SN65LVDS33 [TI]

HIGH SPEED DIFFERENTIAL RECEIVERS; 高速差分接收器
SN65LVDS33
型号: SN65LVDS33
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH SPEED DIFFERENTIAL RECEIVERS
高速差分接收器

文件: 总20页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢇ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢊ ꢈ ꢀꢁꢂ ꢃꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
1
SN65LVDS33D  
SN65LVDT33D  
SN65LVDS33PW  
SN65LVDT33PW  
D
400-Mbps Signaling Rate and 200-Mxfr/s  
Data Transfer Rate  
D
Operates With a Single 3.3-V Supply  
D
−4-V to 5-V Common-Mode Input Voltage  
Range  
D OR PW PACKAGE  
(TOP VIEW)  
logic diagram (positive logic)  
G
D
D
D
D
D
D
D
Differential Input Thresholds < 50 mV With  
50 mV of Hysteresis Over Entire  
Common-Mode Input Voltage Range  
1B  
1A  
1Y  
G
V
CC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
G
4B  
4A  
4Y  
G
SN65LVDT33 ONLY  
1A  
1Y  
1B  
Integrated 110-Line Termination  
Resistors On LVDT Products  
2Y  
2A  
2B  
TSSOP Packaging (33 Only)  
11 3Y  
10 3A  
2A  
Complies With TIA/EIA-644 (LVDS)  
2Y  
2B  
Active Failsafe Assures a High-Level  
Output With No Input  
9
GND  
3B  
3A  
3Y  
Bus-Pin ESD Protection Exceeds  
15 kV HBM  
3B  
4A  
Input Remains High-Impedance on Power  
Down  
4Y  
4B  
D
TTL Inputs Are 5-V Tolerant  
D
Pin-Compatible With the AM26LS32,  
SN65LVDS32B, µA9637, SN65LVDS9637B  
SN65LVDS34D  
SN65LVDT34D  
D PACKAGE  
(TOP VIEW)  
description  
logic diagram (positive logic)  
V
1A  
1B  
2A  
2B  
1
2
3
4
8
7
6
5
This family of four LVDS data line receivers offers  
CC  
1A  
1Y  
2Y  
the widest common-mode input voltage range in  
the industry. These receivers provide an input  
voltage range specification compatible with a 5-V  
PECL signal as well as an overall increased  
ground-noise tolerance. They are in industry  
standard footprints with integrated termination as  
an option.  
1Y  
2Y  
1B  
SN65LVDT34 ONLY  
GND  
2A  
2B  
Precise control of the differential input voltage  
thresholds allows for inclusion of 50 mV of input  
voltage hysteresis to improve noise rejection on  
slowly changing input signals. The input thresh-  
olds are still no more than 50 mV over the full  
input common-mode voltage range.  
AVAILABLE OPTIONS  
NUMBER  
PART NUMBER  
TERMINATION  
SYMBOLIZATION  
OF  
RESISTOR  
RECEIVERS  
SN65LVDS33D  
4
4
4
4
2
2
No  
No  
LVDS33  
LVDS33  
LVDT33  
LVDT33  
LVDS34  
LVDT34  
SN65LVDS33PW  
SN65LVDT33D  
SN65LVDT33PW  
SN65LVDS34D  
SN65LVDT34D  
Yes  
Yes  
No  
The high-speed switching of LVDS signals usually  
necessitates the use of a line impedance  
matching resistor at the receiving-end of the cable  
or transmission media. The SN65LVDT series of  
receivers eliminates this external resistor by  
integrating it with the receiver. The nonterminated  
SN65LVDS series is also available for multidrop  
or other termination circuits.  
Yes  
Add the suffix R for taped and reeled carrier.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
1
The signalling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
ꢉꢢ  
Copyright 2001 − 2004, Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢬ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
1
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
description (continued)  
The receivers can withstand 15 kV human-body model (HBM) and 600 V machine model (MM) electrostatic  
discharges to the receiver input pins with respect to ground without damage. This provides reliability in cabled  
and other connections where potentially damaging noise is always a threat.  
The receivers also include a (patent pending) failsafe circuit that will provide a high-level output within 600 ns  
after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines,  
