SN65LVDS22D [TI]

DUAL MULTIPLEXED LVDS REPEATERS; 双复用LVDS转发
SN65LVDS22D
型号: SN65LVDS22D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL MULTIPLEXED LVDS REPEATERS
双复用LVDS转发

线路驱动器或接收器 驱动程序和接口 接口集成电路 中继器 光电二极管
文件: 总13页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
D PACKAGE  
(TOP VIEW)  
Meets or Exceeds the Requirements of  
ANSI TIA/EIA–644–1995 Standard  
Designed for Signaling Rates Up to  
400 Mbit/s  
1B  
1A  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
CC  
CC  
ESD Protection Exceeds 12 kV on Bus Pins  
Operates from a Single 3.3-V Supply  
S0  
1Y  
1DE  
S1  
1Z  
Low-Voltage Differential Signaling with  
Output Voltages of 350 mVinto:  
– 100-Load (SN65LVDS22)  
– 50-Load (SN65LVDM22)  
2DE  
2A  
11 2Z  
10 2Y  
2B  
GND  
9
GND  
Propagation Delay Time; 4 ns Typ  
Power Dissipation at 400 Mbit/s of 150 mW  
Bus Pins are High Impedance When  
logic diagram (positive logic)  
Disabled or With V  
Less Than 1.5 V  
CC  
LVTTL Levels are 5 V Tolerant  
Open-Circuit Fail Safe Receiver  
2
+
_
1A  
1B  
14  
13  
0
1
1
1Y  
1Z  
description  
The SN65LVDS22 and SN65LVDM22 are differ-  
ential line drivers and receivers that use  
low-voltage differential signaling (LVDS) to  
achieve signaling rates as high as 400 Mbps. The  
receiver outputs can be switched to either or both  
drivers through the multiplexer control signals S0  
and S1. This allows the flexibility to perform  
splitter or signal routing functions with a single  
device.  
4
1DE  
2DE  
S0  
12  
3
5
S1  
10  
11  
0
1
2Y  
2Z  
6
7
+
_
2A  
2B  
The TIA/EIA-644 standard compliant electrical  
interface provides a minimum differential output  
voltage magnitude of 247 mV into a 100-load  
and receipt of 100 mV signals with up to 1 V of  
ground potential difference between a transmitter  
and receiver. The SN65LVDM22 doubles the  
output drive current to achieve LVDS levels with a  
50 load.  
MUX Truth Table  
OUTPUT  
INPUT  
FUNCTION  
S1  
S0  
1Y/1Z  
1A/1B  
2A/2B  
1A/1B  
2A/2B  
2Y/2Z  
1A/1B  
2A/2B  
2A/2B  
1A/1B  
0
0
1
1
0
1
0
1
Splitter  
Splitter  
Router  
Router  
The intended application of these devices and  
signaling technique is for both point–to–point  
baseband (single termination) and multipoint  
(double termination) data transmissions over  
controlled impedance media. The transmission  
media may be printed circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data  
transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment,  
and other application specific characteristics).  
The SN65LVDS22 and SN65LVDM22 are characterized for operation from –40 C to 85 C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
equivalent input and output schematic diagrams  
V
CC  
V
CC  
300 kΩ  
50 Ω  
S0, S1  
Input  
50 Ω  
1DE, 2DE  
Input  
7 V  
300 kΩ  
7 V  
V
CC  
V
CC  
300 kΩ  
300 kΩ  
5 Ω  
Y or Z  
10 kΩ  
Output  
A Input  
B Input  
7 V  
7 V  
7 V  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V  
CC  
Voltage range (DE, S0, S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
Input voltage range, V (A or B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to Vcc+0.5 V  
I
Electrostatic discharge: A, B, Y, Z and GND (see Note 2) . . . . . . . . . . . . . . . . . . . . Class 3, A:12 kV, B:600 V  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A:5 kV, B:500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with MIL-STD-883C Method 3015.7.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D16  
950 mW  
7.6 mW/°C  
494 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with  
no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
3
2
3.3  
3.6  
V
V
V
V
CC  
High-level input voltage, V  
S0, S1, 1DE, 2DE  
S0, S1, 1DE, 2DE  
IH  
Low-level input voltage, V  
IL  
Magnitude of differential input voltage, V  
0.8  
0.6  
0.1  
ID  
ID  
V
V
ID  
V
2.4 –  
Common-mode input voltage, V (see Figure 1)  
IC  
2
2
V
CC  
–0.8  
85  
V
Operating free-air temperature, T  
–40  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
COMMON-MODE INPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
2.5  
MAX at V  
> 3.15 V  
CC  
MAX at V  
= 3 V  
CC  
2
1.5  
1
0.5  
0
Min  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
