SN65LVDS32PWG4 [TI]

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS; 高速差动线路接收器
SN65LVDS32PWG4
型号: SN65LVDS32PWG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
高速差动线路接收器

文件: 总31页 (文件大小:1018K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS  
FEATURES  
SN55LVDS32 . . . J OR W  
SN65LVDS32 . . . D OR PW  
(Marked as LVDS32 or 65LVDS32)  
(TOP VIEW)  
Meet or Exceed the Requirements of ANSI  
TIA/EIA-644 Standard  
Operate With a Single 3.3-V Supply  
1B  
1A  
1Y  
VCC  
4B  
4A  
4Y  
G
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
Designed for Signaling Rate of up to 400  
Mbps  
Differential Input Thresholds ±100 mV Max  
Typical Propagation Delay Time of 2.1 ns  
G
2Y  
2A  
11 3Y  
Power Dissipation 60 mW Typical Per  
Receiver at 200 MHz  
10  
9
2B  
GND  
3A  
3B  
Bus-Terminal ESD Protection Exceeds 8 kV  
Low-Voltage TTL (LVTTL) Logic Output Levels  
SN55LVDS32FK  
(TOP VIEW)  
Pin Compatible With AM26LS32, MC3486, and  
µA9637  
Open-Circuit Fail-Safe  
3
4
2
1
20 19  
1Y  
G
4A  
4Y  
NC  
G
18  
17  
16  
15  
14  
DESCRIPTION  
5
6
7
The SN55LVDS32, SN65LVDS32, SN65LVDS3486,  
and SN65LVDS9637 are differential line receivers  
that implement the electrical characteristics of  
low-voltage differential signaling (LVDS). This  
signaling technique lowers the output voltage levels  
of 5-V differential standard levels (such as  
EIA/TIA-422B) to reduce the power, increase the  
switching speeds, and allow operation with a 3.3-V  
supply rail. Any of the four differential receivers  
provides a valid logical output state with a ±100-mV  
differential  
common-mode  
common-mode voltage range allows 1 V of ground  
potential difference between two LVDS nodes.  
NC  
2Y  
2A  
3Y  
8
9
10 11 12 13  
SN65LVDS3486D (Marked as LVDS3486)  
(TOP VIEW)  
1B  
1A  
1Y  
VCC  
4B  
4A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
input  
voltage  
voltage  
within  
range.  
the  
The  
input  
input  
1,2EN  
2Y  
4Y  
3,4EN  
3Y  
The intended application of these devices and  
signaling technique is both point-to-point and  
multidrop (one driver and multiple receivers) data  
transmission over controlled impedance media of  
approximately 100 . The transmission media may  
be printed-circuit board traces, backplanes, or cables.  
The ultimate rate and distance ofdata transfer  
depends on the attenuation characteristics of the  
media and the noise coupling to the environment.  
2A  
2B  
GND  
10 3A  
3B  
9
SN65LVDS9637D (Marked as DK637 or LVDS37)  
SN65LVDS9637DGN (Marked as L37)  
SN65LVDS9637DGK (Marked as AXF)  
(TOP VIEW)  
VCC  
1Y  
2Y  
1A  
1B  
2A  
2B  
1
2
3
4
8
7
6
5
The  
SN65LVDS32,  
SN65LVDS3486,  
and  
SN65LVDS9637 are characterized for operation from  
–40°C to 85°C. The SN55LVDS32 is characterized  
for operation from –55°C to 125°C.  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1997–2004, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS  
PACKAGE  
TA  
SMALL OUTLINE  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(J)  
FLAT PACK  
(W)  
MSOP  
(D)  
(PW)  
SN65LVDS32D  
SN65LVDS3486D  
SN65LVDS9637D  
SN65LVDS32PW  
–40°C to 85°C  
SN65LVDS9637DGN  
SN65LVDS9637DGK  
–55°C to  
125°C  
SNJ55LVDS32W  
SN55LVDS32W  
SNJ55LVDS32FK SNJ55LVDS32J  
’LVDS32 logic diagram  
(positive logic)  
SN65LVDS3486D logic diagram SN65LVDS9637D logic diagram  
(positive logic)  
(positive logic)  
2
8
4
3
1A  
1B  
2
1A  
G
1Y  
1Y  
2Y  
1
4
7
12  
G
1B  
6
5
2
1,2EN  
3
3
1A  
2A  
2B  
1Y  
6
7
1
5
2A  
2B  
1B  
2Y  
3Y  
6
5
2A  
2B  
2Y  
3Y  
4Y  
7
