SMJ55161 [TI]

262144 BY 16-BIT MULTIPORT VIDEO RAM; 262144除以16位的多端口视频RAM
SMJ55161
型号: SMJ55161
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

262144 BY 16-BIT MULTIPORT VIDEO RAM
262144除以16位的多端口视频RAM

文件: 总64页 (文件大小:1539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
HKC PACKAGE  
(TOP VIEW)  
Organization:  
– DRAM: 262 144 by 16 Bits  
– SAM: 256 by 16 Bits  
V
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
SC  
SE  
V
CC  
TRG  
Dual-Port Accessibility – Simultaneous and  
Asynchronous Access From the DRAM and  
SAM Ports  
V
SS  
SS  
SQ0  
DQ0  
SQ1  
DQ1  
SQ15  
DQ15  
SQ14  
DQ14  
Data-Transfer Function From the DRAM to  
the Serial-Data Register  
V
V
CC  
CC  
SQ2  
SQ13  
DQ13  
SQ12  
DQ12  
9
10  
11  
DQ2  
SQ3  
DQ3  
(4 × 4) × 4 Block-Write Feature for Fast  
Area-Fill Operations; as Many as Four  
Memory-Address Locations Written Per  
Cycle From the 16-Bit On-Chip Color  
Register  
54  
53  
52  
51  
50  
49  
12  
13  
V
V
SS  
SS  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SQ4  
DQ4  
SQ5  
SQ11  
DQ11  
SQ10  
DQ5  
V
DQ10  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
Write-Per-Bit Feature for Selective Write to  
Each RAM I/O; Two Write-Per-Bit Modes to  
Simplify System Design  
V
CC  
CC  
SQ6  
DQ6  
SQ7  
DQ7  
SQ9  
DQ9  
SQ8  
DQ8  
Byte-Write Control (CASL, CASU) Provides  
Flexibility  
V
V
SS  
SS  
CASL  
DSF  
NC / GND  
CASU  
QSF  
A0  
WE  
RAS  
A8  
Extended Data Output for Faster System  
Cycle Time  
A7  
Enhanced Page-Mode Operation for Faster  
Access  
A6  
29  
30  
31  
A1  
A5  
A4  
A2  
A3  
CAS-Before-RAS (CBR) and  
Hidden-Refresh Modes  
V
32  
V
CC  
SS  
Long Refresh Period  
Programmable Split-Register Stop Point  
Every 8 ms (Maximum)  
3-State Serial Outputs Allow Easy  
Multiplexing of Video-Data Streams  
Up to 45-MHz Uninterrupted Serial-Data  
Streams  
All Inputs/Outputs and Clocks TTL  
Compatible  
256 Selectable Serial-Register Starting  
Locations  
Compatible With JEDEC Standards  
SE-Controlled Register-Status QSF  
Designed to Work With the Texas  
Instruments Graphics Family  
Split-Register-Transfer Read for Simplified  
Real-Time Register Load  
Performance Ranges:  
OPERATING CURRENT  
OPERATING CURRENT  
ACCESS TIME ACCESS TIME  
DRAM  
DRAM  
SERIAL  
ROW ENABLE  
SERIAL DATA CYCLE TIME PAGE MODE CYCLE TIME  
SERIAL PORT STAND- SERIAL PORT AC-  
t
t
t
t
t
I
I
CC1A  
BY  
TIVE  
a(R)  
a(SQ)  
c(W)  
c(P)  
c(SC)  
CC1  
(MAX)  
(MAX)  
(MIN)  
(MIN)  
(MIN)  
(MAX)  
(MAX)  
SMJ55161-75  
SMJ55161-80  
75 ns  
80 ns  
23 ns  
25 ns  
140 ns  
150 ns  
48 ns  
50 ns  
24 ns  
30 ns  
165 mA  
160 mA  
210 mA  
195 mA  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PIN NOMENCLATURE  
A0A8  
Address Inputs  
CASL, CASU  
DQ0 DQ15  
DSF  
Column-Address Strobe/Byte Selects  
DRAM Data I/O, Write Mask Data  
Special-Function Select  
NC/GND  
No Connect/Ground (Important: Not  
connected internally to V  
Special-Function Output  
Row-Address Strobe  
Serial Clock  
)
SS  
QSF  
RAS  
SC  
SE  
Serial Enable  
SQ0SQ15  
TRG  
Serial-Data Output  
Output Enable, Transfer Select  
5-V Supply (TYP)  
Ground  
DRAM Write-Enable Select  
V
CC  
V
SS  
WE  
GB PACKAGE  
(BOTTOM VIEW)  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
GB Package Pin Assignments – By Location  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
NO.  
J1  
NO.  
J2  
NO.  
J3  
NO.  
J4  
NO.  
J5  
NO.  
J6  
NO.  
J7  
NO.  
J8  
NO.  
J9  
DQ1  
DQ0  
SQ0  
TRG  
SC  
SQ3  
SQ2  
SQ1  
DQ3  
DQ2  
DQ4  
SQ4  
DQ5  
SQ5  
DQ6  
SQ6  
SQ7  
DQ7  
CASL  
WE  
A8  
A7  
H1  
G1  
F1  
E1  
D1  
C1  
B1  
A1  
H2  
G2  
F2  
E2  
D2  
C2  
B2  
A2  
H3  
G3  
F3  
H4  
G4  
H5  
H6  
G6  
H7  
G7  
F7  
H8  
G8  
F8  
E8  
D8  
H9  
G9  
F9  
E9  
D9  
V
DD2  
V
SS2  
V
DD2  
V
SS2  
RAS  
A6  
V
SS1  
V
DD1  
V
DD1  
V
DD1  
A5  
V
DD1  
V
SS1  
A3  
A4  
SE  
V
D3  
C3  
B3  
A3  
V
V
D7  
C7  
B7  
A7  
V
V
A2  
SS1  
SS1  
DD1  
SS1  
SQ15  
DQ15  
SQ14  
V
C4  
B4  
A4  
V
SS2  
C6  
B6  
A6  
V
DD2  
C8 CASU C9  
A1  
DD2  
SS2  
DQ14  
SQ13  
DQ13  
SQ12  
DQ12  
SQ11  
B5  
A5  
DQ11  
SQ10  
DQ10  
SQ9  
SQ8  
DQ9  
B8  
A8  
DSF  
DQ8  
B9  
A9  
A0  
QSF  
GB Package Pin Assignments – By Signal  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
NAME  
NO.  
J1  
NAME  
DQ12  
DQ13  
DQ14  
DQ15  
DSF  
QSF  
RAS  
SC  
NO.  
B4  
B3  
B2  
B1  
B8  
A9  
G8  
E1  
D1  
G1  
G2  
NAME  
SQ2  
SQ3  
SQ4  
SQ5  
SQ6  
SQ7  
SQ8  
SQ9  
SQ10  
SQ11  
SQ12  
NO.  
H2  
J2  
NAME  
NO.  
A2  
A1  
C1  
F1  
E2  
F3  
D3  
F7  
F8  
G3  
C3  
NAME  
NO.  
G6  
C6  
F2  
A0  
A1  
B9  
C9  
D9  
D8  
E9  
F9  
G9  
H9  
J9  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
SQ13  
SQ14  
SQ15  
TRG  
V
V
DD2  
H3  
J3  
DD2  
A2  
H4  
H5  
H6  
J7  
V
SS1  
V
SS1  
V
SS1  
V
SS1  
V
SS1  
V
SS2  
V
SS2  
V
SS2  
V
SS2  
A3  
J4  
D2  
C2  
D7  
E8  
G4  
C4  
G7  
C7  
H8  
A4  
J5  
V
DD1  
V
DD1  
V
DD1  
V
DD1  
V
DD1  
V
DD2  
V
DD2  
A5  
J6  
A6  
H7  
A8  
A7  
B6  
B5  
B7  
A6  
A5  
A4  
A3  
A7  
A8  
SE  
CASL  
CASU  
DQ0  
J8  
SQ0  
SQ1  
C8  
H1  
WE  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
description  
The SMJ55161 multiport-video random-access memory (RAM) is a high-speed, dual-port memory device. It  
consists of a dynamic RAM (DRAM) module organized as 262 144 words of 16 bits each interfaced to a  
serial-data register (serial-access memory [SAM]) organized as 256 words of 16 bits each. The SMJ55161  
supports three basic types of operation: random access to and from the DRAM, serial access from the serial  
register, and transfer of data from any row in the DRAM to the serial register. Except during transfer operations,  
the SMJ55161 can be accessed simultaneously and asynchronously from the DRAM and SAM ports.  
The SMJ55161 is equipped with several features designed to provide higher system-level bandwidth and to  
simplify design integration on both the DRAM and SAM ports. On the DRAM port, greater pixel-draw rates are  
achieved by the device’s (4 × 4) × 4 block-write feature. The block-write mode allows 16 bits of data (present  
in an on-chip color-data register) to be written to any combination of four adjacent column-address locations.  
As many as 64 bits of data can be written to memory during each CAS cycle time. Also, on the DRAM port, a  
write mask or a write-per-bit feature allows masking of any combination of the 16 inputs/outputs on any write  
cycle. The persistent write-per-bit feature uses a mask register that, once loaded, can be used on subsequent  
write cycles without reloading. The SMJ55161 also offers byte control which can be applied in read cycles, write  
cycles, block-write cycles, load-write-mask-register cycles, and load-color-register cycles. The SMJ55161 also  
offers extended-data-output (EDO) mode. The EDO mode is effective in both the page-mode and standard  
DRAM cycles.  
The SMJ55161 offers a split-register-transfer read (DRAM-to-SAM) feature for the serial register (SAM port)  
that enables real-time-register-load implementation for continuous serial-data streams without critical timing  
requirements. The register is divided into a high half and a low half. While one half is being read out of the SAM  
port, the other half can be loaded from the memory array. For applications not requiring real-time register load  
(for example, loads done during CRT-retrace periods), the full-register mode of operation is retained to simplify  
system design.  
The SAM port is designed for maximum performance. Data can be accessed from the SAM at serial rates up  
to 45 MHz. During the split-register-transfer read operations, internal circuitry detects when the last bit position  
is accessed from the active half of the register and immediately transfers control to the opposite half. A separate  
output, QSF, is included to indicate which half of the serial register is active.  
All inputs, outputs, and clock signals on the SMJ55161 are compatible with Series 74 TTL. All address lines and  
data-in lines are latched on-chip to simplify system design. All data-out lines are unlatched to allow greater  
system flexibility.  
The SMJ55161 is offered in a 68-pin ceramic pin-grid-array package (GB suffix) and a 64-pin ceramic flatpack  
(HKC suffix).  
The SMJ55161 and other TI multiport-video RAMs are supported by a broad line of graphic processors and  
control devices from TI. See Table 2 and Table 4 for additional information.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
functional block diagram  
1 of 4 Subblocks  
(see next page)  
Input  
DSF  
Buffer  
DRAM  
Input  
Buffer  
Special-  
Function  
Logic  
Column  
Buffer  
9
1 of 4 Subblocks  
(see next page)  
16  
DQ0–  
DQ15  
A0A8  
Row  
Buffer  
DRAM  
Output  
Buffer  
SC  
1 of 4 Subblocks  
(see next page)  
Serial-  
Address  
Refresh  
Counter  
Counter  
Split-  
Register  
Status  
Serial-  
Output  
Buffer  
16  
SQ0–  
SQ15  
QSF  
SE  
1 of 4 Subblocks  
(see next page)  
SE  
RAS  
CASx  
TRG  
WE  
Timing  
Generator  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
functional block diagram (continued)  
Special-  
Function  
Logic  
DSF  
Input  
Buffer  
Color  
Register  
W/B  
Unlatch  
W/B  
Latch  
DRAM  
Input  
Address  
Mask  
MUX  
Buffer  
DQi  
Write-  
Per-Bit  
Control  
DQi+1  
DQi+2  
DQi+3  
DRAM  
Output  
Buffer  
Column DEC  
Column  
Buffer  
Sense AMP  
9
RAS  
CASx  
TRG  
WE  
Timing  
Generator  
A0A8  
512 × 512  
Memory  
Array  
Row  
Buffer  
Row  
Decoder  
Serial-Data  
Register  
SC  
Serial-Data  
Pointer  
SQi  
SQi + 1  
SQi +2  
SQi + 3  
Serial-  
Address  
Counter  
Serial-  
Output  
Buffer  
Refresh  
Counter  
Split-  
Register  
Status  
1 of 4 Subblocks  
SE  
QSF  
SE  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
functional operation description  
Table 1 lists the DRAM and SAM functions, summarizing Table 3 and Table 4.  
Table 1. DRAM and SAM Functions  
CASx  
FALL  
DQ0DQ15  
RAS FALL  
ADDRESS  
MNE  
CODE  
FUNCTION  
CASL  
CASU  
WE  
§
CASx  
TRG  
WE  
DSF  
DSF  
RAS  
CASx  
RAS  
Reserved (do not use)  
CBR refresh (no reset) and stop-point  
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
Stop  
Point  
X
H
CBRS  
#
set  
||  
CBR refresh (option reset)  
CBR refresh (no reset)  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
H
X
CBRN  
Row  
Address  
Tap  
Point  
Full-register-transfer read  
H
H
H
L
L
H
H
L
L
H
L
X
X
L
X
X
X
X
RT  
Row  
Address  
Tap  
Point  
Split-register-transfer read  
DRAM write  
SRT  
RWM  
Row  
Column  
Write  
Mask  
Valid  
Data  
H
(nonpersistent write-per-bit)  
Address Address  
Block  
Row  
DRAM block write  
(nonpersistent write-per-bit)  
Write  
Mask  
Column  
Mask  
Address  
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
BWM  
RWM  
BWM  
RW  
Address  
A2A8  
DRAM write  
(persistent write-per-bit)  
Row  
Column  
Valid  
Data  
X
X
X
X
Address Address  
Block  
Row  
DRAM block write  
(persistent write-per-bit)  
Column  
Mask  
Address  
A2A8  
L
H
L
Address  
Row  
Column  
Valid  
Data  
DRAM write (nonmasked)  
DRAM block write (nonmasked)  
Load write-mask register  
H
H
Address Address  
Block  
Row  
Column  
Mask  
Address  
A2A8  
H
BW  
Address  
Refresh  
X
Write  
Mask  
H
H
H
H
H
H
H
H
L
X
X
LMR  
LCR  
Address  
Refresh  
X
Color  
Data  
Load color register  
Legend:  
H
Address  
Col Mask  
Write Mask  
X
=
=
=
H: Write to address/column enabled  
H: Write to I/O enabled  
Don’t care  
§
#
||  
DQ0DQ15 are latched on either the first falling edge of CASx or the falling edge of WE, whichever occurs later.  
Logic L is selected when either or both CASL and CASU are low.  
The column address and block address are latched on the first falling edge of CASx.  
CBRS cycle should be performed immediately after the powerup initialization cycle.  