or powered-down transmitters. The failsafe circuit prevents noise from being received as valid data under these  
fault conditions. This feature may also be used for Wired-Or bus signaling. See The Active Failsafe Feature of  
the SN65LVDS32B application note.  
The intended application and signaling technique of these devices is point-to-point baseband data transmission  
over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board  
traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation  
characteristics of the media and the noise coupling to the environment.  
The SN65LVDS33, SN65LVDT33, SN65LVDS34 and SN65LVDT34 are characterized for operation from −40°C  
to 85°C.  
Function Tables  
SN65LVDS33 and SN65LVDT33  
DIFFERENTIAL INPUT ENABLES  
= V − V  
SN65LVDS34 and SN65LVDT34  
DIFFERENTIAL INPUT OUTPUT  
= V − V  
OUTPUT  
V
ID  
G
H
X
H
X
H
X
L
G
X
L
Y
H
H
?
V
ID  
Y
H
?
A
B
A
B
V
-32 mV  
ID  
−100 mV < V −32 mV  
V
ID  
-32 mV  
ID  
X
L
V
ID  
-100 mV  
L
−100 mV < V −32 mV  
ID  
?
Open  
H
X
L
L
H = high level, L = low level,  
? = indeterminate  
V
ID  
−100 mV  
L
X
H
X
L
Z
H
H
H
X
Open  
H = high level, L = low level, X = irrelevant,  
Z = high impedance (off), ? = indeterminate  
2
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
equivalent input and output schematic diagrams  
V
CC  
Attenuation  
Network  
6.5 kΩ  
6.5 kΩ  
V
CC  
1 pF  
60 kΩ  
B Input  
A Input  
200 kΩ  
3 pF  
7 V  
7 V  
7 V  
7 V  
250 kΩ  
LVDT Only 110 Ω  
V
CC  
V
CC  
300 kΩ  
(G Only)  
100 Ω  
Enable  
Inputs  
37 Ω  
Y Output  
7 V  
7 V  
300 kΩ  
(G Only)  
3
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4 V  
CC  
Voltage range: Enables or Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −1 V to 6 V  
A or B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −5 V to 6 V  
V − V (LVDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V  
A
B
Electrostatic discharge: A, B, and GND (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . Class 3, A: 15 kV, B: 500 V  
Charged-device mode: All pins (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
3. Tested in accordance with JEDEC Standard 22, Test Method C101.  
DISSIPATION RATING TABLE  
T
A
25°C  
OPERATING FACTOR  
T = 85°C  
A
POWER RATING  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D8  
PW16  
D16  
725 mW  
5.8 mW/°C  
6.2 mW/°C  
7.6 mW/°C  
377 mW  
774 mW  
402 mW  
950 mW  
494 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with  
no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
3.6  
5
UNIT  
Supply voltage, V  
CC  
3
2
3.3  
V
V
V
High-level input voltage, V  
IH  
Enables  
Enables  
LVDS  
Low-level input voltage, V  
IL  
0
0.8  
3
0.1  
Magnitude of differential input voltage, V  
ID  
V
LVDT  
0.8  
5
Voltage at any bus terminal (separately or common-mode), V or V  
−4  
V
I
IC  
Operating free-air temperature, T  
−40  
85  
°C  
A
4
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
V
Positive-going differential input voltage threshold  
50  
IT1  
Negative-going differential input voltage  
threshold  
V
= −4 V or 5 V, See Figures 1 and 2  
mV  
IB  
−50  
−32  
IT2  
Differential input failsafe voltage threshold  
Differential input voltage hysteresis,  
See Table 1 and Figure 5  
−100  
mV  
mV  
IT3  
50  
ID(HYS)  
V
IT1  
− V  
IT2  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= −4 mA  
= 4 mA  
2.4  
V
V
OH  
OH  
0.4  
23  
5
OL  
OL  
G at V  
CC  
,
No load, Steady-state  
16  
1.1  
8
SN65LVDx33  
G at GND  
SN65LVDx34 No load,  
V = 0 V,  
I
Supply current  
mA  
CC  
Steady-state  
12  
20  
20  
75  
40  
40  
40  
150  
80  
3
Other input open  
Other input open  
Other input open  
Other input open  
Other input open  
Other input open  
Other input open  
Other input open  
I
V = 2.4 V,  
I
SN65LVDS  
SN65LVDT  
µA  
V = −4 V,  
I
