PTPS7B4255QDYBRQ1 [TI]

具有 5mV 跟踪容差的汽车级、70mA、40V 电压跟踪低压降 (LDO) 稳压器 | DYB | 5 | -40 to 125;
PTPS7B4255QDYBRQ1
型号: PTPS7B4255QDYBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5mV 跟踪容差的汽车级、70mA、40V 电压跟踪低压降 (LDO) 稳压器 | DYB | 5 | -40 to 125

稳压器
文件: 总23页 (文件大小:1566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
TPS7B4255-Q1  
5mV 跟踪容差的汽车70mA40V 电压跟LDO  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS7B4255-Q1 是一款低压差 (LDO) 电压跟踪稳压  
具有高跟踪精度以及出色的负载和线路瞬态响应。  
该器件采用两种 5 SOT-23 DBV 和  
DYBTPS7B4255-Q1 旨在为动力总成系统等汽车  
应用中的非板载传感器供电。该器件提供反极性、电池  
和接地输出短路以及电流限制和热关断等集成保护功  
可防止非板载电源系统中的高电缆故障风险。该器  
件可保持 45V绝对最大值输入电压从而维持负  
载突降瞬态条件。  
– 温度等140°C +125°CTA  
– 结温40°C +150°CTJ  
• 宽输入电压范围-40V +40V):  
– 绝对最大输入范围-40 V +45 V  
• 宽输出电压范围2V 40V  
• 非常严格的输出跟踪容差5 mV最大值)  
• 低压降70 mA 500 mV最大值)  
• 反极性保护  
• 反向电流保护电池短路)  
• 组合基准和使能输入  
• 轻负载时低静态电流35μA  
• 极宽ESR 范围:  
ADJ/EN 引脚上施加的基准电压可有效地对负载高  
70mA 时的电压进行高精度缓冲。高跟踪精度为非  
板载模块提供精确的电源并在测量比例式传感器时实  
现更高的精度。  
ESR1m3Ω陶瓷输出电容器1µF  
200µF搭配使用时可保持稳定  
• 过温保护  
• 对接地和电源的输出短路保护  
• 封装5 SOT-23 DBV DYB  
通过将调节/使能输入引脚 (ADJ/EN) 置于低电平,  
TPS7B4255-Q1 器件可切换至待机模式从而更大限  
度地降低静态电流。  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
2 应用  
2.90mm × 1.60mm  
2.93 mm x 1.50 mm  
SOT-23 (5)DBV  
SOT-23 (5)DYB  
TPS7B4255-Q1  
动力总成压力传感器  
动力总成温度传感器  
动力总成排气传感器  
动力总成油液浓度传感器  
车身控制模(BCM)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
IN  
OUT  
IN  
DC/DC converter  
or LDO  
TPS7B4255-Q1  
ADJ/EN  
OUT  
5V  
Sensor  
1
MCU  
ADC  
Control Unit Board  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS392  
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes............................................8  
8 Application and Implementation....................................9  
8.1 Application Information............................................... 9  
8.2 Typical Application.................................................... 10  
8.3 Power Supply Recommendations.............................11  
8.4 Layout....................................................................... 12  
9 Device and Documentation Support............................14  
9.1 接收文档更新通知..................................................... 14  
9.2 支持资源....................................................................14  
9.3 Trademarks...............................................................14  
9.4 Electrostatic Discharge Caution................................14  
9.5 术语表....................................................................... 14  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
Thermal Information..........................................................4  
6.4 Electrical Characteristics.............................................5  
TIming Characteristics...................................................... 5  
7 Detailed Description........................................................6  
7.1 Overview.....................................................................6  
7.2 Functional Block Diagram...........................................6  
7.3 Feature Description.....................................................6  
Information.................................................................... 14  
10.1 Mechanical Data..................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
June 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
ADJ/EN  
GND  
IN  
1
2
3
5
GND  
OUT  
4
Not to scale  
5-1. DBV Package, 5-Pin SOT-23 (Top View)  
ADJ/EN  
1
2
3
5
4
GND  
OUT  
GND  
IN  
5-2. DYB Package, 5-Pin SOT-23 (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
ADJ/EN PIN. Connect the reference to this pin. This pin connects to the reference voltage. A low  
signal below VIL disables the device and a high signal above VIH enables the device. Connect  
the voltage reference directly or with a voltage divider for lower output voltages. To compensate  
for line influences, place a capacitor close to this pin.  
ADJ/EN  
1
I
GND  
GND  
2
5
G
G
Ground pin. This pin is internally connected to pin 5 on the DYB package.  
Ground pin. On the DYB package, this pin is internally connected to pin 2. On the DBV package  
this pin is not internally connected, but connecting this pin to GND is recommended.  
Input power-supply voltage pin. This pin is the device supply. For best transient response and to  
minimize input impedance, use the recommended value or larger ceramic capacitor from IN to  
GND as listed in the Recommended Operating Conditions table. Place the input capacitor as  
close to the input of the device as possible to compensate for line influences.  
IN  
3
4
I
Regulated output voltage pin. A capacitor is required from OUT to GND for stability. For best  
transient response, use the nominal recommended value or larger ceramic capacitor from OUT  
to GND; see the Recommended Operating Conditions table. Place the output capacitor as close  
to output of the device as possible.  
OUT  
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7B4255-Q1  
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-40  
MAX UNIT  
VIN  
Unregulated input voltage  
Regulated output voltage  
Adjustable Input  
45  
45  
V
V
VOUT  
ADJ  
TJ  
5  
-0.3  
40  
65  
45  
V
Operating junction temperature range  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
40  
UNIT  
VIN  
Unregulated input voltage  
Regulated output voltage  
Output current  
3
V
V
VOUT  
IOUT  
COUT  
ESR  
CIN  
2
0
40  
70  
mA  
µF  
Output capacitor(2)  
1
200  
3
Output capacitor ESR requirements  
Input capacitor(1)  
0.001  
0
Ω
1
µF  
TJ  
Operating junction temperature  
150  
°C  
40  
(1) For robust EMI performance the minimum input capacitance is 500 nF.  
(2) Effective output capacitance of 500 nF minimum required for stability.  
Thermal Information  
TPS7B4255-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
176.3  
75.6  
DYB (SCT595)  
UNIT  
5 PINS  
127.8  
59.9  
16.6  
4.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.9  
ΨJT  
44.1  
16.4  
N/A  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
 