V
ID  
– Differential Input Voltage – V  
Figure 1. Common-Mode Input Voltage vs Differential Input Voltage  
receiver electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
mV  
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
100  
ITH+  
–100  
–2  
mV  
ITH–  
V = 0 V  
I
–20  
20  
I
I
Input current (A or B inputs)  
µA  
µA  
V = 2.4 V  
I
–1.2  
I
Power-off input current (A or B inputs)  
V
CC  
= 0 V  
I(OFF)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
receiver/driver electrical characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
OD  
Differential output voltage magnitude  
247  
340  
454  
mV  
See Figure 2  
See Figure 3  
Change in differential output voltage magnitude  
between logic states  
V  
–50  
50  
1.375  
50  
mV  
V
OD  
R
R
= 100 (’LVDS22),  
L
L
V
Steady-state common-mode output voltage  
1.125  
–50  
OC(SS)  
= 50 (’LVDM22)  
Change in steady-state common-mode output  
voltage between logic states  
V  
3
mV  
mV  
OC(SS)  
V
Peak-to-peak common-mode output voltage  
150  
12  
OC(PP)  
No Load  
8
13  
21  
3
R
R
= 100 (‘LVDS22)  
= 50 (‘LVDM22)  
20  
L
L
I
Supply current  
mA  
CC  
27  
Disabled  
6
DE  
High-level input current  
S0, S1  
–10  
20  
I
I
V
V
= 5  
µA  
µA  
IH  
IH  
DE  
Low-level input current  
S0, S1  
–10  
10  
= 0.8 V  
IL  
IL  
–10  
–10  
–10  
–10  
±1  
V
V
or V  
= 0 V,  
= 0 V,  
(’LVDS22)  
(’LVDM22)  
OY  
OD  
OZ  
= 0 V,  
I
Short-circuit output current  
mA  
OS  
V
OY  
V
OD  
or V  
OZ  
= 0 V,  
V
V
V
= 600 mV  
0.015  
0.015  
0.015  
3
OD  
I
I
High-impedance output current  
µA  
OZ  
= 0 V or V  
±1  
O
CC  
Power-off output current  
Input capacitance  
= 0 V,  
V = 3.6 V  
O
±1  
µA  
O(OFF)  
CC  
C
pF  
IN  
All typical values are at 25°C and with a 3.3 V supply.  
differential receiver to driver switching characteristics over recommended operating conditions  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Differential propagation delay, low-to-high  
Differential propagation delay, high-to-low  
4
4
6
6
PLH  
PHL  
sk(p)  
r
ns  
Pulse skew (|t  
– t  
PHL PLH  
|)  
0.5  
1
ns  
C
= 10 pF,  
L
Transition, low-to-high  
Transition, low-to-high  
Transition, high-to-low  
Transition, high-to-low  
SN65LVDS22  
SN65LVDM22  
SN65LVDS22  
SN65LVDM22  
1.5  
1.3  
1.5  
1.3  
10  
ns  
See Figure 4  
0.8  
1
ns  
r
ns  
f
0.8  
4
ns  
f
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
ns  
PHZ  
PLZ  
PZH  
PZL  
5
10  
ns  
See Figure 5  
5
10  
ns  
6
10  
ns  
_R1_Dx  
PHL  
0.2  
0.2  
0.2  
0.2  
_
_
PLH R1 Dx  
Channel-to-channel skew, receiver to driver  
ns  
_
_
PHL R2 Dx  
_
_
PLH R2 Dx  
All typical values are at 25°C and with a 3.3 V supply.  
These parametric values are measured over supply voltage and temperature ranges recommended for the device.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
DE  
Y
Z
A
B
Pulse  
Generator  
V
R
(see Note B)  
L
OD  
Input  
(see Note A)  
C
= 10 pF  
(2 Places)  
(see Note C)  
L
V
V
1.4 V  
1 V  
I(B)  
100%  
80%  
V
OD  
I(A)  
0
20%  
0%  
t
f
t
r
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulse width = 10 ± 0.2 ns.  
= 100 or 50 ±1%  
C. CL includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
NOTES: B.  
R
L
Figure 2. Test Circuit and Voltage Definitions for the Differential Output Signal  
DE  
R
(see Note B)  
(2 Places)  
L
V
V
1.4 V  
1 V  
I(B)  
Y
Z
A
B
Pulse  
Generator  
I(A)  
V
OC(PP)  
(see Note D)  
Input  
(see Note A)  
V
OC  
V
OC(SS)  
C
= 10 pF  
L
(2 Places)  
(see Note C)  
V
CC  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulse width = 10 ± 0.2 ns.  
NOTES: B.  
C.  
R
C
= 100 or 50 ±1%  
includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
L
L
D. The measurement of V  
is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
OC(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
DE  
Y
A
B
Pulse  
Generator  
R
D
R
(see Note A)  
L
Z
10 pF  
10 pF  
V
V
1.4 V  
1 V  
IB  
0-V Differential  
1.2-V CM  
t
IA  
t
PLH  
PHL  
V
1.4 V  
1 V  
OZ  
0-V Differential  
1.2-V CM  
V
OY  
80%  
0-V Differential  
20%  
V
OY  
– V  
OZ  
t
f
t
r
NOTES: A.  
R = 100 or 50 ±1%  
L
