diagram  
PWR  
vdd  
DVDD_MEM  
AVSS  
DVSS  
Sensor Voltage Supply  
Bridge Drive  
Linear Regulators  
AVDD Regulator  
GND  
AVDD  
BRG+  
BRG–  
DVDD  
DVDD Regulator  
REF  
REFCAP  
Accurate Reference  
(2.5 V, 10 ppm/°C)  
P ADC  
INP+  
INP–  
P Sigma-  
Delta  
Modulator  
vP  
P Gain  
(5 Bits)  
P Decimation  
Filter  
Channel Select  
INT+  
INT–  
T ADC  
T Sigma-  
Delta  
Modulator  
vT  
T Gain  
(2 Bits)  
T Decimation  
Filter  
vtint  
Internal  
Temperature  
vdd  
OWI Driver  
tx  
EEPROM  
(Calibration Coefficients, Serial No.)  
OWI  
rx  
Digital Compensation  
req  
DACCAP  
FB+  
Third-Order TC  
and  
vP  
vT  
Third-Order NL  
Sensor  
Compensation  
vdd  
IIR  
Second-  
Order Filter  
DAC  
+
OUT  
DAC Gain  
(2 Bits)  
COMP  
FB–  
Diagnostics  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.3 Feature Description  
This section describes individual functional blocks of the PGA300 device.  
7.3.1 Reverse-Voltage Protection Block  
The PGA300 device includes a reverse-voltage protection block. This block protects the device from reverse-  
battery conditions on the external power supply.  
7.3.2 Linear Regulators  
The PGA300 device has two main linear regulators: an AVDD regulator and a DVDD regulator. The AVDD  
regulator provides the 3-V voltage source for internal analog circuitry, whereas the DVDD regulator provides the  
1.8-V regulated voltage for the digital circuitry. The user must connect bypass capacitors of 100 nF each on the  
AVDD and DVDD pins of the device.  
7.3.3 Internal Reference  
The PGA300 device has two internal references. These references are described in the following subsections.  
7.3.3.1 High-Voltage Reference  
The high-voltage reference is an inaccurate reference used in the diagnostic thresholds.  
7.3.3.2 Accurate Reference  
The accurate reference is used to generate reference voltage for the P ADC, T ADC and DAC. TI recommends  
placing a 100-nF capacitor on the REFCAP pin to limit the bandwidth of reference noise.  
The accurate reference buffer can be disabled by setting the ADC_EN_VREF bit in the ALPWR register to 0.  
This allows the user to connect an external single-ended reference voltage to the REFCAP pin and thus provide  
the reference voltage to the ADCs and the DAC. Note that the default power-up state of ADC_EN_VREF is such  
that the reference buffer is disabled.  
NOTE  
The accurate reference is valid 50 µs after digital core starts running at power up.  
7.3.4 BRG+ to BRG– Supply for the Resistive Bridge  
The sensor voltage-supply block of the PGA300 device supplies power to the resistive-bridge sensor. The sensor  
supply in the PGA300 device is configurable to a 2.5-V, 2-V, or 1.25-V nominal output supply using the  
BRG_CTRL bits in BRG_CTRL register to accommodate bridge sense elements with different resistor values.  
This nominal supply is ratiometric to the accurate reference as shown in Figure 2.  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Feature Description (continued)  
100 nF  
100 nF  
100 nF  
REFCAP  
DVDD  
AVDD  
INT+  
DVDD  
Regulator  
1.8 V  
ITEMP  
Buf  
PWR  
2.5 V  
2.5 V  
3 V  
AVDD  
Regulator  
Ref  
Buf  
2.5 V  
Reference  
Reverse  
Protection  
MUX  
2.5 V  
BRG+  
R1  
R1  
2 V  
Buf  
VBRG  
Absolute Ratiometric  
1.25 V  
R
R
2.5 V  
ADC  
INP+  
INP–  
PGA  
1.25 V  
OUT  
40 kΩ  
DAC  
Gain  
DAC  
DACCAP  
3.3 nF  
Figure 2. Bridge Supply and P ADC Reference Are Ratiometric  
The sensor drive includes a switch. This switch can be used to turn off power to the sense element.  
7.3.5 ITEMP Supply for the Temperature Sensor  
The ITEMP block in PGA300 device supplies programmable current to an external temperature sensor such as  
an RTD temperature probe or NTC or PTC thermistor. The temperature-sensor current source is ratiometric to  
the accurate reference.  
The value of the current can be programmed using the ITEMP_CTRL bits in the TEMP_CTRL register.  
7.3.6 Internal Temperature Sensor  
PGA300 device includes an internal temperature sensor whose voltage output is digitized by the T ADC and  
made available to the microprocessor. This digitized value is used to implement temperature compensation  
algorithms in software. Note that the voltage generated by the internal temperature sensor is proportional to the  
junction temperature.  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Feature Description (continued)  
Figure 3 shows the internal temperature sensor AFE.  
VREF = 2.5 V  
T
T
VPTAT  
Gain  
ADC  
Figure 3. Temperature Sensor AFE  
7.3.7 P Gain  
P gain is designed with precision, low-drift, low-flicker-noise, chopper-stabilized amplifiers. P gain is implemented  
as an instrument amplifier as shown in Figure 4.  
The gain of this stage is adjustable using 5 bits in the P_GAIN_SELECT register to accommodate sense  
elements with a wide range of signal spans.  
PGA300  
PGAIN_OPEN  
INP+  
+
-
To P ADC  
-
INP–  
+
Copyright © 2016, Texas Instruments Incorporated  
Figure 4. P Gain  
7.3.8 P Analog-to-Digital Converter  
The P analog-to-digital converter digitizes the voltage output of the P-gain amplifier.  
7.3.8.1 P Sigma-Delta Modulator for P ADC  
The sigma-delta modulator for P ADC is a 1-MHz, second-order, 3-bit quantizing sigma-delta modulator.  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Feature Description (continued)  
7.3.8.2 P Decimation Filter for P ADC  
The pressure signal path output conversion time is 128 µs or an output rate of 7.8125 ksamples/s.  
The output of the decimation filter in the pressure signal path is a 16-bit signed value. Some example decimation  
output codes for given differential voltages at the input of the sigma-delta modulator are shown in Table 1.  
Table 1. Input Voltage to Output Counts for the P ADC  
SIGMA-DELTA MODULATOR  
16-BIT NOISE-FREE  
DIFFERENTIAL INPUT VOLTAGE  
DECIMATOR OUTPUT  
(V)  
–2.5  
–1.25  
0
–32 768 (0x8000)  
–16 384 (0xC000)  
0 (0x0000)  
1.25  
2.5  
16 383 (0x3FFF)  
32 767 (0x7FFF)  
7.3.9 T Gain  
The device has the ability to perform temperature compensation via an internal or external temperature sensor.  
The user can select the source of the temperature measurement with the TEMP_MUX_CTRL bits in  
TEMP_CTRL register. Note that the device connects to an external temperature sensor via the INT+ and INT–  
pins.  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
The T gain block is constructed with a low-flicker-noise, low-offset, chopper-stabilized amplifier. The gain is  
configurable with 2 bits in the T_GAIN_SELECT register. Figure 5 shows the T-gain amplifier topology.  
PGA300  
VREF = 2.5V  
INT+  
+
To T ADC  
TSEM_N  
INT–  
TSEM_N  
+
Copyright © 2016, Texas Instruments Incorporated  
Figure 5. Temperature Sensor AFE  
The T-gain amplifier can be configured for single-ended or differential operation using the TSEM_N bit in the  
AMUX_CTRL register. Note that when the T-gain amplifier is set up for single-ended operation, the differential  
voltage converted by the T ADC is with respect to ground. Table 2 shows the configuration that the user must  
select for the different temperature sources.  
Table 2. T-Gain Configuration  
TEMPERATURE SOURCE  
T GAIN CONFIGURATION  
Single-ended  
Internal temperature sensor  
External temperature sensor with one terminal of the sensor connected to ground  
External temperature sensor with neither terminal of the sensor connected to ground  
Single-ended  
Differential  
The T-gain amplifier must be set up for either the single-ended or differential configuration, depending on the  
source of signal to the T gain.  
NOTE  
When T GAIN is configured to measure the internal temperature-sensor output,  
T GAIN must be configured to operate in single-ended mode and with a gain of 5  
V/V.  
7.3.10 T Analog-to-Digital Converter  
The T analog-to-digital converter is for digitizing the T-gain amplifier output. The digitized value is available in the  
TADC_DATA2 and TADC_DATA3 registers.  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.3.10.1 T Sigma-Delta Modulator for T ADC  
The sigma-delta modulator for T ADC is a 1-MHz, second-order, 3-bit quantizing sigma-delta modulator.  
7.3.10.2 T Decimation Filters for T ADC  
The temperature signal path contains a decimation filter with an internal output rate of 128 µs.  
The output of the decimation filter in the temperature signal path is 16-bit signed value. Some example  
decimation output codes for given differential voltages at the input of the sigma-delta modulator are shown in  
Table 3.  
Table 3. Input Voltage to Output Counts for T ADC  
SIGMA-DELTA MODULATOR  
16-BIT NOISE-FREE  
DIFFERENTIAL INPUT VOLTAGE  
DECIMATOR OUTPUT  
–2.5 V  
–1.25 V  
0 V  
–32 768 (0x8000)  
–16 384 (0xC000)  
0 (0x0000)  
1.25 V  
2.5 V  
16 383 (0x3FFF)  
32 767 (0x7FFF)  
The nominal relationship between the device junction temperature and 16-bit T ADC code for T GAIN = 5 V/V is  
shown in Equation 1  
T ADC code = 25.9´ TEMP + 6680  
where  
TEMP is temperature in °C.  
(1)  
7.3.11 P GAIN and T GAIN Calibration  
The P_GAIN value should be set based on the maximum bridge output voltage. The maximum bridge voltage is  
the maximum sum of bridge offset and bridge span across the entire operating temperature range.  
The T GAIN value should be set based on the temperature sense element. The specific values to be used are:  
For the internal temperature sensor, set T_GAIN to 5 V/V gain  
For an external temperature sensor such as a PTC thermistor, set T_GAIN to 20 V/V gain  
7.3.12 One-Wire Interface (OWI)  
The device includes an OWI digital communication interface. The function of OWI is to enable writes to and  
reads from all memory locations inside the PGA300 device that are available for OWI access.  
7.3.12.1 Overview of OWI  
The OWI digital communication is a master-slave communication link in which the PGA300 device operates as a  
slave device only. The master device controls when data transmission begins and ends. The slave device does  
not transmit data back to the master until it is commanded to do so by the master.  
The PWR pin of PGA300 device is used as OWI interface, so that when the PGA300 device is embedded inside  
of a system module, only two pins are needed (PWR and GND) for communication. The OWI master  
communicates with the PGA300 device by modulating the voltage on the PWR pin, whereas the PGA300 device  
communicates with the master by modulating the current on the PWR pin. The OWI master activates OWI  
communication by generating an activation pulse on the PWR pin.  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
 