 
 
 
 
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
6.4 Electrical Characteristics  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 1 µF, 1 mΩ< COUT ESR < 2 Ω, CIN = 1 µF, and  
VADJ = 5 V (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
Regulated output  
Line regulation  
Load regulation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5
UNIT  
mV  
VOUT  
VIN = VOUT + 600 mV to 40 V, IOUT = 100 µA to 70 mA  
VIN = VOUT + 600 mV to 40 V, IOUT = 100 µA  
5  
0.5  
0.5  
31  
mV  
ΔVOUT(ΔVIN)  
ΔVOUT(ΔIOUT)  
VIN = VOUT + 600 mV, IOUT = 100 µA to 70 mA (1)  
VIN = 3 V to 40 V, VADJ = 2 V, IOUT = 0 mA, TJ = 25ºC  
VIN = 3 V to 40 V, VADJ = 2 V, IOUT = 0 mA, -40ºC < TJ < 85ºC  
VIN = 3 V to 40 V, VADJ = 2 V, IOUT = 0 mA  
mV  
TBD  
IQ  
Quiescent current  
36  
42  
µA  
VIN = 3 V to 40 V, VADJ = 2 V, IOUT = 70 mA, TJ = 25ºC  
VIN = 3 V to 40 V, VADJ = 2 V, IOUT = 70 mA  
600  
800  
500  
355  
3
IGND  
Ground current  
Dropout voltage  
(2)  
IOUT = 70 mA, VADJ 3.3 V, VIN = VADJ  
VDO  
mV  
µA  
(2)  
IOUT = 50 mA, VADJ 4 V, VIN = VADJ  
ISHUTDOWN  
IADJ/EN  
Shutdown supply current (IGND  
)
VADJ/EN = 0 V  
ADJ/EN pin current  
VADJ/EN = VIN = 13.5 V  
VIN rising, IOUT = 1 mA  
VIN falling, IOUT = 1 mA  
0.3  
2.81  
2.5  
VUVLO(RISING)  
VUVLO(FALLING)  
VUVLO(HYST)  
VIL  
Rising input supply UVLO  
Falling input supply UVLO  
VUVLO(IN) hysteresis  
2.6  
2.3  
2.7  
2.4  
V
300  
mV  
Adjust and enable logic input low level  
0.7  
V
Adjust and enable logic input high  
level  
VIH  
2
ICL  
Output current limit  
VIN = VOUT + 1 V, VOUT short to 90% x VADJ  
75  
100  
80  
120  
mA  
dB  
PSRR  
Power-supply ripple rejection  
VIN - VOUT = 1 V, Frequency = 100 Hz, IOUT = 70 mA  
VOUT = 3.3 V, IOUT = 1 mA, a 5 µVRMS reference is used for  
this measurement  
Vn  
Output noise voltage  
150  
µVRMS  
IR  
Reverse current at VIN  
VIN = 0 V, VOUT = 20 V, VADJ = 5 V  
VIN = -20 V, VOUT = 20 V, VADJ = 5 V  
VIN = -20 V, VOUT = 0 V, VADJ = 5 V  
-5  
-5  
5
5
IRN1  
IRN2  
TJ  
Reverse current at negative VIN  
Reverse current at negative VIN  
Junction temperature  
µA  
-5  
5
150  
°C  
°C  
°C  
40  
TSD(SHUTDOWN) Junction shutdown temperature  
TSD(HYST) Hysteresis of thermal shutdown  
175  
20  
(1) Power dissipation is limited to 2 W for device production testing purposes. The power dissipation can be higher during normal  
operation. Please see the thermal dissipation section for more information on how much power the device can dissipate while  
maintaining a junction temperature below 150.  
(2) Measured when the output voltage VOUT has dropped 10 mV from the typical value.  
TIming Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Timing Characteristics  
tstartup Startup time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time from EN high to VOUT = 95% × VADJ, VADJ = 5 V  
275  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7B4255-Q1  
 