A0A3, A8: don’t care; A4A7: stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
Load-write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
pin definitions  
Table 2. Pin Description Versus Operational Mode  
PIN  
DRAM  
TRANSFER  
SAM  
A0 – A8  
Row, column address  
Row address, tap point  
CASL  
CASU  
Column-address strobe, DQ output enable  
DRAM data I/O, write mask  
Tap-address strobe  
DQ  
DSF  
Split-register-transferenable  
Block-write enable  
Write-mask-register load enable  
Color-register load enable  
CBR (option reset)  
RAS  
SE  
Row-address strobe  
Row-address strobe  
Transfer enable  
SQ output enable,  
QSF output enable  
SC  
Serial clock  
SQ  
Serial-data output  
TRG  
WE  
DQ output enable  
Write enable, write-per-bit enable  
QSF  
NC/GND  
Special-function output  
Serial-register status  
Either make no external connection or tie to system GND (V  
)
SS  
V
5-V supply  
Ground  
CC  
V
SS  
For proper device operation, all V  
pins must be connected to a 5-V supply, and all V  
pins must be tied to ground.  
SS  
CC  
address (A0A8)  
Eighteen address bits are required to decode each one of the 262 144 storage cell locations. Nine row-address  
bits are set up on pins A0A8 and latched onto the chip on the falling edge of RAS. Nine column-address bits  
are set up on pins A0A8 and latched onto the chip on the first falling edge of CASx. All addresses must be  
stable on or before the falling edge of RAS and the first falling edge of CASx.  
During the full-register-transfer read operation, the states of A0A8 are latched on the falling edge of RAS to  
select one of the 512 rows where the transfer occurs. At the first falling edge of CASx, the column-address bits  
A0A8 are latched. The most significant column-address bit (A8) selects which half of the row is transferred  
to the SAM. The appropriate 8-bit column address (A0A7) selects one of 256 tap points (starting positions)  
for the serial-data output.  
Duringthesplit-register-transferreadoperation, addressbitA7isignoredatthefallingedgeofCASx. Aninternal  
counter selects which half of the register is used. If the high half of the SAM is currently in use, the low half of  
theSAMisloadedwiththelowhalfoftheDRAMhalfrowandviceversa. Columnaddress(A8)selectstheDRAM  
half row. The remaining seven address bits (A0A6) are used to select one of 127 possible starting locations  
within the SAM. Locations 127 and 255 are not valid tap points.  
row-address strobe (RAS)  
RAS is similar to a chip enable so that all DRAM cycles and transfer cycles are initiated by the falling edge of  
RAS. RAS is a control input that latches the states of the row address, WE, TRG, CASL, CASU, and DSF onto  
the chip to invoke DRAM and transfer-read functions of the SMJ55161.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
column-address strobe (CASL, CASU)  
CASL and CASU are control inputs that latch the states of the column address and DSF to control DRAM and  
transfer functions of the SMJ55161. CASx also acts as output enable for the DRAM output pins DQ0DQ15.  
In DRAM operation, CASL enables data to be written to or read from the lower byte (DQ0DQ7), and CASU  
enables data to be written to or from the upper byte (DQ8DQ15). In transfer operations, address bits A0A8  
are latched at the first falling edge of CASx as the start position (tap) for the serial-data output (SQ0SQ15).  
output enable/transfer select (TRG)  
TRG selects either DRAM or transfer operation as RAS falls. For DRAM operation, TRG must be held high as  
RAS falls. During DRAM operation, TRG functions as an output enable for the DRAM output pins DQ0DQ15.  
For transfer operation, TRG must be brought low before RAS falls.  
write-mask select, write enable (WE)  
In DRAM operation, WE enables data to be written to the DRAM. WE is also used to select the DRAM  
write-per-bit mode. Holding WE low on the falling edge of RAS invokes the write-per-bit operation. The  
SMJ55161 supports both the nonpersistent write-per-bit mode and the persistent write-per-bit mode.  
special-function select (DSF)  
The DSF input is latched on the falling edge of RAS or the first falling edge of CASx, similar to an address. DSF  
determines which of the following functions are invoked on a particular cycle:  
CBR refresh with reset (CBR)  
CBR refresh with no reset (CBRN)  
CBR refresh with no reset and stop-point set (CBRS)  
Block write  
Loading write-mask register for the persistent write-per-bit mode (LMR)  
Loading color register for the block-write mode  
Split-register-transfer read  
DRAM data I/O, write mask data (DQ0DQ15)  
DRAM data is written or read through the common I/O DQ pins. The 3-state DQ-output buffers provide direct  
TTL compatibility (no pullup resistors) with a fanout of one Series 54 TTL load. Data out is the same polarity  
as data in. During a normal access cycle, the outputs remain in the high-impedance state until TRG is brought  
low. Data appears at the outputs until TRGreturnshigh, CASx returns high following RAS returning high, or RAS  
returns high following CASx returning high. The write mask is latched into the device through the random DQ  
pins by the falling edge of RAS and is used on all write-per-bit cycles. In a transfer operation, the DQ outputs  
remain in the high-impedance state for the entire cycle.  
serial-data outputs (SQ0 SQ15)  
Serial data is read from the SQ pins. The SQ output buffers provide direct TTL compatibility (no pullup resistors)  
with a fanout of one Series 54 TTL load. The serial outputs are in the high-impedance (floating) state as long  
as the serial-enable pin, SE, is high. The serial outputs are enabled when SE is brought low.  
serial clock (SC)  
Serial data is accessed out of the data register during the rising edge of SC. The SMJ55161 is designed to work  
with a wide range of clock duty cycles to simplify system design. There is no refresh requirement because the  
data registers that comprise the SAM are static. There is also no minimum SC-clock operating frequency.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
serial enable (SE)  
During serial-access operations, SE is used as an enable/disable for the SQ outputs. SE low enables the  
serial-data output while SE high disables the serial-data output. SE is also used as an enable/disable for output  
pin QSF.  
IMPORTANT: While SE is held high, the serial clock is not disabled. External SC pulses increment the internal  
serial-address counter regardless of the state of SE. This ungated serial-clock scheme minimizes access time  
of serial output from SElowbecausetheserial-clockinputbufferandtheserial-addresscounterarenotdisabled  
by SE.  
special-function output (QSF)  
QSFisanoutputpinthatindicateswhichhalfoftheSAMisbeingaccessed. WhenQSFislow, theserial-address  
pointer is accessing the lower (least significant) 128 bits of the serial register (SAM). When QSF is high, the  
pointer is accessing the higher (most significant) 128 bits of the SAM.  
During full-register-transfer operations, QSF can change state upon completing the cycle. This state is  
determined by the tap point loaded during the transfer cycle. QSF is enabled by SE; therefore, if SE is high, the  
QSF output is in the high-impedance state.  
no connect / ground (NC/GND)  
NC/GND must be tied to system ground or left floating for proper device operation.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
random access operation  
Table 3 lists the DRAM functions.  
Table 3. DRAM Functions  
CASx  
DQ0DQ15  
RAS FALL  
FALL  
ADDRESS  
MNE  
CODE  
FUNCTION  
CASx  
CASL  
CASU  
WE  
§
TRG  
WE  
DSF  
DSF  
RAS  
CASx  
RAS  
Reserved (do not use)  
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
CBR refresh (no reset) and stop-point  
Stop  
Point  
X
H
CBRS  
set  
#
||  
CBR refresh (option reset)  
CBR refresh (no reset)  
DRAM write  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
H
X
CBRN  
Row  
Column  
Write  
Mask  
Valid  
Data  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
H
L
RWM  
BWM  
RWM  
BWM  
RW  
(nonpersistent write-per-bit)  
Address Address  
Block  
Row  
Address  
DRAM block write  
Write  
Mask  
Column  
Mask  
Address  
A2A8  
(nonpersistent write-per-bit)  
DRAM write  
(persistent write-per-bit)  
Row  
Column  
Valid  
Data  
L
X
X
X
X
Address Address  
Block  
Row  
Address  
DRAM block write  
(persistent write-per-bit)  
Column  
Mask  
Address  
A2A8  
L
H
L
Row  
Column  
Valid  
Data  
DRAM write (nonmasked)  
DRAM block write (nonmasked)  
Load write-mask register  
H
H
Address Address  
Block  
Row  
Address  
Column  
Mask  
Address  
A2A8  
H
BW  
Refresh  
X
Write  
Mask  
H
H
H
H
H
H
H
H
L
X
X
LMR  
LCR  
Address  
Refresh  
X
Color  
Data  
Load color register  
Legend:  
H
Address  
Col Mask  
Write Mask  
X
=
=
=
H: Write to address/column enabled  
H: Write to I/O enabled  
Don’t care  
§
#
||  
DQ0DQ15 are latched on either the first falling edge of CASx or the falling edge of WE, whichever occurs later.  
Logic L is selected when either or both CASL and CASU are low.  
The column address and block address are latched on the first falling edge of CASx.  
CBRS cycle should be performed immediately after the power-up initialization cycle.  
A0A3, A8: don’t care; A4A7: stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
Load-write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
enhanced page mode  
Enhancedpage-modeoperationallowsfastermemoryaccessbykeepingthesamerowaddresswhileselecting  
random column addresses. This mode eliminates the time required for row-address setup, row-address hold,  
and address multiplex. The maximum RAS low time and CAS page cycle time used determine the number of  
columns that can be accessed.  
Unlike conventional page-mode operations, the enhanced page mode allows the SMJ55161 to operate at a  
higher data bandwidth. Data retrieval begins as soon as the column address is valid rather than when CASx  
transitions low. A valid column address can be presented immediately after the row-address hold time has been  
satisfied, usually well in advance of the falling edge of CASx. In this case, data is obtained after t  
MAX  
a(C)  
(access time from CASx low) if t  
MAX (access time from column address) has been satisfied.  
a(CA)  
refresh  
CAS-before-RAS (CBR) refresh  
CBR refreshes are accomplished by bringing either or both CASL and CASU low earlier than RAS. The external  
row address is ignored, and the refresh row address is generated internally. Three types of CBR refresh cycles  
are available. The CBR refresh (option reset) ends the persistent write-per-bit mode and the stop-point mode.  
The CBRN and CBRS refreshes (no reset) do not end the persistent write-per-bit mode or the stop-point mode.  
The 512 rows of the DRAM do not necessarily need to be refreshed consecutively as long as the entire refresh  
is completed within the required time period, t  
during the CBR refresh cycles regardless of the state of TRG.  
. The output buffers remain in the high-impedance state  
rf(MA)  
hidden refresh  
A hidden refresh is accomplished by holding both CASL and CASU low in the DRAM read cycle and cycling  
RAS. The output data of the DRAM read cycle remains valid while the refresh is carried out. Like the CBR  
refresh, the refreshed row addresses are generated internally during the hidden refresh.  
RAS-only refresh  
A RAS-only refresh is accomplished by cycling RAS at every row address. Unless CASx and TRG are low, the  
output buffers remain in the high-impedance state to conserve power. Externally-generated addresses must  
be supplied during RAS-only refresh. Strobing each of the 512 row addresses with RAS causes all bits in each  
row to be refreshed.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
extended data output  
