PTMAG5173A1QDBVRQ1 [TI]

具有 I²C 接口的汽车类高精度、线性 3D 霍尔效应传感器 | DBV | 6 | -40 to 125;
PTMAG5173A1QDBVRQ1
型号: PTMAG5173A1QDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I²C 接口的汽车类高精度、线性 3D 霍尔效应传感器 | DBV | 6 | -40 to 125

传感器
文件: 总78页 (文件大小:2579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
TMAG5173-Q1 I2C 接口的高精3D 霍尔效应传感器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TMAG5173-Q1 是一款低功耗线性 3D 霍尔效应传感  
适用于各种汽车类应用。此器件在 XY Z 轴  
集成三个独立的霍尔效应传感器。精密模拟信号链和集  
成的 12 ADC 使测量的模拟磁场值数字化。支持多  
个工VCC 范围时I2C 接口可确保使用低电压微控制  
器实现无缝的数据通信。该器件具有集成的温度传感  
可用于多种系统功能例如给定磁场的热预算检查  
或温度补偿计算。  
– 温度等140°C 125°C  
• 高精度线3D 霍尔效应传感器可优化位置检测  
速度和精度:  
– 角度测量误差±1°最大值)  
– 单轴转换率20kSPS  
以功能安全合规型为目标:  
– 专为功能安全应用开发  
可以通I2C 接口来配TMAG5173-Q1以实现磁轴  
和温度测量的任意组合。此外该器件可以配置为各种  
电源选项包括唤醒和睡眠模式),从而让设计人员能  
够根据其系统级需要优化系统功耗。多个传感器转换方  
案和 I2C 读取帧有助于优化吞吐量和准确性。专用的  
INT 引脚可以在低功耗唤醒和睡眠模式期间充当系统中  
也可以被微控制器用来触发新的传感器转换。  
– 在发布量产版本时将会提供有助于使系统设计符  
ISO 26262 ASIL B 标准的文档  
• 可配置的电源模式包括:  
1.5µA 唤醒和睡眠模式电流  
XY Z 轴上可选择的线性磁范围:  
TMAG5173x1-Q1±40mT±80mT  
TMAG5173x2-Q1±133mT±266mT  
• 来自用户定义的磁性和温度阈值交叉的中断信号  
• 具有增益和偏轴调节的集成CORDIC 计算  
• 用于降低噪声的可配置均值滤波器  
集成角度计算引擎 (CORDIC) 为同轴和离轴角度测量  
拓扑提供完整的 360° 角度位置信息。使用用户选择的  
两个磁轴执行角度计算。该器件具有磁增益和偏轴校正  
功能可减轻系统机械误差源的影响。  
TMAG5173-Q1 具有四个不同的出厂编I2C 地址。通  
过修改用户可配置的 I2C 地址寄存器该器件还支持其  
I2C 地址。每个可订购器件可配置为选择在系统校准  
期间适合磁体强度和元件放置的两个磁场范围之一。  
• 具有循环冗余校(CRC) 功能I2C 接口:  
– 最1MHz I2C 时钟速度  
I2C 或专INT 引脚触发转换  
• 多种磁体类型的集成温度补偿  
• 内置温度传感器  
2.3V 3.6V 电源电压范围  
该器件在 -40°C +125°C 的宽环境温度范围内能够  
保持稳定一致的优异性能。  
2 应用  
转向柱控制  
方向盘控制  
换挡系统  
电动自行车  
传动器  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
TMAG5173-Q1  
DBV (6)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
2.3 V to 3.6 V  
2.3 V to 5.5 V  
VCC  
INT  
TEST  
SCL  
SDA  
GND  
应用方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLYS035  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................16  
7.5 Programming............................................................ 18  
7.6 TMAG5173 Registers............................................... 27  
8 Application and Implementation..................................58  
8.1 Application Information............................................. 58  
8.2 Typical Applications.................................................. 62  
8.3 What to Do and What Not to Do............................... 66  
8.4 Power Supply Recommendations.............................67  
8.5 Layout....................................................................... 67  
9 Device and Documentation Support............................68  
9.1 Documentation Support............................................ 68  
9.2 接收文档更新通知..................................................... 68  
9.3 支持资源....................................................................68  
9.4 Trademarks...............................................................68  
9.5 Electrostatic Discharge Caution................................68  
9.6 术语表....................................................................... 68  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Temperature Sensor................................................... 5  
6.7 Magnetic Characteristics For A1.................................6  
6.8 Magnetic Characteristics For A2.................................7  
6.9 Magnetic Temp Compensation Characteristics...........8  
6.10 I2C Interface Timing..................................................8  
6.11 Power up Timing....................................................... 8  
6.12 Typical Characteristics..............................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
Information.................................................................... 68  
10.1 Package Option Addendum....................................69  
10.2 Tape and Reel Information......................................71  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SCL  
1
2
3
6
5
4
SDA  
INT  
GND  
GND (TEST)  
VCC  
Not to scale  
5-1. DBV Package, 6-Pin SOT-23 (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
SCL  
IO  
GND  
I
Serial clock.  
2
GND  
Ground  
3
GND (TEST)  
VCC  
TI Test Pin. Connect to ground in application.  
Supply voltage  
4
P
5
INT  
IO  
IO  
Interrupt input/ output. If not used and connected to ground, set MASK_INTB = 1b.  
Serial data.  
6
SDA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0
MAX  
UNIT  
V
VCC  
IOUT  
VOUT  
VIN  
Main supply voltage  
4
Output current, SDA, INT  
Output voltage, SDA, INT  
Input voltage, SCL, SDA, , INT  
Magnetic flux density  
10  
mA  
V
7
7
0.3  
0.3  
V
BMAX  
TJ  
Unlimited  
150  
T
Junction temperature  
°C  
°C  
40  
65  
Tstg  
Storage temperature  
170  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±700  
±500  
V(ESD) Electrostatic discharge  
Corner pins (1, 6, 3, and 4)  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
over recommended VVcc range (unless otherwise noted)  
MIN  
2.3  
0
NOM  
MAX  
3.6  
5.5  
2
UNIT  
V
VVCC  
VOUT  
IOUT  
VIH  
Main supply voltage  
Output voltage, SDA, INT  
V
Output current, SDA, INT  
mA  
VVCC  
VVCC  
C
Input HIGH voltage, SCL, SDA, INT  
Input LOW voltage, SCL, SDA, INT  
Operating free air temperature  
0.7  
VIL  
0.3  
TA  
125  
40  
6.4 Thermal Information  
THERMAL METRIC(1)  
TMAG5173-Q1  
DBV (6-SOT23)  
6 pins  
162  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
81.6  
50.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
30.7  
49.8  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
 
