SMJ320MCM42DHFNM33 [TI]

32-BIT, 33MHz, OTHER DSP, CQFP408, CERAMIC, QFP-408;
SMJ320MCM42DHFNM33
型号: SMJ320MCM42DHFNM33
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

32-BIT, 33MHz, OTHER DSP, CQFP408, CERAMIC, QFP-408

时钟 外围集成电路
文件: 总16页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
D
D
Performance:  
HFN PACKAGE  
(TOP VIEW)  
– 80 Million Floating-Point Operations Per  
Second (MFLOPS) With 496-MBps-Burst  
I/O Rate for 40-MHz Modules  
– Zero-Wait-State Local Memory for Each  
Processor  
408  
307  
1
306  
Organization:  
– 128K-Word × 32-Bit Static  
Random-Access Memory (SRAM)  
(SMJ320MCM42D)  
– 256K-Word × 32-Bit SRAM  
(SMJ320MCM42C)  
D
D
Compliant With MIL-PRF-38535 QML  
Dual ’C40 Performance With Local Memory  
Requiring Only 8.7 Square Inches of Board  
Space  
D
Enhanced Performance Offered By  
Multichip-Module Solution  
– SMJ320MCM42C  
102  
205  
– 67% Reduction in Number of  
Interconnects  
– 54% Reduction (Minimum) in Board  
Area  
103  
204  
Terminal assignment information is provided by the terminal  
assignments table. Package is shown for pinout reference only.  
– Estimated 38% Reduction in Power  
Dissipation Due to Reduced Parasitic  
Capacitance and Interconnect Lengths  
– SMJ320MCM42D  
D
D
IEEE-1149.1 (JTAG) Boundary-Scan  
Compatible  
– 56% Reduction in Number of  
Interconnects  
– 30% Reduction (Minimum) in Board  
Area  
– Estimated 20% Reduction in Power  
Dissipation Due to Reduced Parasitic  
Capacitance and Interconnect Lengths  
408-Lead Ceramic Quad Flatpack Package  
(HFN Suffix)  
D
Operating Free-Air Temperature Ranges:  
55°C to 125°C . . . (Military)  
0°C to 70°C . . . (Commercial)  
D
Communication-Port Connection Provided  
Between ’C40s for Interprocessor  
Communication  
D
D
Four Memory Ports for High Data  
Bandwidth  
– Two Full 2G-Word External Buses  
Two Internal Buses Mapped to Memory  
– 128K-Word × 32-Bit SRAM for Each ’C40  
Local Bus (SMJ320MCM42D)  
– 256K-Word × 32-Bit SRAM for Each ’C40  
Local Bus (SMJ320MCM42C)  
D
Ten External Communication Ports for  
Direct Processor-to-Processor  
Communication  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
IEEE Standard 1149.1–1990 Standard Test-Access Port and Boundary-Scan Architecture  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
On products compliant to MIL-STD-PRF-38535, all parameters  
are tested unless otherwise noted. On all other products,  
productionprocessingdoes notnecessarilyincludetestingofall  
parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
description  
The ’42 dual ’C40 multichip module (MCM) contains two SMJ320C40 digital signal processors (DSPs) with  
128K words × 32 bits (’42D) or 256K words × 32 bits (’42C) of zero-wait-state SRAMs mapped to each local  
bus. Global address and data buses with two sets of control signals are routed externally for each processor,  
allowing external memory to be accessed. The external global bus provides a continuous address reach of  
2G words.  
The dual ’C40 configuration allows standard microprocessor initialization using the bootstrap loader. Both  
reset-vector-control terminals are brought out to external terminals for each processor. A single CLKIN line and  
a RESET line feed both processors in parallel, minimizing clock skew and allowing easy synchronization for  