The SMJ55161 features EDO during DRAM accesses. While RAS and TRG are low, the DRAM output remains  
valid. The output remains valid even when CASx returns high until WE is low, TRG is high, or both CASx and  
RASare high (see Figure 1 and Figure 2). The EDO mode functions during all read cycles including DRAM read,  
page-mode read, and read-modify-write cycles (see Figure 3).  
RAS  
CASx  
t
dis(RH)  
DQ0DQ15  
Valid Output  
t
dis(G)  
TRG  
Figure 1. DRAM Read Cycle With RAS-Controlled Output  
RAS  
CASx  
t
dis(CH)  
DQ0DQ15  
Valid Output  
t
dis(G)  
TRG  
Figure 2. DRAM Read Cycle With CASx-Controlled Output  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
extended-data output (continued)  
RAS  
CASx  
Row  
Column  
Column  
A0A8  
t
t
t
a(CP)  
t
a(CA)  
a(C)  
a(C)  
t
t
h(CLQ)  
a(CA)  
Valid Output  
Valid Output  
DQ0DQ15  
TRG  
Figure 3. DRAM Page-Read Cycle With Extended Output  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
byte operation  
Byte operation can be applied in DRAM-read cycles, write cycles, block-write cycles, load-write-mask-register  
cycles, and load-color-register cycles. In byte operation, the column address (A0A8) is latched at the first  
falling edge of CASx. In read cycles, CASL enables the lower byte (DQ0DQ7) and CASU enables the upper  
byte (DQ8DQ15) (see Figure 4).  
RAS  
CASL  
CASU  
t
su(CA)  
t
h(CLCA)  
A0A8  
Row  
Column  
t
a(C)  
DQ0DQ7  
Lower Byte Output  
t
a(C)  
Upper Byte  
Output  
DQ8DQ15  
t
a(G)  
TRG  
Figure 4. Example of a Byte-Read Cycle  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
byte operation (continued)  
In byte-write operation, CASL enables data to be written to the lower byte (DQ0DQ7), and CASU enables data  
to be written to the upper byte (DQ8DQ15). In an early write cycle, WE is brought low prior to both CASx  
signals, and data setup and hold times for DQ0 DQ15 are referenced to the first falling edge of CASx  
(see Figure 5).  
RAS  
WE  
CASL  
t
su(CA)  
CASU  
t
h(CLCA)  
Row  
Column  
A0A8  
t
su(DCL)  
t
h(CLD)  
Valid Input  
DQ0DQ15  
Figure 5. Example of an Early-Write Cycle  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
byte operation (continued)  
For late-write or read-modify-write cycles, WE is brought low after either or both CASL and CASU fall. The data  
is strobed in with data setup and hold times for DQ0 DQ15 referenced to WE (see Figure 6).  
RAS  
CASL  
CASU  
WE  
t
su(DWL)  
t
h(WLD)  
DQ0DQ15  
Valid Input  
Figure 6. Example of a Late-Write Cycle  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
write-per-bit  
The write-per-bit feature allows masking any combination of the 16 DQs on any write cycle. The write-per-bit  
operation is invoked when WE is held low on the falling edge of RAS. If WE is held high on the falling edge of  
RAS, the write operation is performed without any masking. The SMJ55161 offers two write-per-bit modes:  
nonpersistent write-per-bit and persistent write-per-bit.  
nonpersistent write-per-bit  
When WE is low on the falling edge of RAS, the write mask is reloaded. A 16-bit binary code (the write-per-bit  
mask) is input to the device through the DQ pins and latched on the falling edge of RAS. The write-per-bit mask  
selects which of the 16 I/Os are to be written and which are not. After RAS has latched the on-chip write-per-bit  
mask, input data is driven onto the DQ pins and is latched on either the first falling edge of CASx or the falling  
edge of WE, whichever occurs later. CASL enables the lower byte (DQ0DQ7) to be written through the mask  
and CASU enables the upper byte (DQ8DQ15) to be written through the mask. If a data low (write mask = 0)  
is strobed into a particular I/O pin on the falling edge of RAS, data is not written to that I/O. If a data high  
(write mask = 1) is strobed into a particular I/O pin on the falling edge of RAS, data is written to that I/O  
(see Figure 7).  
RAS  
CASL  
CASU  
WE  
t
su(DQR)  
t
h(WLD)  
t
h(RDQ)  
t
su(DWL)  
DQ0DQ15  
Write Mask  
Valid Input  
Figure 7. Example of a Nonpersistent Write-Per-Bit (Late-Write) Operation  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
persistent write-per-bit  
The persistent write-per-bit mode is initiated by performing a load-write-mask-register (LMR) cycle. In the  
persistent write-per-bit mode, the write-per-bit mask is overwritten but remains valid over an arbitrary number  
of write cycles until another LMR cycle is performed or power is removed.  
The LMR cycle is performed using DRAM write-cycle timing with DSF held high on the falling edge of RAS and  
held low on the first falling edge of CASx. A binary code is input to the write-mask register via the random I/O  
pins and latched on either the first falling edge of CASx or the falling edge of WE, whichever occurs later. Byte  
write control can be applied to the write mask during the LMR cycle. The persistent write-per-bit mode can then  
be used in exactly the same way as the nonpersistent write-per-bit mode except that the input data on the falling  
edge of RAS is ignored. When the device is set to the persistent write-per-bit mode, it remains in this mode and  
is reset only by a CBR refresh (option-reset) cycle (see Figure 8).  
Load-Write-Mask Register  
Persistent Write-Per-Bit  
CBR Refresh (option reset)  
RAS  
CASx  
A0A8  
Refresh  
Address  
Row  
Column  
DSF  
WE  
DQ0–  
DQ15  
Write-Mask  
Data  
Valid  
Input  
Mask Data = 1: Write to I/O enabled  
= 0: Write to I/O disabled  
Figure 8. Example of a Persistent Write-Per-Bit Operation  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
block write  
The block-write feature allows up to 64 bits of data to be written simultaneously to one row of the memory array.  
This function is implemented as four columns by four DQs and repeated in four quadrants. In this manner, each  
of the four 1M-bit quadrants can have up to four consecutive columns written at a time with up to four DQs per  
column (see Figure 9).  
DQ15  
DQ14  
4th Quadrant  
DQ13  
DQ12  
DQ11  
DQ10  
3rd Quadrant  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
2nd Quadrant  
DQ5  
DQ4  
DQ3  
DQ2  
1st Quadrant  
DQ1  
DQ0  
Four Consecutive Columns of 0511  
Figure 9. Block-Write Operation  
Each 1M-bit quadrant has a 4-bit column mask to mask off and prevent any or all of the four columns from being  
written with data. Nonpersistent write-per-bit or persistent write-per-bit functions can be applied to the  
block-write operation to provide write-masking options. The DQ data is provided by 4 bits from the on-chip color  
register. Bits 0–3 from the 16-bit write-mask register, bits 0 3 from the 16-bit column-mask register, and bits  
0 3 from the 16-bit color-data register configure the block write for the first quadrant, while bits 4 7, 8 11,  
and 12 15 of the corresponding registers control the other quadrants in a similar fashion (see Figure 10).  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
block write (continued)  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
12  
13  
14  
15  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
8
9
DQ5  
10  
11  
DQ4  
DQ3  
DQ2  
4
5
6
7
DQ1  
DQ0  
0
1
2
3
3
7
11  
15  
2
6
10  
14  
1
1
5
9
13  
0
4
8
12  
0
2
3
4
5
6
7
8
9
10 11  
12 13 14 15  
Color Register  
Figure 10. Block Write With Masks  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
block write (continued)  
A set of four columns makes a block, resulting in 128 blocks along one row. Block 0 comprises columns 0 3,  
block 1 comprises columns 4 7, block 2 comprises columns 8 11, etc., as shown in Figure 11.  
Block 0  
Block 1 . . . . . . . . . . . . . . . . . . . . . . Block 127  
One Row of 0511  
0
1
2
3
4
5
6
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 511  
Columns  
Figure 11. Block Columns Organization  
During block-write cycles, only the seven most significant column addresses (A2A8) are latched on the first  
falling edge of CASx to decode one of the 128 blocks. Address bits A0A1 are ignored. Each 1M-bit quadrant  
has the same block selected.  
A block-write cycle is entered in a manner similar to a DRAM write cycle except DSF is held high on the first  
fallingedgeofCASx. AsinaDRAMwriteoperation, CASLandCASUenablethecorrespondinglowerandupper  
DRAM DQ bytes to be written. The column-mask data is input via the DQs and is latched on either the first falling  
edge of CASx or the falling edge of WE, whichever occurs later. The 16-bit color-data register must be loaded  
prior to performing a block write as described below. Refer to the write-per-bit section for details on use of the  
write-mask capability, allowing additional performance options.  
Example of block write:  
Block-write column address = 110000000 (A0A8 from left to right)  
bit 0  
bit 15  
0111  
1011  
1010  
Color-data register = 1011  
Write-mask register = 1110  
Column-mask register = 1111  
1011  
1111  
0000  
1100  
1111  
0111  
1st  
2nd  
3rd  
4th  
Quad  
Quad  
Quad  
Quad  
Column-address bits A0 and A1 are ignored. Block 0 (columns 0 3) is selected for each 1M-bit quadrant. The  
first quadrant has DQ0DQ2 written with bits 0–2 from the color-data register (101) to all four columns of block  
0. DQ3 is not written and retains its previous data due to write-mask-register-bit 3 being 0.  
The second quadrant (DQ4DQ7) has all four columns masked off due to column-mask bits 4–7 being 0 so  
that no data is written.  
The third quadrant (DQ8DQ11 ) has its four DQs written with bits 8 11 from the color-data register (1100) to  
columns 1–3 of its block 0. Column 0 is not written and retains its previous data on all four DQs due to  
column-mask-register-bit 8 being 0.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
block write (continued)  
The fourth quadrant (DQ12DQ15 ) has DQ12, DQ14, and DQ15 written with bits 12, 14, and 15 from the  
color-data register to column 0 and column 2 of its block 0. DQ13 retains its previous data on all columns due  
to the write mask. Columns 1 and 3 retain their previous data on all DQs due to the column mask. If the previous  
data for the quadrant is all 0s, the fourth quadrant contains the data pattern shown in Figure 12 after the  
block-write operation shown in the previous example.  
DQ15  
1
1
0
0
1
0
DQ14  
1
0
0
0
4th Quadrant  
DQ13  
0
0
0
0
DQ12  
0
0
Columns  
0
1
2
3
Figure 12. Example of Fourth Quadrant After a Block-Write Operation  
load color register  
The load-color-register cycle is performed using normal DRAM write-cycle timing except that DSF is held high  
on the falling edges of RAS, CASL, and CASU. The color register is loaded from pins DQ0 DQ15, which are  
latched on either the first falling edge of CASx or the falling edge of WE, whichever occurs later. If only one CASx  
is low, only the corresponding byte of the color register is loaded. When the color register is loaded, it retains  
data until power is lost or until another load-color-register cycle is performed (see Figure 13 and Figure 14).  
Load-Color-Register Cycle  
Block-Write Cycle  
(no write mask)  
Block-Write Cycle  
(load and use write mask)  
RAS  
CASx  
A0A8  
WE  
1
2
3
2
3
TRG  
DSF  
DQ0DQ15  
4
6
5
6
Legend:  
1. Refresh address  
2. Row address  
3. Block address (A2A8) is latched on the first falling edge of CASx.  
4. Color-register data  
5. Write-mask data: DQ0DQ15 are latched on the falling edge of RAS.  
6. Column-mask data: DQiDQi+3 (i = 0, 4, 8, 12) are latched on either the first falling edge of CASx or the falling edge of WE, whichever  
occurs later.  
= don’t care  
Figure 13. Example of Block Writes  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
load color register (continued)  
Load-Write-Mask-Register Cycle  
Load-Color-Register Cycle  
Persistent Block-Write Cycle  
(use loaded write mask)  
RAS  
CASx  
A0A8  
WE  
1
1
2
3
TRG  
DSF  
DQ0DQ15  
5
