SN65HVD234-Q1 [TI]

3.3V 汽车类 CAN 总线收发器;
SN65HVD234-Q1
型号: SN65HVD234-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V 汽车类 CAN 总线收发器

总线收发器
文件: 总36页 (文件大小:1615K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
SN65HVD23x-Q1 3.3V 汽车类 CAN 总线收发器  
1 特性  
3 说明  
1
符合 ISO 11898-2 标准  
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
SN65HVD233-Q1SN65HVD234-Q1 和  
SN65HVD235-Q1 器件是适用于汽车类应用的 3.3V 故  
障保护 CAN 收发器。这些收发器由 3.3V 单电源供电  
运行,非常适合同样采用 3.3V 微控制器的系统,因为  
不再需要通过附加组件或独立电源分别为控制器和  
CAN 收发器供电。SN65HVD23x-Q1 收发器符合  
ISO 11898-2 标准,因此可在使用 5V CAN /3.3V  
CAN 收发器的混合网络中进行互操作。  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等  
级:  
总线引脚:±12 000V  
其他引脚:±3 000V  
这些器件尤其适合工作在恶劣环境下,其具有串线保  
护、过压保护(CANH CANL 引脚上,最高达 ±  
36V)、接地损耗保护、过热(热关断)保护以及  
±100V 共模瞬态保护。这些器件工作在 –7V 12V 的  
宽共模电压范围内。这些收发器可用作微处理器上的主  
CAN 控制器与运输及汽车应用中的差分 CAN 总线  
之间的 接口。  
器件带电器件模型 (CDM) ESD 分类等级:±1  
000V  
3.3V 单电源电压  
比特率:最高达 1Mbps  
总线引脚故障保护:最高达 ±36V  
–7V 12V 共模电压范围  
高输入阻抗,允许连接 120 个节点  
器件信息(1)  
低电压晶体管-晶体管逻辑电路 (LVTTL) I/O 可耐受  
5V 电压  
器件型号  
封装  
封装尺寸(标称值)  
符合 GIFT/ICT 标准  
SN65HVD233-Q1  
SN65HVD234-Q1  
SN65HVD235-Q1  
可调节的驱动器转换率,能够改善辐射性能  
未供电节点不会干扰总线  
SOIC (8)  
4.90mm x 3.91mm  
低电流待机模式(典型值为 200μA)  
平均功耗:36.4mW  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
框图  
SN65HVD233-Q1:环回模式  
SN65HVD234-Q1:超低电流休眠模式  
VCC  
VCC  
50nA 流耗典型值  
SN65HVD235-Q1:自动波特环回模式  
热关断保护  
VCC  
TXD  
上电和掉电时总线输入和输出上无毛刺脉冲  
高输入阻抗,低 VCC  
VCC  
掉电再上电期间的输出呈单调性  
RS  
Slope Control  
and  
Mode Logic  
2 应用  
AB, EN,  
or LBK  
车内网络  
RXD  
先进的驾驶员辅助系统 (ADAS)  
车身电子装置和照明  
GND  
信息娱乐和仪表板  
混合、电动和动力传动系统  
符合 CAN 总线标准(例如,NMEA 2000 SAE  
J1939)的应用  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSES4  
 