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Figure 6 shows a functional equivalent circuit for the structure of the OWI circuitry.  
C and S  
Registers  
Address and  
Data Lines  
PWR  
Enable  
OWI  
Controller  
XCVR SW  
OWI  
Transceiver  
OWI_ACT  
Digital  
Compensation  
Tx  
Rx  
OWI_REQ  
OWI_REQ_INT  
OWI_REQ  
ESFR  
XCVR SW  
C and S  
Registers  
Address and  
Data Lines  
5.75 V  
OWI_REQ  
OWI_REQ Deglitch  
Filter  
OWI  
Activation  
Comparator  
Figure 6. OWI System Components  
7.3.12.2 Activating and Deactivating the OWI Interface  
7.3.12.2.1 Activating OWI Communication  
The OWI master initiates OWI communication by generating an OWI activation-pulse sequence on the PWR  
pin. When the PGA300 device receives a valid OWI activation-pulse sequence, it prepares itself for OWI  
communication. Notice that after the valid OWI activation-pulse sequence is received, the logic checks on the  
EEPROM lock status. If the EEPROM is locked, the sequence 0x5555 must be sent within 100 ms after the end  
of the activation-pulse sequence.  
PWR Voltage  
PWR=5.95 V  
>1 ms  
PWR=5.75 V  
PWR=4.8 V  
PWR=4.2 V  
OWI  
COMMUNICATION  
<100 ms  
100 ms<time<200 ms  
>100 ms  
Figure 7. OWI Activation Using Overvoltage Drive  
7.3.12.2.2 Deactivating OWI Communication  
In order to deactivate OWI communication and restart the compensation engine inside the PGA300 device (if it  
was in reset), the following two steps must be performed by the OWI master:  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
The OWI_XCR_EN bit in the DIG_IF_CTRL register must be set to 0. This turns off the OWI transceiver.  
The compensation engine reset should be de-asserted by writing 0 to the COMPENSATION_RESET bit in  
the COMPENSATION_CONTROL register.  
7.3.12.3 OWI Protocol  
7.3.12.3.1 OWI Frame Structure  
7.3.12.3.1.1 Standard Field Structure  
Data is transmitted on the one-wire interface in byte-sized packets. The first bit of the OWI field is the start bit.  
The next 8 bits of the field are data bits to be processed by the OWI control logic. The final bit in the OWI field is  
the stop bit. A group of fields make up a transmission frame. A transmission frame is composed of the fields  
necessary to complete one transmission operation on the one-wire interface. The standard field structure for a  
one-wire field is shown in Figure 8  
Standard Field  
Figure 8. Standard OWI Field  
7.3.12.3.1.2 Frame Structure  
A complete one-wire data transmission operation is done in a frame with the structure is shown in Figure 9.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
cmd[0:7]  
data-1[0:7]  
data-N[0:7]  
Inter-Field  
Wait Time  
(One Bit-Time)  
Figure 9. OWI Transmission Frame, N = 1 to 8  
Each transmission frame must have a synchronization field and a command field followed by zero to a maximum  
of eight data fields. The sync field and command fields are always transmitted by the master device. The data  
fields may be transmitted either by the master or the slave, depending on the command given in the command  
field. It is the command field which determines direction of travel of the data fields (master-to-slave or slave-to-  
master). The number of data fields transmitted is also determined by the command in the command field. The  
inter-field wait time is optional and may be necessary for the slave or the master to process data that has been  
received.  
NOTE  
If the OWI remains idle in either the logic-0 or logic-1 state for more than 15 ms, then the  
PGA300 communication resets and requires a sync field as the next data transmission  
from the master.  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
 
