SN65LVDS20DRFTG4 [TI]

4Gbps PECL 至 LVDS 转换器 | DRF | 8 | -40 to 85;
SN65LVDS20DRFTG4
型号: SN65LVDS20DRFTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4Gbps PECL 至 LVDS 转换器 | DRF | 8 | -40 to 85

驱动 光电二极管 接口集成电路 锁存器 转换器 电平转换器 驱动程序和接口
文件: 总15页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
LVPECL AND LVDS REPEATER/TRANSLATOR WITH ENABLE  
FEATURES  
2.5-V or 3.3-V Supply Operation  
Low-Voltage PECL Input and Low-Voltage  
PECL or LVDS Outputs  
2-mm x 2-mm Small-Outline  
No-Lead Package  
Signaling Rates to 4 Gbps or Clock Rates  
to 2 GHz  
APPLICATIONS  
PECL-to-LVDS Translation  
Data or Clock Signal Amplification  
– 120-ps Output Transition Times  
– Less than 45 ps Total Jitter  
– Less than 630 ps Propagation Delay Times  
DESCRIPTION  
The SN65LVDS20 and SN65LVP20 are a high-speed differential receiver and driver connected as a repeater.  
The receiver accepts low-voltage positive-emitter-coupled logic (PECL) at signaling rates up to 4 Gbps and  
repeats it as either an LVDS or PECL output signal. The signal path through the device is differential for low  
radiated emissions and minimal added jitter.  
The outputs of the SN65LVDS20 are LVDS levels as defined by TIA/EIA-644-A. The outputs of the  
SN65LVDP20 are compatible with low-voltage PECL levels. A low-level input to EN enables the outputs. A  
high-level input puts the output into a high-impedance state. Both outputs are designed to drive differential  
transmission lines with nominally 100-characteristic impedance.  
Both devices provide a voltage reference (VBB) of typically 1.35 V below VCC for use in receiving single-ended  
PECL input signals. When not used, VBB should be unconnected or open.  
All devices are characterized for operation from -40°C to 85°C.  
FUNCTION DIAGRAM  
EN  
7
A
B
Y
Z
6
4
V
CC  
V
IN  
OUT  
BB  
GND  
9
Scale = 50 ps/div  
Figure 1. SN65LVDS20 Output Eye Pattern With  
4-Gbps PRBS Input  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2004–2005, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS(1)  
INPUT  
OUTPUT  
LVDS  
PART NUMBER  
SN65LVDS20  
SN65LVP20  
PART MARKING  
Differential  
Differential  
E8  
E7  
LVPECL  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
UNIT  
(2)  
VCC  
VI  
Supply voltage  
-0.5 V to 4 V  
-0.5 V to VCC + 0.5 V  
-0.5 V to VCC + 0.5 V  
±0.5 mA  
Input voltage  
VO  
IO  
Output voltage  
VBB output current  
HBM electrostatic discharge(3)  
CDM electrostatic discharge(4)  
Continuous power dissipation  
±3 kV  
±1500 V  
See Power Dissipation Ratings Table  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground (see Figure 2).  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A-7  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101  
DISSIPATION RATINGS  
TA < 25°C  
POWER RATING  
OPERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
DRF  
403 mW  
4.0 mW/°C  
161 mW  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
V
VCC  
VIC  
Supply Voltage  
2.375 2.5 or 3.3  
3.6  
Common-mode input voltage (VIA + VIB)/2  
Differential input voltage magnitude, |VIA - VIB  
High-level input voltage, EN  
Low-level input voltage, EN  
Output current to VBB  
1.2  
0.08  
2
VCC - (VID/2)  
V
|VID  
VIH  
VIL  
IO  
|
|
1
VCC  
0.8  
V
V
0
V
-400(1)  
400  
132  
85  
µA  
RL  
Differential load resistance  
90  
TA  
Operating free-air temperature  
-40  
°C  
(1) The algebraic convention, where the least positive (more negative) value is designated minimum, is used in this data sheet.  
2
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
RL = 100 , EN at 0 V,  
Other inputs open  
35  
45  
ICC  
Supply current  
mA  
24  
Outputs unloaded,  
EN at 0 V,  
19  
Other inputs open  
Device power dissipation,  
SN65LVDS20  
RL = 100 , EN at 0 V, 2-GHz  
50%-duty-cycle square-wave input  
116  
160  
50 from Y and Z to  
VCC - 2 V, EN at 0 V,  
2-GHz 50%-duty-cycle  
square-wave input  
PD  
mW  
86  
Device power dissipation,  