interlocked operations.  
Communicationport 0 of CPU #1 connects to communication port 3 of CPU #2 for direct processor-to-processor  
communication.  
The IEEE-1149.1 (JTAG) test ports of the ’C40s are connected serially to allow scan operations and emulation  
of the module as a whole. Testability of the ’42 adds value and reduces development and support costs. Texas  
Instruments (TI ) offers a wide variety of ANSI/IEEE-1149.1 products and support.  
The ’42 dual ’C40 MCM is packaged in a 408-pin ceramic quad flat pack. The ’42 dual ’C40 MCM is available  
in both a commercial temperature range (0°C to 70°C) and a military temperature range (–55°C to 125°C)  
option.  
TI is a trademark of Texas Instruments Incorporated.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
device symbol nomenclature  
Example: SMJ  
320  
MCM  
4
2
C
HFN  
M
40  
Process-Level Prefix  
(See Table 1)  
320 DSP Family Designator  
Multichip Module  
Processor Family  
Number of CPUs per Module  
Module Revision  
’42C = 256K-word × 32-bit SRAM  
’42D = 128K-word × 32-bit SRAM  
Package  
HFN = 408-Lead Ceramic Quad Flatpack  
Temperature Range  
L
= 0°C to 70°C  
M = 55°C to 125°C  
Speed Designator  
40 = 40 MHz  
Table 1. MCM Processing Matrix  
TEST  
TEMPERATURE  
RANGE  
PROCESS  
LEVEL  
100%  
PROCESSED  
SPEED  
TEST  
QUALIFICATION  
TESTING  
TEMPERATURE RANGE  
DIE  
L version  
M version  
M version  
0°C to 70°C  
Probed  
Probed  
No  
No  
No  
Yes  
Yes  
25°C to 70°C  
Package  
SM  
55°C to 125°C  
55°C to 125°C  
55°C to 125°C  
55°C to 125°C  
Package  
SMJ  
KGD  
Yes  
MIL-H-38534  
SMJ-level product is full MIL-PRF-38535 QML compliant.  
KGD stands for the known-good-die strategy as defined in the reference documentation section.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
Terminal Assignments  
TERMINAL  
NAME  
TERMINAL  
NAME  
TERMINAL  
NAME  
RDY1_C40_#2  
TERMINAL  
NAME  
NO.  
NO.  
NO.  
NO.  
1
ROMEN_C40_#1  
IIOF0_C40_#1  
IIOF1_C40_#1  
IIOF2_C40_#1  
IIOF3_C40_#1  
NMI_C40_#1  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
A10_C40_#1  
A9_C40_#1  
A8_C40_#1  
A7_C40_#1  
A6_C40_#1  
A5_C40_#1  
A4_C40_#1  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
C4D5_C40_#2  
C4D4_C40_#2  
C4D3_C40_#2  
C4D2_C40_#2  
C4D1_C40_#2  
C4D0_C40_#2  
2
V
V
_DR  
_CL  
SS  
3
SS  
4
LOCK_C40_#2  
5
V
V
_CL  
CC  
_CL  
6
SS  
7
V
V
_DR  
CE0_C40_#2  
RDY0_C40_#2  
DE_C40_#2  
V
V
V
_DR  
_DR  
CC  
_CL  
CC  
8
V
CC  
_DR  
SS  
CC  
9
TCLK0_C40_#1  
TCLK1_C40_#1  
H3_C40_#1  
A3_C40_#1  
A2_C40_#1  
A1_C40_#1  
A0_C40_#1  
D31_C40_#2  
D30_C40_#2  
D29_C40_#2  
D28_C40_#2  
D27_C40_#2  
D26_C40_#2  
_CL  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
TCK_COMM  
C2D7_C40_#2  
C2D6_C40_#2  
C2D5_C40_#2  
C2D4_C40_#2  
C2D3_C40_#2  
C2D2_C40_#2  
C2D1_C40_#2  
C2D0_C40_#2  
CRDY2_C40_#2  
CSTRB2_C40_#2  
CACK2_C40_#2  
CREQ2_C40_#2  
TDO_C40_#2  
TMS_COMM  
H1_C40_#1  
V _CL  
SS  
TRST_COMM  
EMU0_COMM  
EMU1_COMM  
PAGE1_C40_#2  
R/W1_C40_#2  
STRB1_C40_#2  
STAT0_C40_#2  
STAT1_C40_#2  
IACK_C40_#1  
CLKIN_COMM  
V
V
V
V
V
V
V
V
V
V
V
V
_DR  
_CL  
_DR  
CC  
CC  
CC  
_CL  
V
CC  
_DR  
SS  
SS  
CC  
CC  
CC  
_DR  
D25_C40_#2  
D24_C40_#2  
D23_C40_#2  
D22_C40_#2  
D21_C40_#2  
D20_C40_#2  
D19_C40_#2  
D18_C40_#2  
D17_C40_#2  