 
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
目录  
10.1 Overview ............................................................... 18  
10.2 Functional Block Diagrams ................................... 18  
10.3 Feature Description............................................... 18  
10.4 Device Functional Modes...................................... 20  
11 Application and Implementation........................ 22  
11.1 Application Information.......................................... 22  
11.2 Typical Application ................................................ 23  
11.3 System Example ................................................... 25  
12 Power Supply Recommendations ..................... 26  
13 Layout................................................................... 26  
13.1 Layout Guidelines ................................................. 26  
13.2 Layout Example .................................................... 27  
14 器件和文档支持 ..................................................... 28  
14.1 相关链接................................................................ 28  
14.2 接收文档更新通知 ................................................. 28  
14.3 社区资源................................................................ 28  
14.4 ....................................................................... 28  
14.5 静电放电警告......................................................... 28  
14.6 Glossary................................................................ 28  
15 机械、封装和可订购信息....................................... 28  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ..................................... 5  
8.2 ESD Ratings.............................................................. 5  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information.................................................. 6  
8.5 Electrical Characteristics: Driver ............................... 6  
8.6 Electrical Characteristics: Receiver .......................... 7  
8.7 Switching Characteristics: Driver .............................. 7  
8.8 Switching Characteristics: Receiver.......................... 8  
8.9 Switching Characteristics: Device............................. 8  
8.10 Typical Characteristics............................................ 9  
Parameter Measurement Information ................ 11  
9
10 Detailed Description ........................................... 18  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2016) to Revision A  
Page  
Deleted extra words "all pins except" in the test condition for CANH, CANL pins to GND ................................................... 5  
Added ESD performance information between CANH and CANL pins ................................................................................ 5  
2
版权 © 2016, Texas Instruments Incorporated  
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
5 说明 (续)  
模式:SN65HVD233-Q1SN65HVD234-Q1 SN65HVD235-Q1 器件的 RS 引脚(引脚 8)提供三种工作模  
式:高速、斜率控制和低功耗待机模式。将引脚 8 直接接地可选择高速工作模式,该工作模式允许驱动器输出晶体  
管以尽可能快的速度导通和关断,而且对上升和下降斜率没有限制。通过在 RS 引脚与地之间串联一个电阻可以调  
节上升和下降斜率。斜率与引脚的输出电流成比例。当电阻值为 10k时,器件的转换率约为 15V/μs;当电阻值为  
100k时,器件的转换率约为 2V/μs。有关斜率控制的更多信息,请参见Feature Description。  
如果对 RS 引脚施加逻辑高电平,SN65HVD233-Q1SN65HVD234-Q1 SN65HVD235-Q1 器件将进入低电流  
待机(仅监听)模式。在此模式下,驱动器将关断、接收器保持工作状态。如果本地协议控制器必须向总线发送消  
息,则它必须同时通过 RS 引脚使器件返回高速模式或斜率控制模式。  
环回 (SN65HVD233-Q1):当 SN65HVD233-Q1 器件的环回 (LBK) 引脚(引脚 5)为逻辑高电平时,会将总线输  
出和总线输入置于高阻抗状态。器件内部的 TXD RS 路径保持有效状态,可用于驱动器至接收器环回,从而实  
现在不干扰总线的情况下执行自诊断节点功能。关于环回模式的更多信息,请参见Feature Description。  
超低电流休眠 (SN65HVD234-Q1):如果向 EN 引脚(引脚 5)施加逻辑低电平,则 SN65HVD234-Q1 器件将进入  
超低电流休眠模式,继而将禁止驱动器和接收器电路。在通过向引脚 5 施加逻辑高电平来激活电路之前,该器件将  
保持在该休眠模式下。  
自动波特环回 (SN65HVD235-Q1)SN65HVD235-Q1 器件的 AB 引脚(引脚 5)实现了总线仅监听环回功能,允  
许本地节点控制器将其波特率与 CAN 总线的波特率同步。在自动波特模式下,驱动器的总线输出处于高阻抗状  
态,而接收器的总线输入保持有效状态。器件内部有一条 TXD 引脚到 RS 引脚的环回路径,方便控制器执行波特  
率检测或自动波特功能。关于自动波特模式的更多信息,请参见Feature Description。  
6 Device Comparison Table  
SLOPE  
CONTROL  
DIAGNOSTIC  
LOOPBACK  
AUTOBAUD  
LOOPBACK  
PART NUMBER(1)  
LOW-POWER MODE  
SN65HVD233-Q1  
SN65HVD234-Q1  
SN65HVD235-Q1  
200-μA standby mode  
200-μA standby mode or 50-nA sleep mode  
200-μA standby mode  
Adjustable  
Adjustable  
Adjustable  
Yes  
No  
No  
No  
No  
Yes  
(1) For the most-current package and ordering information, see the orderable addendum at the end of the data sheet, or see the TI Web  
site at www.ti.com.  
Copyright © 2016, Texas Instruments Incorporated  
3
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
7 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
D Package  
8-Pin SOIC  
SN65HVD233-Q1 Top View  
SN65HVD234-Q1 Top View  
TXD  
GND  
VCC  
RXD  
1
2
3
4
8
7
6
5
RS  
TXD  
GND  
VCC  
RXD  
1
2
3
4
8
7
6
5
RS  
CANH  
CANL  
LBK  
CANH  
CANL  
EN  
Not to scale  
Not to scale  
D Package  
8-Pin SOIC  
SN65HVD235-Q1 Top View  
TXD  
1
2
3
4
8
7
6
5
RS  
GND  
VCC  
RXD  
CANH  
CANL  
AB  
Not to scale  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
'233-Q1  
'234-Q1  
'235-Q1  
SN65HVD235-Q1 device: Autobaud loopback mode-input pin (AB). Can be tied to  
ground if not used. Can also be left open if unused because the internal pulldown  
biases this toward ground.  
AB  
5
I
CANH  
CANL  
7
6
7
6
7
6
I/O High-level CAN bus line  
I/O Low-level CAN bus line  
SN65HVD234-Q1 device: Enable input pin. Logic high for enabling a normal mode  
(high-speed or slope-control mode). Logic low for sleep mode. (EN)  
EN  
2
5
2
2
I
GND  
I
Ground connection  
SN65HVD233-Q1 device: Loopback-mode input pin (LBK). Can be tied to ground if  
not used. Can also be left open if unused because the internal pulldown biases this  
toward ground.  
LBK  
5
Mode-select pin: strong pulldown to GND = high-speed mode, strong pullup to VCC  
= low-power mode, 10-kΩ to 100-kΩ pulldown to GND = slope-control mode  
RS  
8
8
8
I
RXD  
TXD  
VCC  
4
1
3
4
1
3
4
1
3
O
I
CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
Transceiver 3.3-V supply voltage  
I
4
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating ambient temperature range unless otherwise noted(1)(2)  
MIN  
–0.3  
–36  
MAX  
7
UNIT  
V
VCC Supply voltage  
Voltage at any bus terminal (CANH or CANL)  
36  
V
Voltage input, transient pulse, CANH and CANL, through 100 (see  
Figure 18)  
–100  
100  
V
VI  
Input voltage, (AB, EN, LBK, RS, TXD)  
Output voltage (RXD)  
–0.5  
–0.5  
–10  
–40  
7
V
V
VO  
IO  
7
Receiver output current  
10  
150  
125  
mA  
°C  
°C  
TJ  
Operating junction temperature  
Storage temperature  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to the network ground pin.  
8.2 ESD Ratings  
VALUE  
UNIT  
CANH, CANL to GND  
±12 000  
Human-body model (HBM), per AEC  
Q100-002(1)  
Between CANH and  
CANL  
±16 000  
V(ESD)  
Electrostatic discharge  
V
All pins  
±3 000  
±1 000  
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
MIN  
MAX UNIT  
VCC  
Supply voltage  
3
3.6  
12  
V
V
Voltage at any bus terminal (separately or common mode)  
–7  
VIH  
VIL  
VID  
High-level input voltage  
Low-level input voltage  
EN, AB, LBK, TXD  
EN, AB, LBK, TXD  
2
5.5  
0.8  
6
V
0
–6  
V
Differential input voltage between CANH and CANL  
Resistance from RS to ground  
V
0
100  
5.5  
kΩ  
V
VI(Rs) Input voltage at RS for standby  
0.75 VCC  
–50  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
–10  
50  
10  
IOL  
TA  
Low-level output current  
mA  
°C  
Receiver  
Operating ambient temperature(1)  
–40  
125  
(1) Maximum ambient temperature operation is allowed as long as the device maximum junction temperature is not exceeded.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
8.4 Thermal Information  
SN65HVD23x-Q1  
D (SOIC)  
8 PINS  
102.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