 
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
over recommended VVcc range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SDA, INT  
VOL  
Output LOW voltage, SDA, INT pin  
Output leakage current, SDA, INT pin  
IOUT = 2 mA  
0
0.4  
V
Output disabled  
VOZ = 5.5V  
IOZ  
±100  
nA  
RPU = 10 kΩ  
tFALL_INT  
INT output fall time  
6
ns  
CL = 20pF  
VPU = 1.7 V to 5.5 V  
INT Interrupt time duration during  
pulse mode  
tINT (INT)  
tINT (SCL)  
INT_MODE = 001b or 010b  
INT_MODE = 011b or 100b  
10  
10  
µs  
µs  
SCL Interrupt time duration  
DC POWER SECTION  
VCCUV  
IACTIVE  
Under voltage threshold at VCC  
Internal parameter (OTP option)  
1.9  
2.1  
2.4  
2.2  
V
X, Y, Z, or thermal sensor active  
conversion, LP_LN = 0b  
Active mode current  
Active mode current  
mA  
X, Y, Z, or thermal sensor active  
conversion, LP_LN = 1b  
IACTIVE  
3.0  
mA  
Device in trigger mode, no conversion  
started  
ISTANDBY  
ISLEEP  
Stand-by mode current  
Sleep mode current  
0.45  
8
mA  
nA  
AVERAGE POWER DURING DUTY-CYCLE MODE  
Wake-up interval of 5000 ms  
Magnetic 1-channel conversion  
LP_LN = 0b  
ICC_DCM_0p2_1  
W&S mode current consumption  
W&S mode current consumption  
1.5  
1.6  
µA  
µA  
VCC = 3.3 V  
Wake-up interval of 5000 ms  
Magnetic 4-channel conversion  
LP_LN = 0b  
ICC_DCM_0p2_1  
VCC = 3.3 V  
Wake-up interval of 1 ms  
Magnetic 1-channel conversion  
LP_LN = 0b  
ICC_DCM_1000_1  
W&S mode current consumption  
W&S mode current consumption  
110  
240  
µA  
µA  
VCC = 3.3 V  
Wake-up interval 1-ms, magnetic 4-ch  
conversion, LP_LN =0b, VCC =3.3V  
ICC_DCM_1000_4  
6.6 Temperature Sensor  
over operating free-air temperature range (unless otherwise noted)  
over recommended VVcc range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TSENS_RANGE  
TSENS  
Temperature sensing range  
Temperature Output(1)  
170  
40  
TA = 25°C  
25  
60.1  
25  
LSB/℃  
Temperature sensing resolution (in 16-  
bit format)  
TSENS_RES  
TSENS_T0  
TADC_T0  
Reference temperature for TADC_T0  
Temperature result in decimal value for  
TSENS_T0  
17508  
0.05  
NRMS_T  
RMS (1 Sigma) temperature noise  
CONV_AVG = 101b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
over recommended VVcc range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
NRMS_T  
RMS (1 Sigma) temperature noise  
CONV_AVG = 000b  
0.3  
(1) The temperature data is collected with T_CH_EN =1h and at least one magnetic channel enabled  
6.7 Magnetic Characteristics For A1  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
x_y_RANGE = 0b  
x_y_RANGE = 1b  
z_RANGE = 0b  
z_RANGE = 1b  
±40 mT range  
MIN  
TYP  
±40  
MAX UNIT  
mT  
BIN_A1_X_Y  
BIN_A1_X_Y  
±80  
mT  
Linear magnetic range  
BIN_A1_Z  
±40  
mT  
BIN_A1_Z  
±80  
mT  
SENS40_A1  
790  
LSB/mT  
LSB/mT  
Sensitivity, X, Y, or Z axis  
SENS80_A1  
±80 mT range  
400  
SENSER_PC_25C_A1  
SENSER_PC_TEMP_A1  
SENSLER_XY_A1  
SENSLER_Z_A1  
SENSMS_XY_A1  
Sensitivity error, X, Y, Z axis  
TA = 25°C  
±0.5%  
±1.5%  
±0.10%  
±0.10%  
±0.75%  
Sensitivity drift from 25°C, X, Y, Z axis  
Sensitivity Linearity Error, X, Y-axis  
Sensitivity Linearity Error, Z axis  
TA = 25°C  
TA = 25°C  
Sensitivity mismatch among X-Y axes TA = 25°C  
Sensitivity mismatch among Y-Z, or X-  
Z axes  
SENSMS_Z_A1  
TA = 25°C  
±0.55%  
±1.5%  
±1.5%  
Sensitivity mismatch drift from 25°C  
value; X-Y axes  
SENSMS_DR_XY_A1  
SENSMS_DR_Z_A1  
Sensitivity mismatch drift from 25°C  
value; Y-Z, or X-Z axes  
SENSLDR_A1  
Boff_A1  
Sensitivity Lifetime drift, X, Y, Z axis  
Offset  
TA = 25°C  
TA = 25°C  
±1.0%  
±100  
±1.2  
µT  
µT/°C  
µT  
Boff_TC_A1  
Boff_DR_A1  
Offset drift from 25°C value  
Offset Lifetime drift  
TA = 25°C  
±100  
LP_LN = 0b  
CONV_AVG = 000b  
NRMS_XY_00_000_A1  
NRMS_XY_01_000_A1  
NRMS_XY_00_101_A1  
NRMS_XY_01_101_A1  
NRMS_Z_00_000_A1  
NRMS_Z_01_000_A1  
NRMS_Z_00_101_A1  
NRMS_Z_01_101_A1  
98  
87  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
LP_LN = 1b  
CONV_AVG = 000b  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
TA = 25°C  
LP_LN = 0b  
CONV_AVG = 101b  
17.5  
16  
LP_LN = 1b  
CONV_AVG = 101b  
LP_LN = 0b  
CONV_AVG = 000b  
53  
LP_LN = 1b  
CONV_AVG = 000b  
47  
RMS (1 Sigma) magnetic noise (Z  
axis)  
TA = 25°C  
LP_LN = 0b  
CONV_AVG = 101b  
10  
LP_LN = 1b  
CONV_AVG = 101b  
9
X-Z Angle error in full 360 degree  
AERR_X_Z_101_A1  
rotation  
TA = 25°C  
CONV_AVG = 101b  
CONV_AVG = 101b  
±0.5  
Degree  
Degree  
X-Y Angle error in full 360 degree  
rotation  
AERR_X_Y_101_A1  
±0.25  
TA = 25°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
X-Z Angle temp drift from 25°C in full  
360 degree rotation  
ADR_X_Z_101_A1  
ADR_X_Y_101_A1  
CONV_AVG = 101b  
CONV_AVG = 101b  
±0.5  
Degree  
X-Y Angle temp drift from 25°C in full  
360 degree rotation  
±0.25  
Degree  
6.8 Magnetic Characteristics For A2  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±133  
MAX UNIT  
mT  
BIN_A2_X_Y  
x_y_RANGE = 0b  
x_y_RANGE = 1b  
z_RANGE = 0b  
z_RANGE = 1b  
±133 mT range  
±266 mT range  
TA = 25°C  
BIN_A2_X_Y  
±266  
mT  
Linear magnetic range  
BIN_A2_Z  
±133  
mT  
BIN_A2_Z  
±266  
mT  
SENS133_A2  
246  
LSB/mT  
LSB/mT  
Sensitivity, X, Y, or Z axis  
SENS266_A2  
123  
SENSER_PC_25C_A2  
SENSER_PC_TEMP_A2  
SENSLER_XY_A2  
SENSLER_Z_A2  
SENSMS_XY_A2  
Sensitivity error, X, Y, Z axis  
± 0.5%  
±1.5%  
±0.10%  
±0.10%  
±0.50%  
Sensitivity drift from 25°C, X, Y, Z axis  
Sensitivity Linearity Error, X, Y-axis  
Sensitivity Linearity Error, Z axis  
TA = 25°C  
TA = 25°C  
Sensitivity mismatch among X-Y axes TA = 25°C  
Sensitivity mismatch among Y-Z, or X-  
Z axes  
SENSMS_Z_A2  
TA = 25°C  
±0.55%  
±1.5%  
±1.5%  
Sensitivity mismatch drift from 25°C  
value; X-Y axes  
SENSMS_DR_XY_A2  
SENSMS_DR_Z_A2  
Sensitivity mismatch drift from 25°C  
value; Y-Z, or X-Z axes  
SENSLDR_A2  
Boff_A2  
Sensitivity Lifetime drift, X, Y, Z axis  
Offset  
TA = 25°C  
TA = 25°C  
±1.0%  
±100  
±1.2  
µT  
µT/°C  
µT  
Boff_TC_A2  
Boff_DR_A2  
Offset drift from 25°C value  
Offset Lifetime drift  
TA = 25°C  
±100  
LP_LN =0 b  
CONV_AVG = 000b  
NRMS_XY_00_000_A2  
NRMS_XY_01_000_A2  
NRMS_XY_00_010_A2  
NRMS_XY_10_010_A2  
NRMS_Z_00_000_A2  
NRMS_Z_10_000_A2  
NRMS_Z_00_101_A2  
NRMS_Z_10_101_A2  
127  
117  
22  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
LP_LN = 1b  
CONV_AVG = 000b  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN = 0b  
CONV_AVG = 101b  
LP_LN = 1b  
CONV_AVG = 101b  
21  
LP_LN = 0b  
CONV_AVG = 000b  
93  
LP_LN = 1b  
CONV_AVG = 000b  
88  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN = 0b  
CONV_AVG = 101b  
16  
LP_LN = 1b  
CONV_AVG = 101b  
15.5  
X-Z Angle error in full 360 degree  
AERR_X_Z_101_A2  
rotation  
TA = 25°C  
CONV_AVG = 101b  
CONV_AVG = 101b  
±0.5  
Degree  
Degree  
X-Y Angle error in full 360 degree  
rotation  
AERR_X_Y_101_A2  
±0.25  
TA = 25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
X-Z Angle temp drift from 25°C in full  
360 degree rotation  
ADR_X_Z_101_A2  
ADR_X_Y_101_A2  
CONV_AVG = 101b  
CONV_AVG = 101b  
±0.5  
Degree  
X-Y Angle temp drift from 25°C in full  
360 degree rotation  
±0.25  
Degree  
6.9 Magnetic Temp Compensation Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TEMPCO = 00b  
TEMPCO = 01b  
MIN  
TYP  
MAX UNIT  
%/°C  
TC_00  
TC_12  
TC_03  
TC_20  
0
0.12  
0.03  
0.2  
%/°C  
Temperature compensation (X, Y, Z-axes)  
TEMPCO = 10b  
TEMPCO = 11b  
%/°C  
%/°C  
6.10 I2C Interface Timing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
I2C Interface Fast Mode Plus  
fI2C_fmp  
I2C clock (SCL) frequency  
LOAD = 50 pF  
1000 KHz  
twhigh_fmp  
twlo_wfmp  
tsu_cs_fmp  
th_cs_fmp  
ticr_fmp  
High time: SCL logic high time duration  
Low time: SCL logic low time duration  
SDA data setup time  
350  
500  
50  
ns  
ns  
ns  
ns  
SDA data hold time  
120  
SDA, SCL input rise time  
120  
55  
ns  
ns  
µs  
µs  
µs  
µs  
ticf_fmp  
SDA, SCL input fall time  
th_ST_fmp  
tsu_SR_fmp  
tsu_SP_fmp  
tw_SP_SR_fmp  
Start condition hold time  
0.1  
0.1  
0.1  
0.2  
Repeated start condition setup time  
Stop condition setup time  
Bus free time between stop and start condition  
I2C Interface Fast Mode  
fI2C  
I2C clock (SCL) frequency  
LOAD = 50 pF  
400 KHz  
twhigh  
twlow  
tsu_cs  
th_cs  
High time: SCL logic high time duration  
Low time: SCL logic low time duration  
SDA data setup time  
600  
1300  
100  
0
ns  
ns  
ns  
ns  
SDA data hold time  
ticr  
SDA, SCL input rise time  
300  
300  
ns  
ns  
µs  
µs  
µs  
µs  
ticf  
SDA, SCL input fall time  
th_ST  
tsu_SR  
tsu_SP  
tw_SP_SR  
Start condition hold time  
0.3  
0.3  
0.3  
0.6  
Repeated start condition setup time  
Stop condition setup time  
Bus free time between stop and start condition  
6.11 Power up Timing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
270 µs  
Time to go to stand-by mode after VCC supply voltage  
crossing VCC_MIN  
tstart_power_up  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
tstart_sleep  
Time to go to stand-by mode from sleep mode(1)  
50  
70  
µs  
µs  
Time to go into continuous measure mode from stand-by  
mode  
tstart_measure  
CONV_AVG = 000b,  
tmeasure  
Conversion time  
OPERATING_MODE =10b,  
only one channel enabled  
50  
µs  
CONV_AVG = 101b,  
tmeasure  
tgo_sleep  
Conversion time  
OPERATING_MODE =10b,  
only one channel enabled  
825  
20  
µs  
µs  
Time to go into sleep mode after SCL goes high  
(1) The device will recognize the I2C communication from a primary only during stand-by or continuous measure modes. While the device  
is in sleep mode, a valid secondary address will wake up the device but no acknowledge will be sent to the primary. Start up time need  
to be considered before addressing the device after wake up.  
6.12 Typical Characteristics  
at TA = 25°C typical (unless otherwise noted)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
1.5  
1
0.5  
0
Vcc = 1.8 V  
Vcc = 3.3 V  
Vcc = 1.8 V  
Vcc = 3.3 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
6-1. Standby Mode ICC vs Temperature  
6-2. Active Mode ICC vs Temperature  
16  
25  
TXYZ Selected, VCC = 1.8 V  
TX Selected, VCC = 1.8 V  
TXYZ Selected, VCC = 3.3 V  
TX Selected, VCC = 3.3 V  
VCC = 1.8 V  
VCC = 3.3 V  
14  
12  
10  
8
20  
15  
10  
5
6
4
2
0
0
20  
1020  
2020  
Sleep-time (ms)  
3020  
4020  
5020  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
6-4. Average ICC vs W&S Mode Sleep Time  
6-3. Sleep Mode ICC vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMAG5173-Q1 IC is based on the Hall-effect technology and precision mixed signal circuitry from Texas  