D16_C40_#2  
_DR  
_DR  
_CL  
V _CL  
SS  
STAT2_C40_#2  
STAT3_C40_#2  
PAGE0_C40_#2  
R/W0_C40_#2  
V
CC  
_DR  
CRDY1_C40_#2  
CSTRB1_C40_#2  
CACK1_C40_#2  
CREQ1_C40_#2  
CRDY0_C40_#2  
CSTRB0_C40_#2  
CACK0_C40_#2  
CREQ0_C40_#2  
_CL  
_DR  
_CL  
SS  
SS  
SS  
CC  
STRB0_C40_#2  
AE_C40_#2  
_DR  
A30_C40_#1  
A29_C40_#1  
A28_C40_#1  
RESETLOC1_C40_#2  
V
CC  
_DR  
V
V
V
V
_CL  
_CL  
RESETLOC0_C40_#2  
SS  
SS  
CC  
V
CC  
_DR  
RESET_COMM  
V
V
V
V
_DR  
_CL  
_DR  
SS  
SS  
SS  
CC  
A27_C40_#1  
A26_C40_#1  
A25_C40_#1  
A24_C40_#1  
A23_C40_#1  
A22_C40_#1  
A21_C40_#1  
A20_C40_#1  
A19_C40_#1  
A18_C40_#1  
A17_C40_#1  
_DR  
_DR  
CRDY5_C40_#2  
CSTRB5_C40_#2  
CACK5_C40_#2  
CREQ5_C40_#2  
CRDY4_C40_#2  
CSTRB4_C40_#2  
CACK4_C40_#2  
CREQ4_C40_#2  
SS  
D15_C40_#2  
D14_C40_#2  
D13_C40_#2  
D12_C40_#2  
D11_C40_#2  
D10_C40_#2  
D9_C40_#2  
D8_C40_#2  
D7_C40_#2  
D6_C40_#2  
D5_C40_#2  
_DR  
C1D7_C40_#2  
C1D6_C40_#2  
C1D5_C40_#2  
C1D4_C40_#2  
C1D3_C40_#2  
C1D2_C40_#2  
C1D1_C40_#2  
C1D0_C40_#2  
V
CC  
_DR  
C5D7_C40_#2  
C5D6_C40_#2  
C5D5_C40_#2  
C5D4_C40_#2  
C5D3_C40_#2  
C5D2_C40_#2  
C5D1_C40_#2  
C5D0_C40_#2  
V
V
V
_DR  
V
CC  
_DR  
CC  
_CL  
C0D7_C40_#2  
C0D6_C40_#2  
C0D5_C40_#2  
C0D4_C40_#2  
C0D3_C40_#2  
C0D2_C40_#2  
C0D1_C40_#2  
C0D0_C40_#2  
SS  
SS  
_DR  
V
CC  
_DR  
A16_C40_#1  
A15_C40_#1  
A14_C40_#1  
A13_C40_#1  
A12_C40_#1  
A11_C40_#1  
D4_C40_#2  
D3_C40_#2  
D2_C40_#2  
D1_C40_#2  
D0_C40_#2  
CE1_C40_#2  
V
CC  
_DR  
C4D7_C40_#2  
C4D6_C40_#2  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
Terminal Assignments (Continued)  
TERMINAL  
NAME  
TERMINAL  
NAME  
TERMINAL  
NAME  
_DR  
TERMINAL  
NAME  
_DR  
NO.  
NO.  
NO.  
NO.  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
ROMEN_C40_#2  
IIOF0_C40_#2  
IIOF1_C40_#2  
IIOF2_C40_#2  
IIOF3_C40_#2  
NMI_C40_#2  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
A9_C40_#2  
A8_C40_#2  
A7_C40_#2  
A6_C40_#2  
A5_C40_#2  
A4_C40_#2  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
V
SS  
V
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
V
SS  
V
_CL  
SS  
_DR  
CC  
LOCK_C40_#1  
C3D7_C40_#1  
C3D6_C40_#1  
C3D5_C40_#1  
C3D4_C40_#1  
C3D3_C40_#1  
C3D2_C40_#1  
C3D1_C40_#1  
C3D0_C40_#1  
V
V
_CL  
CC  
_CL  
SS  
CE0_C40_#1  
RDY0_C40_#1  
DE_C40_#1  
V
V
_DR  
V
CC  
_DR  
CC  
_CL  
A3_C40_#2  
A2_C40_#2  
A1_C40_#2  
A0_C40_#2  
D31_C40_#1  
D30_C40_#1  
D29_C40_#1  
D28_C40_#1  
D27_C40_#1  
D26_C40_#1  
SS  
TCLK0_C40_#2  
TCLK1_C40_#2  
H3_C40_#2  
TDI_C40_#1  
PAGE1_C40_#1  
R/W1_C40_#1  
STRB1_C40_#1  
STAT0_C40_#1  
STAT1_C40_#1  
V
V
_DR  
CC  
_CL  
H1_C40_#2  
SS  
V _CL  
SS  
C2D7_C40_#1  
C2D6_C40_#1  
C2D5_C40_#1  
C2D4_C40_#1  
C2D3_C40_#1  
C2D2_C40_#1  
C2D1_C40_#1  
C2D0_C40_#1  
IACK_C40_#2  
V
V
V
V
V
V
V
V
V
V
V
V
_DR  
_DR  
_DR  
V _CL  
SS  
CC  
CC  
CC  
STAT2_C40_#1  
STAT3_C40_#1  
PAGE0_C40_#1  
R/W0_C40_#1  
_CL  
V
CC  
_DR  
SS  
SS  
CC  
CC  
CC  
_DR  
D25_C40_#1  
D24_C40_#1  
D23_C40_#1  
D22_C40_#1  
D21_C40_#1  
D20_C40_#1  
D19_C40_#1  
D18_C40_#1  
D17_C40_#1  
D16_C40_#1  
_DR  
_DR  
_CL  
STRB0_C40_#1  
AE_C40_#1  
V
V
_DR  
SS  
RESETLOC1_C40_#1  
_DR  
CC  
_CL  
_DR  
_CL  
V
CC  
_DR  
CRDY3_C40_#1  
CSTRB3_C40_#1  
CACK3_C40_#1  
CREQ3_C40_#1  
SS  
SS  
SS  
CC  
RESETLOC0_C40_#1  