45.1  
43.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.3  
ψJB  
43.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
8.5 Electrical Characteristics: Driver  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
CANH  
CANL  
CANH  
CANL  
2.45  
0.5  
VCC  
Bus output voltage  
(dominant)  
TXD at 0 V, RS at 0 V, see Figure 12 and  
Figure 13  
VO(D)  
V
1.25  
2.3  
Bus output voltage  
(recessive)  
TXD at 3 V, RS at 0 V, see Figure 12 and  
Figure 13  
VO  
V
2.3  
TXD at 0 V, RS at 0 V, see Figure 12 and  
Figure 13  
1.5  
1.2  
2
2
3
V
3
VOD(D)  
Differential output voltage (dominant)  
Differential output voltage (recessive)  
TXD at 0 V, RS at 0 V, see Figure 13 and  
Figure 14  
TXD at 3 V, RS at 0 V, see Figure 12 and  
Figure 13  
–120  
–0.5  
12  
mV  
VOD  
TXD at 3 V, RS at 0 V, no load  
See Figure 21  
0.05  
V
V
VOC(pp) Peak-to-peak common-mode output voltage  
1
AB, EN, LBK, TXD = 2 V or EN = 2 V or LBK = 2 V or AB =  
TXD 2 V  
IIH  
IIL  
High-level input current  
Low-level input current  
–30  
30  
30  
μA  
μA  
AB, EN, LBK, TXD = 0.8 V or EN = 0.8 V or LBK = 0.8 V or  
–30  
TXD  
AB = 0.8 V  
VCANH = –7 V, CANL open, see Figure 26  
VCANH = 12 V, CANL open, see Figure 26  
VCANL = –7 V, CANH open, see Figure 26  
VCANL = 12 V, CANH open, see Figure 26  
–250  
1
IOS  
Short-circuit output current  
Output capacitance  
mA  
–1  
250  
See CI, Input capacitance in Electrical  
Characteristics: Receiver  
CO  
IIRs(s)  
RS input current for standby  
Sleep  
RS at 0.75 VCC  
–10  
μA  
μA  
EN at 0 V, TXD at VCC, RS at 0 V or VCC  
0.05  
200  
2
RS at VCC, TXD at VCC, AB at 0 V, LBK at 0 V,  
EN at VCC  
Standby  
600  
ICC  
Supply current  
Dominant  
TXD at 0 V, no load, AB at 0 V, LBK at 0 V,  
RS at 0 V, EN at VCC  
6
6
mA  
TXD at VCC, no load, AB at 0 V, LBK at 0 V,  
RS at 0 V, EN at VCC  
Recessive  
RL = 60 , RS at 0 V, input to D a 1-MHz 50%  
duty  
P(AVG)  
Average power dissipation  
36.4  
mW  
cycle square wave VCC at 3.3 V, TA = 25°C  
(1) All typical values are at 25°C and with a 3.3-V supply.  
6
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
8.6 Electrical Characteristics: Receiver  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
750  
900  
mV  
mV  
mV  
Negative-going input threshold voltage AB at 0 V, LBK at 0 V, EN at VCC, see Table 1  
500  
650  
100  
Hysteresis voltage (VIT+ – VIT–  
High-level output voltage  
Low-level output voltage  
)
0.8 ×  
VCC  
VOH  
VOL  
IO = –4 mA, See Figure 17  
V
V
IO = 4 mA, See Figure 17  
CANH or CANL at 12 V  
0.4  
150  
200  
500  
CANH or CANL at 12 V,  
VCC at 0 V  
Other bus pin at 0 V,  
TXD at 3 V, AB at 0 V,  
LBK at 0 V, RS at 0 V,  
EN at VCC  
600  
–150  
–130  
II  
Bus input current  
μA  
CANH or CANL at –7 V  
–610  
–450  
CANH or CANL at –7 V,  
VCC at 0 V  
Pin-to-ground, VI = 0.4 sin (4E6πt) + 0.5 V, TXD at 3 V,  
AB at 0 V, LBK at 0 V, EN at VCC  
CI  
Input capacitance (CANH or CANL)  
40  
20  
pF  
Pin-to-pin, VI = 0.4 sin (4E6πt) + 0.5 V, TXD at 3 V,  
AB at 0 V, LBK at 0 V, EN at VCC  
CID  
RID  
RIN  
Differential input capacitance  
Differential input resistance  
pF  
kΩ  
kΩ  
40  
20  
100  
50  
TXD at 3 V, AB at 0 V, LBK at 0 V, EN at VCC  
Input resistance (CANH or CANL) to  
ground  
Sleep  
EN at 0 V, TXD at VCC, RS at 0 V or VCC  
0.05  
200  
2
μA  
RS at VCC, TXD at VCC, AB at 0 V, LBK at 0 V, EN at  
VCC  
Standby  
600  
ICC  
Supply current  
Dominant  
TXD at 0 V, no load, RS at 0 V, LBK at 0 V, AB at 0 V,  
EN at VCC  
6
6
mA  
TXD at VCC, no load, RS at 0 V, LBK at 0 V, AB at 0 V,  
EN at VCC  
Recessive  
(1) All typical values are at 25°C and with a 3.3-V supply.  
8.7 Switching Characteristics: Driver  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
RS at 0 V, see Figure 15  
35  
85  
Propagation delay time,  
low-to-high-level output  
tPLH  
RS with 10 kto ground, see Figure 15  
RS with 100 kto ground, see Figure 15  
RS at 0 V, see Figure 15  
70  
125  
870  
ns  
ns  
ns  
ns  
ns  
500  
70  
120  
Propagation delay time,  
high-to-low-level output  
tPHL  
RS with 10 kto ground, see Figure 15  
RS with 100 kto ground, see Figure 15  
RS at 0 V, see Figure 15  
130  
180  
870  
1200  
35  
tsk(p) Pulse skew (|tPHL – tPLH|)  
RS with 10 kto ground, see Figure 15  
RS with 100 kto ground, see Figure 15  
RS at 0 V, see Figure 15  
60  
370  
20  
30  
70  
135  
1400  
70  
tr  
Differential output signal rise time  
Differential output signal fall time  
RS with 10 kto ground, see Figure 15  
RS with 100 kto ground, see Figure 15  
RS at 0 V, see Figure 15  
350  
20  
tf  
RS with 10 kto ground, see Figure 15  
RS with 100 kto ground, see Figure 15  
30  
135  
1400  
1.5  
350  
0.6  
1
ten(s) Enable time from standby to dominant  
ten(z) Enable time from sleep to dominant  
μs  
μs  
See Figure 19 and Figure 20  
5
(1) All typical values are at 25°C and with a 3.3-V supply.  
Copyright © 2016, Texas Instruments Incorporated  
7
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
8.8 Switching Characteristics: Receiver  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
tPLH Propagation delay time, CANH input low to RXD output high  
tPHL Propagation delay time, CANH input high to RXD output low  
tsk(p) Pulse skew (|tPHL – tPLH|)  
35  
35  
7
60  
60  
ns  
ns  
ns  
ns  
ns  
See Figure 17  
tr  
tf  
Output signal rise time  
Output signal fall time  
2
5
5
2
(1) All typical values are at 25°C and with a 3.3-V supply.  
8.9 Switching Characteristics: Device  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
Loopback delay, driver input to  
receiver output  
t(LBK)  
t(AB1)  
t(AB2)  
'HVD233-Q1  
'HVD235-Q1  
See Figure 23  
7.5  
10  
35  
12  
20  
60  
ns  
ns  
ns  
Loopback delay, driver input to  
receiver output  
See Figure 24  
See Figure 25  
Loopback delay, bus input to  
receiver output  
RS at 0 V, see Figure 22  
70  
105  
535  
70  
135  
190  
Total loop delay, driver input to receiver output,  
recessive to dominant  
t(loop1)  
RS with 10 kto ground, see Figure 22  
RS with 100 kto ground, see Figure 22  
RS at 0 V, see Figure 22  
ns  
ns  
1000  
135  
Total loop delay, driver input to receiver output,  
dominant to recessive  
t(loop2)  
RS with 10 kto ground, see Figure 22  
RS with 100 kto ground, see Figure 22  
105  
535  
190  
1000  
(1) All typical values are at 25°C and with a 3.3-V supply.  
8
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
8.10 Typical Characteristics  
RS = LBK = AB = 0 V; EN = VCC  
90  
95  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
85  
90  
80  
75  
70  
65  
60  
85  
80  
75  
70  
65  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D001  
D002  
Figure 1. Recessive-to-Dominant Loop Time vs Ambient  
Temperature  
Figure 2. Dominant-to-Recessive Loop Time vs Ambient  
Temperature  
160  
20  
19  
18  
17  
16  
15  
140  
120  
100  
80  
60  
40  
20  
0
200  
300  
400  
500  
600  
700  
800  
900 1000  
0
1
2
3
4
Frequency (kbps)  
Low-Level Output Voltage (V)  
D003  
D004  
VCC = 3.3 V  
TA = 25°C  
RL = 60-Ω Load  
VCC = 3.3 V  
TA = 25°C  
Figure 3. Supply Current vs Frequency  
Figure 4. Driver Low-Level Output Current vs Low-Level  
Output Voltage  
0.12  
0.1  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.08  
0.06  
0.04  
0.02  
0
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
-40  
0
40  
80  
120  
High Level Output Voltage (V)  
Ambient Temperature (èC)  
D005  
D006  
VCC = 3.3 V  
TA = 25°C  
RL = 60 Ω  
Figure 5. Driver High-Level Output Current vs High-Level  
Output Voltage  
Figure 6. Differential Output Voltage vs Ambient  
Temperature  
Copyright © 2016, Texas Instruments Incorporated  
9
 