Instruments. The output signals (raw X, Y, Z magnetic data and temperature data) are accessible through the I2C  
interface.  
The IC consists of the following functional and building blocks:  
The Power Management & Oscillator block contains a low-power oscillator, biasing circuitry, undervoltage  
detection circuitry, and a fast oscillator.  
The sensing and temperature measurement block contains the Hall biasing, Hall sensors with multiplexers,  
noise filters, integrator circuit, temperature sensor, and the ADC. The Hall-effect sensor data and temperature  
data are multiplexed through the same ADC.  
The Interface block contains the I2C control circuitry, ESD protection circuits, and all the I/O circuits. The  
TMAG5173-Q1 supports multiple I2C read frames along with integrated cyclic redundancy check (CRC).  
7.2 Functional Block Diagram  
VCC  
SCL  
SDA  
Power Management and Oscillator  
Result Registers  
ADC  
Z
Y
X
+
Gain and  
Filtering  
Interface  
MUX  
TEST  
Config Registers  
Temperature sensor  
INT  
Digital Core  
GND  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
As shown in 7-1, the TMAG5173-Q1 will generate positive ADC codes in response to a magnetic north pole in  
the proximity. Similarly, the TMAG5173-Q1 will generate negative ADC codes if magnetic south poles approach  
from the same directions.  
1
2
3
7-1. Direction of Sensitivity  
7.3.2 Sensor Location  
7-2 shows the location of X, Y, Z hall elements inside the TMAG5173-Q1.  
1.85-mm  
Y
X
Z
0.68-mm  
7-2. Location of X, Y, Z Hall Elements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.3.3 Interrupt Function  
The TMAG5173-Q1 supports flexible and configurable interrupt functions through either the INT or the SCL pin.  
7-1 shows different conversion completion events where result registers and SET_COUNT bits update, and  
where they do not.  
7-1. Result Register & SET_COUNT Update After Conversion Completion  
I2C BUS BUSY, NOT TALKING I2C BUS BUSY & TALKING TO  
I2C BUS NOT BUSY  
TO DEVICE  
DEVICE  
MODE  
DESCRIPTION  
INT_MODE  
RESULT  
UPDATE?  
SET_COUNT  
UPDATE?  
RESULT  
UPDATE?  
SET_COUNT  
UPDATE?  
RESULT  
UPDATE?  
SET_COUNT  
UPDATE?  
000b  
001b  
No interrupt  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Interrupt  
through INT  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Interrupt  
through INT  
except when  
I2C busy  
010b  
011b  
100b  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt  
through SCL  
Interrupt  
through SCL  
except when  
I2C busy  
备注  
TI does not recommend sharing the same I2C bus with multiple secondary devices when using the  
SCL pin for interrupt function. The SCL interrupt may corrupt transactions with other secondary  
devices if present in the same I2C bus.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.3.3.1 Interrupt Through SCL  
7-3 shows an example for interrupt function through the SCL pin with the device programmed to wake-up and  
sleep mode for threshold cross at a predefined intervals. The wake-up intervals can be set through the  
SLEEPTIME bits. When the magnetic threshold cross is detected, the device asserts a fixed width interrupt  
signal through the SCL pin, and goes back to standby mode.  
Wake-up & Sleep  
Standby Mode  
Mode  
Operating Mode  
X Ch Threshold  
X Magnetic  
Field  
Interrupt through  
SCL  
Time  
7-3. Interrupt Through SCL  
7.3.3.2 Fixed Width Interrupt Through INT  
7-4 shows an example for fixed-width interrupt function through the INT pin. The device is programmed to be  
in wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 1b. When the  
magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the INT pin, and  
goes back to standby mode.  
Wake-up & Sleep  
Standby Mode  
Mode  
Operating Mode  
X Ch Threshold  
X Magnetic  
Field  
Interrupt through INT  
(Fixed Width)  
SCL Line  
Time  
7-4. Fixed Width Interrupt Through INT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.3.3.3 Latched Interrupt Through INT  
7-5 shows an example for latched interrupt function through the INT pin. The device is programmed to be in  
wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 0b. When the  
magnetic threshold cross is detected, the device asserts a latched interrupt signal through the INT pin, and goes  
back to standby mode. The interrupt latch is cleared only after the device receives a valid address through the  
SCL line.  
Wake-up & Sleep  
Standby Mode  
Mode  
Operating Mode  
X Ch Threshold  
X Magnetic  
Field  
Interrupt through INT  
(Latched)  
SCL Line  
Time  
7-5. Latched Interrupt Through INT  
7.3.4 Device I2C Address  
7-2 shows the default factory programmed I2C addresses of the TMAG5173-Q1. The device needs to be  
addressed with the factory default I2C address after power up. If required, a primary can assign a new I2C  
address through the I2C_ADDRESS register bits after power up.  
7-2. I2C Default Address  
MAGNETIC  
RANGE  
I2C READ ADDRESS (8-  
BIT)  
DEVICE VERSION  
I2C ADDRESS (7 MSB BITS) I2C WRITE ADDRESS (8-BIT)  
TMAG5173A1  
TMAG5173B1  
TMAG5173C1  
TMAG5173D1  
TMAG5173A2  
TMAG5173B2  
TMAG5173C2  
TMAG5173D2  
35h  
22h  
78h  
44h  
35h  
22h  
78h  
44h  
6Ah  
44h  
F0h  
88h  
6Ah  
44h  
F0h  
88h  
6Bh  
45h  
F1h  
89h  
6Bh  
45h  
F1h  
89h  
±40 mT, ±80 mT  
±133 mT, ±266 mT  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.3.5 Magnetic Range Selection  
7-3 shows the magnetic range selection for the TMAG5173-Q1 device. The X, Y, and Z axes range can be  
selected with the X_Y_RANGE and Z_RANGE register bits.  
7-3. Magnetic Range Selection  
RANGE REGISTER SETTING  
X_Y_RANGE = 0b  
X_Y_RANGE = 1b  
Z_RANGE = 0b  
TMAG5173A1  
TMAG5173A2  
COMMENT  
Better SNR performance  
Better SNR performance  
±40 mT  
±133 mT  
X, Y Axis Field  
Z Axis Field  
±80 mT  
±266 mT  
±40 mT  
±133 mT  
Z_RANGE = 1b  
±80 mT  
±266 mT  
7.3.6 Update Rate Settings  
The TMAG5173-Q1 offers multiple update rates to offer design flexibility to system designers. The different  
update rates can be selected with the CONV_AVG register bits. 7-4 shows different update rate settings for  
the TMAG5173-Q1.  
7-4. Update Rate Settings  
UPDATE RATE  
TWO AXES  
13.3 kSPS  
8.0 kSPS  
OPERATING  
MODE  
REGISTER SETTING  
COMMENT  
SINGLE AXIS  
20.0 kSPS  
13.3 kSPS  
8.0 kSPS  
THREE AXES  
10.0 kSPS  
5.7 kSPS  
3.1 kSPS  
1.6 kSPS  
0.8 kSPS  
0.4 kSPS  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
CONV_AVG = 000b  
CONV_AVG = 001b  
CONV_AVG = 010b  
CONV_AVG = 011b  
CONV_AVG = 100b  
CONV_AVG = 101b  
Fastest update rate  
4.4 kSPS  
4.4 kSPS  
2.4 kSPS  
2.4 kSPS  
1.2 kSPS  
1.2 kSPS  
0.6 kSPS  
Best SNR case  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
The TMAG5173-Q1 supports multiple functional modes for wide array of applications as explained in 7-6. A  
specific functional mode is selected by setting the corresponding value in the OPERATING_MODE register bits.  
The device starts powering up after VCC supply crosses the minimum threshold as specified in the  
Recommended Operating Conditions (ROC) table.  
7.4.1 Standby (Trigger) Mode  
The TMAG5173-Q1 goes to stand-by mode after first-time power up. At this mode, the digital circuitry and  
oscillators are on and the device is ready to accept commands from the primary device. Based off the  
commands the device can start a sensor data conversion, go to power saving mode or the start data transfer  
through I2C interface. A new conversion can be triggered through I2C command or through INT pin. In this mode  
the device retains the immediate past conversion result data in the corresponding result registers. The time it  
takes for the device to go to standby mode from power up is denoted by Tstart_power_up  
.
7.4.2 Sleep Mode  
The TMAG5173-Q1 supports an ultra-low power sleep mode where it retains the critical user configuration  
settings. In this mode the device doesn't retain the conversion result data. A primary can wake up the device  
from sleep mode through I2C communications or the INT pin. The time it takes for the device to go to standby  
mode from sleep mode is denoted by Tstart_sleep  
.
7.4.3 Wake-up and Sleep (W&S) Mode  
In this mode the TMAG5173-Q1 can be configured to go to sleep and wake up at a certain interval, and measure  
sensor data based off the SLEEPTIME register bits setting. The device can be set to generate an interrupt  
through the INT_CONFIG_1 register. Once the conversion is complete and the interrupt condition is met, the  
TMAG5173-Q1 will exit the W&S mode and go to the standby mode. The last measured data will be stored in the  
corresponding result registers before the device goes to the standby mode. If the interrupt condition isn't met, the  
device will continue to be in the W&S mode to wake up and measure data at the specified interval. A primary can  
wake up the TMAG5173-Q1 anytime during the W&S mode through I2C bus or INT pin. The time it takes for the  
device to go to standby mode from W&S mode is denoted by Tstart_sleep  
.
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.4.4 Continuous Measure Mode  
In this mode the TMAG5173-Q1 continuously measures the sensor data per SENSOR_CONFIG &  
DEVICE_CONFIG register settings. In this mode the result registers can be accessed through the I2C lines. The  
time it takes for the device to go from standby mode to continuous measure mode is denoted by Tstart_measure  
.
Device Startup: (VCC crossing MIN threshold specified in the ROC  
table)  
Sleep Mode  
Wake-up & Sleep Mode  
Tstart_power_up  
Tstart_sleep  
Tgo_sleep  
Stand-by (Trigger) Mode  
Tstart_measure  
Continuous Measure Mode  
7-6. TMAG5173-Q1 Power-Up Sequence  
7-5 shows different device operational modes of the TMAG5173-Q1.  
7-5. Operating Modes  
ACCESS TO  
USER  
REGISTERS  
OPERATING  
MODE  
RETAIN USER  
CONFIGURATION  
DEVICE FUNCTION  
COMMENT  
Continuous  
Measure Mode  
Continuously measuring x, y, z  
axis, or temperature data  
Yes  
Yes  
Yes  
Device is ready to accept I2C  
commands and start active  
conversion  
Standby Mode  
Yes  
Yes  
Wakes up at a certain interval to  
measure the x, y, z axis, or  
temperature data  
1, 5, 10, 15, 20, 30, 50, 100, 500, 1000,  
2000, 5000, & 20000-ms intervals  
supported.  
Wake-up and  
Sleep Mode  
No  
No  
Sleep mode can be utilized by a primary  
device to implement other power saving  
intervals not supported by wake-up and  
sleep mode.  
Device retains key configuration  
settings, but doesn't retain the  
measurement data  
Sleep Mode  
Yes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C Interface  
The TMAG5173-Q1 offers I2C interface, a two-wire interface to connect low-speed devices like microcontrollers,  