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.3.12.3.1.3 Sync Field  
The sync field is the first field in every frame that is transmitted by the master. The sync field is used by the slave  
device to compute the bit width transmitted by the master. This bit width is used to receive accurately all  
subsequent fields transmitted by the master. The format of the sync field is shown in Figure 10.  
Sync Field  
Measured Time  
Figure 10. OWI Sync Field  
NOTE  
Consecutive sync-field bits are measured and compared to determine if a sync field is  
being transmitted to the PGA300 device is valid. If the difference in bit widths of any two  
consecutive SYNC field bits is greater than ±25%, then the PGA300 device ignores the  
rest of the OWI frame; that is, the PGA300 device does not respond to the OWI message.  
7.3.12.3.1.4 Command Field  
The command field is the second field in every frame sent by the master. The command field contains  
instructions about what to do with and where to send the data that is transmitted to the slave. The command field  
can also instruct the slave to send data back to the master during a read operation. The number of data fields to  
be transmitted is also determined by the command in the command field. The format of the command field is  
shown in Figure 11.  
Command Field  
cmd[0:7]  
Figure 11. OWI Command Field  
7.3.12.3.1.5 Data Fields  
After the master has transmitted the command field in the transmission frame, zero or more data fields are  
transmitted to the slave (write operation) or to the master (read operation). The data fields can be raw EEPROM  
data or address locations in which to store data. The format of the data is determined by the command in the  
command field. The typical format of a data field is shown in Figure 12.  
Data Field  
data[0:7]  
Figure 12. OWI Data Field  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.3.12.3.2 OWI Commands  
The following is the list of five OWI commands supported by PGA300:  
1. OWI write  
2. OWI read initialization  
3. OWI read response  
4. OWI burst write of EEPROM cache  
5. OWI burst read from EEPROM cache  
7.3.12.3.2.1 OWI Write Command  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
Basic write command  
Destination address  
Data byte to be written  
0
P2  
A6  
D6  
P1  
A5  
D5  
P0  
A4  
D4  
0
0
0
1
A7  
D7  
A3  
D3  
A2  
D2  
A1  
D1  
A0  
D0  
Data field 2  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
Table 4. OWI Memory Page Decode  
P2  
0
P1  
0
P0  
0
MEMORY PAGE  
Reserved  
Reserved  
0
0
1
Control and status registers, DI_PAGE_ADDRESS  
= 0x02  
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
Reserved  
Reserved  
EEPROM cache  
Reserved  
Control and status registers, DI_PAGE_ADDRESS  
= 0x07  
1
1
1
7.3.12.3.2.2 OWI Read Initialization Command  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
Read initialization  
command  
0
P2  
A6  
P1  
A5  
P0  
A4  
0
0
1
0
Fetch address  
A7  
A3  
A2  
A1  
A0  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
7.3.12.3.2.3 OWI Read-Response Command  
FIELD  
LOCATION  
DESCRIPTION  
BIT 7  
0
BIT 6  
1
BIT 5  
1
BIT 4  
1
BIT 3  
0
BIT 2  
0
BIT 1  
1
BIT 0  
1
Command field  
Read-response command  
Data retrieved (OWI drives  
data out)  
Data field 1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.3.12.3.2.4 OWI Burst-Write Command (EEPROM Cache Access)  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
EE_CACHE write-command  
cache bytes (0–7)  
1
1
0
1
0
0
0
0
First data byte to be written  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Second data byte to be  
written  
Data field 2  
Data field 3  
Data field 4  
Data field 5  
Data field 6  
Third data byte to be written  
Fourth data byte to be written  
Fifth data byte to be written  
Sixth data byte to be written  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
Seventh data byte to be  
written  
Data field 7  
Data field 8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Eighth data byte to be written  
7.3.12.3.2.5 OWI Burst Read Command (EEPROM Cache Access)  
FIELD  
LOCATION  
DESCRIPTION  
BIT 7  
1
BIT 6  
1
BIT 5  
0
BIT 4  
1
BIT 3  
0
BIT 2  
0
BIT 1  
1
BIT 0  
1
Burst-read response (8  
bytes)  
Command field  
First data byte retrieved  
EEPROM cache byte 0  
Data field 1  
Data field 2  
Data field 3  
Data field 4  
Data field 5  
Data field 6  
D7  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
Second data byte retrieved  
EEPROM cache byte 1  
Third data byte retrieved  
EEPROM cache byte 2  
Fourth data byte retrieved  
EEPROM cache byte 3  
Fifth data byte retrieved  
EEPROM cache byte 4  
Sixth data byte retrieved  
EEPROM cache byte 5  
Seventh data byte  
retrieved  
EEPROM cache byte 6  
Data field 7  
Data field 8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Eighth data byte retrieved  
EEPROM cache byte 7  
7.3.12.3.3 OWI Operations  
7.3.12.3.3.1 Write Operation  
The write operation on the one-wire interface is fairly straightforward. The command field specifies the write  
operation, where the subsequent data bytes are to be stored in the slave, and how many data fields are going to  
be sent. Additional command instructions can be sent in the first few data fields if necessary. The write operation  
is illustrated in Figure 13.  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
(To Slave)  
Write Cmd  
(To Slave)  
Write Data  
(To Slave)  
Write Data  
(To Slave)  
Inter-Field  
Wait Time  
Figure 13. Write Operation, N = 1 to 8  
7.3.12.3.3.2 Read Operation  
The read operation requires two consecutive transmission frames to move data from the slave to the master. The  
first frame is the read-initialization frame. It tells the slave to retrieve data from a particular location within the  
slave device and prepare to send it over the OWI. The data location may be specified in the command field or  
may require additional data fields for complete data-location specification. The data is not sent until the master  
commands it to be sent in the subsequent frame called the read-response frame. During the read-response  
frame, the data direction changes from master slave to slave master immediately after the read response  
command field is sent. Enough time elapses between the command field and data field to allow the signal drivers  
to change direction. This wait time is 20 µs, and the timer for this wait time is located on the slave device. After  
this wait time is complete, the slave transmits the requested data. The master device is expected to have  
switched its signal drivers and is ready to receive data. The read frames are shown in Figure 14.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
READ_INIT  
(To Slave)  
Opt Data  
Opt Data  
(To Slave)  
(To Slave)  
(To Slave)  
Inter-Field  
Wait Time  
Figure 14. Read-Initialization Frame, N = 1 to 8  
1st Data  
Field  
Command  
Field  
Nth Data  
Field  
Sync Field  
(To Slave)  
RD_RESP  
Read Data  
(To Master)  
Read Data  
(To Slave)  
(To Master)  
Data Changes Direction Between  
Command Field and First Data Field  
Inter-Field  
Wait Time  
Figure 15. Read-Response Frame, N = 1 to 8  
7.3.12.3.3.3 EEPROM Burst Write  
The EEPROM burst write is used to write 8 bytes of data to the EEPROM cache using one OWI frame to allow  
fast programming of EEPROM. Note that the EEPROM page must be selected before transferring the contents of  
the EEPROM memory cells to the EEPROM cache.  
7.3.12.3.3.4 EEPROM Burst Read  
The EEPROM burst read is used to read 8 bytes of data from the EEPROM cache using one OWI frame to allow  
for fast reading of the EEPROM cache contents. The read process is used to verify the writes to the EEPROM  
cache.  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.3.12.4 OWI Communication-Error Status  
The PGA300 device detects errors in OWI communication. The OWI_ERROR_STATUS_LO and  
OWI_ERROR_STATUS_HI registers contain OWI communication error bits. The communication errors detected  
include  
Out-of-range communication baud rate  
Invalid SYNC field  
Invalid STOP bits in command and data  
Invalid OWI command  
7.3.13 DAC Output  
The device includes a 14-bit digital-to-analog converter that produces an absolute output voltage with respect to  
the accurate reference voltage or a ratiometric output voltage with respect to the PWR supply.  
When the microprocessor undergoes a reset, the DAC registers are driven to the 0x000 code.  
7.3.13.1 Ratiometric vs Absolute  
The DAC output can be configured to be either in ratiometric-to-PWR mode or independent-of-PWR (or absolute)  
mode using the DAC_RATIOMETRIC bit in DAC_CONFIG.  
NOTE  
In ratiometric mode, changes in the VPWR voltage result in a proportional change in the  
output voltage because the current reference for the DAC is derived from VPWR  
.
7.3.14 DAC Gain  
The DAC gain buffer is a configurable buffer stage for the DAC output. The DAC gain amplifier can be configured  
to operate in voltage amplification mode for voltage output or current amplification mode for 4-mA to 20-mA  
applications. In voltage output mode, the DAC gain can be configured for a specific gain value by setting the  
DAC_GAIN bits in the DAC_CONFIG register to a specific value as shown in Figure 16. The DAC gain can be  
configured to one of four possible gain configurations using the 2-bit DAC_GAIN field.  
The final stage of DAC gain is connected to PWR and ground, thus providing the ability to drive the VOUT voltage  
close to the VPWR voltage.  
The DAC gain buffer also implements a COMP pin in order to allow implementing compensation when driving  
large capacitive loads.  
28  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
PWR  
40 kΩ  
VDAC  
+
OUT  
S1  
-
40 kΩ  
COMP  
FB  
Open  
2 V/V  
S5  
75 kΩ  
S0  
37.5 kΩ  
15 kΩ  
4 V/V  
6.67 V/V  
10 V/V  
7.5 kΩ  
15 kΩ  
40 Ω  
FB+  
DACCAP  
Figure 16. PGA300 Output Buffer  
7.3.15 Memory  
7.3.15.1 EEPROM Memory  
Figure 17 shows the EEPROM structure. The contents of the EEPROM must be transferred to the EEPROM  
cache before writes; that is, the EEPROM can be programmed 8 bytes at a time. EEPROM reads occur without  
the EEPROM cache.  
Copyright © 2014–2016, Texas Instruments Incorporated  
29  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Read DATA_OUT[31:0]  
Digital  
Compensation  
Cache  
ADDRESS[3:0]  
EEPROM  
Program  
DATA_OUT[63:0]  
EEPROM  
Memory  
Cells  
EEPROM  
Cache  
(8 Bytes, 1 ´ 64 Bits)  
(128 Bytes, 16 ´ 64 Bits)  
Cache Write  
DATA_IN[7:0]  
Digital Interface  
OWI  
Read DATA_OUT[7:0]  
Figure 17. Structure of the EEPROM Interface  
7.3.15.1.1 EEPROM Cache  
The EEPROM cache serves as temporary storage of data being transferred to selected EEPROM locations  
during the programming process.  
7.3.15.1.2 EEPROM Programming Procedure  
For programming the EEPROM, the EEPROM is organized in 16 pages of 8 bytes each. The EEPROM memory  
cells are programmed by writing to the 8-byte EEPROM cache. The contents of the cache are transferred to  
EEPROM memory cells by selecting the EEPROM memory page.  
1. Select the EEPROM page by writing the upper 4 bits of the 7-bit EEPROM address to the  
EEPROM_PAGE_ADDRESS register.  
2. Load the 8-byte EEPROM cache by writing to the EEPROM_CACHE register. Note that all 8 bytes must be  
loaded into the EEPROM_CACHE register.  
3. Set the ERASE_AND_PROGRAM bit in the EEPROM_CTRL register. Setting this bit automatically erases  
the selected EEPROM memory page and programs it with the contents of the EEPROM_CACHE register.  
Alternatively, the user can erase by writing 1 to the ERASE bit in the EEPROM_CTRL register, followed by  
writing 1 to the PROGAM bit in the EEPROM_CTRL register once the erase is complete. The status of the  
erase and program operations can be monitored through the EEPROM_STATUS register.  
7.3.15.1.3 EEPROM Programming Current  
The EEPROM programming process results in an additional 6-mA current on the PWR pin for the duration of  
programming.  
7.3.15.1.4 CRC  
The last byte of the EEPROM memory is reserved for the CRC. This CRC value covers all data in the EEPROM  
memory. Every time the last byte is programmed, the CRC value is automatically calculated and validated. The  
validation process checks the calculated CRC value with the last byte programmed in the EEPROM memory cell.  
If the calculated CRC matches the value programmed in the last byte, the CRC_GOOD bit is set in the  
EEPROM_CRC_STATUS register.  
30  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
The CRC check can also be initiated at any time by setting the CALCULATE_CRC bit in the EEPROM_CRC  
register. The status of the CRC calculation is available in the CRC_CHECK_IN_PROG bit in the  
EEPROM_CRC_STATUS register, whereas the result of the CRC validation is available in the CRC_GOOD bit in  
the EEPROM_CRC_STATUS register.  
The CRC calculation pseudo code is as follows:  
currentCRC8 = 0xFF; // Current value of CRC8  
for NextData  
D = NextData;  
C = currentCRC8;  
begin  
nextCRC8_BIT0 = D_BIT7 ^ D_BIT6 ^ D_BIT0 ^ C_BIT0 ^ C_BIT6 ^ C_BIT7;  
nextCRC8_BIT1 = D_BIT6 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT6;  
nextCRC8_BIT2 = D_BIT6 ^ D_BIT2 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT2 ^ C_BIT6;  
nextCRC8_BIT3 = D_BIT7 ^ D_BIT3 ^ D_BIT2 ^ D_BIT1 ^ C_BIT1 ^ C_BIT2 ^ C_BIT3 ^ C_BIT7;  
nextCRC8_BIT4 = D_BIT4 ^ D_BIT3 ^ D_BIT2 ^ C_BIT2 ^ C_BIT3 ^ C_BIT4;  
nextCRC8_BIT5 = D_BIT5 ^ D_BIT4 ^ D_BIT3 ^ C_BIT3 ^ C_BIT4 ^ C_BIT5;  
nextCRC8_BIT6 = D_BIT6 ^ D_BIT5 ^ D_BIT4 ^ C_BIT4 ^ C_BIT5 ^ C_BIT6;  
nextCRC8_BIT7 = D_BIT7 ^ D_BIT6 ^ D_BIT5 ^ C_BIT5 ^ C_BIT6 ^ C_BIT7;  
end  
currentCRC8 = nextCRC8_D8;  
endfor  
NOTE  
The EEPROM CRC calculation is complete 340 µs after the digital core starts running at  
power up.  
7.3.15.2 Control and Status Registers Memory  
The digital compensator uses the Control and Status registers to interact with the analog blocks of the device.  
7.3.16 Diagnostics  
The PGA300 device implements the diagnostics described in the following table:  
DIAGNOSTICS DESCRIPTION  
Digital-compensation-logic execution-timing error  
Digital-compensation-logic checksum error  
EEPROM is corrupted or EEPROM CRC = 0  
ACTION  
DAC is disabled and compensation logic is set to reset  
DAC is disabled and compensation logic is set to reset  
DAC code is driven to 0 code  
DAC output is driven to the value determined by the FAULT register in  
EEPROM  
Power-supply and signal-chain errors  
All the foregoing diagnostics can be enabled by setting the DIAG_ENABLE register in EEPROM to a non-zero  
value. To disable diagnostics, set the DIAG_ENABLE register in EEPROM to 0.  
7.3.16.1 Power Supply Diagnostics  
The PGA300 device includes circuits to monitor the reference and power supply for faults. Specifically, the  
following signals are monitored are:  
AVDD voltage  
Copyright © 2014–2016, Texas Instruments Incorporated  
31  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
DVDD voltage  
Bridge supply voltage  
Internal oscillator supply voltage  
Reference output voltage  
Electrical Characteristics – Diagnostics lists the voltage thresholds for each of the power rails.  
7.3.16.2 Signal Chain Faults  
The PGA300 device includes circuits to monitor the P and T signal chains for faults. This section describes the  
faults monitored by the PGA300 device.  
7.3.16.2.1 P Gain and T Gain Input Faults  
The PGA300 device includes circuits to monitor for sensor connectivity faults. Specifically, the device monitors  
the bridge sensor pins for opens (including loss of connection from the sensor), short to ground, and short to  
sensor supply. The monitoring is accomplished by comparing the voltage at INP+ and INP– pins with the  
overvoltage and undervoltage thresholds described in Electrical Characteristics – Diagnostics.  
The device also includes an overvoltage monitor at the INT+ and INT– pins through the use of 1-Mpullup  
resistors.  
Figure 18 shows the block diagram of the P gain and T gain input faults.  
32  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
PGA300  
OV  
OV  
UV  
VINP_OV  
VINP_UV  
UV  
PGAIN_OPEN  
INP+  
INP–  
P Gain  
(5 Bits)  
To P ADC  
OV  
OV  
VINT_OV  
AVDD  
INT+  
INT–  
T Gain  
(5 Bits)  
To T ADC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Block Diagram of P Gain and T Gain Diagnostics  
The bridge-sensor connectivity faults are detected through the use of an internal pulldown resistor. The value of  
the pulldown resistor and the threshold can be configured using the AFEDIAG_CFG EEPROM register. Table  
Table 5 describes the possible configurations.  
Table 5. Definition of AFEDIAG_CFG EEPROM Register  
BITS  
DESCRIPTION  
0: PD1  
1: PD2  
See Electrical Specifications Electrical Characteristics – Diagnostics  
2: THRS[0]  
3: THRS[1]  
4: THRS[2]  
See Electrical Specifications Electrical Characteristics – Diagnostics  
1: Disables pulldown resistors used for open and short diagnostics on the INP+ and INP– pins  
0: Enables pulldown resistors used for open and short diagnostics on the INP+ and INP– pins  
5: DIS_R_P  
Copyright © 2014–2016, Texas Instruments Incorporated  
33  
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Table 5. Definition of AFEDIAG_CFG EEPROM Register (continued)  
1: Disables pullup resistors used for open and short diagnostics on the INT+ and INT– pins  
0: Enables pullup resistors used for open and short diagnostics on the INT+ and INT– pins  
6: DIS_R_T  
7:  
7.3.16.2.2 P Gain and T Gain Output Diagnostics  
The PGA300 device includes modules that verify that the output signal of each gain is within a certain range.  
This ensures that gain stages in the signal chain are working correctly.  
PGA300  
OV  
PGAIN_OV  
OV  
UV  
PGAIN_UV  
UV  
INP+  
P Gain  
To P ADC  
(5 Bits)  
INP–  
OV  
TGAIN_OV  
OV  
UV  
TGAIN_UV  
UV  
INT+  
T Gain  
To T ADC  
(2 Bits)  
INT–  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Block Diagram of P Gain and T Gain Output Diagnostics  
34  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.3.16.2.3 Masking Signal Chain Faults  
The signal chain diagnostics can be selectively enabled and disabled using the bits in the AFEDIAG_MASK  
register in EEPROM. Table Table 6 describes the mask bits. Setting a bit to 1 enables detection of the  
corresponding fault and setting the bit to 0 disables the detection of corresponding fault.  
Table 6. Signal Chain Fault Masking Bits  
BIT  
0
DESCRIPTION  
INP+ or INP– overvoltage  
INP+ or INP– unvervoltage  
INT+ or INT– overvoltage  
N/A  
1
2
3
4
P GAIN output overvoltage  
P GAIN output undervoltage  
T GAIN output overvoltage  
T GAIN output undervoltage  
5
6
7
7.3.16.2.4 Fault Detection Timing  
The PGA300 fault-monitoring circuits monitor faults either at power up or periodically. Table 7 describes the fault-  
detection timing.  
Table 7. Fault Detection Timing  
MINIMUM TIME AFTER  
FAULT OCCURS  
MAXIMUM TIME AFTER  
FAULT OCCURS  
FAULT  
POWER UP OR RUN TIME  
Digital-compensation execution-timing error  
Digital-compensation checksum error  
Run time  
Run time  
500 ms  
500 ms  
Power up only (EEPROM is  
accessed only at power up)  
EEPROM is corrupted or EEPROM CRC = 0  
Power supply and signal chain errors  
N/A  
N/A  
Run time  
8 ms  
16 ms  
7.3.17 Digital Compensation and Filter  
The PGA300 device implements a third-order TC and NL correction of the pressure and temperature inputs. The  
corrected output is then filtered using a second-order IIR filter and then written to the DAC as shown in  
Figure 20.  
Digital Compensation  
Digital  
Offset  
INP+  
16  
Bits  
16  
Bits  
P Gain,  
P ADC  
Digital  
Gain  
+
INP–  
DAC  
Filtered  
14 Bits  
3rd-Order  
TC and NL  
Sensor  
OUT  
DAC  
14 Bits  
DAC  
14 Bits  
IIR 2nd-  
Order Filter  
DAC,  
DAC Gain  
Clamping  
Compensation  
INT+  
INT–  
16  
Bits  
T Gain,  
T ADC  
16  
Bits  
Digital  
Gain  
+
Digital  
Offset  
Figure 20. Digital Transfer Block Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
35  
 