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
RS = LBK = AB = 0 V; EN = VCC  
45  
38  
37  
36  
35  
34  
33  
32  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D007  
D008  
See Figure 3  
See Figure 3  
Figure 7. Receiver Low-to-High Propagation Delay vs  
Ambient Temperature  
Figure 8. Receiver High-to-Low Propagation Delay vs  
Ambient Temperature  
55  
65  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
60  
55  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
25  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ambient Temperatrue (èC)  
Ambient Temperatrue (èC)  
D009  
D00110  
See Figure 1  
See Figure 1  
Figure 9. Driver Low-to-High Propagation Delay vs Ambient  
Temperature  
Figure 10. Driver High-to-Low Propagation Delay vs  
Ambient Temperature  
35  
30  
25  
20  
15  
10  
5
0
-5  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
Supply Voltage (V)  
D011  
TA = 25°C  
RL = 60 Ω  
Figure 11. Driver Output Current vs Supply Voltage  
10  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
9 Parameter Measurement Information  
I
O(CANH)  
TXD  
I
I
60 W 1%  
V
OD  
V
O(CANH)  
V
+ V  
2
O(CANH)  
O(CANL)  
II(RS)  
RS  
V
V
I
V
OC  
I
O(CANL)  
+
V
I(RS)  
O(CANL)  
Figure 12. Driver Voltage, Current, and Test Definition  
Dominant  
3 V  
V
O(CANH)  
Recessive  
2.3 V  
1 V  
V
O(CANL)  
Figure 13. Bus Logic State Voltage Definitions  
330 W 1%  
CANH  
TXD  
I
V
OD  
V
60 W 1%  
+
_
–7 V VTEST 12 V  
RS  
CANL  
330 W 1%  
Figure 14. Driver VOD  
CANH  
V
CC  
VCC / 2  
VCC / 2  
CL = 50 pF 20%  
(see Note B)  
V
I
0 V  
TXD  
V
O
t
t
PHL  
PLH  
RL = 60 W 1%  
V
I
RS  
V
V
O(D)  
+
90%  
10%  
0.9 V  
V
O
V
0.5 V  
I(RS)  
(see Note A)  
CANL  
O(R)  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) 125 kHz,  
50% duty cycle, tr 6 ns, tf 6 ns, ZO = 50 .  
B. CL includes fixture and instrumentation capacitance.  
Figure 15. Driver Test Circuit and Voltage Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
11  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
CANH  
RXD  
I
O
VID  
V
I(CANH)  
VI(CANH)+ VI(CANL)  
V
IC  
=
2
VO  
CANL  
VI(CANL)  
Figure 16. Receiver Voltage and Current Definitions  
2.9 V  
1.5 V  
CANH  
CANL  
2.2 V  
2.2 V  
V
I
RXD  
I
O
V
I
t
t
PHL  
PLH  
C
L
= 15 pF 20%  
(see Note B)  
1.5 V  
V
V
OH  
V
O
(see Note A)  
90%  
90%  
50%  
10%  
50%  
10%  
V
O
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) 125 kHz,  
50% duty cycle, tr 6 ns, tf 6 ns, ZO = 50 .  
B. CL includes fixture and instrumentation capacitance.  
Figure 17. Receiver Test Circuit and Voltage Waveforms  
Table 1. Differential Input Voltage Threshold Test  
INPUT  
OUTPUT  
RXD  
MEASURED  
|VID  
VCANH  
–6.1 V  
12 V  
VCANL  
–7 V  
|
L
L
900 mV  
900 mV  
6 V  
11.1 V  
–7 V  
VOL  
–1 V  
L
12 V  
6 V  
L
6 V  
–6.5 V  
12 V  
–7 V  
H
H
H
H
H
500 mV  
500 mV  
6 V  
11.5 V  
–1 V  
–7 V  
VOH  
6 V  
12 V  
6 V  
Open  
Open  
X
CANH  
CANL  
RXD  
100 W  
Pulse Generator  
15 µs Duration  
1% Duty Cycle  
TXD at 0 V or VCC  
RS, AB, EN, LBK, at 0 V or V  
CC  
t , t 100 ns  
r f  
NOTE: This test is conducted to test survivability only. Data stability at the RXD output is not specified.  
Figure 18. Test Circuit, Transient Overvoltage Test  
12  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
’HVD234-Q1  
’HVD233-Q1 or ’HVD235-Q1  
RS  
RS  
CANH  
CANH  
60 W 1%  
CANL  
V
V
I
I
TXD  
EN  
TXD  
60 W 1%  
CANL  
0 V  
0 V  
AB or LBK  
V
CC  
V
O
V
O
RXD  
+
+
15 pF 20%  
15 pF 20%  
V
CC  
50%  
V
I
0 V  
V
OH  
OL  
50%  
V
O
V
t
en(s)  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: All VI input pulses are supplied by a generator having the following characteristics: tr or tf 6 ns, pulse repetition rate  
(PRR) = 125 kHz, 50% duty cycle.  
Figure 19. ten(s) Test Circuit and Voltage Waveforms  
’HVD234-Q1  
RS  
V
CC  
CANH  
50%  
V
I
TXD  
EN  
60 W 1%  
CANL  
0 V  
0 V  
V
I
V
OH  
OL  
50%  
V
O
RXD  
V
t
V
O
en(z)  
+
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 50 kHz, 50% duty cycle.  
r f  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. ten(z) Test Circuit and Voltage Waveforms  
27 W 1%  
CANH  
CANL  
V
OC(PP)  
TXD  
V
OC  
V
I
RS  
V
OC  
27 W 1%  
50 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r f  
Figure 21. VOC(pp) Test Circuit and Voltage Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
13  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
0 W, 10 kW,  
or 100 kW 5%  
DUT  
RS  
CANH  
V
CC  
50%  
50%  
TXD  
V
I
60 W 1%  
V
I
0 V  
LBK or AB  
t
t
(loop1)  
(loop2)  
’HVD233-Q1, -235-Q1  
EN  
CANL  
V
OH  
OL  
VCC  
50%  
50%  
V
O
’HVD234-Q1  
RXD  
V
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r
f
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. t(loop) Test Circuit and Voltage Waveforms  
’HVD233-Q1  
V
RS  
D
CC  
CANH  
50%  
50%  
V
I
+
0 V  
V
I
V
OD  
60 W 1%  
t
t
(LBK2)  
(LBK1)  
V
LBK  
R
OH  
V
CC  
CANL  
50%  
= t  
50%  
V
O
V
OL  
t
= t  
(LBK2)  
(LBK)  
(LBK1)  
V
OD  
2.3 V  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r f  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. t(LBK) Test Circuit and Voltage Waveforms  
’HVD235-Q1  
V
OD  
2.3 V  
RS  
CANH  
V
CC  
+
TXD  
50%  
50%  
60 W 1%  
V
I
V
I
V
OD  
0 V  
CANL  
t
t
(ABL)  
(ABH)  
AB  
V
OH  
OL  
V
CC  
50%  
= t  
50%  
V
O
RXD  
V
t
= t  
(AB1)  
(ABH)  
(ABL)  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
tr or tf 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. t(AB1) Test Circuit and Voltage Waveforms  
14  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
’HVD235-Q1  
RS  
CANH  
2.9 V  
2.2 V  
2.2 V  
V
I
TXD  
V
CC  
60 W 1%  
V
I
1.5 V  
t
t
(ABL)  
1.5 V  
(ABH)  
AB  
CANL  
V
OH  
OL  
V
CC  
50%  
= t  
50%  
V
O
RXD  
V
t
= t  
(AB2)  
(ABH)  
(ABL)  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r f  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. t(AB2) Test Circuit and Voltage Waveforms  
| IOS  
|
I
OS  
15 s  
CANH  
TXD  
0 V  
0 V or V  
CC  
+
_
I
OS  
V
I
12 V  
CANL  
V
I
0 V  
0 V  
and  
10 µs  
V
I
–7 V  
Figure 26. IOS Test Circuit and Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
15  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
3.3 V  
TA = 25°C  
= 3.3 V  
V
CC  
R2 1%  
R1 1%  
R1 1%  
CANH  
CANL  
+
ID  
RXD  
V
V
ac  
V
I
R2 1%  
The RXD Output State Does Not Change During  
Application of the Input Waveform.  
V
ID  
R1  
R2  
500 mV  
900 mV  
50 W  
50 W  
280 W  
130 W  
12 V  
–7 V  
V
I
NOTE: All input pulses are supplied by a generator with f 1.5 MHz.  
Figure 27. Common-Mode Voltage Rejection  
16  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
TXD INPUT  
RS INPUT  
CANH INPUT  
V
CC  
V
CC  
V
CC  
110 kW  
45 kW  
9 kW  
100 kW  
1 kW  
INPUT  
INPUT  
9 V  
9 kW  
40 V  
+
_
INPUT  
CANL INPUT  
CANH and CANL OUTPUTS  
RXD OUTPUT  
V
CC  
V
CC  
V
CC  
110 kW  
45 kW  
9 kW  
5 W  
OUTPUT  
9 V  
INPUT  
OUTPUT  
40 V  
9 kW  
40 V  
EN INPUT  
LBK or AB INPUT  
V
CC  
V
CC  
1 kW  
1 kW  
INPUT  
INPUT  
100 kW  
100 kW  
9 V  
9 V  
Figure 28. Equivalent Input and Output Schematic Diagrams  
Copyright © 2016, Texas Instruments Incorporated  
17  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
This family of CAN transceivers is compatible with the ISO 11898-2 high-speed controller-area-network (CAN)  