10  
9
3A  
3B  
11  
10  
9
3A  
3B  
11  
13  
12  
3,4EN  
14  
15  
4A  
4B  
14  
15  
13  
4A  
4B  
4Y  
FUNCTION TABLES  
SN55LVDS32, SN65LVDS32(1)  
SN65LVDS3486(1)  
ENABLES  
DIFFERENTIAL INPUT  
A, B  
OUTPUT  
Y
DIFFERENTIAL INPUT  
ENABLE  
EN  
OUTPUT  
Y
A, B  
ID 100 mV  
–100 mV < VID < 100 mV  
G
G
H
X
X
L
H
H
VID 100 mV  
V
H
H
H
?
H
X
X
L
?
?
–100 mV < VID < 100 mV  
H
X
X
L
L
L
V
ID –100 mV  
V
ID –100 mV  
H
L
L
Z
H
X
L
H
Z
X
H
X
X
L
H
H
Open  
Open  
H
(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate  
2
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
logic symbols†  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486  
4
4
1, 2EN  
EN  
1  
G
G
EN  
2
1
6
7
12  
1A  
1B  
2A  
2B  
3
5
1Y  
2Y  
2
1
1A  
1B  
3
5
1Y  
2Y  
3Y  
12  
6
7
3, 4EN  
EN  
2A  
2B  
3A  
3B  
10  
9
3A  
3B  
4A  
4B  
11  
13  
10  
9
11  
13  
3Y  
4Y  
14  
15  
14  
15  
4A  
4B  
4Y  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.  
Function Table  
SN65LVDS9637  
DIFFERENTIAL INPUT  
A, B  
OUTPUT  
Y
V
ID 100 mV  
H
?
–100 mV < VID < 100 mV  
VID –100 mV  
L
Open  
H
H = high level, L = low level, ? = indeterminate  
logic symbol†  
SN65LVDS9637  
8
7
6
5
1A  
1B  
2A  
2B  
2
3
1Y  
2Y  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC  
Publication617-12.  
3
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
EQUIVALENT OF EACH A OR B INPUT  
EQUIVALENT OF G, G, 1,2EN OR  
3,4EN INPUTS  
TYPICAL OF ALL OUTPUTS  
V
CC  
V
CC  
V
CC  
300 k  
300 kΩ  
50 Ω  
5 Ω  
Input  
Y Output  
7 V  
7 V  
A Input  
B Input  
7 V  
7 V  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
–0.5 V to 4 V  
VCC Supply voltage range(2)  
Enables and output  
–0.5 V to VCC + 0.5 V  
–0.5 V to 4 V  
VI  
Input voltage range  
A or B  
Continuous total power dissipation  
See Dissipation Rating Table  
260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Storage temperature range  
Tstg  
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.  
DISSIPATION RATING TABLE  
T
A 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
POWER RATING  
D (8)  
D (16)  
DGK  
DGN(2)  
FK  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
3.4 mW/°C  
17.1 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
6.2 mW/°C  
8.0 mW/°C  
464 mW  
608 mW  
272 mW  
1.37 W  
377 mW  
494 mW  
221 mW  
1.11 W  
950 mW  
425 mW  
2.14 W  
1375 mW  
1375 mW  
774 mW  
880 mW  
880 mW  
496 mW  
640 mW  
715 mW  
715 mW  
402 mW  
520 mW  
275 mW  
275 mW  
J
PW (16)  
W
1000 mW  
200 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board mounted and with no air flow.  
(2) The PowerPAD™ must be soldered to a thermal land on the printed-circuit board. See the application note PowerPAD Thermally  
Enhanced Package (SLMA002)  
4
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
VCC  
VIH  
VIL  
Supply voltage  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage  
Low-level input voltage  
G, G, 1,2EN, or 3,4EN  
G, G, 1,2EN, or 3,4EN  
0.8  
0.6  
|VID  
|
Magnitude of differential input voltage  
0.1  
|V  
|
|V  
|
V
ID  
ID  
2.4 *  
VIC  
Common-mode input voltage (see Figure 1)  
2
2
VCC– 0.8  
85  
SN65 prefix  
SN55 prefix  
–40  
–55  
Operating free-air  
temperature  
TA  
°C  
125  
COMMON-MODE INPUT VOLTAGE RANGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
2.5  
2
Max at V > 3.15 V  
CC  
Max at V = 3 V  
CC  
1.5  
1
0.5  
0
Min  
0.3  
0
0.1  
0.2  
0.4  
0.5  
0.6  
V
ID  
- Differential Input Voltage - V  
Figure 1. VIC Versus VID and VCC  
5
Submit Documentation Feedback  
 