SN65LVP20  
63  
VBB  
Reference voltage  
IBB = ±400 µA  
VI = 2 V  
VCC - 1.44  
-20  
VCC - 1.35  
VCC - 1.25  
V
IIH  
High-level input current, EN  
High-level input current, A or B  
Low-level input current, EN  
Low-level input current, A or B  
20  
20  
20  
20  
IIAH or IIBH  
IIL  
VI = VCC  
-20  
µA  
VI = 0.8 V  
VI = GND  
-20  
IIAL or IIBL  
-20  
SN65LVDS20 OUTPUT CHARACTERISTICS (see Figure 2)  
Differential output voltage magnitude,  
|VOD  
|
247  
340  
454  
50  
|VOY - VOZ  
|
mV  
V
Change in differential output voltage  
magnitude between logic states  
|VOD  
|
See Figure 2  
See Figure 3  
Steady-state common-mode output  
voltage (see Figure 3)  
VOC(SS)  
VOC(SS)  
VOC(PP)  
1.125  
-50  
1.375  
Change in steady-state com-  
mon-mode output voltage between  
logic states  
50  
mV  
Peak-to-peak common-mode output  
voltage  
50  
100  
IOYZ or IOZZ High-impedance output current  
IOYS or IOZS Short-circuit output current  
EN at VCC, VO = 0 V or VCC  
EN at 0 V, VOY or VOZ = 0 V  
-1  
1
µA  
-62  
62  
mA  
Differential short-circuit output cur-  
IOS(D)  
EN at 0 V,  
VOY = VOZ  
-12  
12  
rent, |IOY - IOZ  
|
SN65LVP20 OUTPUT CHARACTERISTICS (see Figure 2)  
VOYH or  
VOZH  
High-level output voltage  
VCC - 1.05  
VCC - 1.83  
VCC - 1.88  
VCC - 0.82  
VCC - 1.57  
VCC - 1.57  
3.3 V; 50 from Y and Z  
to VCC - 2 V  
VOYL or  
VOZL  
Low-level output voltage  
V
VOYL or  
VOZL  
2.5 V; 50 from Y and Z  
to VCC - 2 V  
Low-level output voltage  
Differential output voltage magnitude,  
|VOD  
|
0.6  
-1  
0.8  
1
1
|VOH - VOL  
|
IOYZ or IOZZ High-impedance output current  
EN at VCC, VO = 0 V or VCC  
µA  
(1) Typical values are at room temperature and with a VCC of 3.3 V.  
3
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
Differential propagation delay time,  
low-to-high-level output  
tPLH  
300  
300  
450  
450  
630  
Differential propagation delay time,  
high-level-to-low-level output  
See Figure 2 and Figure 4  
ps  
tPHL  
630  
tSK(P)  
Pulse skew, |tPLH - tPHL  
|
20  
VCC = 3.3 V  
80  
ps  
(2)  
tSK(PP)  
Part-to-part skew  
VCC = 2.5 V  
130  
LVDS, See Figure 2 and Figure 4  
LVPECL, See Figure 2 and Figure 4  
LVDS, See Figure 2 and Figure 4  
LVPECL, See Figure 2 and Figure 4  
85  
92  
85  
92  
2
115  
ps  
tr  
tf  
20%-to-80% differential signal rise time  
120  
115  
ps  
20%-to-80% differential signal fall time  
RMS period jitter(3)  
120  
tjit(per)  
tjit(cc)  
3
ps  
16  
2-GHz 50%-duty-cycle square-wave input,  
See Figure 5  
(4)  
Peak cycle-to-cycle jitter  
13  
LVDS; 4 Gbps PRBS, 223- 1 run length,  
See Figure 5  
tjit(p-p)  
tjit(ph)  
Peak-to-peak jitter  
Intrinsic phase jitter  
37  
45  
ps  
ps  
155.52 MHz  
622.08 MHz  
0.62  
0.14  
Propagation delay time,  
high-level-to-high-impedance output  
tPHZ  
tPLZ  
tPZH  
tPZL  
30  
30  
30  
30  
Propagation delay time,  
low-level-to-high-impedance output  
See Figure 2 and Figure 6  
ns  
Propagation delay time,  
high-impedance-to-high-level output  
Propagation delay time,  
high-impedance-to-low-level output  
(1) Typical values are at room temperature and with a VCC of 3.3 V.  
(2) Part-to-part skew is the magnitude of the difference in propagation delay times between any specified terminals of two devices when  
both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 100,000 cycles.  
(4) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles, over a random sample of 1,000 adjacent cycle  
pairs.  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
CC  
I
I
8
BB  
1
2
3
5
4
6
7
NC VCC  
V
50  
50  
BB  
Z
I
IA  
OZ  
A
D.U.T.  
I
IB  
B
Y
S1  
I
EN  
GND  
9
OY  
I
+
+
+
+
I
V
V
V
V
− 2 V  
CC  
C
V
V
V
V
IA  
IB  
I
L
OY  
OZ  
BB  
OC  
(1) CL is the instrumentation and test fixture capacitance.  
(2) S1 is open for the SN65LVDS20 and closed for the SN65LVP20.  
Figure 2. Output Voltage Test Circuit and Voltage and Current Definitions  
4
 