 
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.3.17.1 Digital Gain and Offset  
The digital compensation implements digital gain and offset for both pressure and temperature. The equations  
are:  
P = a0(P ADC + b0)  
T = a1(T ADC + b1)  
where  
a0 and a1 are the digital gain  
b0 and b1 are the digital offset  
P is the pressure  
T is the temperature  
P ADC is the pressure digital output  
T ADC is the temperature digital output  
For high-offset sensors or sensor bridges with a low or high common mode, it may be useful to amplify and offset  
the P ADC value in the digital domain. The PGA300 device allows the ability to cancel the offset and amplify the  
signal further before being used in the compensation equation. The determination of the digital gain and offset  
values is implemented automatically by the PGA300 GUI.  
7.3.17.2 TC and NL Correction  
The digital compensation equation is as follows:  
DAC = (h0 + h1 × T + h2 × T2 + h3 × T3) + (g0 + g1 × T + g2 × T2 + g3 × T3) × P + (n0 + n1 × T + n2 × T2 + n3 × T3) × P2 +  
(m0 + m1 × T + m2 × T2 + m3 × T3) × P3  
(2)  
where  
DAC = Digitally compensated value at the input of the DAC  
hx, gx, nx and mx are TC and NL compensation coefficients programmed in EEPROM  
P is pressure  
T is temperature  
7.3.17.2.1 TC and NL Coefficients  
The PGA300 device implements third-order TC and NL compensation of the bridge offset, bridge span, and  
bridge nonlinearity. The equation has 16 coefficients, and hence requires at least 16 different measurement  
points to compute a unique set of 16 coefficients. The TC-compensated DAC output equation is as follows:  
DAC = (h0 + h1T + h2T2 + h3T3) + (g0 + g1T + g2T2 + g3T3) × P + (n0 + n1T + n2T2 + n3T3) × P2 + (m0 + m1T + m2T2 +  
m3T3) × P3  
(3)  
The 16 different P ADC and T ADC measurements can be made, for example, at four temperatures and at four  
different pressures. Note that  
P GAIN and T GAIN values must be set to a fixed value for all measurements.  
At each measurement point, the P ADC value and the T ADC value must be recorded in order to compute the  
16 coefficients.  
Sometimes, it may be expensive to measure P ADC and T ADC at different temperatures and pressures. In  
this case, there are three approaches:  
Use a model of the bridge to estimate P ADC and T ADC measurements instead of actually measuring.  
Use batch modeling, in which a family of sense elements is characterized across temperature, and the TC  
coefficients of the compensation equation are determined prior to calibration. On a production line,  
measurements are made at a limited number of temperature and pressure set points, and coefficients are  
adjusted accordingly. Discuss with TI application engineers for details.  
Reduce the number of coefficients by reducing the order of TC compensation. Discuss the procedure to  
use fewer coefficients with TI application engineers.  
7.3.17.2.1.1 No TC and NL Coefficients  
The equation for P ADC-to-DAC conversion is as follows:  
DAC = H0EE + G0EE × P ADC  
36  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Table 8. Coefficient Values for No TC and NL Compensation  
COEFFICIENT  
VALUE (HEX)  
(1)  
h0  
h1  
h2  
h3  
g0  
g1  
g2  
g3  
n0  
n1  
n2  
n3  
m0  
m1  
m2  
m3  
H0EE  
0x0000  
0x0000  
0x0000  
(1)  
G0EE  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
(1) H0EE and G0EE are the values stored in EEPROM, which are 214 times the actual H0 and G0 coefficients.  
Consider an example of scaling the positive half of the 16-bit P ADC to a 14-bit DAC value. In this case, H0 = 0  
and G0 = 0.5. Therefore, H0EE = 0, and G0EE = 213.  
7.3.17.2.2 TC Compensation Using the Internal Temperature Sensor  
Temperature compensation can be performed using the internal temperature sensor with T GAIN = 5 V/V gain.  
The internal temperature ADC values at the different temperatures are:  
Table 9. T ADC Value for the Internal Temperature Sensor  
TEMPERATURE  
T ADC VALUE (HEX VALUE)  
–40°C  
0°C  
0x16C9  
0x1ACF  
0x29E5  
150°C  
For T ADC at intermediate temperatures, use linear interpolation.  
7.3.17.3 Clamping  
The output of the digital compensation is clamped. The low and high clamp values are programmable using the  
LOW_CLAMP and HIGH_CLAMP registers in the EEPROM. In addition, a normal operating output can be  
configured using the NORMAL_LOW and NORMAL_HIGH registers in the EEPROM. Figure 21 shows an  
example of the clamping feature for a 0-V to 5-V output operational mode. In a similar way, the output of the  
compensation can be configured when the 4-mA to 20-mA operational mode is used. In such case, however, the  
LOW_CLAMP value must be larger than the maximum current needed for normal operation of the device.  
Copyright © 2014–2016, Texas Instruments Incorporated  
37  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
5 V  
Diagnostics  
High Clamp  
HIGH_CLAMP, 4.75 V  
NORMAL_HIGH, 4.5 V  
Normal Pressure  
NORMAL_LOW, 0.5 V  
LOW_CLAMP, 0.25 V  
0 V  
Low Clamp  
Diagnostics  
Figure 21. Example of Clamping the Digital Compensation Output  
7.3.17.4 Filter  
The IIR filter is as follows:  
w(n) = (a0 × DAC(n) + a1 × w(n – 1) + a2w(n – 2))  
DACF(n) = (b0 × w(n) + b1 × w(n – 1) + b2w(n – 2)  
where a0, a1, a2, b0, b1, and b2 are the IIR filter coefficients, DAC(n) is the DAC output prior to the IIR filter, and  
DACF(n) is the output of the PGA300 device after the second-order IIR filter.  
7.3.18 Filter Coefficients  
7.3.18.1 No Filtering  
If filtering must be disabled, set a0 = 0x0000.  
7.3.18.2 Filter Coefficients for P ADC Sampling Rate = 128 µs  
Table 10. Filter Cutoff Frequency and Filter Coefficients  
CUTOFF  
FREQUENCY  
(Hz)  
a0 (Hex)  
a1 (Hex)  
a2 (Hex)  
b0 (Hex)  
b1 (Hex)  
b2 (Hex)  
0B01  
600  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
AAA1  
2060  
0B01  
1602  
700  
B169  
B818  
BEAE  
C52D  
CB95  
D1EA  
1CEE  
19E0  
172D  
14CE  
12BC  
10F2  
0E57  
11F8  
15DB  
19FB  
1E52  
22DC  
1CAF  
23F0  
2BB7  
33F6  
3CA3  
45B8  
0E57  
11F8  
15DB  
19FB  
1E52  
22DC  
800  
900  
1000  
1100  
1200  
38  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Table 10. Filter Cutoff Frequency and Filter Coefficients (continued)  
CUTOFF  
FREQUENCY  
(Hz)  
a0 (Hex)  
a1 (Hex)  
a2 (Hex)  
b0 (Hex)  
b1 (Hex)  
b2 (Hex)  
2798  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
D82D  
0F6A  
2798  
4F2F  
DE61  
E487  
EAA3  
F0B6  
F6C3  
FCCC  
02D4  
08DD  
0EE9  
14FC  
1B17  
213C  
0E21  
0D14  
0C3F  
0BA1  
0B37  
0B02  
0B01  
0B33  
0B99  
0C33  
0D05  
0E0F  
2C82  
319B  
36E2  
3C56  
41FA  
47CE  
4DD4  
540F  
5A82  
612F  
681B  
6F4B  
5905  
6336  
6DC4  
78AD  
83F4  
8F9C  
9BA9  
A81F  
B504  
C25E  
D037  
DE96  
2C82  
319B  
36E2  
3C56  
41FA  
47CE  
4DD4  
540F  
5A82  
612F  
681B  
6F4B  
7.4 Device Functional Modes  
There are two main functional modes for the PGA300 device: current (4-mA to 20-mA loop) and voltage modes.  
Depending on which mode is being used, the external components and connections are slightly different.  
7.4.1 Voltage Mode  
When configured in this mode, the FB– pin must be connected to the OUT pin. If the OUT pin is driving a large  
capacitive load, a compensation capacitor can be connected to the COMP pin and an isolation resistor can be  
placed between the OUT and FB– pins. The FB+ pin is not used in voltage mode.  
7.4.2 Current Mode  
When configured in this mode, the OUT pin is driving the base of a bipolar junction transistor (BJT) as shown in  
40. The COMP pin is connected to the emitter of the BJT and the FB+ pin is connected to the return terminal  
of the supply. The FB– pin is not used in current mode.  
7.5 Register Maps  
7.5.1 Register Settings  
Before the PGA300 device can be used in any application, the device must be configured by setting various  
control registers to the desired values. Table 11 lists all the registers that must be configured and their respective  
default configurations. Note that the registers are configured by writing to the appropriate EEPROM addresses  
listed in the Control and Status Registers section.  
Table 11. Default Register Settings  
REGISTER  
DAC_CONFIG  
VALUE (HEX)  
0x00  
DESCRIPTION  
DAC is set for absolute voltage output.  
OP_STAGE_CTRL  
BRG_CTRL  
0x08  
Output is configured for 4-mA to 20-mA mode.  
Bridge excitation is set to 2.5 V.  
0x00  
P_GAIN_SELECT  
T_GAIN_SELECT  
TEMP_CTRL  
0x00  
P_GAIN is set to 5 V/V gain.  
0x00  
T_GAIN is set for 1.33 V/V gain.  
0x40  
ITEMP drive is disabled and T signal chain is set for VINT+ – VINT–  
.
TEMP_SE  
0x00  
T GAIN is in single-ended configuration.  
NORMAL_LOW_LSB  
NORMAL_LOW_MSB  
NORMAL_HIGH_LSB  
0x67  
DAC normal low output set to 0x0667. Must be updated during calibration  
DAC normal low output set to 0x0667. Must be updated during calibration  
DAC normal high output set to 0x399A. Must be updated during calibration  
0x06  
0x9A  
Copyright © 2014–2016, Texas Instruments Incorporated  
39  
 