physical layer standard. These devices are designed to interface between the differential bus lines in CAN and  
the CAN protocol controller at data rates up to 1 Mpbs.  
10.2 Functional Block Diagrams  
RS  
CANH  
TXD  
CANL  
LBK  
RXD  
LBK  
Figure 29. SN65HVD233-Q1 Functional Block Diagram  
RS  
CANH  
TXD  
CANL  
EN  
RXD  
Figure 30. SN65HVD234-Q1 Functional Block Diagram  
RS  
CANH  
TXD  
CANL  
AB  
RXD  
Figure 31. SN65HVD235-Q1 Functional Block Diagram  
10.3 Feature Description  
10.3.1 Diagnostic Loopback (SN65HVD233-Q1)  
The diagnostic loopback or internal loopback function of the SN65HVD233-Q1 device is enabled with a high-level  
input on pin 5, LBK. This mode disables the driver output while keeping the bus pins biased to the recessive  
state. This mode also redirects the TXD data input (transmit data) through logic to the received data output pin,  
thus creating an internal loopback of the transmit-to-receive data path. This mimics the loopback that occurs  
normally with a CAN transceiver, because the receiver loops back the driven output to the RXD (receive data)  
pin. This mode allows the host protocol controller to input and read back a bit sequence or CAN messages to  
perform diagnostic routines without disturbing the CAN bus. A typical CAN bus application is displayed in  
Figure 37.  
18  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
Feature Description (continued)  
If the LBK pin is not used, it may be tied to ground (GND). However, it is pulled low internally (defaults to a low-  
level input) and may be left open if not in use.  
10.3.2 Autobaud Loopback (SN65HVD235-Q1)  
The autobaud loopback mode of the SN65HVD235-Q1 device is enabled by placing a high-level input on pin 5,  
AB. In autobaud mode, the driver output is disabled, thus blocking the TXD pin-to-bus path and the bus transmit  
function of the transceiver. The bus pins remain biased to recessive. The receiver-to-RXD pin path of the device  
remains operational, allowing bus activity to be monitored. In addition, the autobaud mode includes an internal  
logic loopback path from the TXD pin to the RXD pin so the local node can transmit to itself in sync with bus  
traffic while not disturbing messages on the bus. Thus if the CAN controller of the local node generates an error  
frame, it is not transmitted to the bus, but is detected only by the local CAN controller. This is especially helpful to  
determine if the local node is set to the same baud rate as the network, and if not, to adjust it to the network  
baud rate (autobaud detection).  
Autobaud detection is best suited to applications that have a known selection of baud rates. For example, if an  
application has optional settings of 125 kbps, 250 kbps, or 500 kbps. Once the SN65HVD235-Q1 device is  
placed into autobaud loopback mode, the application software could assume the first baud rate of 125 kbps. It  
then waits for a message to be transmitted by another node on the bus. If the wrong baud rate has been  
selected, an error message is generated by the local CAN controller because the sample times will not be at the  
correct time. However, because the bus-transmit function of the device has been disabled, no other nodes  
receive the error frame generated by the local CAN controller of this node.  
The application would then make use of the status register indications of the local CAN controller for message-  
received and error-warning status to determine if the set baud rate is correct or not. The warning status indicates  
that the CAN controller error counters have been incremented. A message received status indicates that a good  
message has been received. If an error is generated, the application then sets the CAN controller to the next  
possibly valid baud rate, and waits to receive another message. This pattern is repeated until an error-free  
message has been received, thus the correct baud rate has been selected. At this point, the application places  
the SN65HVD235-Q1 device in a normal transmitting mode by setting pin 5 to a low level, thus enabling bus-  
transmit and bus-receive functions to normal operating states for the transceiver.  
If the AB pin is not used, it may be tied to ground (GND). However, it is pulled low internally (defaults to a low-  
level input) and may be left open if not in use.  
10.3.3 Slope Control  
The rise and fall slope of the SN65HVD233-Q1, SN65HVD234-Q1, and SN65HVD235-Q1 driver output can be  
adjusted by connecting a resistor from RS (pin 8) to ground (GND) as shown in Figure 32, or to a low level input  
voltage as shown in Figure 33.  
The slope of the driver output signal is proportional to the output current of the pin. This slope control is  
implemented with an external resistor value of 10 kto achieve an approximately 15-V/µs slew rate, and up to  
100 kto achieve an approximately 2-V/μs slew rate. A typical slew-rate versus pulldown-resistance graph is  
shown in Figure 34. Typical driver output waveforms with slope control are displayed in Figure 40.  
RS  
1
2
3
4
8
7
6
5
TXD  
GND  
VCC  
CANH  
CANL  
LBK  
10 kW  
to  
100 kW  
RXD  
Figure 32. Ground Connection for Selecting Slope-Control or Standby Mode  
RS  
1
2
3
4
8
7
6
5
TXD  
GND  
VCC  
CANH  
CANL  
LBK  
10 kW  
to  
TI Controller  
100 kW  
RXD  
Figure 33. DSP Connection for Selecting Slope-Control or Standby Mode  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
25  
20  
15  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Slope Control Resistance (kW)  
D012  
Figure 34. SN65HVD233-Q1 Driver Output-Signal Slope vs Slope-Control Resistance Value  
10.3.4 Standby  
If a high-level input (> 0.75 VCC) is applied to RS (pin 8), the circuit enters a low-current, listen only standby  
mode during which the driver is switched off and the receiver remains active. If using this mode to save system  
power while waiting for bus traffic, the local controller can monitor the RXD output pin for a falling edge which  
indicates that a dominant signal was driven onto the CAN bus. The local controller can then drive the RS pin low  
to return to slope-control mode or high-speed mode.  
10.3.5 Thermal Shutdown  
If the junction temperature of the device exceeds the thermal shutdown threshold, the device turns off the CAN  
driver circuits, thus blocking the TXD pin-to-bus transmission path. The shutdown condition is cleared when the  
junction temperature drops sufficiently below the thermal shutdown temperature of the device. The CAN bus pins  
are high-impedance and biased to the recessive level during a thermal shutdown, and the receiver-to-RXD pin  
path remains operational.  
10.4 Device Functional Modes  
Table 2. Driver (SN65HVD233-Q1 or SN65HVD235-Q1)  
INPUTS  
OUTPUTS  
TXD  
LBK or AB  
RS  
CANH  
CANL  
BUS STATE  
Recessive  
Dominant  
X
X
> 0.75 VCC  
Z
H
Z
Z
Z
L
Z
Z
L
H or open  
X
L or open  
0.33 VCC  
0.33 VCC  
X
H
Recessive  
Recessive  
Table 3. Driver (SN65HVD234-Q1)  
INPUTS  
OUTPUTS  
TXD  
EN  
RS  
0.33 VCC  
0.33 VCC  
X
CANH  
CANL  
BUS STATE  
Dominant  
L
H
H
H
Z
Z
Z
Z
L
Z
Z
Z
Z
X
Recessive  
Recessive  
Recessive  
Recessive  
Open  
X
X
X
> 0.75 VCC  
X
X
L or open  
20  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
Table 4. Receiver (SN65HVD233-Q1)(1)  
INPUTS  
VID = V(CANH) – V(CANL)  
VID 0.9 V  
OUTPUT  
BUS STATE  