CRDY5_C40_#1  
CSTRB5_C40_#1  
CACK5_C40_#1  
CREQ5_C40_#1  
CRDY4_C40_#1  
CSTRB4_C40_#1  
CACK4_C40_#1  
CREQ4_C40_#1  
_DR  
A30_C40_#2  
A29_C40_#2  
A28_C40_#2  
V
V
_CL  
CC  
_CL  
SS  
V
V
V
V
_CL  
_CL  
CRDY2_C40_#1  
CSTRB2_C40_#1  
CACK2_C40_#1  
CREQ2_C40_#1  
SS  
SS  
CC  
V
CC  
_DR  
A27_C40_#2  
A26_C40_#2  
A25_C40_#2  
A24_C40_#2  
A23_C40_#2  
A22_C40_#2  
A21_C40_#2  
A20_C40_#2  
A19_C40_#2  
A18_C40_#2  
A17_C40_#2  
_DR  
_DR  
SS  
D15_C40_#1  
D14_C40_#1  
D13_C40_#1  
D12_C40_#1  
D11_C40_#1  
D10_C40_#1  
D9_C40_#1  
D8_C40_#1  
D7_C40_#1  
D6_C40_#1  
D5_C40_#1  
V
V
_DR  
V
CC  
_DR  
SS  
_DR  
CRDY1_C40_#1  
CSTRB1_C40_#1  
CACK1_C40_#1  
CREQ1_C40_#1  
CC  
C5D7_C40_#1  
C5D6_C40_#1  
C5D5_C40_#1  
C5D4_C40_#1  
C5D3_C40_#1  
C5D2_C40_#1  
C5D1_C40_#1  
C5D0_C40_#1  
V
V
V
V
_DR  
_CL  
_DR  
SS  
SS  
SS  
CC  
_DR  
V
V
V
_DR  
C1D7_C40_#1  
C1D6_C40_#1  
C1D5_C40_#1  
C1D4_C40_#1  
C1D3_C40_#1  
C1D2_C40_#1  
C1D1_C40_#1  
C1D0_C40_#1  
CC  
_CL  
V
CC  
_DR  
SS  
_DR  
V
CC  
_DR  
C4D7_C40_#1  
C4D6_C40_#1  
C4D5_C40_#1  
C4D4_C40_#1  
C4D3_C40_#1  
C4D2_C40_#1  
C4D1_C40_#1  
C4D0_C40_#1  
SS  
A16_C40_#2  
A15_C40_#2  
A14_C40_#2  
A13_C40_#2  
A12_C40_#2  
A11_C40_#2  
A10_C40_#2  
D4_C40_#1  
D3_C40_#1  
D2_C40_#1  
D1_C40_#1  
D0_C40_#1  
CE1_C40_#1  
RDY1_C40_#1  
V
V
_DR  
CC  
_DR  
SS  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
functional block diagram  
The following terminals have 10-kpullup resistors added within the module:  
D
D
D
CREQx_C40_#1, CACKx_C40_#1, CSTRBx_C40_#1, CRDYx_C40_#1, where x = 1, 2, 3, 4, or 5  
CREQy_C40_#2, CACKy_C40_#2, CSTRBy_C40_#2, CRDYy_C40_#2, where y = 0, 1, 2, 4, or 5  
LCE1_C40_#1, LCE2_C40_#2 (internal connections)  
A total of 18 decoupling capacitors have been connected within the module.  
Between clean power and ground, the following capacitors have been connected:  
D
D
Two 0.1-µF capacitors  
Two 0.01-µF capacitors  
Between dirty power and ground, the following capacitors have been connected:  
D
D
Twelve 0.1-µF capacitors  
Two 0.01-µF capacitors  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
functional block diagram (continued)  
’C40_#1  
Control  
Communication Ports  
(15)  
D31D0  
A30A0  
AE  
DE  
STAT3STAT0  
’C40_ #1  
Global Bus  
LOCK  
STRB0STRB1  
R/W0 R/W1  
PAGE0PAGE1  
RDY0RDY1  
CE0CE1  
SRAM  
128K × 8 × 4  
(’42D)  
ADDR  
DATA  
CNTL  
or  
’C40_#1  
COMM0  
TDI_C40_#1  
TCK_COMM  
TMS_COMM  
TRST_COMM  
EMU0_COMM  
EMU1_COMM  
TDO_C40_#2  
TDI  
128K × 8 × 8  
(’42C)  
IEEE 1149.1  
TDO  
CLKIN_COMM  
RESET_COMM  
COMM3  
’C40_ #2  
TDI  
V
V
_CL  
_CL  
SS  
SRAM  
128K × 8 × 4  
(’42D)  
CC  
V _DR  
SS  
ADDR  
DATA  
CNTL  
TDO  
V
CC  
_DR  
or  
128K × 8 × 8  
(’42C)  
D31D0  
A30A0  
AE  
DE  
STAT3STAT0  
LOCK  
’C40_ #2  
Global Bus  
STRB0STRB1  
R/W0–R/W1  
PAGE0PAGE1  
RDY0RDY1  
CE0CE1  
’C40_#1  
’C40_#2  
Communication Ports  
(02, 45)  
’C40_ #2  
Control  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
operational overview  
Treatment of the detailed operation of the ’C40 device is not included in the scope of this document. See the  
TMS320C4xUser’s Guide (literature number SPRU063) for a detailed description of this DSP. See Figure 1 and  
Figure 2 for the memory map.  
000000000h  
4K ROM (reserved)  
Structure  
Depends On  