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
SN55LVDS32 ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
(2)  
(2)  
VITH+ Positive-going differential input voltage threshold  
VITH– Negative-going differential input voltage threshold(3)  
VOH High-level output voltage  
See Figure 2, Table 1, and  
See Figure 2, Table 1, and  
IOH = –8 mA  
100  
mV  
mV  
V
–100  
2.4  
VOL Low-level output voltage  
IOL = 8 mA  
0.4  
18  
V
Enabled,  
Disabled  
VI = 0  
No load  
10  
ICC  
Supply current  
mA  
0.25  
0.5  
–2  
–10 –20  
–3  
II  
Input current (A or B inputs)  
µA  
µA  
VI = 2.4 V  
–1.2  
II(OFF  
Power-off input current (A or B inputs)  
VCC = 0,  
VI = 2.4 V  
6
20  
)
IIH  
High-level input current (EN, G, or G inputs)  
Low-level input current (EN, G, or G inputs)  
High-impedance output current  
VIH = 2 V  
10  
10  
µA  
µA  
µA  
IIL  
VIL = 0.8 V  
VO = 0 or VCC  
IOZ  
±12  
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
(2) |VITH| = 200 mV for operation at –55°C  
(3) The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the  
negative-going differential input voltage threshold only.  
SN55LVDS32 SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
tPLH  
tPHL  
tsk(o)  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Channel-to-channel output skew(1)  
1.3  
1.4  
2.3  
2.2  
0.1  
0.6  
0.7  
6.5  
5.5  
8
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.1  
CL = 10 pF, See Figure 3  
Output signal rise time, 20% to 80%  
tf  
Output signal fall time, 80% to 20%  
tPHZ  
tPLZ  
tPZH  
tPZL  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
12  
12  
14  
12  
See Figure 4  
3
(1) tsk(o) is the maximum delay time difference between drivers on the same device.  
6
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
SN65LVDSxxxx ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65LVDS32  
SN65LVDS3486  
SN65LVDS9637  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP(1) MAX  
VIT+  
VIT-  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold(2)  
See Figure 2 and Table 1  
See Figure 2 and Table 1  
IOH = –8 mA  
IOH = –4 mA  
IOL = 8 mA  
100  
mV  
mV  
–100  
2.4  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
2.8  
0.4  
Enabled, No load  
Disabled  
10  
0.25  
5.5  
18  
0.5  
10  
SN65LVDS32, SN65LVDS3486  
SN65LVDS9637  
ICC  
Supply current  
mA  
No load  
VI = 0  
–2  
–10 –20  
–3  
II  
Input current (A or B inputs)  
µA  
VI = 2.4 V  
–1.2  
II(OFF)  
IIH  
Power-off input current (A or B inputs)  
High-level input current (EN, G, or G inputs)  
Low-level input current (EN, G, or G inputs)  
High-impedance output current  
VCC = 0, VI = 3.6 V  
VIH = 2 V  
6
20  
10  
µA  
µA  
µA  
µA  
IIL  
VIL = 0.8 V  
10  
IOZ  
VO = 0 or VCC  
±10  
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
(2) The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the  
negative-going differential input voltage threshold only.  
SN65LVDSxxxx SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65LVDS32  
SN65LVDS3486  
SN65LVDS9637  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
1.5  
TYP  
2.1  
2.1  
0
MAX  
3
tPLH  
tPHL  
tsk(p)  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Pulse skew (|tPHL - tPLH|)  
Channel-to-channel output skew(1)  
Part-to-part skew(2)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.5  
3
0.4  
0.3  
1
CL = 10 pF, See Figure 3  
0.1  
Output signal rise time, 20% to 80%  
0.6  
0.7  
6.5  
5.5  
8
tf  
Output signal fall time, 80% to 20%  
tPHZ  
tPLZ  
tPZH  
tPZL  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
12  
12  
12  
12  
See Figure 4  
3
(1) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, same temperature, and have identical packages and test circuits.  
7
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
PARAMETER MEASUREMENT INFORMATION  
A
Y
V
ID  
B
V
IA  
(V + V )/2  
V
O
IA  
IB  
V
IC  
V
IB  
Figure 2. Voltage Definitions  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
Resulting Differential  
Input Voltage  
Resulting Common-Mode  
Input Voltage  
Applied Voltages  
VIA(V)  
VIB(V)  
1.15  
1.25  
2.3  
2.4  
0
VID(mV)  
100  
VIC(V)  
1.2  
1.25  
1.15  
2.4  
2.3  
0.1  
0
–100  
100  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
–100  
100  
0.1  
0.9  
1.5  
1.8  
2.4  
0
–100  
600  
1.5  
0.9  
2.4  
1.8  
0.6  
0
–600  
600  
1.2  
2.1  
–600  
600  
2.1  
0.3  
0.6  
–600  
0.3  
8
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