A/D and D/A converters, I/O interfaces and other similar peripherals in embedded systems.  
7.5.1.1 SCL  
The SCL is the clock line used to synchronize all data transfers over the I2C bus.  
7.5.1.2 SDA  
SDA is the bidirectional data line for the I2C interface.  
7.5.1.3 I2C Read/Write  
The TMAG5173-Q1 supports multiple I2C read and write frames targeting different applications. I2C_RD and  
CRC_EN bits offers multiple read frames to optimize the read time, data resolution, and data integrity for a select  
application.  
7.5.1.3.1 Standard I2C Write  
7-7 shows an example of standard I2C two byte write command supported by TMAG5173-Q1. The starting  
byte contains 7-bit secondary device address and a '0' at the R/W command bit. The MSB of the second byte  
contains the conversion trigger bit. Writing '1' at this trigger bit will start a new conversion after the register  
address decoding is completed. The 7 LSB bits of the second byte contains the starting register address for the  
write command. After the two command bytes, the primary device starts to send the data to be written at the  
corresponding register address. Each successive write byte will send the data for the successive register  
address in the secondary device.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Conversion Trigger  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
0
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+n]  
Register address  
Secondary address  
7-7. Standard I2C Write  
7.5.1.3.2 General Call Write  
7-8 shows an example of the general call I2C write command supported by the TMAG5173-Q1. This  
command is useful to configure multiple I2C devices in a I2C bus simultaneously. The starting byte contains 8-bit  
'0's. The MSB of the second byte contains the conversion trigger bit. Writing '1' at this trigger bit will start a new  
conversion after the register address decoding is completed. The 7 LSB bits of the second byte contains the  
starting register address for the write command. After the two command bytes, the primary device starts to send  
the data to be written at the corresponding register address of all the secondary devices in the I2C bus. Each  
successive write byte will send the data for the successive register address in the secondary devices.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Conversion Trigger  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
0
0 0 0 0 0 0 0  
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+N]  
Register address  
General call address  
7-8. General Call I2C Write  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.5.1.3.3 Standard 3-Byte I2C Read  
7-9 and 7-10 show examples of standard I2C three byte read command supported by the TMAG5173-Q1.  
The starting byte contains 7-bit secondary device address and the R/W command bit '0'. The MSB of the second  
byte contains the conversion trigger command bit. Writing '1' at this trigger bit will start a new conversion after  
the register address decoding is completed. The 7 LSB bits of the second byte contains the starting register  
address for the write command. After receiving ACK signal from secondary, the primary send the secondary  
address once again with R/W command bit as '1'. The secondary starts to send the corresponding register data.  
It will send successive register data with each successive ACK from primary. If CRC is enabled, the secondary  
will send the fifth CRC byte based off the CRC calculation of immediate past 4 register bytes.  
备注  
In the standard 3-byte read command the TMAG5173-Q1 doesn't support CRC if the data length is  
more than 4 byte. Initiate successive read commands for larger data stream requiring CRC.  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Conversion Trigger  
Secondary Data  
Start/ Stop from Primary  
0
1
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+n]  
Register address  
Secondary address  
Secondary address  
7-9. Standard 3-Byte I2C Read With CRC Disabled, CRC_EN = 0b  
Primary Data  
ACK from Secondary  
Conversion Trigger  
No ACK from Primary  
ACK from Primary  
Start/ Stop from Primary  
Secondary Data  
0
1
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+2]  
Register address  
Secondary address  
Secondary address  
Data[Reg_Add+3]  
CRC  
7-10. Standard 3-Byte I2C Read With CRC Enabled, CRC_EN = 1b  
7.5.1.3.4 1-Byte I2C Read Command for 16-Bit Data  
7-11 and 7-12 show examples of 1-byte I2C read command supported by the TMAG5173-Q1. Select  
I2C_RD =01b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at the  
R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 16-bit data of the  
enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an  
additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet.  
When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data  
bytes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
1
Secondary address  
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[CONV_STATUS]  
Data[Axis2_MSB]  
Data[Y_MSB]  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[Axis2_LSB]  
Data[CONV_STATUS]  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[X_LSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[T_LSB]  
Data[X_MSB]  
Data[X_LSB]  
Data[Y_MSB]  
Data[Y_LSB]  
Secondary address  
Data[Z_MSB]  
Data[Z_LSB]  
Data[CONV_STATUS]  
All Sensors Measurement Example, TXYZ  
7-11. 1-Byte I2C Read Command for 16-Bit Data With CRC Disabled, CRC_EN = 0b  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[CONV_STATUS]  
Data[Axis2_MSB]  
Data[Y_MSB]  
CRC  
Secondary address  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[Axis2_LSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[X_LSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
CRC  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[T_LSB]  
Data[Y_MSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
CRC  
Three Axes Measurement Example, TYZ  
7-12. 1-Byte I2C Read Command for 16-Bit Data With CRC Enabled, CRC_EN = 1b  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
备注  
In the 1-byte read command for 16-bit data only up to 3 channels data can be sent when CRC is  
enabled. This restriction doesn't apply if CRC is disabled.  
7.5.1.3.5 1-Byte I2C Read Command for 8-Bit Data  
7-13 and 7-14 show examples of 1-byte I2C read command supported by the TMAG5173-Q1. Select  
I2C_RD =10b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at the  
R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 8-bit data of the  
enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an  
additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet.  
When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data  
bytes.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
1
Data[Axis1_MSB]  
Data[CONV_STATUS]  
Secondary address  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis2_MSB]  
Data[CONV_STATUS]  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[Y_MSB]  
Data[X_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
Secondary address  
Three Axes Measurement Example, XYZ  
1
Data[Y_MSB]  
Data[X_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
Data[T_MSB]  
Secondary address  
All Sensors Measurement Example, TXYZ  
7-13. 1-Byte I2C Read Command for 8-Bit Data With CRC Disabled, CRC_EN = 0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
1
Data[Axis1_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Single Axis Measurement Example, X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis2_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[Y_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[X_MSB]  
Data[Y_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Three Axes & Temperature Measurement Example, TXYZ  
7-14. 1-Byte I2C Read Command for 8-Bit Data With CRC Enabled, CRC_EN = 1b  
备注  
In the 1-byte read command for 8-bit data any combinations of channels can be sent without  
restrictions.  
7.5.1.3.6 I2C Read CRC  
The TMAG5173-Q1 supports optional CRC during I2C read. The CRC can be enabled through the CRC_EN  
register bit. The CRC is performed on a data string that is determined by the I2C read type. The CRC information  
is sent as a single byte after the data bytes. The code is generated by the polynomial x8 + x2 + x + 1. Initial CRC  
bits are FFh.  
The following equations can be employed to calculate CRC:  
d = Data Input, c = Initial CRC (FFh)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
newcrc[0] = d[7] ^ d[6] ^ d[0] ^ c[0] ^ c[6] ^ c[7]  
newcrc[1] = d[6] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[6]  
newcrc[2] = d[6] ^ d[2] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[2] ^ c[6]  
newcrc[3] = d[7] ^ d[3] ^ d[2] ^ d[1] ^ c[1] ^ c[2] ^ c[3] ^ c[7]  
newcrc[4] = d[4] ^ d[3] ^ d[2] ^ c[2] ^ c[3] ^ c[4]  
newcrc[5] = d[5] ^ d[4] ^ d[3] ^ c[3] ^ c[4] ^ c[5]  
newcrc[6] = d[6] ^ d[5] ^ d[4] ^ c[4] ^ c[5] ^ c[6]  
newcrc[7] = d[7] ^ d[6] ^ d[5] ^ c[5] ^ c[6] ^ c[7]  
The following examples show calculated CRC byte based off various input data:  
I2C Data 00h : CRC = F3h  
I2C Data FFh : CRC = 00h  
I2C Data 80h : CRC = 7Ah  
I2C Data 4Ch : CRC = 10h  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
I2C Data E0h : CRC = 5Dh  
I2C Data 00000000h : CRC = D1h  
I2C Data FFFFFFFFh : CRC = 0Fh  
7.5.2 Data Definition  
7.5.2.1 Magnetic Sensor Data  
The X, Y, and Z magnetic sensor data are stored in x_MSB_RESULT and x_LSB_RESULT registers. 7-15  
shows that each sensor output stored in a 16-bit 2's complement format in two 8-bit registers. The data can be  
retrieved as 16-bit format combining both MSB and LSB registers, or as 8-bit format through the MSB register.  
x_MSB_RESULT  
x_LSB_RESULT  
7-15. Magnetic Sensor Data Definition  
The measured magnetic field can be calculated using 方程式 10 for 16-bit data, and using 方程式 11 for 8-bit  
data.  
14  
i = 0  
15  
− D × 2  
i
+ ∑  
D × 2  
i
15  
B =  
× 2 B  
(10)  
R
16  
2
where  
B is magnetic field in mT.  
Di is the data bit shown in 7-15.  
BR is the magnetic range in mT for the corresponding channel.  
6
7
i
− D × 2 + ∑  
15  
D
× 2  
i = 0 i + 8  
B =  
× 2 B  
(11)  
R
8
2
7.5.2.2 Temperature Sensor Data  
The TMAG5173-Q1 will measure temperature from 40°C to 170°C. The temperature sensor data are stored in  
T_MSB_RESULT and T_LSB_RESULT registers. 7-16 shows the sensor output stored in a 16-bit 2's  
complement format in two 8-bit registers. The data can be retrieved as 16-bit format combining both MSB and  
LSB registers, or as 8-bit format through the MSB register.  
T_MSB_RESULT  
T_LSB_RESULT  
7-16. Temperature Sensor Data Definition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG5173-Q1  
 