ROMEN Bit  
000000FFFh  
000001000h  
Reserved  
1M  
1M  
Reserved  
Peripherals (internal)  
Reserved  
0000FFFFFh  
000100000h  
Peripherals (internal)  
Reserved  
0001000FFh  
000100100h  
0001FFFFFh  
000200000h  
Reserved  
Reserved  
0002FF7FFh  
0002FF800h  
2G  
1M  
1K RAM BLK 0 (internal)  
1K RAM BLK 1 (internal)  
1K RAM BLK 0 (internal)  
1K RAM BLK 1 (internal)  
0002FFBFFh  
0002FFC00h  
0002FFFFFh  
000300000h  
Reserved  
Local Bus Module RAM  
Reserved  
Reserved  
Local Bus Module RAM  
Reserved  
5M  
0007FFFFFh  
000800000h  
Structure  
Identical  
128K  
00081FFFFh  
000820000h  
07FFFFFFFh  
080000000h  
Global Bus (external)  
Global Bus (external)  
2G  
0FFFFFFFFh  
(a) INTERNAL ROM DISABLED  
(ROMEN = 0)  
(b) INTERNAL ROM ENABLED  
(ROMEN = 1)  
Figure 1. Memory Map for Each ’C40 Within the Multichip Module (’42D)  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
operational overview (continued)  
000000000h  
4K ROM (reserved)  
Structure  
Depends On  
ROMEN Bit  
000000FFFh  
000001000h  
Reserved  
1M  
Reserved  
0000FFFFFh  
000100000h  
Peripherals (internal)  
Reserved  
Peripherals (internal)  
0001000FFh  
000100100h  
1M  
Reserved  
0001FFFFFh  
000200000h  
Reserved  
Reserved  
0002FF7FFh  
2G  
1M  
0002FF800h  
1K RAM BLK 0 (internal)  
1K RAM BLK 1 (internal)  
1K RAM BLK 0 (internal)  
0002FFBFFh  
0002FFC00h  
1K RAM BLK 1 (internal)  
0002FFFFFh  
000300000h  
Reserved  
Reserved  
5M  
000FDFFFFh  
000FE0000h  
Structure  
Identical  
Local Bus Module RAM  
Local Bus Module RAM  
128K  
128K  
(LSTRB0)  
(LSTRB0)  
000FFFFFFh  
001000000h  
256K  
Local Bus Module RAM  
Local Bus Module RAM  
(LSTRB1)  
(LSTRB1)  
00101FFFFh  
001020000h  
Reserved  
Reserved  
07FFFFFFFh  
080000000h  
Global Bus (external)  
Global Bus (external)  
2G  
0FFFFFFFFh  
(a) INTERNAL ROM DISABLED  
(ROMEN = 0)  
(b) INTERNAL ROM ENABLED  
(ROMEN = 1)  
See section titled ”application note”.  
Figure 2. Memory Map for Each ’C40 Within the Multichip Module (’42C)  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
application note  
For the ’MCM42C, the location of the local memory has changed from that of the ’MCM42D. In addition, to make  
proper use of the local memory, it is necessary to understand how it is controlled.  
In the case of the ’MCM42C, the lower 128K of memory is controlled by LSTRB0, while the upper 128K of  
memory is controlled by LSTRB1. Since the upper 128K begins at address 1000000h, it is necessary to load  
the value 10111 (binary) into the STRB ACTIVE area (bits 28–24) of the local memory interface control register  
(LMICR). This process ensures that the ’C40 uses LSTRB0 to control the lower 128K and LSTRB1 to control  
the upper 128K.  
In the case of the ’MCM42D, LSTRB0 controls the entire 128K. The value loaded into the STRB ACTIVE area  
of the LMICR after reset is sufficient to control the memory. This value is 1110, and tells the ’C40 that the entire  
local memory is controlled by LSTRB0.  
This subject is discussed in depth in Chapter 9 of the 1996 TMS320C4x User’s Guide (literature number  
SPRU063). In particular, section 9.3 discusses the proper use of the memory interface control registers.  
reference documentation and data sheet scope  
The SMJ320MCM42 is qualified to MIL-PRF-38535. Electrical continuity of the module is ensured through the  