4
6
Legend:  
1. Refresh address  
2. Row address  
3. Block address (A2A8) is latched on the first falling edge of CASx.  
4. Color-register data  
5. Write-mask data: DQ0DQ15 are latched on the falling edge of RAS.  
6. Column-mask data: DQiDQi+3 (i = 0, 4, 8, 12) are latched on either the first falling edge of CASx or the falling edge of WE, whichever  
occurs later.  
= don’t care  
Figure 14. Example of a Persistent Block Write  
DRAM-to-SAM transfer operation  
During the DRAM-to-SAM transfer operation, one half of a row (256 columns) in the DRAM array is selected  
to be transferred to the 256-bit serial-data register. The transfer operation is invoked by TRG being brought low  
and WE being held high on the falling edge of RAS. The state of DSF, which is latched on the falling edge of  
RAS, determines whether the full-register-transfer read operation or the split-register-transfer read operation  
is performed (see Table 4).  
Table 4. SAM Function Table  
CASx  
FALL  
RAS FALL  
ADDRESS  
DQ0DQ15  
CASx  
MNE  
CODE  
FUNCTION  
CASx  
TRG  
WE  
DSF  
L
DSF  
RAS  
CASx  
RAS  
WE  
Row  
Addr  
Tap  
Point  
Full-register-transfer read  
Split-register-transfer read  
H
H
L
L
H
H
X
X
X
X
X
RT  
Row  
Addr  
Tap  
Point  
H
X
SRT  
Logic L is selected when either CASL or CASU are low.  
don’t care  
X
=
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
full-register-transfer read  
A full-register-transfer read operation loads data from a selected half of a row in the DRAM into the SAM. TRG  
is brought low and latched at the falling edge of RAS. Nine row-address bits (A0A8) are also latched at the  
falling edge of RAS to select one of the 512 rows available for the transfer. The nine column-address bits  
(A0A8) are latched at the first falling edge of CASx, where address bit A8 selects which half of the row is  
transferred. Address bits A0A7 select one of the SAM’s 256 available tap points from which the serial data  
is read out (see Figure 15).  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 15. Full-Register-Transfer Read  
A full-register-transfer read can be performed in three ways: early load, real-time load (or midline load), or late  
load. Each of these offers the flexibility of controlling the TRG trailing edge in the full-register-transfer read cycle  
(see Figure 16).  
Early Load  
Real-Time Load  
Late Load  
RAS  
CASx  
A0A8  
Row  
Tap  
Row  
Tap  
Row  
Tap  
Point  
Point  
Point  
TRG  
WE  
SC  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Figure 16. Example of Full-Register-Transfer Read Operations  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
split-register-transfer read  
In the split-register-transfer-read operation, the serial-data register is split into halves. The low half contains bits  
0–127, and the high half contains bits 128255. While one half is being read out of the SAM port, the other  
half can be loaded from the memory array.  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 17. Split-Register-Transfer Read  
To invoke a split-register-transfer-read cycle, DSF is brought high, TRG is brought low, and both are latched  
at the falling edge of RAS. Nine row-address bits (A0A8) are also latched at the falling edge of RAS to select  
one of the 512 rows available for the transfer. Eight of the nine column-address bits (A0A6 and A8) are latched  
at the first falling edge of CASx. Column-address bit A8 selects which half of the row is to be transferred.  
Column-address bits A0A6 selects one of the 127 tap points in the specified half of the SAM. Column-address  
bit A7 is ignored, and the split-register transfer is controlled internally to select the inactive register half.  
Full XFER  
Split XFER  
A8 = 1  
Split XFER  
A8 = 1  
Split XFER  
RAS  
A8 = 0  
A8 = 0  
0
511  
0
A7 = 0 511  
0
A7 = 1 511  
0
A7 = 0  
A
511  
A
B
A
A
B
C
A
B
C
D
B
C
D
D
E
DRAM  
SAM  
0
255  
0
255  
B
0
255  
0
255  
B
C
C
D
E
SQ  
A7 shown as internally controlled.  
SQ  
SQ  
SQ  
Figure 18. Example of a Split-Register-Transfer Read Operation  
A full-register-transfer-read cycle must precede the first split-register-transfer-read cycle to ensure proper  
operation. After the full-register-transfer-read cycle, the first split-register-transfer-read cycle can follow  
immediately without any minimum SC-clock requirement.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
split-register-transfer read (continued)  
QSF indicates which half of the register is being accessed during serial-access operation. When QSF is low,  
the serial-address pointer is accessing the lower (least significant) 128 bits of the SAM. When QSF is high, the  
pointer is accessing the higher (most significant) 128 bits of the SAM. QSF changes state upon completing a  
full-register-transfer-read cycle. The tap point loaded during the current transfer cycle determines the state of  
QSF. QSF also changes state when a boundary between two register halves is reached.  
Full-Register-Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CASx  
TRG  
DSF  
SC  
Tap  
Point N  
t
d(CLQSF)  
t
d(GHQSF)  
QSF  
Figure 19. Example of a Split-Register-Transfer Read After a Full-Register-Transfer Read  
Split-Register-  
Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CASx  
TRG  
DSF  
t
d(MSRL)  
t
d(RHMS)  
SC  
127  
Tap  
or 255  
Point N  
t
d(SCQSF)  
QSF  
Figure 20. Example of Successive Split-Register-Transfer-Read Operations  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
serial-read operation  
The serial-read operation can be performed through the SAM port simultaneously and asynchronously with  
DRAM operations except during transfer operations. Serial data can be read from the SAM by clocking SC  
starting at the tap point loaded by the preceding transfer cycle, proceeding sequentially to the most significant  
bit (bit 255), and then wrapping around to the least significant bit (bit 0), as shown in Figure 21.  
0
1
2
Tap  
254  
255  
Figure 21. Serial-Pointer Direction for Serial Read  
For split-register-transfer-read operation, serial data can be read out from the active half of the SAM by clocking  
SCstartingatthetappointloadedbytheprecedingsplit-register-transfercycle. Theserialpointerthenproceeds  
sequentially to the most significant bit of the half, bit 127 or bit 255. If there is a split-register-transfer read to  
the inactive half during this period, the serial pointer points next to the tap point location loaded by that  
split-register transfer (see Figure 22).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 22. Serial Pointer for Split-Register Read – Case I  
If there is no split-register-transfer read to the inactive half during this period, the serial pointer points next to  
bit 128 or bit 0, respectively (see Figure 23).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 23. Serial Pointer for Split-Register Read – Case II  
split-register programmable stop point  
The SMJ55161 offers a programmable stop-point mode for split-register-transfer read operations. This mode  
can be used to improve two-dimensional drawing performance in a nonscanline data format.  
For a split-register-transfer-read operation, the stop point is defined as a register location at which the serial  
output stops coming from one half of the SAM and switches to the opposite half of the SAM. While in stop-point  
mode, the SAM is divided into partitions whose length is programmed via row addresses A4A7 in a CBR set  
(CBRS) cycle. The last serial-address location of each partition is the stop point (see Figure 24).  
127  
128  
255  
0
Partition  
Length  
Stop  
Points  
Figure 24. Example of the SAM With Partitions  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
split-register programmable stop point (continued)  
Stop-point mode is not active until the CBRS cycle is initiated. The CBRS operation is enabled by holding CASx  
and WE low and DSF high on the falling edge of RAS. The falling edge of RAS also latches row addresses  
A4A7 which are used to define the SAM’s partition length. The other row-address inputs are don’t cares.  
Stop-point mode should be initiated after the initialization cycles are performed (see Table 5).  
Table 5. Programming Code for Stop-Point Mode  
MAXIMUM  
PARTITION  
LENGTH  
ADDRESS AT RAS IN CBRS CYCLE  
NUMBER OF  
PARTITIONS  
STOP-POINT LOCATIONS  
A8  
A7  
A6  
A5  
A4  
A0A3  
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175,  
191, 207, 223, 239, 255  
16  
X
L
L
L
L
X
16  
32  
64  
X
X
L
L
L
L
L
H
H
X
X
8
4
31, 63, 95, 127, 159, 191, 223, 255  
63, 127, 191, 255  
H
128  
(default)  
X
L
H
H
H
X
2
127, 255  
In stop-point mode, the tap point loaded during the split-register-transfer read cycle determines the SAM  
partition in which the serial output begins and at which stop point the serial output stops coming from one half  
of the SAM and switches to the opposite half of the SAM (see Figure 25).  
Full  
Split  
Split  
Split  
Read XFER  
Read XFER  
Read XFER  
Read XFER  
RAS  
SC  
Tap = H1  
Tap = L1  
Tap = H2  
Tap = L2  
H1  
191 L1  
63 H2  
255 L2  
SAM Low Half  
63  
SAM High Half  
191  
0
L1  
L2  
127  
128  
H1  
H2  
255  
Figure 25. Example of Split-Register Operation With Programmable Stop Points  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
256-/512-bit compatibility of split-register programmable stop point  
The stop-point mode is designed to be compatible with both 256-bit SAM and 512-bit SAM devices. After the  
CBRS cycle is initiated, the stop-point mode becomes active. In stop-point mode only, column-address bits AY7  
and AY8 are internally swapped to assure compatibility (see Figure 26). This address-bit swap applies to the  
column address and is effective for all DRAM and transfer cycles. For example, during the split-register-transfer  
cycle with stop point, column-address bit AY8 is a don’t care and AY7 decodes the DRAM half-row for the  
split-register transfer. During stop-point mode, a CBR (option reset) cycle is not recommended because this  
ends the stop-point mode and restores address bits AY7 and AY8 to their normal functions. Consistent use of  
CBR cycles ensures that the SMJ55161 remains in normal mode.  
NONSTOP-POINT MODE  
AY8 = 0 AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
STOP-POINT MODE  
AY8 = 0  
AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
512 × 512  
Memory Array  
512 × 512  
Memory Array  
256-Bit  
Data Register  
256-Bit  
Data Register  
0
255  
0
255  
Figure 26. DRAM-to-SAM Mapping, Nonstop-Point Versus Stop Point  
IMPORTANT: For proper device operation, a stop-point-mode (CBRS) cycle should be initiated immediately  
after the power-up initialization cycles are performed.  
power up  
To achieve proper device operation, an initial pause of 200 µs is required after power up followed by a minimum  
of eight RAS cycles or eight CBR cycles to initialize the DRAM port. A full-register-transfer-read cycle and two  
SC cycles are required to initialize the SAM port.  
After initialization, the internal state of the SMJ55161 is as shown in Table 6.  
Table 6. Internal State of SMJ55161  
STATE AFTER INITIALIZATION  
QSF  
Write mode  
Defined by the transfer cycle during initialization  
Nonpersistent mode  
Write-mask register  
Color register  
Serial-register tap point  
SAM port  
Undefined  
Undefined  
Defined by the transfer cycle during initialization  
Output mode  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
CC  
Voltage range on any pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
V
Supply voltage  
4.5  
5
0
5.5  
CC  
SS  
IH  
Supply voltage  
V
High-level input voltage  
Low-level input voltage (see Note 2)  
Operating free-air temperature  
2.4  
–1  
6.5  
0.8  
V
V
IL  
T
A
– 55  
125  
°C  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’55161-75  
’55161-80  
SAM  