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B4255-Q1 is an integrated, low-dropout (LDO) voltage tracker with ultra-low tracking tolerance.  
Because of the high risk of cable shorts when powering sensors off-board, multiple protection features are built  
into the LDO including short to battery, short to GND, and reverse current protection.  
7.2 Functional Block Diagram  
OUT  
IN  
V
V
reg  
bat  
2.2 µF  
Logic  
Control  
Internal  
Supply  
Thermal  
Shutdown  
ADJ/EN  
V
ref  
GND  
7.3 Feature Description  
7.3.1 Regulated Output (VOUT  
)
Because this device is a tracking LDO, the output voltage is determined by the voltage provided to the ADJ pin.  
When the voltage at the ADJ pin exceeds the required voltage to enable the LDO, the output begins to rise to  
the voltage on the ADJ pin. The output rises linearly as determined by the load, the output capacitor, and the  
current limit. When the voltage reaches the level on the ADJ pin, the output voltage remains within a couple of  
millivolts from the voltage set on the ADJ pin.  
7.3.2 Undervoltage Lockout  
The device has an internally fixed undervoltage lockout threshold. Undervoltage lockout activates when the input  
voltage on VIN drops below the undervoltage lockout (UVLO) level. This activation ensures the regulator is not  
latched into an unknown state during a low input supply voltage. If the input voltage has a negative transient that  
drops below the UVLO threshold and recovers, the regulator shuts down and powers up in the standard power-  
up sequence when the input voltage is above the required level.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
7.3.3 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 175°C, which  
allows the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry  
enables. Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit  
may cycle off and on. This cycling limits the dissipation of the regulator, thus protecting the regulator from  
damage as a result of overheating.  
The internal protection circuitry of the TPS7B4255-Q1 is designed to protect against overload conditions. The  
circuitry is not intended to replace proper heat sinking. Continuously running the TPS7B4255-Q1 into thermal  
shutdown degrades device reliability.  
7.3.4 VOUT Short to Battery  
When the output is shorted to the battery (as shown in 7-1), the TPS7B4255-Q1 survives and no damage  
occurs to the device. A short to the battery can also occur when the device is powered by an isolated supply, as  
shown in 7-2, at a lower voltage. In this case, the TPS7B4255-Q1 supply input voltage is set at 7 V when a  
short to battery (14 V typical) occurs on VOUT, which typically runs at 5 V. The continuous reverse current that  
flows out through VIN is less than 5 μA.  
Automotive Battery,  
14 V (typically)  
Switch  
Switch  
V
bat  
Automotive Battery,  
14 V (typically)  
TPS7B4255-Q1  
IN  
OUT  
V
V
reg  
bat  
TPS7B4255-Q1  
OUT  
IN  
V
1 µF  
reg  
2.2 µF  
7-V V  
I
1 µF  
2.2 µF  
5-V V  
ref  
5-V V  
ref  
ADJ/EN  
GND  
ADJ/EN  
GND  
7-1. Output Voltage Short to Battery  
7-2. Output Voltage Higher Than the Input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7B4255-Q1  
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
7.3.5 Tracking Regulator With an Enable Circuit  
By pulling the reference voltage below 0.7 V, the device disables and enters a sleep state where the device  
draws 3 μA (max) from the power supply. In a real application, the reference voltage is generally sourced from  
another LDO voltage rail. A scenario where the device must be disabled without a shutdown of the reference  
voltage can occur; the device can be configured as shown in 7-3 in this case. The TPS7B84-Q1 is a 150-mA  
LDO with ultra-low quiescent current that is used as a reference voltage to the TPS7B4255-Q1 and also as a  
power supply to the ADC. In a configuration as shown in 7-3, the operational status of the device is controlled  