use of IEEE-1149.1-compatible boundary-scan testing and functional checkout of the local SRAM space.  
KGD refers to TI known-good-die strategy. TI KGDs are fully tested over the military temperature range per  
MIL-PRF-38535 QML. Electrical tests ensure compliance of the ’C40 KGD components to the SMJ320C40 data  
sheet (literature number SGUS017) over the operating temperature range. Module timings are virtually  
unchanged from the SMJ320C40 data sheet timings. An SMJ320C40 data sheet is provided for customer  
reference only and does not imply MCM compliance to published timings.  
ForadescriptionoftheC40operationandapplicationinformation, seetheTMS320C4xUser’sGuide(literature  
number SPRU063).  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
CC  
Voltage range on any terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
O
Operating free-air temperature range (commercial [L version]), T . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
(military [M version]), T  
. . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
Junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
4.5  
MAX  
5.5  
UNIT  
’42-33  
V
Supply voltage  
V
CC  
IH  
’42-40  
4.75  
2.6  
5.25  
CLKIN_COMM  
V
V
V
+ 0.3  
CC  
CC  
CC  
CSTRBx, CRDYx, CREQx, CACKx  
All others  
2.2  
+ 0.3  
+ 0.3  
V
High-level input voltage  
V
2
V
Low-level input voltage  
High-level output current  
Low-level output current  
– 0.3  
0.8  
V
IL  
I
I
– 300  
2
µA  
mA  
OH  
OL  
L version  
M version  
0
70  
T
A
Operating free-air temperature range  
°C  
– 55  
125  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Note 2)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
V
V
V
V
= MIN,  
= MIN,  
I
I
= MAX  
2.4  
OH  
CC  
OH  
Low-level output voltage  
V
= MAX  
0.3  
0.7  
0.8  
0.6  
1.1  
1.5  
20  
10  
20  
30  
60  
60  
V
OL  
CC  
OL  
’42D  
’42C  
I
Supply current  
V
= MAX  
A
CC  
CC  
I
I
I
I
I
I
3-state current  
V = V  
to V  
to V  
to V  
to V  
to V  
to V  
– 20  
– 10  
µA  
µA  
µA  
µA  
µA  
µA  
Z
I
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
CC  
CC  
CC  
CC  
Input current  
V = V  
I
I
Input current, COMM signal (see Note 3)  
Input current, internal pullup (see Note 4)  
Input current, dual internal pullup (see Note 5)  
Input current, CLKIN_COMM  
V = V  
– 20  
I2  
IP  
IP2  
IC  
I
V = V  
– 400  
– 800  
– 60  
I
V = V  
I
V = V  
I
For conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions.  
NOTES: 2. Electrical characteristics are calculated algebraically from the SMJ320C40 data sheet limits.  
3. Includes signals EMU0_COMM, EMU1_COMM, and RESET_COMM  
4. Applies to TDI_C40_#1  
5. Includes signals TCK_COMM, TMS_COMM, and TRST_COMM  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
capacitance  
Capacitance of a ’C40 die is specified by design to be 15 pF maximum for both inputs and outputs. Module  
networks add up to 5 pF. Characterization of die or substance capacitance is performed after any design  
change. Power measurements taken for a ’C40 die are made with an additional 80-pF load capacitance. Refer  
to the SMJ320C40 data sheet (literature number SGUS017) for the test load circuit.  
operational timings and module testing  