B. All input pulses are supplied by a generator having the following characteristics: pulse repetition rate (PRR) = 50 Mpps,  
pulse width = 10 ± 0.2 ns.  
Figure 4. Differential Receiver to Driver Propagation Delay and Driver Transition Time Waveforms  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
DE  
R /2  
L
(see Note A)  
A
B
1 V or 1.4 V  
1.2 V  
R
D
1.2 V  
R /2  
L
(see Note A)  
2 V  
DE  
OZ  
1.4 V  
0.8 V  
t
t
t
t
PZH  
PHZ  
1.4 V  
V
OY  
or V  
1.25 V  
1.2 V  
PZL  
PLZ  
1.2 V  
1.15 V  
V
OY  
or V  
OZ  
1 V  
NOTES: A.  
R = 100 or 50 ±1%  
L
B. All input pulses are supplied by a generator having the following characteristics: pulse repetition rate (PRR) = 0.5 Mpps,  
pulse width = 500 ± 10 ns.  
Figure 5. Enable and Disable Timing Circuit  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
TYPICAL CHARACTERISTICS  
SN65LVDS22  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
SN65LVDS22  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
3.5  
3
4
3
2
1
0
V
T
A
= 3.3 V  
CC  
= 25°C  
V
T
= 3.3 V  
= 25°C  
CC  
A
2.5  
2
1.5  
1
.5  
0
–4  
–3  
–2  
–1  
0
0
2
4
6
I
– High-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OH  
OL  
Figure 6  
Figure 7  
SN65LVDM22  
SN65LVDM22  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
3.5  
4
3
2
1
0
V
T
A
= 3.3 V  
CC  
= 25°C  
V
T
A
= 3.3 V  
= 25°C  
CC  
3
2.5  
2
1.5  
1
.5  
0
–8  
–6  
–4  
–2  
0
0
2
4
6
8
10  
12  
I
– High-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OH  
OL  
Figure 8  
Figure 9  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
APPLICATION INFORMATION  
The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground  
differences are less than 1 V with a low common–mode output and balanced interface for very low noise emissions.  
Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/Receivers maintain ECL speeds without the  
power and dual supply requirements.  
1000  
30% Jitter  
100  
5% Jitter  
10  
1
24 AWG UTP 96 (PVC Dielectric)  
0.1  
100k  
1M  
10M  
100M  
Data Rate – Hz  
Figure 10. Data Transmission Distance Versus Rate  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
APPLICATION INFORMATION  
fail safe  
One of the most common problems with differential signaling applications is how the system responds when  
no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in  
that its output logic state can be indeterminate when the differential input voltage is between –100 mV and 100  
mV and within its recommended input common-mode voltage range. TI’s LVDS receiver is different in how it  
handles the open-input circuit situation, however.  
Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be  
when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver  
will pull each line of the signal pair to near V  
through 300-kresistors as shown in Figure 11. The fail-safe  
CC  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high-level regardless of the differential input voltage.  
V
CC  
300 kΩ  
300 kΩ  
A
Rt = 100 (Typ)  
Y
B
V
IT  
2.3 V  
Figure 11. Open-Circuit Fail Safe of the LVDS Receiver  
It is only under these conditions that the output of the receiver will be valid with less than a 100 mV differential  
input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as  
long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that  
could defeat the pull-up currents from the receiver and the fail-safe feature.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS22, SN65LVDM22  
DUAL MULTIPLEXED LVDS REPEATERS  
SLLS315– DECEMBER 1998  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

SN65LVDS22DG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22DR

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22DRG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22ID

SPECIALTY INTERFACE CIRCUIT, PDSO16, SOIC-16
TI

SN65LVDS22IDR

SPECIALTY INTERFACE CIRCUIT, PDSO16, SOIC-16
TI

SN65LVDS22PW

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWR

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22PWRG4

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS22_07

DUAL MULTIPLEXED LVDS REPEATERS
TI

SN65LVDS250

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS250DBT

LVDS 4x4 CROSSPOINT SWITCH
TI