LBK  
L or open  
L or open  
L or open  
H
TXD  
RXD  
L
Dominant  
X
Recessive  
VID 0.5 V or open  
H or open  
H
?
X
X
0.5 V < VID < 0.9 V  
H or open  
?
X
X
L
L
H
H
H
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate  
Table 5. Receiver (SN65HVD235-Q1)(1)  
INPUTS  
OUTPUT  
BUS STATE  
Dominant  
Recessive  
?
VID = V(CANH)–V(CANL)  
ID 0.9 V  
ID 0.5 V or open  
0.5 V < VID <0.9 V  
ID 0.9 V  
AB  
TXD  
RXD  
L
V
L or open  
X
V
L or open  
H or open  
H
?
L or open  
H or open  
Dominant  
Recessive  
Recessive  
?
V
H
H
H
H
X
H
L
L
V
ID 0.5 V or open  
ID 0.5 V or open  
H
L
V
0.5 V < VID <0.9 V  
L
L
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate  
Table 6. Receiver (SN65HVD234-Q1)(1)  
INPUTS  
OUTPUT  
BUS STATE  
VID = V(CANH) – V(CANL)  
ID0.9 V  
EN  
RXD  
L
Dominant  
V
H
Recessive  
VID 0.5 V or open  
0.5 V < VID < 0.9 V  
X
H
H
H
?
?
X
L or open  
H
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate  
Copyright © 2016, Texas Instruments Incorporated  
21  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The CAN bus has two states during powered operation of the device, dominant and recessive. A dominant bus  
state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD pins. A recessive  
bus state is when the bus is biased to VCC / 2 via the high-resistance internal resistors RIN and RID of the  
receiver, corresponding to a logic high on the TXD and RXD pins. See Figure 35 and Figure 36.  
/!bI  
Vdiff(D)  
Vdiff(R)  
/!b[  
Çime, t  
wecessive  
[ogic I  
5ominant  
[ogic [  
wecessive  
[ogic I  
Figure 35. Bus States (Physical Bit Representation)  
CANH  
RXD  
VCC / 2  
CANL  
Figure 36. Simplified Recessive Common-Mode Bias and Receiver  
These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the  
link layer portion of the CAN protocol. The different nodes on the network are typically connected through the use  
of a 120-Ω characteristic impedance twisted-pair cable with termination on both ends of the bus.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
11.2 Typical Application  
Bus Lines -- 40 m max  
CANH  
120 W  
120 W  
Stub Lines -- 0.3 m max.  
CANL  
5 V  
3.3 V  
3.3 V  
VCC  
GND  
VCC  
VCC  
0.1 µF  
SN65HVD233-Q1  
0.1 µF  
SN65HVD234-Q1  
0.1 µF  
TCAN1042-Q1  
GND  
GND  
TXD  
RXD  
LBK  
TXD  
RXD  
TXD  
RXD  
CANRX  
TI CAN Controller  
CANTX CANRX  
GPIO CANTX  
CANTX CANRX  
TI CAN Controller  
TI CAN Controller  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Typical SN65HVD233-Q1 Application  
11.2.1 Design Requirements  
11.2.1.1 Bus Loading, Length and Number of Nodes  
The ISO 11898 standard specifies a data rate of up to 1 Mbps, maximum CAN bus cable length of 40 m,  
maximum drop line (stub) length of 0.3 m and a maximum of 30 nodes. However, with careful network design,  
the system may have longer cables, longer stub lengths, and many more nodes to a bus. Many CAN  
organizations and standards have scaled the use of CAN for applications outside the original ISO 11898  
standard. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus.  
Examples of some of these specifications are ARINC825, CANopen, CAN Kingdom, DeviceNet and NMEA200.  
A high number of nodes requires a transceiver with high input impedance and wide common-mode range, such  
as the SN65HVD23x-Q1 CAN family. ISO 11898-2 specifies the driver differential output with a 60-load (two  
120-termination resistors in parallel) and the differential output must be greater than 1.5 V. The SN65HVD23x-  
Q1 devices are specified to meet the 1.5-V requirement with a 60-load, and additionally specified with a  
differential output voltage minimum of 1.2 V across a common mode range of –2 V to 7 V through a 330-Ω  
coupling network. This network represents the bus loading of 120 SN65HVD23x-Q1 transceivers based on their  
minimum differential input resistance of 40 k. Therefore, the SN65HVD23x-Q1 devices support up to 120  
transceivers on a single bus segment with margin to the 1.2-V minimum differential input-voltage requirement at  
each node.  
For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings,  
network imbalances, ground offsets and signal integrity. Thus, a practical maximum number of nodes may be  
lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system-  
design and data-rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to  
1 km with changes in the termination resistance, cabling, fewer than 64 nodes, and significantly lowered data  
rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898 CAN standard.  
11.2.1.2 CAN Termination  
The ISO 11898 standard specifies the interconnect to be a twisted-pair cable (shielded or unshielded) with 120-Ω  
characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used to  
terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes  
to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the  
cable or in a node, but if nodes may be removed from the bus the termination must be carefully placed so that it  
is not removed from the bus.  
Copyright © 2016, Texas Instruments Incorporated  
23  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Application (continued)  
11.2.2 Detailed Design Procedure  
Node n  
(with termination)  
Node 1  
Node 2  
Node 3  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
RTERM  
Figure 38. Typical CAN Bus  
Termination is typically a 120-Ω resistor at each end of the bus. If filtering and stabilization of the common-mode  
voltage of the bus is desired, then split termination may be used (see Figure 39). Split termination uses two 60-Ω  
resistors with a capacitor in the middle of these resistors to ground. Split termination improves the  
electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages  
at the start and end of message transmissions.  
Care should be taken in the power ratings of the termination resistors used. Typically, the worst-case condition  
would be if the system power supply is shorted across the termination resistance to ground. In most cases, the  
current flow through the resistor in this condition would be much higher than the transceiver current limit.  
Split Termination  
Standard Termination  
CANH  
CANH  
R
R
/ 2  
TERM  
CAN  
Transceiver  
CAN  
Transceiver  
R
TERM  
C
SPLIT  
/ 2  
TERM  
CANL  
CANL  
Figure 39. CAN Bus Termination Concepts  
11.2.3 Application Curve  
Figure 40 shows three typical output waveforms for the SN65HVD233-Q1 device with three different connections  
made to the RS pin. The top waveform shows the typical differential signal when transitioning from a recessive  
level to a dominant level on the CAN bus with RS tied to GND through a 0-Ω resistor. The second waveform  
shows the same signal for the condition with a 10-kΩ resistor tied from RS to ground. The bottom waveform  
shows the typical differential signal for the case where a 100-kΩ resistor is tied from the RS pin to ground.  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
Typical Application (continued)  
Rs = 0 W  
Rs = 10 kW  
Rs = 100 kW  
Figure 40. Typical SN65HVD233-Q1 Output Waveforms With Different Slope-Control Resistor Values  
11.3 System Example  
11.3.1 ISO 11898 Compliance of SN65HVD23x-Q1 Family of 3.3-V CAN Transceivers  
11.3.1.1 Introduction  
Many users value the low power consumption of operating their CAN transceivers from a 3.3-V supply. However,  