Texas Instruments processing assures that operation is verified to published data sheet specifications on the  
’C40 in die form. All voltage, timing, speed, and temperature specifications are met before any die is placed into  
a multichip module. For this reason, all ’C40 voltage and timing parameters at the module level need not be  
verified.  
Characterization of the ’42 substrate shows that the module performs as an equivalent system of discretely  
packagedC40devices. Thisperformanceisassuredthroughafull-frequencyfunctionalcheckoutofthemodule  
that verifies selected worst-case timings. An additional propagation delay is introduced by the substrate. This  
value is assured by design to be less than 1 ns, but it is not tested. See the SMJ320C40 data sheet (literature  
number SGUS017) for a complete listing of timing diagrams and limits.  
module test capability (future compatibility)  
The ’C40 supports the IEEE-1149.1 testability standard, and the test access port (TAP) is brought out to the  
module footprint. TDI is connected to ’C40_#1, TDO of ’C40_#1 is connected to TDI of ’C40_#2, and TDO of  
’C40_#2 is brought out to the TAP. TCK_COMM, TMS_COMM, and TRST_COMM are routed to both ’C40s in  
the module. This configuration allows users to test the module using third-party JTAG testability tools or other  
boundary-scan control software. Proper software configuration allows users to debug or launch code on the  
module by way of the ’C40 emulator and extended development system (XDS ) pod. Both of these tools are  
used as part of outgoing module testing.  
The ’42 supports third-party JTAG diagnostic families of products for verification and debug of boundary-scan  
circuits, boards, and systems. Further information on JTAG testability tools is available through any TI sales  
representative or authorized TI distributor.  
XDS is a trademark of Texas Instruments Incorporated.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
module test circuit  
Figure 3 illustrates the basic circuits for the ’42. See the TMS320C4x User’s Guide (literature number  
SPRU063) for more detailed information.  
CLKIN_COMM = Clock Pulse as shown in the Data Sheet  
RESET_COMM = Reset Pulse as shown in the Data Sheet  
5 V  
4.7 k10 kΩ  
Suggested  
’C40_#1  
TDO  
’C40_#2  
TDI TDO  
TDO_C40_#2  
TDI  
TMS_COMM  
TCK_COMM  
TRST_COMM  
EMU0_COMM  
EMU1_COMM  
TDI_C40_#1  
SMJ320MCM42  
Test Header  
All V  
All V  
to 5 V  
CC  
SS  
to GND  
The test header normally consists of the XDS510 for the ’C40 emulation or ASSET hardware for interconnect testing.  
Figure 3. Sample Test Circuit  
XDS510 is a trademark of Texas Instruments Incorporated.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
thermal analysis  
Thermal conduction of components in the SMJ320MCM42 is dependent on thermal resistance of the material  
under each die as well as die area thermally connected to the heat-dissipating medium. Since these properties  
vary with layout and die size, ’C40 and SRAM components should be considered separately. Table 2 lists  
primary parameters required for thermal analysis of the module. T , the maximum junction temperature, is not  
J
to be exceeded for the ’C40s or the SRAM die.  
Table 2. Thermal Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
150  
5.8  
UNIT  
°C  
T
J
Maximum allowable junction temperature under operating condition  