by a microcontroller (MCU) input or output.  
OUT  
GND  
IN  
IN  
OUT  
V
ADC  
bat  
Sensor  
22 µF  
10 µF  
47k  
TPS7B84-Q1  
10 µF  
2.2 µF  
TPS7B4255-Q1  
EN  
GND  
ADJ/EN  
100k  
47k  
MCU I/O  
7-3. Tracking an LDO With an Enable Circuit  
7.4 Device Functional Modes  
7.4.1 Operation With VIN < 4 V  
The device operates with input voltages above 3 V to ensure proper operation. The device turns on when VIN is  
greater than VUVLO(RISING) and VADJ is greater than VIH, and operates correctly as long as the input voltage stays  
above 3 V. For voltages below 3 V and above VUVLO(FALLING), the LDO continues to operate but certain circuits  
may not have the proper headroom to operate within specification. When the input voltage drops below  
VUVLO(FALLING) the device shuts off again.  
7.4.2 Operation With ADJ/EN Control  
The ADJ pin operates as both the reference and EN pin to the LDO. When the input voltage is greater than  
VUVLO(RISING) and VADJ is greater than VIH, the LDO is enabled and functional. When in this mode, the LDO  
tracks the voltage at the ADJ pin because this pin functions as the reference to the control loop in the error  
amplifier. When VIN is greater than VUVLO(RISING) and VADJ is lower than VIL, the LDO is disabled and is in a  
lower power mode.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
Based on the end-application, different values of external components can be used. An application can require a  
larger output capacitor during fast load steps to prevent a reset from occurring. Use a low ESR ceramic capacitor  
with a dielectric of type X5R or X7R for better load transient response.  
8.1.1 Input and Output Capacitor Selection  
The TPS7B4255-Q1 requires an output capacitor of 1 µF or larger (500 nF or larger capacitance) for stability and  
an equivalent series resistance (ESR) between 0.001 Ωand 3 Ω. For best transient performance, use X5R- and  
X7R-type ceramic capacitors because these capacitors have minimal variation in value and ESR over  
temperature. When choosing a capacitor for a specific application, be mindful of the DC bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
8.1.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
V
DO  
R
=
(1)  
DS(ON)  
I
RATED  
8.1.3 Reverse Current  
The TPS7B4255-Q1 incorporates reverse current protection that prevents damage from a reverse polarity (that  
is, when VOUT is higher than VIN). During a reverse polarity event where the VIN and VOUT absolute maximum  
ratings are not violated and VOUT VIN is less than 40 V, less than 5 μA flows out of VIN.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7B4255-Q1  
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
8.2 Typical Application  
8-1 shows a typical application circuit for the TPS7B4255-Q1.  
TPS7B4255-Q1  
OUT  
2.2 µF  
IN  
Vreg  
Vbat  
1 µF  
ADJ/EN  
Vref  
GND  
0.1 µF  
8-1. Typical Application Schematic  
8.2.1 Design Requirements  
Use the parameters listed in 8-1 for this design example.  
8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUES  
Input voltage  
3 V to 40 V  
2 V to 20 V  
2 V to 20 V  
70 mA  
ADJ reference voltage  
Output voltage  
Output current rating  
Output capacitor range  
Output capacitor ESR range  
1 µF to 200 µF  
1 mto 3 Ω  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Capacitors  
An input capacitor, CIN, is recommended to help filter line influences. Connect the capacitors close to the device  
pins.  
The output capacitor for the TPS7B4255-Q1 is required for stability. Without the output capacitor, the regulator  
oscillates. The actual size and type of the output capacitor can vary based on the application load and  
temperature range. The effective series resistance (ESR) of the capacitor is also a factor in the device stability.  
The worst case is determined at the minimum ambient temperature and maximum load expected. To ensure  