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Use 方程式 12 to calculate the measured temperature in degree Celsius for 16-bit data, and use 方程式 13 to  
calculate the measured temperature for 8-bit data.  
T
− T  
ADC_T0  
ADC_T  
T = T  
+
+
(12)  
(13)  
SENS_T0  
SENS_T0  
T
ADC_RES  
T
ADC_T0  
256 ×  
T
ADC_T  
256  
T = T  
T
ADC_RES  
where  
T is the measured temperature in degree Celsius.  
TSENS_T0 as listed in the Electrical Characteristics table.  
TADC_RES is the change in ADC code per degree Celsius.  
TADC_T0 as listed in the Electrical Characteristics table.  
TADC_T is the measured ADC code for temperature T.  
7.5.2.3 Angle and Magnitude Data Definition  
The TMAG5173-Q1 calculates the angle from a pair of magnetic axes based off the ANGLE_EN register bits  
setting. 7-17 shows the angle information stored in the ANGLE_RESULT_MSB and ANGLE_RESULT_LSB  
registers. Bits D04-D12 store angle integer value from 0 to 360 degree. Bits D00-D03 store fractional angle  
value. The 3-MSB bits are always populated as b000. Use 方程14 to calculate the angle value.  
3
i
D × 2  
i
12  
i = 4  
i − 4  
i = 0  
16  
A = ∑  
D × 2  
+
(14)  
i
where  
A is the angle measured in degree.  
Di is the data bit as shown in 7-17.  
For example: a 354.50 degree is populated as 0001 0110 0010 1000b and a 17.25 degree is populated as 000  
0001 0001 0100b.  
Reserved bits  
9-bit Angle integer value  
4-bit Angle fraction value  
0
0 0  
7-17. Angle Data Definition  
During the angle calculation, use 方程15 to calculate the resultant vector magnitude.  
2
Cℎ1  
2
Cℎ2  
M = MADC  
+ MADC  
(15)  
where  
MADCCh1, MADCCh2 are the ADC codes of the two magnetic channels selected for the angle calculation.  
7-18 shows the magnitude value stored in the MAGNITUDE_RESULT register. For on-axis angular  
measurement the magnitude value should remain constant across the full 360° measurement.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
MAGNITUDE_RESULT  
7-18. Magnitude Result Data Definition  
7.5.2.4 Magnetic Sensor Offset Correction  
The TMAG5173-Q1 enables offset correction for a pair of magnetic axes (see 7-19). The  
MAG_OFFSET_CONFIG_1 and MAG_OFFSET_CONFIG_2 registers store the offset values to be corrected in  
2's complement data format. As an example, if the uncorrected waveform for a particular axis has a value that is  
+2 mT too high, the offset correction value of 2 mT should be entered in the corresponding offset correction  
register. The selection and order of the sensors are defined in the ANGLE_EN register bits setting. The default  
value of these offset correction registers are set as zero.  
ΔOffset  
0-mT Reference Axis  
7-19. Magnetic Sensor Data Offset Correction  
Use 程式 16 to calculate the amount of offset for each axis. As an example, with a ±40 mT range,  
MAG_OFFSET_CONFIG_1 set at 1000 0000b, and MAG_OFFSET_CONFIG_2 set at 0001 0000b, the offset  
correction for the first axis is 2.5 mT and second axis is 0.312 mT.  
6
i = 0  
7
i
− D × 2 + ∑  
D × 2  
i
7
=
× 2 B  
(16)  
Offset  
R
12  
2
where  
• ΔOffset is the amount of offset correction to be applied in mT.  
Di is the data bit in the MAG_OFFSET_CONFIG_1 or MAG_OFFSET_CONFIG_2 register.  
BR is the magnetic range in mT for the corresponding channel.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Alternately, you can use 程式 17 to calculate the values for MAG_OFFSET_CONFIG_1 or  
MAG_OFFSET_CONFIG_2 for a target offset correction.  
12  
2
× ∆  
2 B  
Offset  
R
MAG_OFFSET =  
(17)  
where  
MAG_OFFSET is the decimal value to be entered in the MAG_OFFSET_CONFIG_1 or  
MAG_OFFSET_CONFIG_2 register.  
• ΔOffset is the amount of offset correction to be applied in mT.  
BR is the magnetic range in mT for the corresponding channel.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6 TMAG5173 Registers  
7-6 lists the memory-mapped registers for the TMAG5173 registers. All register offset addresses not listed in  
7-6 should be considered as reserved locations and the register contents should not be modified.  
7-6. TMAG5173 Registers  
Offset Acronym  
Register Name  
Section  
7.6.1  
0h  
1h  
DEVICE_CONFIG_1  
Configure Device Operation Modes  
Configure Device Operation Modes  
Sensor Device Operation Modes  
Sensor Device Operation Modes  
X Threshold Configuration  
Y Threshold Configuration  
Z Threshold Configuration  
Temp Sensor Configuration  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
I2C Address Register  
DEVICE_CONFIG_2  
SENSOR_CONFIG_1  
SENSOR_CONFIG_2  
X_THR_CONFIG  
7.6.2  
2h  
7.6.3  
3h  
7.6.4  
4h  
7.6.5  
5h  
Y_THR_CONFIG  
7.6.6  
6h  
Z_THR_CONFIG  
7.6.7  
7h  
T_CONFIG  
7.6.8  
8h  
INT_CONFIG_1  
7.6.9  
9h  
MAG_GAIN_CONFIG  
MAG_OFFSET_CONFIG_1  
MAG_OFFSET_CONFIG_2  
I2C_ADDRESS  
7.6.10  
7.6.11  
7.6.12  
7.6.13  
7.6.14  
7.6.15  
7.6.16  
7.6.17  
7.6.18  
7.6.19  
7.6.20  
7.6.21  
7.6.22  
7.6.23  
7.6.24  
7.6.25  
7.6.26  
7.6.27  
7.6.28  
7.6.29  
Ah  
Bh  
Ch  
Dh  
DEVICE_ID  
ID for the device die  
Eh  
MANUFACTURER_ID_LSB  
MANUFACTURER_ID_MSB  
T_MSB_RESULT  
Manufacturer ID lower byte  
Manufacturer ID upper byte  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Status Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Device_Diag Status Register  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
T_LSB_RESULT  
X_MSB_RESULT  
X_LSB_RESULT  
Y_MSB_RESULT  
Y_LSB_RESULT  
Z_MSB_RESULT  
Z_LSB_RESULT  
CONV_STATUS  
ANGLE_RESULT_MSB  
ANGLE_RESULT_LSB  
MAGNITUDE_RESULT  
DEVICE_STATUS  
Complex bit access types are encoded to fit into small table cells. 7-7 shows the codes that are used for  
access types in this section.  
7-7. TMAG5173 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7-7. TMAG5173 Access Type Codes (continued)  
Access Type  
Code  
Description  
W1CP  
W
1C  
P
Write  
1 to clear  
Requires privileged access  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.1 DEVICE_CONFIG_1 Register (Offset = 0h) [Reset = 00h]  
DEVICE_CONFIG_1 is shown in 7-8.  
Return to the 7-6.  
7-8. DEVICE_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CRC_EN  
R/W  
0h  
Enables I2C CRC byte to be sent  
0h = CRC disabled  
1h = CRC enabled  
6-5  
4-2  
MAG_TEMPCO  
CONV_AVG  
R/W  
R/W  
0h  
0h  
Temperature coefficient of the magnet  
0h = 0% (No temperature compensation)  
1h = 0.12%/ deg C (NdBFe)  
2h = 0.03%/ deg C (SmCo)  
3h = 0.2%/deg C (Ceramic)  
Enables additional sampling of the sensor data to reduce the noise  
effect (or to increase resolution)  
0h = 1x average, 10.0-kSPS (3-axes) or 20-kSPS (1 axis)  
1h = 2x average, 5.7-kSPS (3-axes) or 13.3-kSPS (1 axis)  
2h = 4x average, 3.1-kSPS (3-axes) or 8.0-kSPS (1 axis)  
3h = 8x average, 1.6-kSPS (3-axes) or 4.4-kSPS (1 axis)  
4h = 16x average, 0.8-kSPS (3-axes) or 2.4-kSPS (1 axis)  
5h = 32x average, 0.4-kSPS (3-axes) or 1.2-kSPS (1 axis)  
1-0  
I2C_RD  
R/W  
0h  
Defines the I2C read mode  
0h = Standard I2C 3-byte read command  
1h = 1-byte I2C read command for 16bit sensor data and conversion  
status  
2h = 1-byte I2C read command for 8 bit sensor MSB data and  
conversion status  
3h = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.2 DEVICE_CONFIG_2 Register (Offset = 1h) [Reset = 00h]  
DEVICE_CONFIG_2 is shown in 7-9.  
Return to the 7-6.  
7-9. DEVICE_CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
THR_HYST  
R/W  
0h  
Select thresholds for the interrupt function. Example, for 40-mT  
range with THR_HYST = 010b, the hysteresis value = ((40/(211))*8  
=0.156mT  
0h = Takes the 2's complement value of each x_THR_CONFIG  
register to create a magnetic threshold of the corresponding axis  
1h = Takes the 7 LSB bits of the x_THR_CONFIG register to create  
two opposite magnetic thresholds (one north, and another south) of  
equal magnitude.  
2h = 8 LSB of threshold based off full scale magnetic range at 12 bit  
resolution  
3h = 16 LSB of threshold based off full scale magnetic range at 12 bit  
resolution  
4h = 32 LSB of threshold based off full scale magnetic range at 12 bit  
resolution  
5h = 64 LSB of threshold based off full scale magnetic range at 12 bit  
resolution  
6h = 128 LSB of threshold based off full scale magnetic range at 12  
bit resolution  
7h = 256 LSB of threshold based off full scale magnetic range at 12  
bit resolution  
4
3
2
LP_LN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Selects the modes between low active current or low-noise modes  
0h = Low active current mode  
1h = Low noise mode  
I2C_GLITCH_FILTER  
TRIGGER_MODE  
I2C glitch filter  
0h = Glitch filter on  
1h = Glitch filter off  
Selects a condition which initiates a single conversion based off  
already configured registers. A running conversion completes before  
executing a trigger. Redundant triggers are ignored.  
TRIGGER_MODE is available only during the mode explicitly  
mentioned in OPERATING_MODE.  
0h = Conversion Start at I2C Command Bits, DEFAULT  
1h = Conversion starts through trigger signal at INT pin  
1-0  
OPERATING_MODE  
R/W  
0h  
Selects Operating Mode and updates value based on operating  
mode if device transitions from Wake-up and sleep mode to Standby  
mode.  
0h = Stand-by mode (starts new conversion at trigger event)  
1h = Sleep mode  
2h = Continuous measure mode  
3h = Wake-up and sleep mode (W&S mode)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.3 SENSOR_CONFIG_1 Register (Offset = 2h) [Reset = 00h]  
SENSOR_CONFIG_1 is shown in 7-10.  
Return to the 7-6.  
7-10. SENSOR_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
MAG_CH_EN  
R/W  
0h  
Enables data acquisition of the magnetic axis channel(s)  
0h = All magnetic channels of off, DEFAULT  
1h = X channel enabled  
2h = Y channel enabled  
3h = X, Y channel enabled  
4h = Z channel enabled  
5h = Z, X channel enabled  
6h = Y, Z channel enabled  
7h = X, Y, Z channel enabled  
8h = XYX channel enabled  
9h = YXY channel enabled  
Ah = YZY channel enabled  
Bh = XZX channel enabled  
Ch = X,Y,Z with positive diagnostic offset  
Dh = X,Y,Z with negative diagnostic offset  
Eh = Hall resistance check + ADC check  
Fh = Hall offset check +ADC check  
3-0  
SLEEPTIME  
R/W  
0h  
Selects the time spent in low power mode between conversions  
when OPERATING_MODE =11b  
0h = 1ms  
1h = 5ms  
2h = 10ms  
3h = 15ms  
4h = 20ms  
5h = 30ms  
6h = 50ms  
7h = 100ms  
8h = 500ms  
9h = 1000ms  
Ah = 2000ms  
Bh = 5000ms  
Ch = 20000ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.4 SENSOR_CONFIG_2 Register (Offset = 3h) [Reset = 00h]  
SENSOR_CONFIG_2 is shown in 7-11.  
Return to the 7-6.  
7-11. SENSOR_CONFIG_2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
THRX_COUNT  
R
0h  
Reserved  
6
R/W  
0h  
0h  
Number of threshold crossings before the interrupt is asserted  
0h = 1 threshold crossing  
1h = 4 threshold crossing  
5
4
MAG_THR_DIR  
MAG_GAIN_CH  
ANGLE_EN  
R/W  
Selects the direction of threshold check. This bit is ignored when  
THR_HYST > 001b  
0h = sets interrupt for field above the threshold  
1h = sets interrupt for field below the threshold  
R/W  
R/W  
0h  
0h  
Selects the axis for magnitude gain correction value entered in  
MAG_GAIN_CONFIG register  
0h = 1st channel is selected for gain adjustment  
1h = 2nd channel is selected for gain adjustment  
3-2  
Enables angle calculation, magnetic gain, and offset corrections  
between two selected magnetic channels  
0h = No angle calculation, magnitude gain, and offset correction  
enabled  
1h = X 1st, Y 2nd  
2h = Y 1st, Z 2nd  
3h = X 1st, Z 2nd  
1
0
X_Y_RANGE  
Z_RANGE  
R/W  
R/W  
0h  
0h  
Select the X and Y axes magnetic range from 2 different options.  
0h = ±40mT (TMAG5173A1) or ±133mT (TMAG5173A2), DEFAULT  
1h = ±80mT (TMAG5173A1) or ±266mT (TMAG5173A2)  
Select the Z axis magnetic range from 2 different options.  
0h = ±40mT (TMAG5173A1) or ±133mT (TMAG5173A2), DEFAULT  
1h = ±80mT (TMAG5173A1) or ±266mT (TMAG5173A2)  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.5 X_THR_CONFIG Register (Offset = 4h) [Reset = 00h]  
X_THR_CONFIG is shown in 7-12.  
Return to the 7-6.  
7-12. X_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_THR_CONFIG  
R/W  
0h  
8-bit, 2's complement X axis threshold code for limit check. The  
range of possible threshold entrees can be +/-128. The threshold  
value in mT is calculated for A1 as (40(1+X_Y_RANGE)/  
128)*X_THR_CONFIG, for A2 as (133(1+X_Y_RANGE)/  
128)*X_THR_CONFIG. Default 0h means no threshold comparison.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.6 Y_THR_CONFIG Register (Offset = 5h) [Reset = 00h]  
Y_THR_CONFIG is shown in 7-13.  
Return to the 7-6.  
7-13. Y_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_THR_CONFIG  
R/W  
0h  
8-bit, 2's complement Y axis threshold code for limit check. The  
range of possible threshold entrees can be +/-128. The threshold  
value in mT is calculated for A1 as (40(1+X_Y_RANGE)/  
128)*X_THR_CONFIG, for A2 as (133(1+X_Y_RANGE)/  
128)*X_THR_CONFIG. Default 0h means no threshold comparison.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.7 Z_THR_CONFIG Register (Offset = 6h) [Reset = 00h]  
Z_THR_CONFIG is shown in 7-14.  
Return to the 7-6.  
7-14. Z_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_THR_CONFIG  
R/W  
0h  
8-bit, 2's complement Z axis threshold code for limit check. The  
range of possible threshold entrees can be +/-128. The threshold  
value in mT is calculated for A1 as (40(1+Z_RANGE)/  
128)*Z_THR_CONFIG, for A2 as (133(1+Z_RANGE)/  
128)*Z_THR_CONFIG. Default 0h means no threshold comparison.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.8 T_CONFIG Register (Offset = 7h) [Reset = 00h]  
T_CONFIG is shown in 7-15.  
Return to the 7-6.  
7-15. T_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
T_THR_CONFIG  
R/W  
0h  
Temperature threshold code entered by user. The valid temperature  
threshold ranges are -41C to 170C with the threshold codes for -41C  
= 1Ah, and 170C = 34h. Resolution is 8 degree C/ LSB. Default 0h  
means no threshold comparison.  
0
T_CH_EN  
R/W  
0h  
Enables data acquisition of the temperature channel  
0h = Temp channel disabled. The T_MSB_RESULT and  