PORT  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 1 mA  
= 2 mA  
2.4  
2.4  
V
V
OH  
OH  
0.4  
0.4  
OL  
OL  
V
= 5.5 V,  
CC  
I
I
Input current (leakage)  
V = 0 V to 5.8 V,  
I
All other pins at 0 V to V  
±10  
±10  
µA  
CC  
I
I
I
I
I
I
I
I
I
I
I
I
I
Output current (leakage) (see Note 3)  
V
= 5.5 V, V = 0 V to V  
CC  
±10  
165  
210  
12  
±10  
160  
195  
12  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
O
CC  
See Note 4  
= MIN  
O
§
§
Operating current  
Operating current  
Standby current  
Standby current  
Standby  
Active  
CC1  
t
CC1A  
CC2  
c(SC)  
All clocks = V  
Standby  
Active  
CC  
t
= MIN  
70  
65  
CC2A  
CC3  
c(SC)  
See Note 4  
RAS-only refresh current  
RAS-only refresh current  
Standby  
Active  
165  
215  
100  
145  
165  
210  
180  
225  
160  
195  
95  
t
t
t
= MIN, (See Note 5)  
CC3A  
CC4  
c(SC)  
§
§
Page-mode current  
Page-mode current  
CBR current  
= MIN,  
(See Note 5)  
Standby  
Active  
c(P)  
= MIN, (See Note 5)  
130  
160  
195  
170  
200  
CC4A  
CC5  
c(SC)  
See Note 4  
t = MIN, (See Note 5)  
Standby  
Active  
CBR current  
CC5A  
CC6  
c(SC)  
See Note 4  
= MIN  
Data-transfer current  
Data-transfer current  
Standby  
Active  
t
CC6A  
c(SC)  
§
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
Measured with outputs open  
NOTES: 3. SE is disabled for SQ output leakage tests.  
4. Measured with one address change while RAS = V ; t  
5. Measured with one address change while CASx = V  
, t  
, t  
= MIN  
IL c(rd) c(W) c(TRD)  
IH  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 6)  
PARAMETER  
Input capacitance, address inputs  
MIN  
TYP  
5
MAX  
10  
10  
10  
10  
10  
10  
10  
15  
12  
UNIT  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
C
C
C
C
C
C
C
C
C
i(A)  
Input capacitance, address-strobe inputs  
Input capacitance, write-enable input  
Input capacitance, serial clock  
8
i(RC)  
i(W)  
7
6
i(SC)  
i(SE)  
i(DSF)  
i(TRG)  
o(O)  
Input capacitance, serial enable  
Input capacitance, special function  
Input capacitance, transfer-register input  
Output capacitance, SQ and DQ  
Output capacitance, QSF  
7
7
7
12  
10  
o(QSF)  
NOTE 6:  
V
CC  
= 5 V ± 0.5 V, and the bias on pins under test is 0 V.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Note 7)  
’55161-75  
MIN MAX  
20  
’55161-80  
MIN MAX  
20  
TEST  
CONDITIONS  
ALT.  
SYMBOL  
PARAMETER  
Access time from CASx  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
= MAX  
= MAX  
= MAX  
= MAX  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
a(C)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
CAC  
Access time from column address  
Access time from CASx high  
Access time from RAS  
t
38  
43  
75  
20  
23  
18  
40  
45  
80  
20  
25  
20  
a(CA)  
a(CP)  
a(R)  
AA  
t
CPA  
RAC  
OEA  
t
t
Access time of DQ from TRG low  
Access time of SQ from SC high  
Access time of SQ from SE low  
a(G)  
C
C
= 30 pF  
t
SCA  
a(SQ)  
a(SE)  
L
L
= 30 pF  
= 50 pF  
t
SEA  
OFF  
Disable time, random output from CASx high  
(see Note 8)  
t
t
t
t
t
C
C
C
C
C
t
0
0
0
0
0
20  
20  
20  
25  
18  
0
0
0
0
0
20  
20  
20  
25  
20  
ns  
ns  
ns  
ns  
ns  
dis(CH)  
dis(RH)  
dis(G)  
L
L
L
L
L
Disable time, random output from RAS high  
(see Note 8)  
= 50 pF  
= 50 pF  
= 50 pF  
= 30 pF  
Disable time, random output from TRG high  
(see Note 8)  
t
OEZ  
Disable time, random output from WE low  
(see Note 8)  
t
dis(WL)  
dis(SE)  
WEZ  
Disable time, serial output from SE high  
(see Note 8)  
t
SEZ  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
NOTES: 7. Switching times for RAM-port output are measured with a load equivalent to one TTL load and 50 pF. Data-out reference level:  
/ V = 2 V/0.8 V. Switching times for SAM-port output are measured with a load equivalent to one TTL load and 30 pF.  
V
OH  
OL  
Serial-data out reference level: V  
/ V  
OH OL  
= 2 V/0.8 V.  
are specified when the output is no longer driven.  
8.  
t
t
, t  
, t  
, and t  
dis(CH), dis(RH) dis(G) dis(WL)  
dis(SE)  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature  
’55161-75  
MIN MAX  
’55161-80  
MIN MAX  
ALT.  
SYMBOL  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Cycle time, read  
t
140  
140  
188  
48  
88  
140  
24  
10  
20  
55  
75  
13  
20  
9
150  
150  
200  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(rd)  
RC  
Cycle time, write  
t
WC  
c(W)  
Cycle time, read-modify-write  
t
RMW  
c(rdW)  
c(P)  
Cycle time, page-mode read, write  
Cycle time, page-mode read-modify-write  
Cycle time, transfer read  
t
PC  
t
90  
c(RDWP)  
c(TRD)  
c(SC)  
PRMW  
t
150  
30  
RC  
Cycle time, serial clock (see Note 9)  
Pulse duration, CASx high  
t
t
SCC  
10  
w(CH)  
CPN  
Pulse duration, CASx low (see Note 10)  
Pulse duration, RAS high  
t
10 000  
10 000  
20  
10 000  
10 000  
w(CL)  
CAS  
t
60  
w(RH)  
RP  
Pulse duration, RAS low (see Note 11)  
Pulse duration, WE low  
t
80  
w(RL)  
RAS  
t
15  
w(WL)  
WP  
Pulse duration, TRG low  
20  
w(TRG)  
w(SCH)  
w(SCL)  
w(GH)  
Pulse duration, SC high  
t
10  
SC  
Pulse duration, SC low  
t
9
10  
SCP  
Pulse duration, TRG high  
t
20  
20  
TP  
Pulse duration, RAS low (page mode)  
Setup time, column address before CASx low  
Setup time, DSF before CASx low  
Setup time, row address before RAS low  
Setup time, WE before RAS low  
Setup time, DQ before RAS low  
Setup time, TRG high before RAS low  
Setup time, DSF low before RAS low  
Setup time, data valid before CASx low  
Setup time, data valid before WE low  
Setup time, read command, WE high before CASx low  
Setup time, early-write command, WE low before CASx low  
Setup time, WE low before CASx high, write  
Setup time, WE low before RAS high, write  
Hold time, column address after CASx low  
Hold time, DSF after CASx low  
t
75 100 000  
80 100 000  
w(RL)P  
su(CA)  
su(SFC)  
su(RA)  
su(WMR)  
su(DQR)  
su(TRG)  
su(SFR)  
su(DCL)  
su(DWL)  
su(rd)  
RASP  
t
0
0
0
0
ASC  
t
FSC  
ASR  
t
0
0
t
0
0
WSR  
t
0
0
MS  
t
0
0
THS  
FSR  
DSC  
t
0
0
t
0
0
t
0
0
DSW  
t
0
0
RCS  
t
0
0
su(WCL)  
su(WCH)  
su(WRH)  
h(CLCA)  
h(SFC)  
h(RA)  
WCS  
t
18  
20  
13  
15  
10  
20  
20  
15  
15  
10  
CWL  
RWL  
t
t
CAH  
t
CFH  
RAH  
Hold time, row address after RAS low  
t
Timing measurements are referenced to V MAX and V MIN.  
IL  
IH  
NOTES: 9. Cycle time assumes t = 3 ns.  
t
10. Inaread-modify-writecycle,t  
andt  
andt  
mustbeobserved.Dependingonthetransitiontimes,thiscanrequireadditional  
mustbeobserved.Dependingonthetransitiontimes,thiscanrequireadditional  
d(CLWL)  
su(WCH)  
su(WRH)  
CASx low time [t  
].  
w(CL)  
11. Inaread-modify-writecycle,t  
RAS low time [t ].  
d(RLWL)  
w(RL)  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’55161-75  
’55161-80  
ALT.  
SYMBOL  
UNIT  
MIN MAX  
MIN MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, TRG after RAS low  
t
15  
15  
15  
10  
33  
15  
35  
15  
0
15  
15  
15  
10  
35  
15  
35  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(TRG)  
h(RWM)  
h(RDQ)  
h(SFR)  
h(RLCA)  
h(CLD)  
h(RLD)  
h(WLD)  
h(CHrd)  
h(RHrd)  
h(CLW)  
h(RLW)  
h(WLG)  
h(SHSQ)  
h(RSF)  
h(CLQ)  
THH  
Hold time, write mask after RAS low  
t
RWH  
Hold time, DQ after RAS low (write-mask operation)  
Hold time, DSF after RAS low  
t
MH  
t
RFH  
Hold time, column address valid after RAS low (see Note 12)  
Hold time, data valid after CASx low  
t
AR  
t
DH  
Hold time, data valid after RAS low (see Note 12)  
Hold time, data valid after WE low  
t
DHR  
t
DH  
Hold time, read, WE high after CASx high (see Note 13)  
Hold time, read, WE high after RAS high (see Note 13)  
Hold time, write, WE low after CASx low  
Hold time, write, WE low after RAS low (see Note 12)  
Hold time, TRG high after WE low (see Note 14)  
Hold time, SQ valid after SC high  
t
t
RCH  
0
0
RRH  
t
t
15  
35  
10  
2
15  
35  
10  
2
WCH  
WCR  
t
OEH  
t
SOH  
Hold time, DSF after RAS low  
t
35  
0
35  
0
FHR  
Hold time, output valid after CASx low  
t
DHC  
t
75  
13  
0
80  
15  
0
CSH  
t
ns  
Delay time, RAS low to CASx high  
d(RLCH)  
(See Note 15)  
t
CHR  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CASx high to RAS low  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CHRL)  
d(CLRH)  
d(CLWL)  
d(RLCL)  
d(CARH)  
d(CACH)  
d(RLWL)  
d(CAWL)  
d(CLRL)  
d(RHCL)  
d(CLGH)  
d(GHD)  
CRP  
Delay time, CASx low to RAS high  
20  
48  
20  
50  
RSH  
Delay time, CASx low to WE low (see Notes 16 and 17)  
Delay time, RAS low to CASx low (see Note 18)  
Delay time, column address valid to RAS high  
Delay time, column address valid to CASx high  
Delay time, RAS low to WE low (see Note 16)  
Delay time, column address valid to WE low (see Note 16)  
Delay time, CASx low to RAS low (see Note 15)  
Delay time, RAS high to CASx low (see Note 15)  
Delay time, CASx low to TRG high for DRAM read cycles  
Delay time, TRG high before data applied at DQ  
t
CWD  
t
20  
38  
38  
100  
63  
0
50  
20  
40  
40  
105  
65  
0
60  
RCD  
t
RAL  
t
CAL  
t
RWD  
t
AWD  
t
CSR  
RPC  
t
0
0
20  
15  
20  
15  
t
OED  
Timing measurements are referenced to V MAX and V MIN.  
IL  
NOTES: 12. The minimum value is measured when t  
IH  
is set to t  
must be satisfied for a read cycle.  
MIN as a reference.  
d(RLCL)  
d(RLCL)  
13. Either t  
or t  
h(RHrd)  
d(CHrd)  
14. Output-enable-controlled write. Output remains in the high-impedance state for the entire cycle.  
15. CBR refresh operation only  
16. Read-modify-write operation only  
17. TRG must disable the output buffers prior to applying data to the DQ pins.  
18. The maximum value is specified only to assure RAS access time.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’55161-75  
’55161-80  
ALT.  
SYMBOL  
UNIT  
MIN  
58  
75  
15  
20  
23  
5
MAX  
MIN  
60  
80  
15  
20  
25  
5
MAX  
t
t
t
t
t
t
t
t
t
Delay time, RAS low to TRG high (see Note 19)  
Delay time, RAS low to first SC high after TRG high (see Note 20)  
Delay time, RAS low to column address valid  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RLTH)  
d(RLSH)  
d(RLCA)  
d(GLRH)  
d(CLSH)  
d(SCTR)  
d(THRH)  
d(THRL)  
d(THSC)  
RTH  
RSD  
RAD  
ROH  
t
t
35  
40  
Delay time, TRG low to RAS high  
t
Delay time, CASx low to first SC high after TRG high (see Note 20)  
Delay time, SC high to TRG high (see Notes 19 and 20)  
Delay time, TRG high to RAS high (see Note 19)  
Delay time, TRG high to RAS low (see Note 21)  
Delay time, TRG high to SC high (see Note 19)  
t
CSD  
t
TSL  
t
10  
55  
18  
10  
60  
20  
TRD  
t
TRP  
TSD  
t
Delay time, RAS high to last (most significant) rising edge of SC before  
boundary switch during split-register-transfer read cycles  
t
20  
20  
ns  
d(RHMS)  
t
t
Delay time, CASx low to TRG high in real-time-transfer read cycles  
Delay time, column address to first SC in early-load-transfer read cycles  
t
t
15  
28  
15  
30  
ns  
ns  
d(CLTH)  
CTH  
d(CASH)  
ASD  
Delay time, column address to TRG high in real-time-transfer read  
cycles  
t
t
20  
20  
ns  
d(CAGH)  
ATH  
t
t
Delay time, data to CASx low  
Delay time, data to TRG low  
t
0
0
0
0
ns  
ns  
d(DCL)  
DZC  
t
d(DGL)  
DZO  
Delay time, last (most significant) rising edge of SC to RAS low before  
boundary switch during split-register-transfer read cycles  
t
t
t
t
t
20  
20  
ns  
ns  
ns  
ns  
ns  
d(MSRL)  
Delay time, last (127 or 255) rising edge of SC to QSF switching at the  
boundary during split-register-transfer read cycles (see Note 22)  
t
28  
33  
28  
73  
30  
35  
30  
75  
d(SCQSF)  
d(CLQSF)  
d(GHQSF)  
d(RLQSF)  
SQD  
Delay time, CASx low to QSF switching in transfer-read cycles  
(see Note 22)  
t
CQD  
Delay time, TRG high to QSF switching in transfer-read cycles  
(see Note 22)  
t
TQD  
Delay time, RAS low to QSF switching in transfer-read cycles  