V
ID  
V
IA  
C
L
= 10 pF  
V
O
V
IB  
V
V
1.4 V  
1 V  
IA  
IB  
0.4 V  
0
V
ID  
-0.4 V  
t
t
PLH  
PHL  
V
OH  
80%  
20%  
80%  
20%  
1.4 V  
V
O
V
OL  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition  
rate(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns.  
B. CL includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
Figure 3. Timing Test Circuit and Waveforms  
9
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
B
A
1.2 V  
500  
10 pF  
G
G
±
(see Note B)  
V
O
Inputs  
(see Note A)  
V
TEST  
1,2EN or 3,4EN  
2.5 V  
V
TEST  
A
1 V  
2 V  
1.4 V  
0.8 V  
G, 1,2EN,  
or 3,4EN  
2 V  
1.4 V  
0.8 V  
G
t
t
PLZ  
PLZ  
t
t
PZL  
PZL  
2.5 V  
1.4 V  
OL  
OL  
Y
V
V
+ 0.5 V  
V
TEST  
0
1.4 V  
A
2 V  
1.4 V  
0.8 V  
G, 1,2EN,  
or 3,4EN  
2 V  
1.4 V  
0.8 V  
t
PHZ  
G
t
PHZ  
t
t
PZH  
PZH  
V
V
OH  
OH  
- 0.5 V  
Y
1.4 V  
0
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition  
rate(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns.  
B. CL includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
Figure 4. Enable- and Disable-Time Test Circuit and Waveforms  
10  
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
TYPICAL CHARACTERISTICS  
SN55LVDS32, SN65LVDS32  
SUPPLY CURRENT  
vs  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
85  
2.7  
2.5  
2.3  
Four Receivers, Loaded  
Per Figure 3, Switching  
Simultaneously  
V
V
= 3.6 V  
= 3.3 V  
CC  
75  
V
CC  
= 3 V  
CC  
V
CC  
= 3.3 V  
65  
55  
V
= 3 V  
CC  
V
CC  
= 3.6 V  
2.1  
1.9  
45  
35  
1.7  
1.5  
25  
15  
50  
100  
150  
200  
−50  
0
50  
100  
f − Frequency − MHz  
T
A
− Free-Air Temperature − °C  
Figure 5.  
Figure 6.  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
−50  
0
50  
100  
T
A
− Free-Air Temperature − °C  
Figure 7.  
11  
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
TYPICAL CHARACTERISTICS (continued)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
−60  
−50  
−40  
−30  
−20  
−10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 8.  
Figure 9.  
12  
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
APPLICATION INFORMATION  
USING AN LVDS RECEIVER WITH RS-422 DATA  
Receipt of data from a TIA/EIA-422 line driver can be accomplished using a TIA/EIA-644 line receiver with the  
addition of an attenuator circuit. This technique gives the user a high-speed and low-power 422 receiver.  
If the ground noise between the transmitter and receiver is not a concern (less than ±1 V), the answer can be as  
simple as shown in Figure 10. A resistor divider circuit in front of the LVDS receiver attenuates the 422  
differential signal to LVDS levels.  
The resistors present a total differential load of 100 to match the characteristic impedance of the transmission  
line and to reduce the signal 10:1. The maximum 422 differential output signal, or 6 V, is reduced to 600 mV. The  
high input impedance of the LVDS receiver prevents input bias offsets and maintains a greater than 200-mV  
differential input voltage threshold at the inputs to the divider. This circuit is used in front of each LVDS channel  
that also receives 422 signals.  
R1  
45.3  
’LVDS32  
R3  
5.11 Ω  
A
B
Y
R4  
5.11 Ω  
R2  
45.3 Ω  
NOTE: The components used were standard values. (1) R1, R2 = NRC12F45R3TR, NIC components, 45.3 , 1/8 W, 1%,  
1206 package (2) R3, R4 = NRC12F5R11TR, NIC components, 5.11 , 1/8 W, 1%, 1206 package (3) The resistor  
values do not need to be 1% tolerance. However, it can be difficult locating a supplier of resistors having values less  
than 100 in stock and readily available. The user may find other suppliers with comparable parts having tolerances  
of 5% or even 10%. These parts are adequate for use in this circuit.  
Figure 10. RS-422 Data Input to an LVDS Receiver Under Low Ground-Noise Conditions  
If ground noise between the RS-422 driver and LVDS receiver is a concern, the common-mode voltage must be  
attenuated. The circuit must then be modified to connect the node between R3 and R4 to the LVDS receiver  
ground. This modification to the circuit increases the common-mode voltage from ±1 V to greater than ±4.5 V.  
The devices are generally used as building blocks for high-speed point-to-point data transmission where ground  
differences are less than 1 V. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers  
approach ECL speeds without the power and dual-supply requirements.  
13  
Submit Documentation Feedback  
 