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Default Register Settings (continued)  
REGISTER  
NORMAL_HIGH_MSB  
LOW_CLAMP_LSB  
LOW_CLAMP_MSB  
HIGH_CLAMP_LSB  
HIGH_CLAMP_MSB  
DIAG_ENABLE  
VALUE (HEX)  
0x39  
DESCRIPTION  
DAC normal high output set to 0x399A. Must be updated during calibration  
DAC clamp low output set to 0x0334. Must be updated during calibration  
DAC clamp low output set to 0x0334. Must be updated during calibration  
DAC clamp high output set to 0x3CCF. Must be updated during calibration  
DAC clamp high output set to 0x3CCF. Must be updated during calibration  
Diagnostics are disabled.  
0x34  
0x03  
0xCF  
0x3C  
0x00  
EEPROM_LOCK  
0x00  
EEPROM is unlocked.  
Diagnostics pulldown (1 M) and pullup (1 M) resistors enabled, VINP_UV threshold  
= 7.5% and VINP_OV threshold = 92.5%  
AFEDIAG_CFG  
0x07  
0x33  
AFEDIAG_MASK  
VINP_OV and PGAIN_UV detection enabled  
SERIAL_NUMBER_BYTE0-1-2-3 0x00  
EEPROM_CRC 0xB8  
Serial number specified by customer  
Must be updated every time EEPROM is changed if diagnostics are enabled  
40  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.5.2 Control and Status Registers  
Table 12. Control and Status Registers  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
H0_LSB  
H0_MSB  
G0_LSB  
G0_MSB  
N0_LSB  
N0_MSB  
M0_LSB  
M0_MSB  
H1_LSB  
H1_MSB  
G1_LSB  
G1_MSB  
N1_LSB  
N1_MSB  
M1_MSB  
M1_LSB  
H2_LSB  
H2_MSB  
G2_LSB  
G2_MSB  
N2_LSB  
N2_MSB  
M2_LSB  
M2_MSB  
H3_LSB  
H3_MSB  
G3_LSB  
G3_MSB  
N3_LSB  
N3_MSB  
M3_LSB  
N/A  
N/A  
0x40000000  
0x40000001  
0x40000002  
0x40000003  
0x40000004  
0x40000005  
0x4000003C  
0x4000003D  
0x40000006  
0x40000007  
0x40000008  
0x40000009  
0x4000000A  
0x4000000B  
0x4000003E  
0x4000003F  
0x4000000C  
0x4000000D  
0x4000000E  
0x4000000F  
0x40000010  
0x40000011  
0x40000040  
0x40000041  
0x40000036  
0x40000037  
0x40000038  
0x40000039  
0x4000003A  
0x4000003B  
0x40000042  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Copyright © 2014–2016, Texas Instruments Incorporated  
41  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Table 12. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
M3_MSB  
N/A  
N/A  
0x40000043  
0x40000012  
0x40000013  
0x40000014  
0x40000015  
0x40000016  
0x40000017  
0x40000018  
0x40000019  
0x4000001A  
0x4000001B  
0x4000001C  
0x4000001D  
N/A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
A0_LSB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x2  
0x2  
0x2  
0x2  
0x2  
0x2  
N/A  
A0_MSB  
N/A  
A1_LSB  
N/A  
A1_MSB  
N/A  
A2_LSB  
N/A  
A2_MSB  
N/A  
B0_LSB  
N/A  
B0_MSB  
N/A  
B1_LSB  
N/A  
B1_MSB  
N/A  
B2_LSB  
N/A  
B2_MSB  
N/A  
PADC_DATA1  
PADC_DATA2  
TADC_DATA1  
TADC_DATA2  
DAC_REG0_1  
DAC_REG0_2  
0x20  
0x21  
0x24  
0x25  
0x30  
0x31  
N/A  
R
N/A  
R
N/A  
R
N/A  
RW  
RW  
N/A  
DAC_  
DAC_CONFIG  
0x2  
0x39  
0x40000020  
RW  
RATIOMETR  
IC  
OP_STAGE_CTR  
L
DACCAP_E  
N
DAC_GAIN[2 DAC_GAIN[1 DAC_GAIN[0  
0x2  
0x2  
0x2  
0x2  
0x3B  
0x46  
0x47  
0x48  
0x40000021  
0x40000022  
0x40000023  
0x40000024  
RW  
RW  
RW  
RW  
4_20MA_EN  
P_GAIN[3]  
]
]
]
VBRDG_  
CTRL[1]  
VBRDG_  
CTRL[0]  
BRDG_CTRL  
P_GAIN_  
SELECT  
P_INV  
T_INV  
P_GAIN[4]  
P_GAIN[2]  
P_GAIN[1]  
T_GAIN[1]  
P_GAIN[0]  
T_GAIN[0]  
T_GAIN_  
SELECT  
TEMP_MUX TEMP_MUX TEMP_MUX TEMP_MUX  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
TEMP_CTRL  
0x2  
0x4C  
0x40000025  
RW  
_
_
_
_
CTRL[3]  
CTRL[2]  
CTRL[1]  
CTRL[0]  
TEMP_SE  
N/A  
N/A  
N/A  
N/A  
0x40000028  
0x4000002A  
RW  
RW  
TEMP_SE  
NORMAL_LOW_L  
SB  
42  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
Register Name  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Table 12. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
R/W  
RW  
RW  
RW  
RW  
RW  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NORMAL_LOW_  
MSB  
N/A  
N/A  
0x4000002B  
0x4000002C  
0x4000002D  
0x4000002E  
0x4000002F  
0x40000030  
NORMAL_HIGH_L  
SB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
NORMAL_HIGH_  
MSB  
LOW_CLAMP_LS  
B
LOW_CLAMP_MS  
B
HIGH_CLAMP_LS  
B
HIGH_CLAMP_M  
SB  
N/A  
N/A  
N/A  
0x40000031  
0x40000032  
0x40000033  
RW  
RW  
RW  
PADC_GAIN_LSB N/A  
PADC_GAIN_MS  
B
N/A  
PADC_OFFSET_  
N/A  
N/A  
N/A  
0x40000034  
0x40000035  
RW  
RW  
BYTE0  
PADC_OFFSET_  
N/A  
BYTE1  
DIAG_ENABLE  
EEPROM_LOCK  
AFEDIAG_CFG  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x40000044  
0x40000045  
0x40000046  
0x40000047  
0x4000004A  
0x4000004B  
0x4000004C  
0x4000004D  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
-
DIS_R_T  
DIS_R_P  
THRS[2]  
THRS[1]  
THRS[0]  
PD2  
INP_UV  
PD1  
INP_OV  
AFEDIAG_MASK N/A  
TGAIN_UV TGAIN_OV  
PGAIN_UV  
PGAIN_OV  
-
INT_OV  
FAULT_LSB  
FAULT_MSB  
N/A  
N/A  
TADC_GAIN_LSB N/A  
TADC_GAIN_MSB N/A  
TADC_OFFSET_B  
YTE0  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000004E  
0x4000004F  
0x40000050  
0x40000051  
RW  
RW  
RW  
RW  
TADC_OFFSET_B  
YTE1  
N/A  
SERIAL_NUMBER  
N/A  
_BYTE0  
SERIAL_NUMBER  
N/A  
_BYTE1  
Copyright © 2014–2016, Texas Instruments Incorporated  
43  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Table 12. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
RW  
RW  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SERIAL_NUMBER  
_BYTE2  
N/A  
N/A  
0x40000052  
0x40000053  
0x4000007F  
SERIAL_NUMBER  
_BYTE3  
N/A  
0x5  
N/A  
EEPROM_CRC  
_VALUE  
0x8D  
COMPENSATION  
COMPENSA  
_
0x0  
0x0C  
N/A  
RW  
TION_RESE IF_SEL  
T
CONTROL  
EEPROM ARRAY 0x5  
EEPROM_CACHE 0x5  
0x00-0x7F N/A  
0x80-0x87 N/A  
RW  
RW  
EEPROM_PAGE_  
0x5  
0x88  
0x89  
0x8A  
N/A  
N/A  
N/A  
RW  
RW  
RW  
ADDR[2]  
ADDR[1]  
ERASE  
ADDR[0]  
ADDRESS  
FIXED_  
ERASE_  
ERASE_AN  
D
PROG_TIME _PROGRAM  
EEPROM_CTRL  
EEPROM_CRC  
0x5  
0x5  
PROGRAM  
CALCULATE  
_CRC  
PROGRAM_  
IN  
_PROGRES  
S
ERASE_IN  
_PROGRES _PROGRES  
S
READ_IN  
EEPROM_STATU  
S
0x5  
0x5  
0x8B  
0x8C  
N/A  
N/A  
R
R
S
CRC_CHEC  
K
EEPROM_CRC  
_STATUS  
CRC_GOOD  
_IN_PROG  
44  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.5.2.1 DAC_CONFIG  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x39  
Figure 22. DAC_CONFIG Register (EEPROM Address = 0x40000020)  
DAC_CONFIG  
7
6
5
4
3
2
1
0
DAC_  
RATIOMET  
RIC  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW ACCESS  
RW  
0
RESET VALUE  
Table 13. DAC_CONFIG Register (EEPROM Address = 0x40000020) Bit Descriptions  
Register  
Bits  
0: DAC_RATIOMETRIC  
1–7: UNUSED  
Description  
1: DAC is in ratiometric mode  
0: DAC is in absolute mode  
DAC_CONFIG  
7.5.2.2 OP_STAGE_CTRL  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x3B  
Figure 23. OP_STAGE_CTRL Register (EEPROM Address = 0x40000021)  
OP_STAGE_CTRL  
7
6
5
4
3
2
1
0
PULLUP_E DACCAP_E 4_20MA_E DAC_GAIN[ DAC_GAIN[ DAC_GAIN[  
BIT DEFINITION  
UNUSED  
UNUSED  
N
RW  
0
N
RW  
0
N
RW  
0
2]  
RW  
1
1]  
RW  
0
0]  
RW  
1
RW ACCESS  
RESET VALUE  
Table 14. OP_STAGE_CTRL Register (EEPROM Address = 0x40000021) Bit Descriptions  
Register  
Bits  
Description  
DAC_GAIN[0]  
0: DAC_GAIN[0]  
1: DAC_GAIN[1]  
2: DAC_GAIN[2]  
DAC_GAIN[2]  
DAC_GAIN[1]  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Voltage mode disabled  
Gain = 10V/V  
Gain = 4V/V  
Reserved  
Gain = 2V/V  
Reserved  
Gain = 6.67V/V  
Reserved  
OP_STAGE_CTRL  
1: Enable 4 to 20mA Current Loop (Close switch S5 in DAC Gain)  
0: Disable 4 to 20mA Current Loop (Open switch S5 in DAC Gain)  
3: 4_20MA_EN  
4: DACCAP_EN  
1: Enable DACCAP capacitor (Close switch S4 in DAC Gain)  
0: Disable DACCAP capacitor (Open switch S4 in DAC Gain)  
1: Enable Pull up at the input of DAC Gain (Close switch S8 in DAC Gain)  
0: Disable Pull up at the input of DAC Gain (Open switch S8 in DAC Gain)  
5: PULLUP_EN  
6–7: UNUSED  
Copyright © 2014–2016, Texas Instruments Incorporated  
45  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.5.2.3 BRDG_CTRL  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x46  
Figure 24. BRDG_CTRL Register (EEPROM Address = 0x40000022)  
BRDG_CTRL  
7
6
5
4
3
2
1
0
VBRDG_  
CTRL[1]  
VBRDG_  
CTRL[0]  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW ACCESS  
RW  
0
RW  
0
RESET VALUE  
Table 15. BRDG_CTRL Register (EEPROM Address = 0x40000022) Bit Descriptions  
Register  
Bits  
0: UNUSED  
Description  
VBRDG_CTRL[1]  
VBRDG_CTRL[0]  
Bridge Supply Voltage  
0
0
1
1
0
1
0
1
2.5V  
1: VBRDG_CTRL[0]  
2: VBRDG_CTRL[1]  
BRDG_CTRL  
2.0V  
1.25V  
1.25V  
3–7: UNUSED  
7.5.2.4 P_GAIN_SELECT  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x47  
Figure 25. P_GAIN_SELECT Register (EEPROM Address = 0x40000023)  
P_GAIN_SELECT  
BIT DEFINITION  
RW ACCESS  
7
P_INV  
RW  
0
6
5
4
P_GAIN[4]  
RW  
3
P_GAIN[3]  
RW  
2
P_GAIN[2]  
RW  
1
P_GAIN[1]  
RW  
0
P_GAIN[0]  
RW  
UNUSED  
UNUSED  
RESET VALUE  
0
0
0
0
0
Table 16. P_GAIN_SELECT Register (EEPROM Address = 0x40000023) Bit Descriptions  
Register  
Bits  
Description  
0: P_GAIN[0]  
1: P_GAIN[1]  
2: P_GAIN[2]  
3: P_GAIN[3]  
4: P_GAIN[4]  
See Electrical Parameters for Gain Selections  
P_GAIN_SELECT  
5–6: UNUSED  
1: Inverts the output of the PGAIN Output  
0: No Inversion  
7: P_INV  
7.5.2.5 T_GAIN_SELECT  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x48  
Figure 26. T_GAIN_SELECT Register (EEPROM Address = 0x40000024)  
T_GAIN_SELECT  
BIT DEFINITION  
RW ACCESS  
7
T_INV  
RW  
0
6
5
4
3
2
1
T_GAIN[1]  
RW  
0
T_GAIN[0]  
RW  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RESET VALUE  
0
0
46  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Table 17. T_GAIN_SELECT Register (EEPROM Address = 0x40000024) Bit Descriptions  
Register  
Bits  
Description  
0: T_GAIN[0]  
1: T_GAIN[1]  
See Electrical Parameters for Gain Selections  
T_GAIN_SELECT  
2–6: UNUSED  
1: Inverts the output of the T GAIN Output  
0: No Inversion  
7: T_INV  
7.5.2.6 TEMP_CTRL  
DI PAGE ADDRESS: 0x2, DI PAGE OFFSET: 0x4C  
Figure 27. TEMP_CTRL Register (EEPROM Address = 0x40000025)  
TEMP_CTRL  
7
6
5
4
3
2
1
0
TEMP_MU TEMP_MU TEMP_MU TEMP_MU  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
BIT DEFINITION  
UNUSED  
X_  
X_  
X_  
X_  
CTRL[3]  
CTRL[2]  
CTRL[1]  
CTRL[0]  
RW ACCESS  
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RESET VALUE  
Table 18. TEMP_CTRL Register (EEPROM Address = 0x40000025)  
Register  
Bits  
Description  
0:  
TEMP_MUX_ TEMP_MUX_ TEMP_MUX_ TEMP_MUX_  
Description  
TEMP_MUX_CTRL[0]  
CTRL[3]  
CTRL[2]  
CTRL[1]  
CTRL[0]  
1:  
0
0
0
0
0
1
0
1
INT+ and INT–  
TEMP_MUX_CTRL[1]  
2:  
VTEMP_INT-GND (Internal  
Temperature Sensor)  
TEMP_MUX_CTRL[2]  
3:  
TEMP_MUX_CTRL[3]  
TEMP_CTRL  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
4: ITEMP_CTRL[0]  
Description  
5: ITEMP_CTRL[1]  
6: ITEMP_CTRL[2]  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
25µA  
50µA  
100µA  
500µA  
OFF  
7: UNUSED  
7.5.2.7 TEMP_SE  
Figure 28. TEMP_SE Register (EEPROM Address = 0x40000028)  
TEMP_SE  
BIT DEFINITION  
RW ACCESS  
RESET VALUE  
7
6
5
4
3
2
1
0
TEMP_SE  
RW  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
0
Table 19. TEMP_SE Register (EEPROM Address = 0x40000028) Bit Descriptions  
Register  
TEMP_SE  
Bits  
Description  
1: Output of Temperature Mux is differential  
0: Output of Temperature Mux is single-ended  
0: TEMP_SE  
1–7: UNUSED  
Copyright © 2014–2016, Texas Instruments Incorporated  
47  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
7.5.2.8 DIAG_ENABLE  
Figure 29. DIAG_ENABLE Register (EEPROM Address = 0x40000044)  
DIAG_ENABLE  
7
6
5
4
3
2
1
0
DIAG_ENA  
BLE  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW ACCESS  
RW  
0
RESET VALUE  
Table 20. DIAG_ENABLE Register (EEPROM Address = 0x40000044) Bit Descriptions  
Register  
Bits  
Description  
Read:  
0: DIAG_ENABLE  
1–7: UNUSED  
1: Enables Diagnostics  
0: Disables Diagnostics  
DIAG_ENABLE  
7.5.2.9 AFEDIAG_CFG  
Figure 30. AFEDIAG_CFG Register (EEPROM Address = 0x40000046)  
AFEDIAG_CFG  
BIT DEFINITION  
RW ACCESS  
7
6
DIS_R_T  
RW  
5
DIS_R_P  
RW  
4
THRS[2]  
RW  
3
THRS[1]  
RW  
2
THRS[0]  
RW  
1
PD2  
RW  
0
0
PD1  
RW  
0
UNUSED  
RESET VALUE  
0
0
0
0
0
48  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
Register  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Table 21. AFEDIAG_CFG Register (EEPROM Address = 0x40000046) Bit Descriptions  
Bits  
Description  
Pull Down  
Resistor Value  
PD2  
PD1  
0: PD1  
0
1
0
1
0
0
1
1
4MΩ  
3MΩ  
2MΩ  
1MΩ  
1: PD2  
VINP_UV  
Threshold  
VINP_OV  
Threshold  
THRS[2]  
THRS[1]  
THRS[0]  
95% of  
Programmed  
VBRDG  
5% of Programmed  
VBRDG  
2: THRS[0]  
3: THRS[1]  
4: THRS[2]  
0
0
0
7.5% of  
Programmed  
VBRDG  
92.5% if  
Programmed  
VBRDG  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
10% of  
Programmed  
VBRDG  
90% of  
Programmed  
VBRDG  
12.5% of  
Programmed  
VBRDG  
87.5% of  
Programmed  
VBRDG  
AFEDIAG_CFG  
15% of  
Programmed  
VBRDG  
85% of  
Programmed  
VBRDG  
20% of  
Programmed  
VBRDG  
80% of  
Programmed  
VBRDG  
25% of  
Programmed  
VBRDG  
75% of  
Programmed  
VBRDG  
30% of  
Programmed  
VBRDG  
70% of  
Programmed  
VBRDG  
1: Disables pulldown resistors used for open/short diagnostics on the INP+ and INP– pins  
0: Enables pulldown resistors used for open/short diagnostics on the INP+ and INP– pins  
5: DIS_R_P  
1: Disables pullup resistors used for open/short diagnostics on the INT+ and INT– pins  
0: Enables pullup resistors used for open/short diagnostics on the INT+ and INT– pins  
6: DIS_R_T  
7: UNUSED  
7.5.2.10 AFEDIAG_MASK  
Figure 31. AFEDIAG_MASK Register (EEPROM Address = 0x40000047)  
AFEDIAG  
7
6
5
4
3
2
INT_OV  
RW  
1
INP_UV  
RW  
0
INP_OV  
RW  
BIT DEFINITION  
RW ACCESS  
RESET VALUE  
TGAIN_UV TGAIN_OV PGAIN_UV PGAIN_OV  
UNUSED  
RW  
0
RW  
0
RW  
0
RW  
0
0
0
0
Copyright © 2014–2016, Texas Instruments Incorporated  
49  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Table 22. AFEDIAG_MASK Register (EEPROM Address = 0x40000047) Bit Descriptions  
Register  
Bits  
Description  
1: Enable overvoltage detection at input pins of P Gain  
0: Disable overvoltage detection at input pins of P Gain  
0: INP_OV  
1: INP_UV  
1: Enable undervoltage detection at input pins of P Gain  
0: Disable undervoltage detection at input pins of P Gain  
1: Enable overvoltage detection at input pins of T Gain  
0: Disable overvoltage detection at input pins of T Gain  
2: INT_OV  
3: UNUSED  
4: PGAIN_OV  
AFEDIAG  
1: Enable overvoltage detection at output pins of P Gain  
0: Disable overvoltage detection at output pins of P Gain  
1: Enable undervoltage detection at output pins of P Gain  
0: Disable undervoltage detection at output pins of P Gain  
5: PGAIN_UV  
6: TGAIN_OV  
7: TGAIN_UV  
1: Enable overvoltage detection at output pins of T Gain  
0: Disable overvoltage detection at output pins of T Gain  
1: Enable undervoltage detection at output pins of T Gain  
0: Disable undervoltage detection at output pins of T Gain  
7.5.2.11 COMPENSATION_CONTROL  
DI PAGE ADDRESS: 0x0, DI PAGE OFFSET: 0x0C  
Figure 32. COMPENSATION_CONTROL Register (EEPROM Address = N/A)  
COMPENSATION_CONT  
ROL  
7
6
5
4
3
2
1
0
COMPENS  
ATION_RE  
SET  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
IF_SEL  
RW ACCESS  
RW  
0
RW  
0
RESET VALUE  
Table 23. COMPENSATION_CONTROL Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
Description  
1: Digital Interface accesses the PGA300 resources  
0: Calculation Engine accesses the PGA300 resources  
0: IF_SEL  
COMPENSATION_CONTROL  
1: Compensation Engine is in Reset  
0: Compensation Engine is Running  
1: COMPENSATION_RESET  
2–7: UNUSED  
7.5.2.12 EEPROM_LOCK  
Figure 33. EEPROM_LOCK Register (EEPROM Address = 0x40000045)  
EEPROM_LOCK  
7
6
5
4
3
2
1
0
EEPROM_L  
OCK  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW ACCESS  
RW  
0
RESET VALUE  
Table 24. EEPROM_LOCK Register (EEPROM Address = 0x40000045) Bit Descriptions  
Register  
Bits  
0: EEPROM_LOCK  
1–7: UNUSED  
Description  
1: EEPROM is locked - EEPROM is not accessible  
0: EEPROM is unlocked - EEPROM is accessible  
EEPROM_LOCK  
50  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.5.2.13 EEPROM_PAGE_ADDRESS  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x88  
Figure 34. EEPROM_PAGE_ADDRESS Register (EEPROM Address = N/A)  
EEPROM_PAGE_ADDRES  
S
7
6
5
4
3
2
1
0
BIT DEFINITION  
RW ACCESS  
UNUSED UNUSED  
UNUSED  
UNUSED  
ADDR[3]  
ADDR[2]  
ADDR[1]  
ADDR[0]  
RW  
0
RW  
0
RW  
0
RW  
0
RESET VALUE  
Table 25. EEPROM_PAGE_ADDRESS Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
0–3: ADDR[0-3]  
4–7: UNUSED  
Description  
EEPROM page address used in the EEPROM Programming Procedure  
EEPROM_PAGE_ADDRESS  
7.5.2.14 EEPROM_CTRL  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x89  
Figure 35. EEPROM_CTRL Register (EEPROM Address = N/A)  
EEPROM_CTRL  
7
6
5
4
3
2
1
0
FIXED_  
ERASE_  
ERASE_AN  
D
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ERASE  
PROGRAM  
PROG_TIM _PROGRA  
E
RW  
0
M
RW  
0
RW ACCESS  
RW  
0
RW  
0
RESET VALUE  
Table 26. EEPROM_CTRL Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
Description  
1: Program contents of EEPROM cache into EEPROM memory pointed to by  
0: PROGRAM  
1: ERASE  
EEPROM_PAGE_ADDRESS  
0: No action  
1: Erase contents of EEPROM memory pointed to by EEPROM_PAGE_ADDRESS  
0: No action  
EEPROM_  
CTRL  
1: Erase contents of EEPROM memory pointed to by EEPROM_PAGE_ADDRESS and  
program of contents of EEPROM cache  
0: No action  
2: ERASE_AND_PROGRAM  
1: Use Fixed 8ms as the Erase/Program time  
0: Use Variable time <8ms as the Erase/Program time. The EEPROM programming logic  
will determine the duration to program the EEPROM memory.  
3:  
FIXED_ERASE_PROG_TIME  
4–7: UNUSED  
7.5.2.15 EEPROM_CRC  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x8A  
Figure 36. EEPROM_CRC Register (EEPROM Address = N/A)  
EEPROM_CRC  
7
6
5
4
3
2
1
0
CALCULAT  
E
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
_CRC  
RW ACCESS  
RW  
0
RESET VALUE  
Copyright © 2014–2016, Texas Instruments Incorporated  
51  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Table 27. EEPROM_CRC Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
Description  
1: Calculate EEPROM CRC  
0: No action  
0: CALCULATE_CRC  
1–7: UNUSED  
EEPROM_CRC  
7.5.2.16 EEPROM_STATUS  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x8B  
Figure 37. EEPROM_STATUS Register (EEPROM Address = N/A)  
EEPROM_STATUS  
7
6
5
4
3
2
1
0
PROGRAM  
_IN  
_PROGRE  
SS  
ERASE_IN  
_PROGRE _PROGRE  
READ_IN  
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
SS  
SS  
RW ACCESS  
R
0
R
0
R
0
RESET VALUE  
Table 28. EEPROM_STATUS Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
Description  
1: EEPROM Read in progress  
0: EEPROM Read not in progress  
0: READ_IN_PROGRESS  
1: EEPROM Erase in progress  
0: EEPROM Erase not in progress  
1: ERASE_IN_PROGRESS  
EEPROM_STATUS  
1: EEPROM Program in progress  
0: EEPROM Program not in progress  
2: PROGRAM_IN_PROGRESS  
3–7: UNUSED  
7.5.2.17 EEPROM_CRC_STATUS  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x8C  
Figure 38. EEPROM_CRC_STATUS Register (EEPROM Address = N/A)  
EEPROM_CRC_STATUS  
7
6
5
4
3
2
1
0
CRC_CHE  
CK  
_IN_PROG  
CRC_GOO  
D
BIT DEFINITION  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW ACCESS  
R
0
R
0
RESET VALUE  
Table 29. EEPROM_CRC_STATUS Register (EEPROM Address = N/A) Bit Descriptions  
Register  
Bits  
Description  
1: EEPROM CRC check in progress  
0: EEPROM CRC check not in progress  
0: CRC_CHECK_IN_PROGRESS  
EEPROM_CRC_  
STATUS  
1: EEPROM Programmed CRC matches calculated CRC  
0: EEPROM Programmed CRC does not match calculated CRC  
1: CRC_GOOD  
2–7: UNUSED  
52  
Copyright © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
7.5.2.18 EEPROM_CRC_VALUE  
DI PAGE ADDRESS: 0x5, DI PAGE OFFSET: 0x8D  
Figure 39. EEPROM_CRC_VALUE Register (EEPROM Address = 0x4000007F)  
EEPROM_CRC_VALUE  
BIT DEFINITION  
RW ACCESS  
7
6
5
4
3
2
1
0
R
1
R
1
R
1
R
1
R
1
R
1
R
1
R
1
RESET VALUE  
Table 30. EEPROM_CRC_VALUE Register (EEPROM Address = 0x4000007F) Bit Descriptions  
Register  
Bits  
Description  
CRC value as calculated by the digital logic  
EEPROM_CRC_VALUE  
0–7  
EEPROM CRC value should be located in the last byte of the EEPROM  
版权 © 2014–2016, Texas Instruments Incorporated  
53  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The PGA 300 can be used in a variety of applications to measure pressure and temperature. Depending on the  
application, the device can be configured in different modes as illustrated in the following sections.  
8.1.1 4-mA to 20-mA Output With Internal Sense Resistor  
Sensor  
Controller  
PWR  
PWR  
40 kΩ  
VDAC  
+
OUT  
S1  
40 kΩ  
COMP  
+
DAC  
100 nF  
Reference  
Is Absolute  
1.25 V  
Open  
FB  
S2  
S0  
2 V/V  
4 V/V  
150 kΩ  
6.67 V/V  
10 V/V  
40 Ω  
FB+  
DACCAP  
Iloop  
GND  
AVDD  
REFCAP  
DVDD  
100 nF  
100 nF  
100 nF  
40. 4-mA to 20-mA Output With Internal Sense Resistor Diagram  
8.1.1.1 Design Requirements  
There are only a few requirements to take into account when using the PGA300 device in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the PWR pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close as possible to the AVDD pin.  
54  
版权 © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Application Information (接下页)  
Place a 100-nF capacitor from the DVDD pin to ground, as close as possible to the DVDD pin.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground, as close as possible to the  
REFCAP pin.  
Place a 150-resistor between the COMP pin and the emitter of the BJT for current-loop stability purposes.  
Place a 10-resistor between the FB+ pin and the negative terminal of the controller for current  
measurement.  
8.1.1.2 Detailed Design Procedure  
8.1.1.2.1 Calibration Tips  
8.1.1.2.1.1 Programming the EEPROM for 4-mA to 20-mA Output  
The EEPROM in the PGA300 is configured by default to operate in current mode using the OP_STG_CTRL  
register. If not, the following sequence must be followed to change it to current mode:  
1. Send an OWI activation pulse to stop the digital compensation from running.  
2. Set OP_STAGE_CTRL to 0x80 for current mode and DAC_CONFIG EEPROM to 0x00 or 0x01 for No_Gain.  
3. Let the digital compensation run again to read the new EEPROM values.  
8.1.1.3 Application Curve  
Voltage measured between the GND pin in the PGA300 device and the negative terminal of the  
controller. This includes the internal 40-Ω resistor and an external 10-Ω resistor, VPWR = 15 V.  
The DAC codes used were 0x880 and 0x2760 for 4 mA and 20 mA, respectively.  
41. Loop Current Step From 4 mA to 20 mA  
版权 © 2014–2016, Texas Instruments Incorporated  
55  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Application Information (接下页)  
8.1.2 0- to 10-V Absolute Output With Internal Drive  
Sensor  
Controller  
PWR  
OUT  
PWR  
40 kΩ  
VDAC  
+
S1  
+
40 kΩ  
COMP  
DAC  
Reference  
Is Absolute  
1.25 V  
Open  
FB  
S2  
2 V/V  
4 V/V  
S0  
150 kΩ  
6.67 V/V  
10 V/V  
40 Ω  
GND  
FB+  
DACCAP  
AVDD  
100 nF  
100 nF  
100 nF  
100 nF  
REFCAP  
DVDD  
42. 0- to 10-V Absolute Output With Internal Drive Diagram  
8.1.2.1 Design Requirements  
There are only a few requirements to take into account when using the PGA300 in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the VDD pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close as possible to the AVDD pin.  
Place a 100-nF capacitor from the DVDD pin to ground, as close as possible to the DVDD pin.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground, as close as possible to the  
REFCAP pin.  
Implement compensation, using the COMP pin and an isolation resistor, when driving large capacitive loads  
with the OUT pin.  
56  
版权 © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Application Information (接下页)  
8.1.2.2 Detailed Design Procedure  
8.1.2.2.1 Programmer Tips  
8.1.2.2.1.1 Resetting the Microprocessor and Enable Digital Interface  
The following bits must be configured to reset the M0 microprocessor and to enable digital interface:  
1. Set the IF_SEL bit in the MICRO_INTERFACE_CONTROL register to 1.  
2. Set the MICRO_RESET bit in the MICRO_INTERFACE_CONTROL register to 1.  
8.1.2.2.1.2 Turning On the Accurate Reference Buffer (REFCAP Voltage)  
The following bits must be configured to turn ON the accurate reference buffer:  
1. Set the SD bit in the ALPWR register to 0.  
2. Set the ADC_EN_VREF bit in the ALPWR register to 1.  
By turning on the accurate reference buffer, the reference voltage can be measured on REFCAP pin. Further, the  
capacitor on the REFCAP pin is connected to the reference buffer.  
8.1.2.2.1.3 Turning On DAC and DAC GAIN  
The following bits must be configured to turn on DAC and DAC GAIN:  
Set the SD bit in the ALPWR register to 0.  
Set the ADC_EN_VREF bit in the ALPWR register to 1.  
Set the DAC_ENABLE bit in the DAC_CTRL_STATUS register to 1.  
Set the 4_20_MA_EN bit in the OP_STAGE_CTRL register for voltage output or current output mode.  
Set the DACCAP_EN bit in the OP_STAGE_CTRL register to connect or disconnect the external capacitor at  
the DAC output.  
Set the DAC_RATIOMETRIC bit in the DAC_CONFIG register for ratiometric or absolute-voltage output  
mode.  
Set the TEST_MUX_DAC_EN bit in the AMUX_CTRL register to 1.  
版权 © 2014–2016, Texas Instruments Incorporated  
57  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
Application Information (接下页)  
8.1.3 0- to 5-V Ratiometric Output With Internal Drive  
Sensor  
Controller  
PWR  
OUT  
PWR  
40 kΩ  
VDAC  
+
S1  
+
40 kΩ  
COMP  
DAC  
Reference Is  
Open  
Ratiometric  
to PWR / 4  
FB  
S2  
2 V/V  
4 V/V  
S0  
150 kΩ  
6.67 V/V  
10 V/V  
40 Ω  
GND  
FB+  
DACCAP  
AVDD  
100 nF  
100 nF  
100 nF  
100 nF  
REFCAP  
DVDD  
43. 0- to 5-V Ratiometric Output With Internal Drive Diagram  
8.1.3.1 Design Requirements  
There are only a few requirements to take into account when using the PGA300 in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the PWR pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close as possible to the AVDD pin.  
Place a 100-nF capacitor from the DVDD pin to ground, as close as possible to the DVDD pin.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground, as close as possible to the  
REFCAP pin.  
Implement compensation, using the COMP pin and an isolation resistor, when driving large capacitive loads  
with the OUT pin.  
58  
版权 © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Application Information (接下页)  
8.1.3.2 Detailed Design Procedure  
8.1.3.2.1 Programmer Tips  
8.1.3.2.1.1 Resetting the Microprocessor and Enable Digital Interface  
The following bits must be configured to reset the M0 microprocessor and to enable digital interface:  
1. Set the IF_SEL bit in the MICRO_INTERFACE_CONTROL register to 1.  
2. Set the MICRO_RESET bit in the MICRO_INTERFACE_CONTROL register to 1.  
8.1.3.2.1.2 Turning On the Accurate Reference Buffer (REFCAP Voltage)  
The following bits must be configured to turn ON the accurate reference buffer:  
1. Set the SD bit in the ALPWR register to 0.  
2. Set the ADC_EN_VREF bit in the ALPWR register to 1.  
By turning on the accurate reference buffer, the reference voltage can be measured on REFCAP pin. Further, the  
capacitor on the REFCAP pin is connected to the reference buffer.  
8.1.3.2.1.3 Turning On DAC and DAC GAIN  
The following bits must be configured to turn on DAC and DAC GAIN:  
Set the SD bit in ALPWR register to 0.  
Set the ADC_EN_VREF bit in the ALPWR register to 1.  
Set the DAC_ENABLE bit in the DAC_CTRL_STATUS register to 1.  
Set the 4_20_MA_EN bit in the OP_STAGE_CTRL register for the voltage-output or current-output mode.  
Set the DACCAP_EN bit in the OP_STAGE_CTRL register to connect or disconnect the external capacitor at  
the DAC output.  
Set the DAC_RATIOMETRIC bit in the DAC_CONFIG register for ratiometric or absolute-voltage output  
mode.  
Set the TEST_MUX_DAC_EN bit in the AMUX_CTRL register to 1.  
版权 © 2014–2016, Texas Instruments Incorporated  
59  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The PGA300 device has a single pin, PWR, for the input power supply. The maximum slew rate for the PWR pin  
is 0.5 V/µs as specified in the Recommended Operating Conditions. Faster slew rates might generate a POR. A  
decoupling capacitor for PWR should be placed as close as possible to the pin.  
10 Layout  
10.1 Layout Guidelines  
Standard layout good practices should be used when designing a board to test the PGA300 device. Depending  
on the number of layers in the board, one or more GND planes should be inserted as internal layers. However,  
given the limited number of external components needed for an application using the PGA300 device and the  
number of NC pins in the device, it is very possible to design a simple two-layer board. In addition, the PWR  
decoupling capacitor should be placed as close as possible to the pin. In a similar way, the 100 nF  
recommended capacitors for the AVDD and DVDD regulators as well as the 10- to 1000-nF recommended  
capacitor for REFCAP should be placed as close as possible to their respective pins.  
Depending on the application, the signal traces for FB–, FB+, COMP, and OUT should be routed such that they  
do not cross one another in order to minimize coupling.  
10.2 Layout Example  
44 shows the main guidelines previously discussed being implemented in a six-layer, socketed EVM of the  
PGA300 device. Two main GND planes (layer 2 and 5) were used to provide a nearby GND plane to each of the  
signal layers and the power plane (layer 3) in the EVM. This EVM supports voltage and current modes for the  
device, and as a result, GND separation is needed, depending on the application. As a result, layer 2 is a solid  
GND plane for the majority of the circuitry in the EVM (IRETURN). Because most of the circuitry is referred to  
this GND plane, layers 3 and 4 also contain copper pours connected to IRETURN. This GND plane is the return  
path for the supply used in the 4-mA to 20-mA loop. Layer 5 is a split plane for the ground references for the  
digital communication signals used for this EVM (USBGND) and the ground pins in the device (GND, AVSS and  
DVSS), referred to as ASICGND. The EVM provides jumpers to connect, or disconnect, these three planes one  
from another, depending on the desired configuration.  
44 shows the recommended capacitors for the proper operation of the PGA300 device. These capacitors are  
placed as close as possible to their respective pins of the socket used for this particular EVM. The signal traces  
for FB–, FB+, COMP, and OUT can also be observed to be routed all in the same layer to avoid crossing each  
other and minimize coupling.  
60  
版权 © 2014–2016, Texas Instruments Incorporated  
PGA300  
www.ti.com.cn  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
Layout Example (接下页)  
DVDD Capacitor  
PWR Capacitor  
AVDD Capacitor  
2.3 In  
REFCAP  
FB+ Trace  
FB– Trace  
COMP Trace  
OUT Trace  
5 In  
44. Layout Diagram  
版权 © 2014–2016, Texas Instruments Incorporated  
61  
PGA300  
ZHCSF35A OCTOBER 2014REVISED JUNE 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 商标  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。本数据随时可能发生变更并且  
不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
62  
版权 © 2014–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PGA300ARHHR  
PGA300ARHHT  
ACTIVE  
VQFN  
VQFN  
RHH  
36  
36  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
PGA300A  
RHH  
ACTIVE  
RHH  
NIPDAU  
PGA300A  
RHH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Aug-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PGA300ARHHR  
PGA300ARHHT  
VQFN  
VQFN  
RHH  
RHH  
36  
36  
2500  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Aug-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PGA300ARHHR  
PGA300ARHHT  
VQFN  
VQFN  
RHH  
RHH  
36  
36  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHH 36  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225440/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PGA300ARHHT