T_LSB_RESULT data are invalid  
1h = Temp channel enabled  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.9 INT_CONFIG_1 Register (Offset = 8h) [Reset = 00h]  
INT_CONFIG_1 is shown in 7-16.  
Return to the 7-6.  
7-16. INT_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSLT_INT  
R/W  
0h  
Enable interrupt response on conversion complete.  
0h = Interrupt is not asserted when the configured set of conversions  
are complete  
1h = Interrupt is asserted when the configured set of conversions are  
complete  
6
5
THRSLD_INT  
INT_STATE  
R/W  
R/W  
0h  
0h  
Enable interrupt response on a predefined threshold cross.  
0h = Interrupt is not asserted when a threshold is crossed  
1h = Interrupt is asserted when a threshold is crossed  
INT interrupt latched or pulsed.  
0h = INT interrupt latched until clear by a primary addressing the  
device  
1h = INT interrupt pulse for 10us  
4-2  
INT_MODE  
R/W  
0h  
Interrupt mode select.  
0h = No interrupt  
1h = Interrupt through INT  
2h = Interrupt through INT except when I2C bus is busy.  
3h = Interrupt through SCL  
4h = Interrupt through SCL except when I2C bus is busy.  
5h = Unipolar Switch Mode (Only one B-Field Conversion Support,  
Selects the first Magnetic field in X, Y, Z order if multiple thresholds  
are enabled). This mode overrides any interrupt function (INT trigger  
is also disabled), and only implements a Hall switch function based  
off the x_THRX_CONFIG and THR_HYST settings. Select  
THR_HYST >001b for this mode.  
6h = Omnipolar Switch Mode (Only one B-Field Conversion Support,  
Selects the first Magnetic field in X, Y, Z order if multiple thresholds  
are enabled). This mode overrides any interrupt function (INT trigger  
is also disabled), and only implements a Hall switch function based  
off the x_THRX_CONFIG and THR_HYST settings. Select  
THR_HYST >001b for this mode.  
7h = Not valid- defaults to 000b mode  
1
0
RESERVED  
MASK_INTB  
R
0h  
0h  
Reserved  
R/W  
Mask INT pin when INT connected to GND  
0h = INT pin is enabled  
1h = INT pin is disabled (for wake-up and trigger functions)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.10 MAG_GAIN_CONFIG Register (Offset = 9h) [Reset = 00h]  
MAG_GAIN_CONFIG is shown in 7-17.  
Return to the 7-6.  
7-17. MAG_GAIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GAIN_VALUE  
R/W  
0h  
8-bit gain value determined by a primary to adjust a Hall axis gain.  
The particular axis is selected based off the settings of  
MAG_GAIN_CH and ANGLE_EN register bits. The binary 8-bit input  
is interpreted as a fractional value in between 0 and 1 based off the  
formula, 'user entered value in decimal/256'. Gain value of 0 is  
interpreted by the device as 1.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.11 MAG_OFFSET_CONFIG_1 Register (Offset = Ah) [Reset = 00h]  
MAG_OFFSET_CONFIG_1 is shown in 7-18.  
Return to the 7-6.  
7-18. MAG_OFFSET_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OFFSET_VALUE_1ST  
R/W  
0h  
8-bit, 2's complement offset value determined by a primary to adjust  
first axis offset value. The range of possible offset valid entrees can  
be +/-128. The offset value is calculated by multiplying bit resolution  
with the entered value.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.12 MAG_OFFSET_CONFIG_2 Register (Offset = Bh) [Reset = 00h]  
MAG_OFFSET_CONFIG_2 is shown in 7-19.  
Return to the 7-6.  
7-19. MAG_OFFSET_CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OFFSET_VALUE_2ND  
R/W  
0h  
8-bit, 2's complement offset value determined by a primary to adjust  
second axis offset value. The range of possible offset valid entrees  
can be +/-128. The offset value is calculated by multiplying bit  
resolution with the entered value.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.13 I2C_ADDRESS Register (Offset = Ch) [Reset = 6Ah]  
I2C_ADDRESS is shown in 7-20.  
Return to the 7-6.  
7-20. I2C_ADDRESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
I2C_ADDRESS  
R/W  
35h  
7-bit default factory I2C address is loaded from OTP during first  
power up. Change these bits to a new setting if a new I2C address is  
required (at each power cycle these bits need to be written again to  
avoid going back to default factory address).  
0
I2C_ADDRESS_UPDATE R/W  
_EN  
0h  
Enable a new user defined I2C address.  
0h = Disable update of I2C address  
1h = Enable update of I2C address with bits (7:1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.14 DEVICE_ID Register (Offset = Dh) [Reset = 05h]  
DEVICE_ID is shown in 7-21.  
Return to the 7-6.  
7-21. DEVICE_ID Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
Description  
RESERVED  
VER  
R
1h  
Reserved  
R
1h  
Device version indicator. Reset value of DEVICE_ID depends on the  
orderable part number.  
0h = ±40-mT and ±80-mT range  
1h = ±40-mT and ±80-mT range  
2h = ±133-mT and ±266-mT range  
3h = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.15 MANUFACTURER_ID_LSB Register (Offset = Eh) [Reset = 49h]  
MANUFACTURER_ID_LSB is shown in 7-22.  
Return to the 7-6.  
7-22. MANUFACTURER_ID_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MANUFACTURER_ID_[7:  
0]  
R
49h  
8-bit unique manufacturer ID  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.16 MANUFACTURER_ID_MSB Register (Offset = Fh) [Reset = 54h]  
MANUFACTURER_ID_MSB is shown in 7-23.  
Return to the 7-6.  
7-23. MANUFACTURER_ID_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MANUFACTURER_ID_[15 R  
:8]  
54h  
8-bit unique manufacturer ID  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.17 T_MSB_RESULT Register (Offset = 10h) [Reset = 00h]  
T_MSB_RESULT is shown in 7-24.  
Return to the 7-6.  
7-24. T_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
T_CH_RESULT [15:8]  
R
0h  
T-channel data conversion results, MSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.18 T_LSB_RESULT Register (Offset = 11h) [Reset = 00h]  
T_LSB_RESULT is shown in 7-25.  
Return to the 7-6.  
7-25. T_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
T_CH_RESULT [7:0]  
R
0h  
T-channel data conversion results, LSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.19 X_MSB_RESULT Register (Offset = 12h) [Reset = 00h]  
X_MSB_RESULT is shown in 7-26.  
Return to the 7-6.  
7-26. X_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_CH_RESULT [15:8]  
R
0h  
X-channel data conversion results, MSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.20 X_LSB_RESULT Register (Offset = 13h) [Reset = 00h]  
X_LSB_RESULT is shown in 7-27.  
Return to the 7-6.  
7-27. X_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_CH_RESULT [7:0]  
R
0h  
X-channel data conversion results, LSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.21 Y_MSB_RESULT Register (Offset = 14h) [Reset = 00h]  
Y_MSB_RESULT is shown in 7-28.  
Return to the 7-6.  
7-28. Y_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_CH_RESULT [15:8]  
R
0h  
Y-channel data conversion results, MSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.22 Y_LSB_RESULT Register (Offset = 15h) [Reset = 00h]  
Y_LSB_RESULT is shown in 7-29.  
Return to the 7-6.  
7-29. Y_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_CH_RESULT [7:0]  
R
0h  
Y-channel data conversion results, LSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.23 Z_MSB_RESULT Register (Offset = 16h) [Reset = 00h]  
Z_MSB_RESULT is shown in 7-30.  
Return to the 7-6.  
7-30. Z_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_CH_RESULT [15:8]  
R
0h  
Z-channel data conversion results, MSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.24 Z_LSB_RESULT Register (Offset = 17h) [Reset = 00h]  
Z_LSB_RESULT is shown in 7-31.  
Return to the 7-6.  
7-31. Z_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_CH_RESULT [7:0]  
R
0h  
Z-channel data conversion results, LSB 8 bits.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.25 CONV_STATUS Register (Offset = 18h) [Reset = 10h]  
CONV_STATUS is shown in 7-32.  
Return to the 7-6.  
7-32. CONV_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
SET_COUNT  
POR  
R
0h  
Rolling Count of Conversion Data Sets  
R/W1CP  
1h  
Device powered up, or experienced power-on-reset. Bit is clear when  
host writes back '1'.  
0h = No POR  
1h = POR occurred  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
DIAG_STATUS  
Detect any internal diagnostics fail which include VCC UV, internal  
memory CRC error, INT pin error and internal clock error. Ignore this  
bit status if VCC < 2.3V.  
0h = No diag fail  
1h = Diag fail detected  
0
RESULT_STATUS  
R
0h  
Conversion data buffer is ready to be read.  
0h = Conversion data not complete  
1h = Conversion data complete  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.26 ANGLE_RESULT_MSB Register (Offset = 19h) [Reset = 00h]  
ANGLE_RESULT_MSB is shown in 7-33.  
Return to the 7-6.  
7-33. ANGLE_RESULT_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANGLE_RESULT_MSB  
R
0h  
Angle measurement result in degree. The data is displayed from 0 to  
360 degree in 13 LSB bits after combining the  
ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for  
fraction of an angle in the format (xxxx/16).  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.27 ANGLE_RESULT_LSB Register (Offset = 1Ah) [Reset = 00h]  
ANGLE_RESULT_LSB is shown in 7-34.  
Return to the 7-6.  
7-34. ANGLE_RESULT_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANGLE_RESULT_LSB  
R
0h  
Angle measurement result in degree. The data is displayed from 0 to  
360 degree in 13 LSB bits after combining the  
ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for  
fraction of an angle in the format (xxxx/16).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.28 MAGNITUDE_RESULT Register (Offset = 1Bh) [Reset = 00h]  
MAGNITUDE_RESULT is shown in 7-35.  
Return to the 7-6.  
7-35. MAGNITUDE_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAGNITUDE_RESULT  
R
0h  
Resultant vector magnitude (during angle measurement) result. This  
value should be constant during 360 degree measurements  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
7.6.29 DEVICE_STATUS Register (Offset = 1Ch) [Reset = 10h]  
DEVICE_STATUS is shown in 7-36.  
Return to the 7-6.  
7-36. DEVICE_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
INTB_RB  
R
0h  
Reserved  
R
1h  
Indicates the level that the device is reading back from INT pin. The  
reset value of DEVICE_STATUS depends on the status of the INT  
pin at power-up.  
0h = INT pin driven low  
1h = INT pin status high  
3
2
1
0
OSC_ER  
R/W1CP  
R/W1CP  
R/W1CP  
R/W1CP  
0h  
0h  
0h  
0h  
Indicates if Oscillator error is detected. Bit is clear when host writes  
back '1'.  
0h = No Oscillator error detected  
1h = Oscillator error detected  
INT_ER  
Indicates if INT pin error is detected. Bit is clear when host writes  
back '1'.  
0h = No INT error detected  
1h = INT error detected  
OTP_CRC_ER  
VCC_UV_ER  
Indicates if OTP CRC error is detected. Bit is clear when host writes  
back '1'.  
0h = No OTP CRC error detected  
1h = OTP CRC error detected  
Indicates if VCC undervoltage was detected. Bit is clear when host  
writes back '1'. Ignore this bit status if VCC < 2.3V.  
0h = No VCC UV detected  
1h = VCC UV detected  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Select the Sensitivity Option  
Select the highest TMAG5173-Q1 sensitivity option that can measure the required range of magnetic flux density  
so that the ADC input range is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a  
magnet. TI created an online tool to help with simple magnet calculations under the TMAG5173-Q1 product  
folder on ti.com.  
8.1.2 Temperature Compensation for Magnets  
The TMAG5173-Q1 temperature compensation is designed to directly compensate the average temperature drift  
of several magnets as specified in the MAG_TEMPCO register bits. The residual induction (Br) of a magnet  
typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite magnets as the temperature increases. Set  
the MAG_TEMPCO bit to default 00b if the device temperature compensation is not needed.  
8.1.3 Sensor Conversion  
Multiple conversion schemes can be adopted based off the MAG_CH_EN and CONV_AVG register bits settings.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
8.1.3.1 Continuous Conversion  
The TMAG5173-Q1 can be set in continuous conversion mode when OPERATING_MODE is set to 10b. 8-1  
shows a few examples of continuous conversion. The input magnetic field is processed in two steps. In the first  
step, the device spins the Hall sensor elements and integrates the sampled data. In the second step, the ADC  
block converts the analog signal into digital bits and stores in the corresponding result register. While the ADC  
starts processing the first magnetic sample, the spin block can start processing another magnetic sample. In this  
mode, the temperature data is taken at the beginning of each new conversion. This temperature data is used to  
compensate for the magnetic thermal drift.  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
Temp  
X-Axis  
X-Axis  
ADC  
Start  
Conv me  
Start next  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 000b  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
X-Axis  
ADC  
Start next  
Start  
Conv me  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 001b  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
Y-Axis  
X-Axis  
X-Axis  
Temp  
Y-Axis  
Z-Axis  
Y-Axis  
Z-Axis  
Y-Axis  
X-Axis  
Z-Axis  
Z-Axis  
ADC  
Start next  
Start  
Conversion me  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 0111b, CONV_AVG = 000b  
8-1. Continuous Conversion Examples  
8.1.3.2 Trigger Conversion  
The TMAG5173-Q1 supports trigger conversion with OPERATING_MODE set to 00b. The trigger event can be  
initiated through I2C command or INT signal. 8-2 shows an example of trigger conversion with temperature, X,  
Y, and Z sensors activated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Y-Axis  
Z-Axis  
Temp  
X-Axis  
Y-Axis  
Z-Axis  
ADC  
Start  
Conversion me  
Trigger  
Time  