Module power dissipation  
P
3.5  
2.1  
W
MCM  
JC_pkg  
JA  
T
T
T
Average thermal impedance (junction to case) for the package  
Thermal impedance (junction to ambient air, 0 cfm) of package  
Maximum solder temperature (10 s duration)  
°C/W  
°C/W  
°C  
20.5  
260  
SOL  
T
JC  
package data was taken under the following conditions: two ’C40s dissipating 1.05 W each and eight SRAMs dissipating 0.175 W each.  
power estimation  
During the operation verification, the power requirements of the SMJ320MCM42 are characterized over the  
operating free-air temperature range. See the application report Calculation of TMS320C40 Power Dissipation  
(literature number SPRA032) as reference for power estimation of the ’C40 components.  
Typical power dissipation is measured with both ’C40s executing a 64-point fast Fourier transform (FFT)  
algorithm. Input and output data arrays reside in module SRAM, and output data is written out to the  
global-address space. The global databus is loaded with 80-pF test loads, and both local and global writes are  
configured for zero-wait-state memory. Under typical conditions of 25°C, 5-V V , and 40-MHz CLKIN  
CC  
frequency, the power dissipation is measured to be 3.5 W.  
Maximum power dissipation is measured under worst-case conditions. The global databus is loaded with 80-pF  
test loads, and simultaneous zero-wait-state writes are performed to both local and global buses. Under  
worst-caseenvironmentconditionsof55°C, 5.25-VV , and40-MHzCLKINfrequency, thepowerdissipation  
CC  
is determined to be 5.9 W. The algorithm executed during these tests consists of parallel writes of alternating  
0xAAs and 0x55s to both local SRAM and global-address spaces. This algorithm is not considered to be a  
practical use of the ’C40’s resources; therefore, the associated power measurement must be considered  
absolute maximum only.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM42C, SMJ320MCM42D  
DUAL SMJ320C40 MULTICHIP MODULE  
SGKS001B – JULY 1997 – REVISED FEBRUARY 2000  
MECHANICAL DATA  
HFN (S-CQFP-F408)  
CERAMIC QUAD FLATPACK WITH TIE-BAR  
3.850 (97,79) TYP  
2.674 (67,92)  
SQ  
2.626 (66,70)  
0.225 (5,72)  
0.175 (4,45)  
2.525 (64,13) TYP  
102  
1
”A”  
103  
408  
2.820 (71,73)  
2.810 (71,37)  
4.050 (102,87)  
204  
307  
”B”  
205  
306  
0.175 (4,45)  
0.140 (3,56)  
0.020 (0,51) MAX  
0.095 (2,41)  
0.070 (1,78)  
0.012 (0,30)  
0.006 (0,15)  
0.012 (0,30)  
0.007 (0,18)  
0.009 (0,23)  
0.005 (0,13)  
0.025 (0,65)  
DETAIL ”A”  
DETAIL ”B”  
4073431/B 10/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

SMJ320VC33

DIGITAL SIGNAL PROCESSOR
TI

SMJ320VC33GNLM150

DIGITAL SIGNAL PROCESSOR
TI

SMJ320VC33GNMM150

DIGITAL SIGNAL PROCESSOR
TI

SMJ320VC33HFGM150

DIGITAL SIGNAL PROCESSOR
TI

SMJ320VC5416

Fixed-Point Digital Signal Processor
TI

SMJ320VC5416HFGW10

Fixed-Point Digital Signal Processor
TI

SMJ320VC5506GHH

Fixed-Point Digital Signal Processor
TI

SMJ320VC5506PGE

Fixed-Point Digital Signal Processor
TI

SMJ320VC5506ZHH

Fixed-Point Digital Signal Processor
TI

SMJ325B7223KN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices
TAIYO YUDEN

SMJ325B7223KNHT

Soft Termination MLCC for Automotive
TAIYO YUDEN

SMJ325B7223MN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices
TAIYO YUDEN