适用于压力传感器的 PGA300 信号调节器和发送器 | RHH | 36 | -40 to 150
TI

PGA300H622C1-2014F

IC Socket, PGA300, 300 Contact(s), 2.54mm Term Pitch, 0.1inch Row Spacing,
AMPHENOL

PGA300H623C1-2014F

IC Socket, PGA300, 300 Contact(s), 2.54mm Term Pitch, 0.1inch Row Spacing,
AMPHENOL

PGA302

具有 0V 至 5V 比例输出的传感器信号调理器
TI

PGA302EPWR

具有 0V 至 5V 比例输出的传感器信号调理器 | PW | 16 | -40 to 150
TI

PGA302EPWT

具有 0V 至 5V 比例输出的传感器信号调理器 | PW | 16 | -40 to 150
TI

PGA305

具有数字和模拟输出的电阻式传感信号调理器
TI

PGA305ARHHR

具有数字和模拟输出的电阻式传感信号调理器 | RHH | 36 | -40 to 150
TI

PGA305ARHHT

具有数字和模拟输出的电阻式传感信号调理器 | RHH | 36 | -40 to 150
TI

PGA308

Single-Supply, Auto-Zero Sensor Amplifier
TI

PGA308-DIE

SINGLE-SUPPLY, AUTO-ZERO SENSOR AMPLIFIER WITH PROGRAMMABLE GAIN AND OFFSET
TI

PGA308-Q1

Single-Supply, Auto-Zero Sensor Amplifier with Programmable Gain and Offset
TI