V = 5 V,  
I
I
I
Input current (A or B inputs)  
Differential input current  
V = 0 V,  
I
V = 2.4 V,  
I
µA  
V = −4 V,  
I
V = 5 V,  
I
SN65LVDS  
SN65LVDT  
V
V
= 100 mV,  
= 200 mV,  
V
V
= −4 V or 5 V  
= −4 V or 5 V  
µA  
ID  
ID  
IC  
I
I
ID  
(I − I  
IA IB  
)
1.55  
2.22  
20  
50  
30  
100  
10  
10  
10  
mA  
IC  
V
or V = 0 V or 2.4 V,  
V
= 0 V  
A
B
CC  
= 0 V  
SN65LVDS  
SN65LVDT  
V
or V = −4 or 5 V,  
V
CC  
Power-off input current  
(A or B inputs)  
A
B
µA  
I(OFF)  
V
or V =0 V or 2.4 V, V  
= 0 V  
= 0 V  
A
B
CC  
CC  
V
or V = −4 V or 5 V, V  
B
A
I
I
I
High-level input current (enables)  
Low-level input current (enables)  
High-impedance output current  
V
= 2 V  
µA  
µA  
µA  
pF  
IH  
IH  
IL  
V
= 0.8 V  
IL  
−10  
OZ  
C
Input capacitance, A or B input to GND  
V = 0.4 sin (4E6πt) + 0.5 V  
5
I
I
All typical values are at 25°C and with a 3.3 V supply.  
5
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
switching characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Delay time, failsafe deactivate time  
TEST CONDITIONS  
MIN TYP  
MAX  
6
UNIT  
ns  
ns  
ns  
µs  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
2.5  
2.5  
4
4
PLH(1)  
PHL(1)  
d1  
See Figure 3  
6
9
C
= 10 pF,  
L
See Figures 3 and 6  
Delay time, failsafe activate time  
0.3  
1.5  
d2  
Pulse skew (|t  
– t  
PHL(1) PLH(1)  
|)  
200  
150  
sk(p)  
sk(o)  
sk(pp)  
r
Output skew  
Part-to-part skew  
§
1
See Figure 3  
Output signal rise time  
Output signal fall time  
0.8  
0.8  
5.5  
4.4  
3.8  
7
f
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance -to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
9
9
9
9
PHZ  
PLZ  
PZH  
PZL  
See Figure 4  
§
All typical values are at 25°C and with a 3.3-V supply.  
t
is the magnitude of the time difference between the t  
is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices  
or t  
of all receivers of a single device with all of their inputs driven together.  
sk(o)  
PLH  
PHL  
t
sk(pp)  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
6
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
I
IA  
A
B
V
O
Y
V
ID  
V
IA  
I
IB  
(V + V )/2  
IA IB  
V
O
V
IC  
V
IB  
Figure 1. Voltage and Current Definitions  
1000 Ω  
100 Ω  
100 Ω  
V
ID  
1000 Ω  
V
O
10 pF,  
2 Places  
+
V
IC  
10 pF  
Remove for testing LVDT device.  
V
IT1  
0 V  
V
ID  
−100 mV  
V
O
100 mV  
0 V  
V
ID  
V
IT2  
V
O
NOTE: Input signal of 3 Mpps, duration of 167 ns, and transition time of <1 ns.  
Figure 2. V  
and V  
Input Voltage Threshold Test Circuit and Definitions  
IT2  
IT1  
7
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
V
ID  
V
IA  
V
O
C
= 10 pF  
V
IB  
L
V
V
1.4 V  
IA  
1 V  
IB  
0.4 V  
V
ID  
0 V  
−0.4 V  
t
t
PLH  
PHL  
V
OH  
1.4 V  
80%  
20%  
80%  
20%  
V
O
V
OL  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulsewidth = 10 0.2 ns . C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.  
L
Figure 3. Timing Test Circuit and Waveforms  
8
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
B
1.2 V  
500 Ω  
A
10 pF  
V
O
Inputs  
G
G
V
TEST  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse  
r
f
repetition rate (PRR) = 0.5 Mpps, pulsewidth = 500 10 ns . C includes instrumentation and fixture  
L
capacitance within 0,06 mm of the D.U.T.  
2.5 V  
V
TEST  
A
1 V  
2 V  
1.4 V  
0.8 V  
G
G
2 V  
1.4 V  
0.8 V  
t
t
PLZ  
PLZ  
t
t
PZL  
PZL  
Y
2.5 V  
1.4 V  
OL  
OL  
V
V
+0.5 V  
V
TEST  
0
1.4 V  
A
G
2 V  
1.4 V  
0.8 V  
2 V  
1.4 V  
0.8 V  
t
PHZ  
G
t
PHZ  
t
t
PZH  
PZH  
Y
V
V
OH  
OH  
−0.5 V  
1.4 V  
0
Figure 4. Enable/Disable Time Test Circuit and Waveforms  
9
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
Table 1. Receiver Minimum and Maximum V  
Input Threshold Test Voltages  
IT3  
APPLIED VOLTAGES  