(see Note 22)  
t
RQD  
t
t
Refresh time interval, memory  
Transition time  
t
8
8
ms  
ns  
rf(MA)  
REF  
t
T
3
50  
3
50  
t
Timing measurements are referenced to V MAX and V MIN.  
IL IH  
NOTES: 19. Real-time-load transfer read or late-load-transfer read cycle only  
20. Early-load-transfer read cycle only  
21. Full-register-(read) transfer cycles only  
22. Switching times for QSF output are measured with a load equivalent to one TTL load and 30 pF, and the output reference level is  
/ V = 2 V/0.8 V.  
V
OH OL  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
t
d(RLCH)  
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
d(CHRL)  
t
t
w(CL)  
CASx  
t
w(CH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
t
h(RLCA)  
t
t
d(CACH)  
su(RA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
su(TRG)  
t
d(GLRH)  
t
t
w(TRG)  
h(TRG)  
TRG  
t
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
WE  
t
t
dis(CH)  
t
dis(G)  
d(DGL)  
Data In  
t
a(G)  
Data Out  
DQ0DQ15  
t
a(C)  
t
a(CA)  
t
a(R)  
Figure 27. Read-Cycle Timing With CASx-Controlled Output  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
d(RLCH)  
t
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
t
t
w(CL)  
d(CHRL)  
CASx  
t
w(CH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
t
h(RLCA)  
t
d(CACH)  
t
su(RA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
t
d(GLRH)  
su(TRG)  
t
t
h(TRG)  
w(TRG)  
TRG  
t
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
WE  
t
t
dis(G)  
d(DGL)  
Data In  
t
dis(RH)  
t
a(G)  
Data Out  
DQ0DQ15  
t
a(C)  
t
a(CA)  
t
a(R)  
Figure 28. Read-Cycle Timing With RAS-Controlled Output  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
w(CH)  
t
h(RLCA)  
t
h(RA)  
t
su(CA)  
t
t
d(CACH)  
h(CLCA)  
t
t
d(RLCA)  
su(RA)  
t
d(CARH)  
Row  
Column  
A0A8  
t
t
su(SFC)  
su(SFR)  
t
h(RSF)  
t
t
h(SFC)  
h(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
t
su(WCH)  
t
su(WMR)  
su(WRH)  
t
h(RLW)  
t
h(CLW)  
t
h(RWM)  
t
su(WCL)  
t
w(WL)  
1
WE  
t
su(DCL)  
t
su(DQR)  
t
h(CLD)  
t
h(RDQ)  
t
h(RLD)  
2
3
DQ0DQ15  
Figure 29. Early-Write-Cycle Timing  
Table 7. Early-Write-Cycle State Table  
STATE  
2
CYCLE  
1
H
L
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
d(CHRL)  
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
CASx  
t
d(RLCA)  
t
h(RLCA)  
t
w(CH)  
t
su(CA)  
t
d(CACH)  
t
h(RA)  
t
h(CLCA)  
t
su(RA)  
t
d(CARH)  
Row  
Column  
h(RSF)  
A0A8  
t
t
t
su(SFR)  
t
su(SFC)  
t
h(SFC)  
h(SFR)  
DSF  
TRG  
t
su(rd)  
t
su(WRH)  
su(WCH)  
h(CLW)  
t
su(TRG)  
t
t
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
WE  
1
t
su(DWL)  
t
su(DQR)  
t
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
2
3
DQ0DQ15  
Figure 30. Late-Write-Cycle Timing (Output-Enable-Controlled Write)  
Table 8. Late-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
su(SFC)  
t
su(SFR)  
t
h(RSF)  
t
h(SFR)  
t
h(SFC)  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
t
su(WCH)  
t
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
t
h(CLW)  
h(RWM)  
t
su(WCL)  
t
w(WL)  
WE  
t
su(DCL)  
t
h(CLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
Load-write-mask-register cycle puts the device into the persistent write-per-bit mode.  
Figure 31. Load-Write-Mask-Register-Cycle Timing (Early-Write Load)  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
d(CHRL)  
t
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
CASx  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
h(RSF)  
t
su(SFR)  
t
t
su(SFC)  
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
su(WRH)  
su(WCH)  
h(CLW)  
t
t
su(TRG)  
t
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
WE  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
Load-write-mask-register cycle puts the device into the persistent write-per-bit mode.  
Figure 32. Load-Write-Mask-Register-Cycle Timing (Late-Write Load)  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
w(RL)  
t
t
d(RLCH)  
RAS  
t
w(RH)  
t
d(CHRL)  
t
t
d(CLRH)  
t
d(RLCL)  
d(CHRL)  
t
w(CL)  
CASx  
t
h(RA)  
t
w(CH)  
t
su(CA)  
t
h(CLCA)  
t
h(RLCA)  
t
t
d(CACH)  
d(CARH)  
su(RA)  
t
t
d(RLCA)  
A0A8  
Row  
t
Column  
t
h(RSF)  
t
h(SFC)  
su(SFR)  
t
t
h(SFR)  
su(SFC)  
DSF  
TRG  
t
t
su(rd)  
su(WCH)  
t
h(TRG)  
t
su(WRH)  
t
d(CAWL)  
t
w(TRG)  
t
h(WLG)  
t
h(RLW)  
t
t
h(CLW)  
su(TRG)  
t
d(CLWL)  
t
su(WMR)  
t
d(DCL)  
t
h(RWM)  
t
d(CLGH)  
t
w(WL)  
1
2
WE  
t
a(CA)  
t
d(RLWL)  
t
t
h(WLD)  
t
d(GHD)  
a(R)  
t
t
d(DGL)  
su(DQR)  
t
t
t
a(C)  
su(DWL)  
h(RDQ)  
Valid  
Out  
3
DQ0DQ15  
t
dis(G)  
t
a(G)  
Figure 33. Read-Write-/Read-Modify-Write-Cycle Timing  
Table 9. Read-Write-/Read-Modify-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
w(CH)  
d(CHRL)  
t
t
t
w(CL)  
t
CASx  
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
t
su(RA)  
t
su(CA)  
d(CACH)  
t
t
h(CLCA)  
h(RA)  
t
d(CARH)  
t
h(RLCA)  
Row  
Column  
Column  
A0A8  
DSF  
t
t
h(SFR)  
d(CLGH)  
t
su(SFR)  
t
h(TRG)  
t
su(TRG)  
TRG  
WE  
t
su(WMR)  
t
t
h(RHrd)  
su(rd)  
t
t
a(C)  
h(CLQ)  
t
t
dis(WL)  
a(CA)  
t
t
a(CA)  
d(DGL)  
t
t
a(G)  
dis(RH)  
(see Note A)  
t
t
a(R)  
(see Note B)  
a(CP)  
(see Note A)  
t
dis(G)  
Data Out  
DQ0–  
DQ15  
Data Out  
Data In  
t
d(DCL)  
or t  
NOTES: A. Access time is t  
dependent.  
a(CA)  
a(CP)  
B. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
C. A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper polarity of DSF is selected on the falling edge of RAS and CASx to select the desired  
write mode (normal, block write, etc.).  
Figure 34. Enhanced-Page-Mode Read-Cycle Timing  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
d(RLCH)  
d(RLCL)  
t
w(RH)  
t
d(CLRH)  
t
c(P)  
t
t
w(CH)  
t
w(CL)  
t
t
d(CHRL)  
d(CHRL)  
t
CASx  
t
d(RLCA)  
t
su(CA)  
t
h(CLCA)  
su(RA)  
t
t
h(RA)  
d(CACH)  
t
t
h(RLCA)  
d(CARH)  
Row  
Column  
Column  
A0–  
A8  
t
su(SFR)  
t
d(RSF)  
t
h(SFC)  
t
t
h(SFR)  
h(SFC)  
t
t
su(SFC)  
su(SFC)  
1
2
2
DSF  
TRG  
t
su(TRG)  
t
h(TRG)  
See Note A  
t
su(WMR)  
t
su(WCH)  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
w(WL)  
WE  
3
t
(see Note B)  
su(DWL)  
t
su(DQR)  
t
(see Note B)  
t
h(CLD)  
su(DCL)  
(see Note B)  
t
(see Note B)  
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
DQ0–  
DQ15  
4
5
5
NOTES: A. Referenced to the first falling edge of CASx or the falling edge of WE, whichever occurs later  
B. A read cycle or a read-modify-write cycle can be intermixed with write cycles, observing read and read-modify-write timing  
specifications. To ensure page-mode cycle time, TRG must remain high throughout the entire page-mode operation if the late write  
featureisused. Iftheearlywrite-cycletimingisused, thestateofTRGisadon’tcareaftertheminimumperiodt  
edge of RAS.  
fromthefalling  
h(TRG)  
Figure 35. Enhanced-Page-Mode Write-Cycle Timing  
Table 10. Enhanced-Page-Mode Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
Load-writemaskoneitherthefirstfallingedgeofCASxorthe  
L
H
L
H
Don’t care  
Write mask  
falling edge of WE, whichever occurs later.  
Load-write-mask-register cycle puts the device in the persistent write-per-bit mode. Column address at the falling edge of CASx is a don’t care  
during this cycle.  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
w(RH  
t
d(RLCH)  
t
d(CLRH)  
t
t
d(CHRL)  
c(RDWP)  
t
t
t
d(RLCL)  
w(CH)  
d(CHRL)  
t
t
w(CL)  
CASx  
h(RA)  
t
d(RLCA)  
t
d(CARH)  
d(CACH)  
t
su(CA)  
h(RLCA)  
Column  
t
t
t
su(RA)  
h(CLCA)  
t
Row  
Column  
A0A8  
DSF  
t
h(SFR)  
su(SFR)  
t
h(SFC)  
t
t
h(SFC)  
t
su(SFC)  
t
su(SFC)  
1
2
2
t
su(rd)  
t
t
su(WCH)  
d(CLWL)  
t
d(DCL)  
t
d(CAWL)  
t
d(CLGH)  
t
d(RLWL)  
t
t
t
h(TRG)  
d(CLGH)  
w(TRG)  
su(WRH)  
t
su(TRG)  
t
TRG  
WE  
t
t
t
su(WCH)  
t
w(TRG)  
su(WMR)  
t
w(WL)  
h(RWM)  
t
(see Note A)  
3
a(C)  
t
(see Note A)  
t
a(CA)  
su(DWL)  
t
t
h(WLD)  
su(DQR)  
t
h(WLD)  
t
d(DCL)  
t
t
d(GHD)  
5
t
su(DWL)  
t
(see Note A)  
h(RDQ)  
a(CP)  
DQ0DQ15  
4
Valid Out  
5
t
(see Note A)  
a(G)  
t
Valid Out  
d(DGL)  
t
d(DGL)  
t
dis(G)  
(see Note A)  
t
d(GHD)  
(see Note A)  
t
t
a(C)  
a(R)  
NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
B. A read or a write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are  
not violated.  
Figure 36. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
Table 11. Enhanced-Page-Mode Read-Modify-Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
Load write-mask register on either the first falling edge of  
L
H
L
H
Don’t care  
Write mask  
CASx or the falling edge of WE, whichever occurs later.  
Load-write-mask-register cycle puts the device in the persistent write-per-bit mode. Column address at the falling edge of CASx is a don’t care  
during this cycle.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
w(CH)  
t
t
t
d(CHRL)  
w(CL)  
t
d(RLCA)  
CASx  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
su(CA)  
t
d(CACH)  
t
t
h(CLCA)  
h(RA)  
t
t
d(CARH)  
h(RLCA)  
Row  
Column  
Column  
A0A8  
DSF  
t
t
h(SFR)  
d(CLGH)  
t
su(SFR)  
t
su(WCL)  
t
h(TRG)  
t
t
su(TRG)  
h(CLW)  
TRG  
WE  
t
su(WMR)  
t
su(rd)  
t
w(WL)  
t
a(C)  
See Note A  
t
a(CA)  
t
t
h(CLD)  
t
dis(WL)  
d(DGL)  
t
a(G)  
t
a(R)  
(see Note B)  
t
su(DCL)  
DQ0–  
DQ15  
Data Out  
Data In  
Data In  
t
d(DCL)  
NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
B. A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper polarity of DSF is selected on the falling edge of RAS and CASx to select the desired  
write mode (normal, block write, etc.).  
Figure 37. Enhanced-Page-Mode Read-/Write-Cycle Timing  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
h(RA)  
t
w(CH)  
t
su(RA)  
Refresh Row  
A0A8  
t
h(SFC)  
t
h(RSF)  
t
t
su(SFR)  
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
t
su(TRG)  
t
h(TRG)  
t
su(WCH)  
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
t
h(RWM)  
h(CLW)  
t
su(WCL)  
WE  
t
t
w(WL)  
t
su(DCL)  
h(CLD)  
t
h(RLD)  
DQ0–  
DQ15  
Valid Color Input  
Figure 38. Load-Color-Register-Cycle Timing (Early-Write Load)  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
t
d(RLCL)  
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
t
h(RSF)  
w(CH)  
t
h(RA)  
su(RA)  
Refresh Row  
t
A0A8  
t
t
su(SFR)  
h(SFC)  
t
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WRH)  
t
t
d(GHD)  
su(WCH)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
w(WL)  
WE  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
DQ0DQ15  
Valid Color Input  
Figure 39. Load-Color-Register-Cycle Timing (Late-Write Load)  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
t
w(RH)  
t
d(RLCH)  
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
t
w(CH)  
d(RLCA)  
t
h(RLCA)  
t
d(RLCA)  
t
d(CARH)  
t
t
su(RA)  
d(CACH)  
t
t
h(CLCA)  
h(RA)  
t
su(CA)  
Row  
A0A8  
t
t
h(RSF)  
Block Address  
A2A8  
su(SFR)  
t
su(SFC)  
t
h(SFR)  
t
h(SFC)  
DSF  
t
t
h(TRG)  
su(TRG)  
TRG  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
su(WMR)  
t
su(WCL)  
t
h(CLW)  
t
h(RLW)  
t
w(WL)  
1
2
WE  
t
h(RLD)  
t
su(DCL)  
t
su(DQR)  
t
h(CLD)  
t
h(RDQ)  
3
DQ0DQ15  
Figure 40. Block-Write-Cycle Timing (Early Write)  
Table 12. Block-Write-Cycle State Table  
STATE  
2
CYCLE  
1
3
Block-write operation (nonmasked)  
H
Don’t care  
Write mask  
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
L
Write-mask data 0: I/O write disable  
1: I/O write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
0: column-write disable  
(i = 0, 4, 8, 12) 1: column-write enable  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
t
w(CL)  
CASx  
t
d(RLCA)  
d(CACH)  
t
w(CH)  
t
h(RLCA)  
t
d(CARH)  
t
h(RA)  
t
su(CA)  
t
t
h(CLCA)  
su(RA)  
Row  
A0A8  
t
h(RSF)  
Block Address  
A2A8  
t
h(SFC)  
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
su(WRH)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
1
WE  
t