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
INPUT  
V
dV  
OC(SS) OC(PP)  
V
OC  
Figure 3. VOC Definitions  
V
CC  
1.2 V  
1.125 V  
1.5 V  
V
V
IA  
IB  
t
t
PHL  
PLH  
V
− V  
OZ  
OY  
100%  
80%  
50%  
t
f
t
r
20%  
Figure 4. Propagation Delay and Transition Time Test Waveforms  
50 W Cable, X + Y cm, SMA Coax  
Connectors, 4 Places  
TDS Oscilloscope with  
TJIT3 Analysis Pack  
Device Under Test  
HP3104 Pattern  
Generator  
Note A  
50 W  
50 W  
DC  
Figure 5. Jitter Measurement Setup  
5
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
1.2 V  
V
IA  
1.5 V  
V
IB  
V to EN  
I
2 V  
1.4 V  
t
t
0.8 V  
PZH  
PZL  
t
t
0 V  
PHZ  
PLZ  
V
− V  
OZ  
100%  
80%  
OY  
50%  
20%  
Figure 6. Enable and Disable Time Test Waveforms  
DEVICE INFORMATION  
FUNCTION TABLE(1)  
A
H
L
B
H
H
L
EN  
Y
?
L
H
?
Z
?
?
Z
?
H
L
?
Z
?
?
L
L
H
L
L
L
L
X
X
H
Open Open  
L
X
X
Open  
(1) H = high, L = low, Z = high  
impedance, ? = indeterminate  
6
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
TOP VIEW  
1
8
4
5
9
BOTTOM VIEW  
Package Pin Assignments - Numerical Listing  
PIN  
1
SIGNAL  
PIN  
6
SIGNAL  
Z
NC  
A
2
7
Y
3
B
8
VCC  
GND  
4
VBB  
EN  
9
5
Package Pin Assignments - Alphabetical Listing  
SIGNAL  
A
PIN  
2
SIGNAL  
PIN  
4
VBB  
VCC  
Y
B
3
8
EN  
5
7
GND  
NC  
9
Z
6
1
7
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
60  
50  
40  
30  
20  
10  
60  
50  
LVP20 = Loaded  
LVDS20  
LVP20 = Loaded  
40  
LVDS20  
30  
20  
10  
−40 −20  
0
20  
40  
60  
80 100  
0
400  
800  
1200  
1600  
2000  
T
A
− Free−Air Temperature − C  
f − Frequency − MHz  
Figure 7.  
Figure 8.  
DIFFERENTIAL OUTPUT VOLTAGE  
LVDS20 RISE/FALL TIME  
vs  
FREE-AIR TEMPERATURE  
vs  
FREQUENCY  
105  
97  
89  
81  
73  
65  
900  
800  
700  
LVP20  
600  
500  
400  
t
r
LVDS20  
t
f
300  
200  
100  
0
0
500 1000 1500 2000 2500 3000 3500 4000  
−40 −20  
0
20  
40  
60  
80 100  
f − Frequency − MHz  
T
A
− Free−Air Temperature − C  
Figure 9.  
Figure 10.  
LVP20 RISE/FALL TIME  
vs  
FREE-AIR TEMPERATURE  
LVDS20 PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
105  
97  
89  
81  
73  
65  
500  
476  
452  
428  
404  
380  
t
f
t
PHL  
t
r
t
PLH  
−40 −20  
0
20  
40  
60  
80 100  
−40 −20  
0
20  
40  
60  
80 100  
T
A
− Free−Air Temperature − C  
T
A
− Free−Air Temperature − C  
Figure 11.  
Figure 12.  
8
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
LVP20 PROPAGATION DELAY TIME  
PERIOD JITTER  
vs  
FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
500  
476  
5
4
3
2
1
0
t
PHL  
452  