RESULTANT INPUTS  
V
IA  
(mV) (mV)  
V
V
(mV)  
V (mV)  
IC  
Output  
IB  
ID  
−100  
−4000  
−4000  
4900  
−3900  
−3968  
5000  
−3950  
−3984  
4950  
L
H
L
−32  
−100  
−32  
4968  
5000  
4984  
H
These voltages are applied for a minimum of 1.5 µs.  
V
V
IA  
−100 mV @ 250 KHz  
IB  
V
O
a) No Failsafe  
V
IA  
−32 mV @ 250 KHz  
V
IB  
V
O
Failsafe Asserted  
b) Failsafe Asserted  
Figure 5. V  
Failsafe Threshold Test  
IT3  
1.4 V  
1 V  
0.4 V  
>1.5 µs  
0 V  
−0.2 V  
−0.4 V  
t
t
d2  
d1  
V
OH  
1.4 V  
V
OL  
Figure 6. Waveforms for Failsafe Activate and Deactivate  
10  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
4
3
V
T
A
= 3.3 V  
= 25°C  
V
= 3.3 V  
CC  
CC  
T = 25°C  
A
2
1
2
1
0
0
0
10  
20  
30  
40  
−40  
−30  
−20  
−10  
0
I
− Low-Level Output Current − mA  
I
OH  
− High-Level Output Current − mA  
OL  
Figure 7  
Figure 8  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
5
4.5  
4
4.5  
4
V
= 3 V  
V
= 3 V  
CC  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
3.5  
3
3.5  
3
−50  
0
50  
100  
−50  
0
50  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 9  
Figure 10  
11  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREQUENCY  
140  
120  
V
= 3.3 V  
100  
80  
CC  
V
= 3.6 V  
CC  
60  
40  
V
CC  
= 3 V  
20  
0
0
100  
150  
200  
f − Switching Frequency − MHz  
Figure 11  
12  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
0.01 µF  
3.6 V  
16  
V
CC  
5 V  
1
1B  
0.1 µF  
1N645  
(see Note A)  
(2 places)  
100 Ω  
2
1A  
15  
4B  
3
100 Ω  
(see Note B)  
1Y  
G
14  
4
5
6
4A  
V
CC  
13  
12  
11  
4Y  
G
2Y  
2A  
See Note C  
3Y  
100 Ω  
7
8
10  
9
3A  
3B  
2B  
100 Ω  
GND  
NOTES: A. Place a 0.1-µF Z5U ceramic, mica or polystyrene dielectric, 0805 size, chip capacitor between V  
and the ground plane. The  
CC  
capacitor should be located as close as possible to the device terminals.  
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with 10%.  
C. Unused enable inputs should be tied to V or GND as appropriate.  
CC  
Figure 12. Operation With 5-V Supply  
related information  
IBIS modeling is available for this device. Please contact the local TI sales office or the TI Web site at www.ti.com  
for more information.  
For more application guidelines, please see the following documents:  
D
D
D
D
D
D
Low-Voltage Differential Signalling Design Notes (TI literature number SLLA014)  
Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)  
Reducing EMI With LVDS (SLLA030)  
Slew Rate Control of LVDS Circuits (SLLA034)  
Using an LVDS Receiver With RS-422 Data (SLLA031)  
Evaluating the LVDS EVM (SLLA033)  
13  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
active failsafe feature  
A differential line receiver commonly has a failsafe circuit to prevent it from switching on input noise. Current  
LVDS failsafe solutions require either external components with subsequent reductions in signal quality or  
integrated solutions with limited application. This family of receivers has a new integrated failsafe that solves  
the limitations seen in present solutions. A detailed theory of operation is presented in application note The  
Active Failsafe Feature of the SN65LVDS32B, literature number SLLA082A.  
The following figure shows one receiver channel with active failsafe. It consists of a main receiver that can  
respond to a high-speed input differential signal. Also connected to the input pair are two failsafe receivers that  
form a window comparator. The window comparator has a much slower response than the main receiver and  
it detects when the input differential falls below 80 mV. A 600-ns failsafe timer filters the window comparator  
outputs. When failsafe is asserted, the failsafe logic drives the main receiver output to logic high.  