su(DQR)  
t
su(DWL)  
t
t
h(RDQ)  
h(WLD)  
t
h(RLD)  
3
2
DQ0DQ15  
Figure 41. Block-Write-Cycle Timing (Late Write)  
Table 13. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
2
3
Block-write operation (nonmasked)  
H
Don’t care  
Write mask  
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
L
Write-mask data 0: I/O write disable  
1: I/O write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
0: column-write disable  
(i = 0, 4, 8, 12) 1: column-write enable  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
t
c(P)  
t
d(RLCH)  
d(RLCL)  
w(RH)  
t
t
d(CLRH)  
t
w(CH)  
t
t
t
d(CHRL)  
d(CHRL)  
t
w(CL)  
CASx  
t
d(RLCA)  
t
t
d(CACH)  
su(CA)  
t
h(CLCA)  
t
h(RA)  
t
h(RLCA)  
t
d(CARH)  
su(RA)  
Block Address  
Block Address  
A2A8  
Row  
A0A8  
A2A8  
t
t
h(SFR)  
t
h(SFC)  
h(SFC)  
t
t
su(SFC)  
t
su(SFC)  
su(SFR)  
DSF  
TRG  
t
h(TRG)  
su(TRG)  
t
See Note A  
su(WCH)  
t
t
su(WMR)  
su(WCH)  
t
t
w(WL)  
t
t
h(RWM)  
su(WRH)  
WE  
1
t
(see Note A)  
su(DWL)  
t
(see Note A)  
h(CLD)  
t
su(DQR)  
t
(see Note A)  
h(WLD)  
t
h(RDQ)  
2
t
(see Note A)  
su(DCL)  
t
h(RLD)  
DQ0–  
DQ15  
3
3
NOTES: A. Referenced to the first falling edge of CASx or the falling edge of WE, whichever occurs later  
B. To ensure page-mode cycle time, TRG must remain high throughout the entire page-mode operation if the late-write feature is used.  
If the early-write cycle timing is used, the state of TRG is a don’t care after the minimum period t  
from the falling edge of RAS.  
h(TRG)  
Figure 42. Enhanced-Page-Mode Block-Write-Cycle Timing  
Table 14. Enhanced-Page-Mode Block-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Block-write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
Write-mask data  
0: I/O write disable  
1: I/O write enable  
0: column-write disable  
(i = 0, 4, 8, 12) 1: column-write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
t
t
w(RH)  
t
t
d(RHCL)  
t
d(CHRL)  
d(CHRL)  
CASx  
t
h(RA)  
t
su(RA)  
Row  
A0A8  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
WE  
DQ0–  
DQ15  
Figure 43. RAS-Only Refresh-Cycle Timing  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
t
w(RH)  
w(RL)  
RAS  
t
d(RHCL)  
t
t
t
d(CLRL)  
t
d(RLCH)  
CASx  
t
d(CHRL)  
t
t
t
t
su(RA)  
h(RA)  
1
2
A0A8  
su(SFR)  
h(SFR)  
DSF  
TRG  
t
t
h(RWM)  
su(WMR)  
3
WE  
DQ0DQ15  
Figure 44. CBR-Refresh-Cycle Timing  
Table 15. CBR-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
H
H
L
CBR refresh with option reset  
CBR refresh with no reset  
Don’t care  
Don’t care  
Stop address  
H
H
CBR refresh with stop-point set and no reset  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
Memory Read Cycle  
Refresh Cycle  
Refresh Cycle  
t
c(rd)  
t
c(rd)  
t
c(rd)  
t
w(RH)  
t
w(RH)  
t
t
w(RL)  
w(RL)  
RAS  
t
d(CARH)  
t
d(RLCH)  
t
d(CHRL)  
t
t
t
w(CL)  
CASx  
t
d(RLCA)  
t
su(RA)  
t
su(RA)  
t
h(CLCA)  
t
t
su(CA)  
h(RA)  
t
h(RA)  
t
h(RA)  
t
t
su(RA)  
t
t
h(RA)  
su(RA)  
Col  
Row  
1
1
2
1
2
A0A8  
DSF  
t
su(SFR)  
t
su(SFR)  
su(SFR)  
t
t
h(SFR)  
t
h(SFR)  
h(SFR)  
2
t
h(RHrd)  
t
dis(CH)  
t
su(TRG)  
t
t
dis(G)  
h(TRG)  
t
d(GLRH)  
TRG  
t
su(WMR)  
t
t
su(WMR)  
t
su(WMR)  
su(rd)  
t
h(RWM)  
t
t
h(RWM)  
h(RWM)  
t
a(G)  
WE  
3
3
3
t
a(C)  
t
a(R)  
DQ0DQ15  
Data Out  
Figure 45. Hidden-Refresh-Cycle Timing  
Table 16. Hidden-Refresh-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
CBR refresh with option reset  
CBR refresh with no reset  
Don’t care  
Don’t care  
Stop address  
H
H
L
H
H
CBR refresh with stop-point set and no option reset  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
d(CARH)  
t
w(CL)  
t
CASx  
d(RLCA)  
t
h(RA)  
t
su(CA)  
t
h(CLCA)  
t
su(RA)  
t
h(RLCA)  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
su(SFR)  
t
h(SFR)  
t
su(TRG)  
t
h(TRG)  
TRG  
t
w(GH)  
t
h(RWM)  
t
t
su(WMR)  
d(CASH)  
WE  
DQ0DQ15  
Hi-Z  
t
d(SCTR)  
t
d(CLSH)  
t
t
w(SCL)  
w(SCH)  
t
d(RLSH)  
SC  
SQ  
t
w(SCH)  
t
t
c(SC)  
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
Old Data  
New Data  
t
d(GHQSF)  
Tap Point Bit A7  
QSF  
SE  
t
d(CLQSF)  
H
L
t
d(RLQSF)  
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 256 locations in each data register are written  
to from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, the SAM is in the serial-read mode, that is, the SQ is enabled, allowing data to be  
shifted out of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
C. A0 – A7: register tap point; A8: identifies the DRAM row half  
D. Early-load operation is defined as t  
h(TRG)  
MIN < t  
< t MIN.  
h(TRG) d(RLTH)  
Figure 46. Full-Register Transfer-Read Timing, Early-Load Operations  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
w(CL)  
CASx  
t
d(RLCA)  
t
h(RA)  
t
su(CA)  
t
su(RA)  
t
h(RLCA)  
t
h(CLCA)  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
t
su(SFR)  
h(SFR)  
t
d(CLTH)  
t
d(THRL)  
d(THRH)  
t
su(TRG)  
t
t
d(CAGH)  
t
d(RLTH)  
TRG  
WE  
t
w(GH)  
t
h(RWM)  
t
su(WMR)  
t
d(SCTR)  
t
d(THSC)  
DQ0DQ15  
SC  
Hi-Z  
t
w(SCH)  
t
t
c(SC)  
a(SQ)  
t
w(SCL)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
Old Data  
Old Data  
New Data  
SQ  
t
d(GHQSF)  
QSF  
SE  
Tap Point Bit A7  
t
H
L
d(CLQSF)  
t
d(RLQSF)  
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 256 locations in each data register are written  
to from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, the SAM is in the serial-read mode, that is, the SQ is enabled, allowing data to be  
shifted out of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
C. A0A7: register tap point; A8: identifies the DRAM row half  
D. Late load operation is defined as t  
< 0 ns.  
d(THRH)  
Figure 47. Full-Register Transfer Read-Timing, Real-Time Load Operation/Late-Load Operation  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
w(RH)  
t
d(RLCL)  
RAS  
CASx  
t
t
d(CHRL)  
t
t
w(CH)  
d(RLCH)  
t
t
d(RLCA)  
w(CL)  
t
su(CA)  
t
h(RA)  
t
su(RA)  
h(CLCA)  
A0A8  
Tap Point A0A8  
See Note A  
Row  
t
su(TRG)  
t
h(TRG)  
TRG  
DSF  
t
h(SFR)  
t
su(SFR)  
t
h(RWM)  
t
su(WMR)  
WE  
DQ0–  
DQ15  
HI-Z  
t
d(MSRL)  
t
d(RHMS)  
t
c(SC)  
t
t
c(SC)  
w(SCH)  
t
w(SCL)  
Bit 127  
or 255  
Tap  
Point M  
Bit 255  
or 127  
Tap  
Point N  
SC  
SQ  
t
t
a(SQ)  
t
t
a(SQ)  
t
a(SQ)  
w(SCL)  
h(SHSQ)  
Bit 127 or  
Bit 255  
Bit 127 or  
Bit 255  
Bit 126 or  
Bit 254  
Tap  
Point N  
Tap Point M  
t
t
a(SQ)  
d(SCQSF)  
t
d(SCQSF)  
New MSB  
MSB Old  
QSF  
SE  
H
L
NOTE A: A0A6: tap point of the given half; A7: don’t care; A8: identifies the DRAM row half  
Figure 48. Split-Register-Transfer-Read Timing  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
t
w(SCH)  
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
h(SHSQ)  
t
h(SHSQ)  
t
h(SHSQ)  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
t
a(SE)  
NOTES: A. Whilethe data is being read through the serial-data register, TRG is a don’t care; however, TRG must be held high when RAS goes  
low. This is to avoid the initiation of a register-data transfer operation.  
B. The serial data-out cycle is used to read data out of the data registers. Before data can be read via SQ, the device must be put  
into the read mode by performing a transfer-read cycle.  
Figure 49. Serial-Read-Cycle Timing (SE = V )  
IL  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
h(SHSQ)  
t
a(SE)  
t
h(SHSQ)  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
Valid Out  
t
dis(SE)  
NOTES: A. While the data is being read through the serial-data register, TRG is a don’t care; however, TRG must be held high when RAS goes  
low. This is to avoid the initiation of a register-data transfer operation.  
B. The serial data-out cycle is used to read data out of the data registers. Before data can be read via SQ, the device must be put into  
the read mode by performing a transfer-read cycle.  
Figure 50. Serial-Read Timing (SE-Controlled Read)  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
CAS  
ADDR  
Row Tap1  
(low)  
RowTap1  
(high)  
Row Tap2  
(low)  
Row Tap2  
(high)  
TRG  
DSF  
CASE I  
SC  
Tap1  
(low)  
Bit Tap1  
127 (high)  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE II  
SC  
Tap1  
(high)  
Tap1  
(low)  
Bit  
127  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE III  
SC  
Tap1  
(low)  
Bit  
Tap1  
Bit  
255  
Tap2  
(low)  
Bit  
127  
127 (high)  
QSF  
Split Register to the  
High Half of the  
Data Register  
Split Register to the  
Low Half of the  
Data Register  
Split Register to the  
High Half of the  
Data Register  
Full-Register-Transfer Read  
NOTES: A. To achieve proper split-register operation, a full-register-transfer read must be performed before the first split-register-transfer  
cycle. This is necessary to initialize the data register and the starting tap location. First serial access can begin either after the  
full-register-transfer-read cycle (CASE I), during the first split-register-transfer cycle (CASE II), or even after the first  
split-register-transfer cycle (CASE III). There is no minimum requirement of SC clock between the full-register transfer-read cycle  
and the first split-register cycle.  
B. A split-register transfer into the inactive half is not allowed until t  
is met. t  
is the minimum delay time between the  
d(MSRL)  
d(MSRL)  
rising edge of the serial clock of the last bit (bit 127 or 255) and the falling edge of RAS of the split-register-transfer cycle into the  
inactive half. After the t requirement is met, the split-register transfer into the inactive half must also satisfy the minimum  
d(MSRL)  
requirement. t  
t
istheminimumdelaytimebetweentherisingedgeofRASofthesplit-register-transfercycleinto  
d(RHMS)  
d(RHMS)  
the inactive half and the rising edge of the serial clock of the last bit (bit 127 or 255).  
Figure 51. Split-Register Operating Sequence  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
MECHANICAL DATA  
GB (S-CPGA-P68)  
CERAMIC PIN GRID ARRAY PACKAGE  
0.970 (24,63)  
0.950 (24,13)  
0.536 (13,61)  
0.524 (13,31)  
0.800 (20,32) TYP  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
0.088 (2,23)  
0.072 (1,83)  
0.100 (2,54)  
0.194 (4,98)  
0.166 (4,16)  
0.055 (1,39)  
0.045 (1,14)  
0.050 (1,27) DIA  
4 Places  
0.018 (0,46) DIA TYP  
4040114-14/A 2/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Index mark may appear on top or bottom depending on package vendor.  
D. Pins are located within 0.005 (0,13) radius of true position relative to each other at maximum material condition and within  
0.015 (0,38) radius relative to the center of the ceramic.  
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.  
F. The pins can be gold plated or solder dipped.  
G. Falls within MIL-STD-1835 CMGA1-PN and CMGA13-PN and JEDEC MO-067AA and MO-066AA, respectively  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
MECHANICAL DATA  
HKC (R-CDFP-F64)  
CERAMIC DUAL FLATPACK WITH TIE BAR  
1.620 (41,14)  
SQ  
1.580 (40,13)  
1.020 (25,91)  
0.980 (24,89)  
0.765 (19,43)  
0.730 (18,54)  
0.026 (0,66) MIN  
0.150 (3,81)  
0.100 (2,54)  
0.070 (1,78)  
0.055 (1,40)  
33  
64  
0.445 (11,30)  
0.420 (10,67)  
32  
1
0.320 (8,13)  
0.295 (7,49)  
0.0098 (0,250)  
0.0060 (0,150)  
0.185 (4,70)  
0.145 (3,68)  
0.0079 (0,200)  
0.0043 (0,110)  
0.0196 (0,500)  
0.040 (1,02)  
0.030 (0,76)  
4073160/B 10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. All leads not shown for clarity purposes.  
device symbolization  
-SS  
Speed (-70, -80)  
SMJ55161 HKC M  
Temperature Range  
Package Code  
F
R
A
XXX LLL  
Lot Traceability Code  
Date Code  
Assembly Site Code  
Die Revision Code  
Wafer Fab Code  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55161  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS056D – MAY 1995 – REVISED OCTOBER 1997  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SMJ55161-70GBM