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
APPLICATION INFORMATION (continued)  
TRANSMISSION DISTANCE  
vs  
SIGNALING RATE  
100  
10  
30% Jitter  
(see Note A)  
5% Jitter  
(see Note A)  
1
24 AWG UTP 96  
(PVC Dielectric)  
0.1  
10  
100  
Signaling Rate − Mbps  
1000  
A. This parameter is the percentage of distortion of the unit interval (UI) with a pseudorandom data pattern.  
Figure 11. Typical Transmission Distance Versus Signaling Rate  
3.3 V  
1
2
16  
1B  
1A  
V
CC  
0.1 µF  
(see Note A)  
0.001 µF  
(see Note A)  
100 Ω  
15  
14  
4B  
4A  
3
4
100 Ω  
(see Note B)  
1Y  
G
V
CC  
13  
12  
11  
5
6
4Y  
G
2Y  
2A  
See Note C  
3Y  
100 Ω  
7
8
10  
9
3A  
3B  
2B  
100 Ω  
GND  
A. Place a 0.1-µF and a 0.001-µF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between VCC  
and the ground plane. The capacitors should be located as close as possible to the device terminals.  
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with  
±10%.  
C. Unused enable inputs should be tied to VCC or GND as appropriate.  
Figure 12. Typical Application Circuit Schematic  
14  
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
APPLICATION INFORMATION  
1/4 ’LVDS31  
Strb/Data_TX  
TpBias on  
Twisted-Pair A  
Strb/Data_Enable  
TP  
TP  
’LVDS32  
55  
5 kΩ  
Data/Strobe  
1 Arb_RX  
55 Ω  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
VG on  
Twisted-Pair B  
20 kΩ  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
2 Arb_RX  
20 kΩ  
3.3 V  
Twisted-Pair B Only  
Port_Status  
7 kΩ  
7 kΩ  
10 kΩ  
3.3 kΩ  
A. Resistors are leadless, thick film (0603), 5% tolerance.  
B. Decoupling capacitance is not shown but recommended.  
C. VCC is 3 V to 3.6 V.  
D. The differential output voltage of the 'LVDS31 can exceed that allowed by IEEE1394.  
Figure 13. 100-Mbps IEEE 1394 Transceiver  
FAIL-SAFE  
One of the most common problems with differential signaling applications is how the system responds when no  
differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers in that  
its output logic state can be indeterminate when the differential input voltage is between –100 mV and100 mV if it  
is within its recommended input common-mode voltage range. However, TI LVDS receivers handle the  
open-input circuit situation differently.  
15  
Submit Documentation Feedback  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
APPLICATION INFORMATION (continued)  
Open-input circuit means that there is little or no input current to the receiver from the data line itself. This could  
be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS  
receiver pulls each line of the signal pair to near VCC through 300-kresistors (see Figure 14). The fail-safe  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high level, regardless of the differential input voltage.  
V
CC  
300 k  
300 kΩ  
A
B
Rt  
Y
V
IT  
2.3 V  
Figure 14. Open-Circuit Fail-Safe of LVDS Receiver  
It is only under these conditions that the output of the receiver is valid with less than a 100-mV differential input  
voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it  
is connected as shown in Figure 14. Other termination circuits may allow a dc current to ground that could defeat  
the pullup currents from the receiver and the fail-safe feature.  
0.01 µF  
3.6 V  
16  
V
CC  
5 V  
1
2
1B  
1A  
0.1 µF  
(see Note A)  
1N645  
(two places)  
100 Ω  
15  
14  
4B  
4A  
3
4
5
6
100 Ω  
(see Note B)  
1Y  
G
V
CC  
13  
12  
11  
4Y  
G
2Y  
2A  
See Note C  
3Y  
100 Ω  
7
8
10  
9
3A  
3B  
2B  
100 Ω  
GND  
A. Place a 0.1-µF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between VCC and the ground  
plane. The capacitor should be located as close as possible to the device terminals.  
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with  
±10%.  
C. Unused enable inputs should be tied to VCC or GND, as appropriate.  
Figure 15. Operation With 5-V Supply  
16  
Submit Documentation Feedback  
 