Output  
Buffer  
Main Receiver  
+
_
A
B
R
Failsafe  
Timer  
Reset  
A > B + 80 mV  
+
_
Failsafe  
B > A + 80 mV  
+
_
Window Comparator  
Figure 13. Receiver With Active Failsafe  
14  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢀ ꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢉꢇ ꢇ ꢈ ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢀꢇ ꢊ ꢈ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢉ ꢇꢊ  
ꢋꢌ ꢍꢋ ꢎꢀꢏꢐ ꢐꢆ ꢆꢌ ꢑꢑ ꢐꢒ ꢐꢁꢉ ꢌꢓ ꢄ ꢒꢐꢔ ꢐ ꢌꢅ ꢐ ꢒꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
ECL/PECL-to-LVTTL conversion with TI’s LVDS receiver  
The various versions of emitter-coupled logic (i.e. ECL, PECL and LVPECL) are often the physical layer of  
choice for system designers. Designers know of the established technology and that it is capable of high-speed  
data transmission. In the past, system requirements often forced the selection of ECL. Now technologies like  
LVDS provide designers with another alternative. While the total exchange of ECL for LVDS may not be a design  
option, designers have been able to take advantage of LVDS by implementing a small resistor divider network  
at the input of the LVDS receiver. TI has taken the next step by introducing a wide common-mode LVDS receiver  
(no divider network required) which can be connected directly to an ECL driver with only the termination bias  
voltage required for ECL termination (V  
– 2 V).  
CC  
Figures 14 and 15 show the use of an LV/PECL driver driving 5 meters of CAT−5 cable and being received by  
TI’s wide common-mode receiver and the resulting eye-pattern. The values for R3 are required in order to  
provide a resistor path to ground for the LV/PECL driver. With no resistor divider, R1 simply needs to match the  
characteristic load impedance of 50 . The R2 resistor is a small value and is intended to minimize any possible  
common-mode current reflections.  
V
V
CC  
I
CC  
I
R1 = 50 Ω  
R2 = 50 Ω  
CC  
CC  
V
B
5 Meters  
of CAT-5  
LV/PECL  
LVDS  
V
B
R3  
R3  
R1  
R1  
V
EE  
R2  
R3 = 240 Ω  
Figure 14. LVPECL or PECL to Remote Wide Common-Mode LVDS Receiver  
Figure 15. LV/PECL to Remote SN65LVDS33 at 500 Mbps Receiver Output (CH1)  
15  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢉꢇ ꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢀꢇ ꢊ ꢈ ꢀꢁꢂ ꢃ ꢄꢅꢆꢉ ꢇ ꢊ  
ꢋ ꢌꢍ ꢋꢎꢀ ꢏꢐꢐ ꢆ ꢆ ꢌꢑ ꢑꢐ ꢒꢐ ꢁꢉ ꢌ ꢓꢄ ꢒꢐ ꢔꢐ ꢌ ꢅꢐ ꢒ ꢀ  
SLLS490B − MARCH 2001 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
test conditions  
D
D
D
V
= 3.3 V  
CC  
T = 25°C (ambient temperature)  
A
All four channels switching simultaneously with NRZ data. Scope is pulse-triggered simultaneously with  
NRZ data.  
equipment  
D
D
D
Tektronix PS25216 programmable power supply  
Tektronix HFS 9003 stimulus system  
Tektronix TDS 784D 4-channel digital phosphor oscilloscope − DPO  
Tektronix PS25216  
Programmable  
Power Supply  
Tektronix HFS 9003  
Stimulus System  
Trigger  
Tektronix TDS 784D 4-Channel  
Digital Phosphor  
Bench Test Board  
Oscilloscope − DPO  
Figure 16. Equipment Setup  
100 Mbit/s  
200 Mbit/s  
Figure 17. Typical Eye Pattern SN65LVDS33  
16  
WWW.TI.COM  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

SN65LVDS33-EP

HIGH-SPEED DIFFERENTIAL RECEIVER
TI

SN65LVDS33D

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DR

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33DRG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33MDREP

HIGH-SPEED DIFFERENTIAL RECEIVER
TI

SN65LVDS33PW

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33PWG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33PWR

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33PWRG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS33_07

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDS34

HIGH SPEED DIFFERENTIAL RECEIVERS
TI