8-2. Trigger Conversion for Temperature, X, Y, & Z Sensors  
8.1.3.3 Pseudo-Simultaneous Sampling  
In absolute angle measurement, application sensor data from multiple axes are required to calculate an accurate  
angle. The magnetic field data collected at different times through the same signal chain introduces error in  
angle calculation. The TMAG5173-Q1 offers pseudo-simultaneous sampling data collection modes to eliminate  
this error. 8-3 shows an example where MAG_CH_EN is set at 1011b to collect XZX data. 方程式 18 shows  
that the time stamps for the X and Z sensor data are the same.  
P:1 + P:2  
P< =  
2
(18)  
where  
tX1, tZ, tX2 are time stamps for X, Z, X sensor data completion as defined in 8-3.  
HALL Spin &  
Integra on  
X-Axis  
Temp  
Z-Axis  
X-Axis  
Z-Axis  
X-Axis  
X-Axis  
ADC  
tX1  
tZ  
tX2  
Time  
8-3. XZX Magnetic Field Conversion  
The vertical X, Y sensors of the TMAG5173-Q1 exhibit more noise than the horizontal Z sensor. The pseudo-  
simultaneous sampling can be used to equalize the noise floor when two set of vertical sensor data are collected  
against one set of horizontal sensor data, as in examples of XZX or YZY modes.  
8.1.4 Magnetic Limit Check  
The TMAG5173-Q1 enables magnetic limit checks for single or multiple axes at the same time. 8-4 to 8-7  
show examples of magnetic limit cross detection events while the field going above, below, exiting a magnetic  
band, and entering a magnetic band. The device will keep generating interrupt with each new conversion if the  
magnetic fields remain in the shaded regions in the figures. The MAG_THR_DIR and THR_HYST register bits  
help select different limit cross modes.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
X Ch Threshold  
X Ch Threshold  
0 mT  
0 mT  
X Magne c Field  
X Magne c Field  
Interrupt  
Interrupt  
Time  
Time  
8-5. Magnetic Lower Limit Cross Check With  
8-4. Magnetic Upper Limit Cross Check With  
MAG_THR_DIR =1b, THR_HYST = 000b  
MAG_THR_DIR =0b, THR_HYST = 000b  
X Ch Threshold  
X Ch Threshold  
0 mT  
0 mT  
X Magne c Field  
- X Ch Threshold  
X Magne c Field  
- X Ch Threshold  
Interrupt  
Interrupt  
Time  
8-6. Magnetic Field Going Out of Band Check  
With MAG_THR_DIR =0b, THR_HYST = 001b  
Time  
8-7. Magnetic Field Entering a Band Check With  
MAG_THR_DIR =1b, THR_HYST = 001b  
8.1.5 Error Calculation During Linear Measurement  
The TMAG5173-Q1 offers independent configurations to perform linear position measurements in X, Y, and Z  
axes. To calculate the expected error during linear measurement, the contributions from each of the individual  
error sources must be understood. The relevant error sources include sensitivity error, offset, noise, cross axis  
sensitivity, hysteresis, nonlinearity, drift across temperature, drift across life time, and so forth. For a 3-axis Hall  
solution like the TMAG5173-Q1, the cross-axis sensitivity and hysteresis error sources are insignificant. Use 方  
19 to estimate the linear measurement error calculation at room temperature.  
2
2
off  
2
B × SENS  
ER  
+ B  
+ N  
RMS_25  
Error  
=
× 100%  
(19)  
LM_25C  
B
where  
ErrorLM_25C is total error in % during linear measurement at 25°C.  
B is input magnetic field.  
SENSER is sensitivity error in decimal number at 25°C. As an example, enter 0.05 for sensitivity error of 5%.  
Boff is offset error at 25°C.  
NRMS_25 is RMS noise at 25°C.  
In many applications, system level calibration at room temperature can nullify the offset and sensitivity errors at  
25°C. The noise errors can be reduced by internally averaging by up to 32x on the device in addition to the  
averaging that could be done in the microcontroller. Use 方程式 20 to estimate the linear measurement error  
across temperature after calibration at room temperature.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
2
2
2
B × SENS  
DR  
+ B  
+ N  
RMS_Temp  
off_DR  
Error  
=
× 100%  
(20)  
LM_Temp  
B
where  
ErrorLM_Temp is total error in % during linear measurement across temperature after room temperature  
calibration.  
B is input magnetic field.  
SENSDR is sensitivity drift in decimal number from value at 25°C. As an example, enter 0.05 for sensitivity  
drift of 5%.  
Boff_DR is offset drift from value at 25°C.  
NRMS_Temp is RMS noise across temperature.  
If room temperature calibration is not performed, sensitivity and offset errors at room temperature must also  
account for total error calculation across temperature (see 方程21).  
2
2
2
2
2
B × SENS  
ER  
+ B × SENS  
DR  
+ B  
off  
+ B  
off_DR  
+ N  
RMS_Temp  
Error  
=
× 100%  
(21)  
LM_Temp_NCal  
B
where  
ErrorLM_Temp_NCal is total error in % during linear measurement across temperature without room temperature  
calibration.  
备注  
In this section, error sources such as system mechanical vibration, magnet temperature gradient,  
earth magnetic field, nonlinearity, lifetime drift, and so forth, are not considered. The user must take  
these additional error sources into account while calculating overall system error budgets.  
8.1.6 Error Calculation During Angular Measurement  
The TMAG5173-Q1 offers on-chip CORDIC to measure angle data from any of the two magnetic axes. The  
linear magnetic axis data can be used to calculate the angle using an external CORDIC as well. To calculate the  
expected error during angular measurement, the contributions from each individual error source must be  
understood. The relevant error sources include sensitivity error, offset, noise, axis-axis mismatch, nonlinearity,  
drift across temperature, drift across life time, and so forth. Use the Angle Error Calculation Tool to estimate the  
total error during angular measurement.  
8.2 Typical Applications  
Magnetic 3D sensors are very popular due to contactless and reliable measurements, especially in applications  
requiring long-term measurements in rugged environments. The TMAG5173-Q1 offers design flexibility in wide  
range of industrial and personal electronics applications. In this section three common application examples are  
discussed in details.  
8.2.1 I2C Address Expansion  
The TMAG5173-Q1 is offered in four different factory-programmed I2C addresses. The device also supports  
additional I2C addresses through the configuration of the I2C_ADDRESS register. There are 7 bits to select 128  
different addresses. Take system limitations like bus loading, maximum clock frequency, available GPIOs from a  
microcontroller, and so forth, in account before selecting maximum number of sensors in a single I2C bus.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
VCC  
INT  
SCL  
SDA  
TEST  
GND  
VCC  
INT  
SCL  
SDA  
TEST  
GND  
VCC  
INT  
SCL  
SDA  
TEST  
GND  
3.3V  
Supply  
VCC  
INT  
SCL  
SDA  
TEST  
µController  
GND  
8-8. TMAG5173-Q1 Application Diagram for I2C Address Expansion  
8.2.1.1 Design Requirements  
Use the parameters listed in 8-2 for this design example.  
8-1. Design Parameters  
PARAMETERS  
Device orderable  
VCC  
DESIGN TARGET  
TMAG5173A1-Q1  
3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
8-1. Design Parameters (continued)  
PARAMETERS  
DESIGN TARGET  
4 (same method can be used to expand the number of sensors in the  
I2C bus)  
# of Devices in same bus  
Design objective  
Optimize the # GPIO and component count  
5-mA, supplied by a microcontroller GPIO  
Current supply per sensor  
8.2.1.2 Detailed Design Procedure  
Select GPIO with current supply capability of 5 mA. 8-8 shows that the SCL, SDA lines and INT pin can be  
shared. However, the function of the INT pin must be analyzed when shared by multiple sensors. As an  
example, if the sensors are configured to generate interrupt through the INT pin, the microcontroller needs to  
read all the sensors to determine which specific one sending the interrupt. Take the following steps sequentially  
to assign new I2C addresses to the four TMAG5173-Q1 shown in 8-9:  
Turn on the GPIO#1 and wait until tstart_power_up time is elapsed.  
Address the device#1 with factory programmed address. Write to the I2C_ADDRESS register to assign a  
new address.  
Turn on the GPIO#2 and wait until tstart_power_up time is elapsed.  
Address the device#2 with factory programmed address. Write to the I2C_ADDRESS register to assign a  
new unique address.  
Turn on the GPIO#3 and wait until tstart_power_up time is elapsed.  
Address the device#3 with factory programmed address. Write to the I2C_ADDRESS register to assign a  
new unique address.  
Turn on the GPIO#4 and wait until tstart_power_up time is elapsed.  
Address the device#4 with factory programmed address. Write to the I2C_ADDRESS register to assign a  
new unique address.  
Repeat the above steps if there is a power outage or power-up reset condition.  
tstart_power_up  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
Write I2C  
Address #1  
Write I2C  
Address #2  
Write I2C  
Address #3  
Write I2C  
Address #4  
I2C Line  
Time  
8-9. Power-Up Timing and I2C Address Allocation for the Four Sensors  
8.2.2 Angle Measurement  
Magnetic angle sensors are very popular due to contactless and reliable measurements, especially in  
applications requiring long-term measurements in rugged environments. The TMAG5173-Q1 offers an on-chip  
angle calculator providing angular measurement based off any two of the magnetic axes. The two axes of  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
interest can be selected in the ANGLE_EN register bits. The device offers angle output in complete 360 degree  
scale. Take several error sources into account for angle calculation, including sensitivity error, offset error,  
linearity error, noise, mechanical vibration, temperature drift, and so forth.  
2.3V to 3.6V  
2.3V to 5.5V  
VCC  
INT  
TEST  
SCL  
SDA  
GND  
8-10. TMAG5173-Q1 Application Diagram for Angle Measurement  
8.2.2.1 Design Requirements  
Use the parameters listed in 8-2 for this design example.  
8-2. Design Parameters  
DESIGN PARAMETERS  
ON-AXIS MEASUREMENT  
TMAG5173A1-Q1  
3.3 V  
OFF-AXIS MEASUREMENT  
TMAG5173A1-Q1  
Device  
VCC  
3.3 V  
Device Position  
Directly under the magnet  
At the adjacent side of the magnet  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Magnet  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Magnetic Range Selection  
RPM  
<600  
<600  
Desired Accuracy  
<2° for 360° rotation  
<2° for 360° rotation  
8.2.2.2 Detailed Design Procedure  
For accurate angle measurement, the two axes amplitudes must be normalized by selecting the proper gain  
adjustment value in the MAG_GAIN_CONFIG register. The gain adjustment value is a fractional decimal number  
between 0 and 1. The following steps must be followed to calculate this fractional value:  
Set the device at 32x average mode and rotate the shaft full 360 degree.  
Record the two axes sensor ADC codes for the full 360 degree rotation.  
A normalized plot for the full 360 degree rotations are represented in 8-12 or 8-13.  
Measure the maximum peak-peak ADC code delta for each axis, AX and AY.  
#
;
): =  
#
:
If AX>AY, set the MAG_GAIN_CH register bit to 0b. Calculate the gain adjustment value for X axis:  
If AX<AY, set the MAG_GAIN_CH register bit to 1b. Calculate the gain adjustment value for Y axis:  
1
); =  
)
:
The target binary gain setting at the GAIN VALUE register bits are calculated from the equation, GX or GY =  
GAIN_VALUEdecimal/ 256.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Example 1: If AX = AY = 60,000, the GAIN_VALUE register bits are set at default 0000 0000b.  
Example 2: If AX= 60,000, AY = 45,000, the GX = 45,000/60,000 =0.75. Set MAG_GAIN_CH to 0b and  
GAIN_VALUE to 1100 0000b.  
Example 3: If AX= 45,000, AY = 60,000, the GX = (60,000/45,000) =1.33. Since GX >1, the gain adjustment  
needs to be applied to Y axis with GY =1/GX. Set MAG_GAIN_CH to 1b and GAIN_VALUE to 1100 0000b.  
8.2.2.2.1 Gain Adjustment for Angle Measurement  
Common measurement topology include angular position measurements in on-axis or off-axis angular  
measurements shown in 8-11. Select the on-axis measurement topology whenever possible as this offers the  
best optimization of magnetic field and the device measurement ranges. The TMAG5173-Q1 offers on-chip gain  
adjustment option to account for mechanical position misalignments.  
On-axis  
Off-axis  
S
S
N
N
8-11. On-Axis vs Off-Axis Angle Measurements  
8.2.2.3 Application Curves  
8-12. X and Y Sensor Data for Full 360 Degree  
8-13. X and Y Sensor Data for Full 360 Degree  
Rotation for On-Axis Measurement  
Rotation for Off-Axis Measurement  
8.3 What to Do and What Not to Do  
The TMAG5173-Q1 updates the result registers at the end of a conversion. I2C read of the result register must  
be synchronized with the conversion update time to avoid reading a result data while the result register is being  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
updated. For applications with a tight timing budget, use the INT signal to notify the primary when a conversion is  
complete.  
8.4 Power Supply Recommendations  
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI  
recommends using a ceramic capacitor with a value of at least 0.01 µF. Connect the TEST pin to ground.  
8.5 Layout  
8.5.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed circuit boards (PCBs), which makes placing the magnet on  
the opposite side of the PCB possible.  
8.5.2 Layout Example  
SCL  
SDA  
GND  
INT  
GND (TEST)  
VCC  
8-14. Layout Example With TMAG5173-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMAG5173-Q1  
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, HALL-ADAPTER-EVM User's Guide (SLYU043)  
Texas Instruments, TMAG5173 Evaluation Manual user's guide (SLYU058)  
Texas Instruments, Angle Measurement With Multi-Axis Linear Hall-Effect Sensors application report  
(SBAA463)  
Texas Instruments, Absolute Angle Measurements for Rotational Motion Using Hall-Effect Sensors  
application brief (SBAA503)  
Texas Instruments, Limit Detection for Tamper and End-of-Travel Detection Using Hall-Effect Sensors  
application brief (SBOA514)  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
 