stability of the TPS7B4255-Q1, the device requires an output capacitor between 1 µF and 200 µF with an ESR  
range between 0.001 Ω and 3 Ω, which covers most types of capacitor ESR variation under the recommend  
operating conditions. As a result, the output capacitor selection is flexible.  
The capacitor must also be rated for all ambient temperatures expected in the system. To maintain regulator  
stability down to 40°C, use a capacitor rated at that temperature.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves  
VI = 12 V, VADJ = 5 V, COUT = 1 μF, RLOAD = 4.7 kΩ  
VI = 12 V, VADJ = 5 V, COUT = 1 μF, RLOAD = 4.7 kΩ  
8-2. Power Up  
8-3. Power Down  
8.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 3 V to 40 V. If the input supply is  
located more than a few inches from the TPS7B4255-Q1, add an electrolytic capacitor with a value of 10 µF and  
a ceramic bypass capacitor at the input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7B4255-Q1  
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close as possible to each other, connected by a wide, component-side,  
copper surface. The use of vias and long traces to the input and output capacitors is strongly discouraged and  
negatively affects system performance. TI also recommends a ground reference plane either embedded in the  
PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves to  
assure accuracy of the output voltage, shield noise, and behaves similarly to a thermal plane to spread (or sink)  
heat from the LDO device when connected to the thermal pad. In most applications, this ground plane is  
necessary to meet thermal requirements.  
8.4.1.1 Package Mounting  
Solder-pad footprint recommendations for the TPS7B4255-Q1 are available at the end of this document and at  
www.ti.com.  
8.4.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance  
To improve AC performance (such as PSRR, output noise, and transient response), design the board with  
separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of the device.  
In addition, the ground connection for the output capacitor must connect directly to the GND pin of the device.  
Equivalent series inductance (ESL) and ESR must be minimized in order to maximize performance and ensure  
stability. Every capacitor must be placed as close as possible to the device and on the same side of the printed  
circuit board (PCB) as the regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use  
of vias and long traces is strongly discouraged because of the negative impact on system performance. Vias and  
long traces can also cause instability.  
If possible, and to ensure the maximum performance denoted in this product data sheet, use the same layout  
pattern used for the TPS7B4255-Q1 evaluation board, available at www.ti.com.  
8.4.1.3 Power Dissipation and Thermal Considerations  
方程2 calculates the device power dissipation.  
PD = IOUT × (VIN VOUT) + IQ × VIN  
(2)  
where:  
PD = Continuous power dissipation  
IOUT = Output current  
VIN = Input voltage  
VOUT = Output voltage  
IQ = Quiescent current  
Because IQ is much less than IOUT, the term IQ × VIN in 方程2 can be ignored.  
Calculate the junction temperature (TJ) with 方程式 3 for a device under operation at a given ambient air  
temperature (TA).  
TJ = TA + (RθJA × PD)  
(3)  
where:  
RθJA = Junction-to-junction-ambient air thermal impedance  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
方程4 calculates a rise in junction temperature because of power dissipation.  
ΔT = TJ TA = (RθJA × PD)  
(4)  
The maximum ambient air temperature (TAM) at which the device can operate can be calculated with 方程式 5  
for a given maximum junction temperature (TJM).  
TAM = TJM (RθJA × PD)  
(5)  
8.4.2 Layout Examples  
1
ADJ  
GND  
IN  
GND  
OUT  
5
2
3
4
8-4. DYB Package Layout Example  
ADJ/EN  
GND  
1
5
GND  
2
3
4
IN  
OUT  
8-5. DBV Package Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7B4255-Q1  
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
 