428  
404  
380  
t
PLH  
LVDS20  
LVP20  
0
400  
800  
1200  
1600  
2000  
−40 −20  
0
20  
40  
60  
80 100  
f − Frequency − MHz  
T
A
− Free−Air Temperature − C  
Figure 13.  
Figure 14.  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
FREQUENCY  
DATA RATE  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
LVDS20  
LVP20  
LVP20  
LVDS20  
0
0
800  
1600  
2400  
3200  
4000  
0
400  
800  
1200  
1600 2000  
f − Frequency − MHz  
Data Rate − Mbps  
Figure 15.  
Figure 16.  
Scale = 50 ps/div  
Scale = 50 ps/div  
Figure 17. LVDS20 4-Gbps, 223 - 1 PRBS  
Figure 18. LVP20 4-Gbps, 223 - 1 PRBS  
9
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
PHASE NOISE OF SN65LVP20  
PHASE NOISE OF SN65LVP20  
−40  
−50  
−40  
−50  
−60  
−70  
−80  
Blue = Device  
Green = Source  
Blue = Device  
Green = Source  
−60  
−70  
−80  
−90  
−100  
110  
−120  
−130  
−140  
−150  
−160  
−90  
−100  
110  
−120  
−130  
−140  
−150  
−160  
10 M  
10 M  
100 k  
1 M  
100 M  
100 k  
1 M  
100 M  
1k  
10 k  
1k  
10 k  
100  
100  
Figure 19. Frequency Offset From 155.52 MHz Carrier  
Figure 20. Frequency Offset From 622.08 MHz Carrier  
10  
SN65LVDS20  
SN65LVP20  
www.ti.com  
SLLS620AJUNE 2004REVISED SEPTEMBER 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
OUTPUT LVP20  
OUTPUT LVDS20  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
R
R
Y
V
CC  
Y
Z
7 V  
Z
7 V  
7 V  
7 V  
V
CC  
ENABLE  
400  
300 kΩ  
7 V  
INPUT  
V
CC  
OUTPUT  
V
BB  
V
CC  
V
CC  
V
CC  
A
B
V
BB  
V
BB  
11  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS20DRFR  
SN65LVDS20DRFRG4  
SN65LVDS20DRFT  
SN65LVDS20DRFTG4  
SN65LVP20DRFR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SON  
DRF  
8
8
8
8
8
8
8
8
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP20DRFRG4  
SN65LVP20DRFT  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP20DRFTG4  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

SN65LVDS22

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22D

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22DG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22DR

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22DRG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22ID

SPECIALTY INTERFACE CIRCUIT, PDSO16, SOIC-16
TI

SN65LVDS22IDR

SPECIALTY INTERFACE CIRCUIT, PDSO16, SOIC-16
TI

SN65LVDS22PW

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWR

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWRG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22_07

DUAL MULTIPLEXED LVDS REPEATERS
TI