256KX16 VIDEO DRAM, 70ns, CPGA68, CERAMIC, PGA-68
TI

SMJ55161-70HKCM

256KX16 VIDEO DRAM, 70ns, CDFP64, CERAMIC, DFP-64
TI

SMJ55161AGB-70

Memory Circuit, 256KX16, PPGA68
MICROSS

SMJ55161AGB-80

Memory Circuit, 256KX16, PPGA68
MICROSS

SMJ55161AHKC-70

Memory Circuit, 256KX16, CQFP64
MICROSS

SMJ55161AHKC-75

Memory Circuit, 256KX16, CQFP64
MICROSS

SMJ55165-80HKCM

256KX16 VIDEO DRAM, 80ns, CDFP64, 0.50 MM FINE PITCH, CERAMIC, FP-64
TI

SMJ55166

262144 BY 16-BIT MULTIPORT VIDEO RAM
TI

SMJ55166-70GB

256KX16 VIDEO DRAM, 70ns, CPGA68
TI

SMJ55166-70HKC

256KX16 VIDEO DRAM, 70ns, CDFP64
TI

SMJ55166-75GBM

256KX16 VIDEO DRAM, 75ns, CPGA68, CERAMIC, PGA-68
TI

SMJ55166-75HKCM

256KX16 VIDEO DRAM, 75ns, CDFP64, CERAMIC, DFP-64
TI