some are concerned about the interoperability with 5-V-supplied transceivers on the same bus. This report  
analyzes this situation to address those concerns.  
11.3.1.2 Differential Signal  
CAN is a differential bus where complementary signals are sent over two wires and the voltage difference  
between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage  
difference and outputs the bus state with a single-ended logic-level output signal.  
NOISE MARGIN  
900 mV Threshold  
RECEIVER DETECTION WINDOW  
75% SAMPLE POINT  
500 mV Threshold  
NOISE MARGIN  
Figure 41. Typical Differential-Output-Voltage Waveform  
Copyright © 2016, Texas Instruments Incorporated  
25  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
System Example (continued)  
The CAN driver creates the differential voltage between CANH and CANL in the dominant state. The dominant  
differential output of the SN65HVD23x-Q1 device is greater than 1.5 V and less than 3 V across a 60-Ω load as  
defined by the ISO 11898 standard. These are the same limiting values as for 5-V-supplied CAN transceivers.  
The bus termination resistors, and not the CAN driver, drive the bus to the recessive state.  
A CAN receiver is required to output a recessive state when less than 500 mV of differential voltage exists on the  
bus, and a dominant state when more than 900 mV of differential voltage exists on the bus. The CAN receiver  
must do this with common-mode input voltages from –2 V to 7 V. The SN65HVD23x-Q1 family of receivers  
meets these same input specifications as 5-V-supplied receivers do.  
11.3.1.3 Common-Mode Signal  
The differential receiver rejects the common-mode signal, which is the average of the two CAN signals. The  
common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. Because the bias  
voltage of the recessive state of the device is dependent on VCC, any noise present or any variation of VCC has  
an effect on this bias voltage seen by the bus. The SN65HVD23x-Q1 family has the recessive bias voltage set  
higher than 0.5 × VCC to comply with the ISO 11898-2 CAN standard. The caveat to this is that the common-  
mode voltage drops by a approximately 200 millivolts when driving a dominant bit on the bus. This means that  
there is a common-mode shift between the dominant-bit and recessive-bit states of the device. Although this is  
not ideal, this small variation in the driver common-mode output is rejected by differential receivers and does not  
affect data, signal noise margins, or error rates.  
11.3.1.4 Interoperability of 3.3-V CAN in 5-V CAN Systems  
The 3.3-V-supplied SN65HVD23x-Q1 family of CAN transceivers is fully compatible with 5-V CAN transceivers.  
The differential output voltage is the same, the recessive common-mode output bias is the same, and the  
receivers have the same input specifications. The only slight difference is in the dominant common-mode output  
voltage, which is aapproximately 200 millivolts lower for a 3.3-V CAN transceiver than for a 5-V-supplied  
transceiver.  
To help ensure the widest interoperability possible, the SN65HVD23x-Q1 family has successfully passed the  
internationally recognized GIFT/ICT conformance and interoperability testing for CAN transceivers. Electrical  
interoperability does not always assure interchangeability, however. Most implementers of CAN buses recognize  
that ISO 11898 does not sufficiently specify the electrical layer and that strict standard compliance alone does  
not ensure full interchangeability. This comes only with thorough equipment testing.  
12 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a  
100nF ceramic capacitor located as close to the VCC supply pins as possible. The TPS76333-Q1 is a linear  
voltage regulator suitable for the 3.3 V supply.  
13 Layout  
13.1 Layout Guidelines  
In order for the PCB design to be successful, start with design of the protection and filtering circuitry. Because  
ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency  
layout techniques must be applied during PCB design. On-chip IEC ESD protection is good for laboratory and  
portable equipment but is usually not sufficient for EFT and surge transients occurring in industrial environments.  
Therefore, robust and reliable bus node design requires the use of external transient protection devices at the  
bus connectors. Placement at the connector also prevents these harsh transient events from propagating further  
into the PCB and system.  
Use VCC and ground planes to provide low inductance.  
26  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
www.ti.com.cn  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
Layout Guidelines (continued)  
NOTE  
High-frequency current follows the path of least inductance and not the path of least  
resistance.  
Design bus protection by placing the protective components in the signal path. Do not force the transient current  
to divert from the signal path to reach the protection device.  
An example placement of the transient-voltage-suppression (TVS) device indicated as D1 (either bidirectional  
diode or varistor solution) and bus filter capacitors C8 and C9 is shown in Figure 42.  
The bus transient protection and filtering components should be placed as close to the bus connector,  
J1, as possible. This prevents transients, ESD and noise from penetrating onto the board and disturbing  
other devices.  
Bus termination: Figure 42 shows split termination. This is where the termination is split into two resistors, R5  
and R6, with the center or split tap of the termination connected to ground via capacitor C7. Split termination  
provides common-mode filtering for the bus. When termination is placed on the board instead of directly on the  
bus, care must be taken to ensure the terminating node is not removed from the bus, as there are signal integrity  
issues if the bus is not properly terminated on both ends. See the Detailed Design Procedure section for  
information on power ratings needed for the termination resistor(s).  
Bypass and bulk capacitors should be placed as close as possible to the supply pins of the transceiver, as in the  
example of C2 and C3 on VCC  
.
Use at least two vias for the VCC and ground connections of the bypass capacitors and protection devices to  
minimize trace and via inductance.  
To limit current on the digital lines, serial resistors may be used. Examples are R1, R2, R3 and R4.  
To filter noise on the digital I/O lines, a capacitor may be used close to the input side of the I/O as shown by C1  
and C4.  
Because the internal pullup and pulldown biasing of the device is weak for floating pins, an external 1-kΩ to  
10kΩ pullup or pulldown resistor should be used to bias the state of the pin more strongly against noise during  
transient events.  
Pin 1: If an open-drain host processor is used to drive the TXD pin of the device, an external pullup resistor  
between 1 kΩ and 10 kΩ to VCC should be used to drive the recessive input state of the device.  
Pin 8: The mode pin, RS, is shown, assuming that it is used in the application. If the device is only to be used in  
normal mode or slope-control mode, R3 is not needed and the pads of C4 could be used for the pulldown  
resistor to GND.  
13.2 Layout Example  
RS  
TXD  
RXD  
Figure 42. Layout Example Diagram  
版权 © 2016, Texas Instruments Incorporated  
27  
 