 
 
 
 
 
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
10.1 Mechanical Data  
PACKAGE OUTLINE  
DYB0005A  
SOT - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SOT  
1.29  
1.15  
2.85  
2.55  
1.1 MAX  
0.2  
C A B  
1.6  
1.4  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
5
2X 0.95  
3.026  
2.826  
1.9  
1.45  
3
4
0.69  
0.55  
0.2  
C A B  
0.1  
0.0  
0.39  
0.25  
TYP  
3X  
0.2  
C A B  
0 -8 TYP  
C
0.25  
GAGE PLANE  
SEATING PLANE  
0.23  
0.15  
TYP  
0.6  
0.3  
TYP  
4226199/A 09/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. No JEDEC reference as of August 2020.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7B4255-Q1  
 
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DYB0005A  
SOT - 1.1 max height  
SOT  
SYMM  
5}X (1.1)  
3X (0.6)  
(0.8)  
1
5
(1.4)  
SYMM  
3X (0.95)  
(0.55)  
3
4
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4226199/A 09/2020  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7B4255-Q1  
TPS7B4255-Q1  
ZHCSOZ7 JUNE 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DYB0005A  
SOT - 1.1 max height  
SOT  
SYMM  
5X (1.1)  
3X (0.6)  
(0.8)  
1
5
(1.4)  
SYMM  
(0.55)  
3X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4226199/A 09/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7B4255-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS7B4255QDBVRQ1  
PTPS7B4255QDYBRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DYB  
5
5
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PTPS7B8601BQDDARQ1

具有电源正常状态指示功能的汽车类 500mA、40V 超低 IQ 低压降 (LDO) 线性稳压器 | DDA | 8 | -40 to 150
TI

PTPS7B8633BQDDARQ1

具有电源正常状态指示功能的汽车类 500mA、40V 超低 IQ 低压降 (LDO) 线性稳压器 | DDA | 8 | -40 to 150
TI

PTPS7B8650BQDDARQ1

具有电源正常状态指示功能的汽车类 500mA、40V 超低 IQ 低压降 (LDO) 线性稳压器 | DDA | 8 | -40 to 150
TI

PTPS7H1111HBL/EM

Radiation-hardness-assured (RHA), 1.5-A, ultra-low noise ultra-high PSRR RF LDO linear regulator | HBL | 14 | 25 to 25
TI

PTPS7H1111PWPTSEP

抗辐射、1.5A、超低噪声、超高 PSRR RF LDO 稳压器 | PWP | 28 | -55 to 125
TI

PTPS7H3302MDAPSEP

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器 | DAP | 32 | -55 to 125
TI

PTPS92662AQPHPRQ1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器 | PHP | 48
TI

PTPSI2140QDWQRQ1

具有 2mA 雪崩额定值的汽车类 1200V、50mA 隔离开关

| DWQ | 11 | -40 to 125
TI

PTPSM365R6FRDN

3-65V 输入 1-13V 输出 0.6A 同步降压转换器电源模块 | RDN | 11 | -40 to 125
TI

PTPSM53604RDAR

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小外形尺寸的 36V、4A 降压电源模块 | RDA | 15
TI

PTPSM82913RDUR

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation | RDU | 28 | -40 to 125
TI

PTPSM831D31MOA

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块 | MOA | 32 | -40 to 105
TI