 
 
 
 
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
10.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
Marking(4) (5)  
PTMAG5173A1 ACTIVE  
QDBVRQ1  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
3000  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Call TI  
PTMAG5173A2 ACTIVE  
QDBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
6
6
6
6
6
6
6
3000  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
PTMAG5173B1 PREVIEW  
QDBVRQ1  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
PTMAG5173B2 PREVIEW  
QDBVRQ1  
Call TI  
PTMAG5173C1 PREVIEW  
QDBVRQ1  
Call TI  
PTMAG5173C2 PREVIEW  
QDBVRQ1  
Call TI  
PTMAG5173D1 PREVIEW  
QDBVRQ1  
Call TI  
PTMAG5173D2 PREVIEW  
QDBVRQ1  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMAG5173-Q1  
 
 
 
 
 
 
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI  
has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
10.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMAG5173A1QDBVR  
Q1  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
3000  
178  
178  
9
9
3.3  
3.3  
3.2  
3.2  
1.4  
1.4  
4
4
8
8
Q3  
Q3  
PTMAG5173A2QDBVR  
Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMAG5173-Q1  
 
TMAG5173-Q1  
ZHCSQY7 SEPTEMBER 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOT-23  
Package Drawing Pins  
SPQ  
3000  
3000  
Length (mm) Width (mm)  
Height (mm)  
PTMAG5173A1QDBVRQ1  
PTMAG5173A2QDBVRQ1  
DBV  
DBV  
6
6
190  
190  
190  
190  
30  
30  
SOT-23  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMAG5173-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMAG5173A1QDBVRQ1  
PTMAG5173A2QDBVRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Sep-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PTMAG5173A2QDBVRQ1

具有 I²C 接口的汽车类高精度、线性 3D 霍尔效应传感器 | DBV | 6 | -40 to 125
TI

PTMAG5253A3IQDMRR

具有使能引脚、采用超小型 X2SON 封装的低功耗线性霍尔效应传感器 | DMR | 4 | -40 to 125
TI

PTMAG6180A0DGKRQ1

Automotive high-precision analog AMR angle sensor with 360° angle range | DGK | 8 | -40 to 150
TI

PTMAG6181A0DGKRQ1

Automotive high-precision analog AMR angle sensor with integrated turns counter | DGK | 8 | -40 to 150
TI

PTMB100A6

IGBT MODULE Six-Pack 100A 600V
NIEC

PTMB100A6C

IGBT SP series Six-Pack 100A 600V
NIEC

PTMB100B12

IGBT MODULE Six-Pack 100A 1200V
NIEC

PTMB100B12C

IGBT SP series Six Pack 100A 1200V
NIEC

PTMB100E6

IGBT Module-Six Pack
NIEC

PTMB100E6C

IGBT Module-Six Pack
NIEC

PTMB100T6

Insulated Gate Bipolar Transistor
NIEC

PTMB150A6

IGBT MODULE Six-Pack 150A 600V
NIEC