SN65HVD233-Q1, SN65HVD234-Q1, SN65HVD235-Q1  
ZHCSFG5A SEPTEMBER 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
14 器件和文档支持  
14.1 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
7. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
SN65HVD233-Q1  
SN65HVD234-Q1  
SN65HVD235-Q1  
14.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
14.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
14.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并  
且不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
28  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD233QDRQ1  
SN65HVD234QDRQ1  
SN65HVD235QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
233Q  
234Q  
235Q  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD233QDRQ1  
SN65HVD234QDRQ1  
SN65HVD235QDRQ1  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD233QDRQ1  
SN65HVD234QDRQ1  
SN65HVD235QDRQ1  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
340.5  
340.5  
340.5  
336.1  
336.1  
336.1  
25.0  
25.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SN65HVD234D

3.3-V CAN TRANSCEIVERS
TI

SN65HVD234DG4

3.3-V CAN TRANSCEIVERS
TI

SN65HVD234DR

3.3-V CAN TRANSCEIVERS
TI

SN65HVD234DRG4

3.3-V CAN TRANSCEIVERS
TI

SN65HVD234QDRQ1

3.3V 汽车类 CAN 总线收发器 | D | 8 | -40 to 125
TI

SN65HVD235

TMS320R2811, TMS320R2812 Digital Signal Processors
TI

SN65HVD235-Q1

3.3V 汽车类 CAN 总线收发器
TI

SN65HVD235D

3.3-V CAN TRANSCEIVERS
TI

SN65HVD235DG4

3.3-V CAN TRANSCEIVERS
TI

SN65HVD235DR

3.3-V CAN TRANSCEIVERS
TI

SN65HVD235DRG4

3.3V CAN with Standby Mode, Autobaud Loop-back 8-SOIC -40 to 125
TI

SN65HVD235QDRQ1

3.3V 汽车类 CAN 总线收发器 | D | 8 | -40 to 125
TI