SN55LVDS32, SN65LVDS32  
SN65LVDS3486, SN65LVDS9637  
www.ti.com  
SLLS262NJULY 1997REVISED MARCH 2004  
APPLICATION INFORMATION (continued)  
RELATED INFORMATION  
IBIS modeling is available for this device. Contact the local TI sales office or the TI Web site at www.ti.com for  
more information.  
For more application guidelines, see the following documents:  
Low-Voltage Differential Signaling Design Notes (SLLA014)  
Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)  
Reducing EMI With LVDS (SLLA030)  
Slew Rate Control of LVDS Circuits (SLLA034)  
Using an LVDS Receiver With TIA/EIA-422 Data (SLLA031)  
Low Voltage Differential Signaling (LVDS) EVM (SLLA033)  
17  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
CFP  
Drawing  
5962-9762201Q2A  
5962-9762201QEA  
5962-9762201QFA  
5962-9762201VFA  
5962-9762202Q2A  
SN55LVDS32W  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
J
20  
16  
16  
16  
20  
16  
16  
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
W
W
FK  
W
D
CFP  
LCCC  
CFP  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
SN65LVDS32D  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32DG4  
SN65LVDS32DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SO  
D
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32DRG4  
SN65LVDS32NSR  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
NS  
NS  
PW  
PW  
PW  
PW  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32NSRG4  
SN65LVDS32PW  
SO  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32PWG4  
SN65LVDS32PWR  
SN65LVDS32PWRG4  
SN65LVDS3486D  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS3486DG4  
SN65LVDS3486DR  
SN65LVDS3486DRG4  
SN65LVDS9637D  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DG4  
SN65LVDS9637DGK  
SN65LVDS9637DGKG4  
SN65LVDS9637DGKR  
SN65LVDS9637DGKRG4  
SN65LVDS9637DGN  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SN65LVDS9637DGNG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DGNR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SNJ55LVDS32FK  
SNJ55LVDS32J  
SNJ55LVDS32W  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
16  
16  
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
W
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SN65LVDS32PWR

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS32PWRG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS33

HIGH SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33-EP

HIGH-SPEED DIFFERENTIAL RECEIVER
TI

SN65LVDS33D

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DR

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DRG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33MDREP

HIGH-SPEED DIFFERENTIAL RECEIVER
TI

SN65LVDS33PW

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33PWG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33PWR

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI