SN75372P [TI]

DUAL MOSFET DRIVER; 双MOSFET驱动器
SN75372P
型号: SN75372P
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL MOSFET DRIVER
双MOSFET驱动器

驱动器
文件: 总11页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
Dual Circuits Capable of Driving  
D OR P PACKAGE  
(TOP VIEW)  
High-Capacitance Loads at High Speeds  
Output Supply Voltage Range up to 24 V  
Low Standby Power Dissipation  
1A  
E
V
CC1  
1Y  
2Y  
1
2
3
4
8
7
6
5
2A  
description  
GND  
V
CC2  
The SN75372 is a dual NAND gate interface  
circuit designed to drive power MOSFETs from  
TTL inputs. It provides high current and voltage  
levels necessary to drive large capacitive loads at  
logic symbol  
2
E
EN  
high speeds. The device operates from a V  
of  
CC1  
1
5 V and a V  
of up to 24 V.  
TTL/MOS  
CC2  
7
6
1A  
1Y  
2Y  
3
The SN75372 is characterized for operation from  
0°C to 70°C.  
2A  
This symbol is in accordance with ANSI/IEEE Std 91-1984  
and IEC Publication 617-12.  
schematic (each driver)  
V
CC1  
V
CC2  
To Other  
Driver  
Input A  
Output Y  
Enable E  
GND  
To Other  
Driver  
Copyright 1986, Texas Instruments Incorporated  
Revision Information  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
3–1  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 25 V  
CC1  
CC2  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
I
Peak output current, V (t < 10 ms, duty cycle < 50%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mA  
O
w
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Voltage values are with respect to network GND.  
DISSIPATION RATING TABLE  
= 25°C DERATING FACTOR  
T
A
T = 70°C  
A
POWER RATING  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D
P
725 mW  
5.8 mW/°C  
8.0 mW/°C  
464 mW  
1000 mW  
640 mW  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
24  
UNIT  
V
Supply voltage, V  
Supply voltage, V  
4.75  
5
CC1  
CC2  
4.75  
2
20  
V
High-level input voltage, V  
V
IH  
Low-level input voltage, V  
0.8  
10  
40  
V
IL  
High-level output current, I  
mA  
mA  
°C  
OH  
Low-level output current, I  
OL  
Operating free-air temperature, T  
0
70  
A
3–2  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
electrical characteristics over recommended ranges of V  
temperature (unless otherwise noted)  
, V  
, and operating free-air  
CC1  
CC2  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
Input clamp voltage  
I = 12 mA  
1.5  
V
IK  
I
V
= 0.8 V,  
= 0.8 V,  
= 2 V,  
I
I
I
= 50 µA  
= 10 mA  
= 10 mA  
= 2 V,  
V
V
1.3  
V
V
0.8  
1.8  
IL  
IL  
IH  
OH  
OH  
OL  
CC2  
CC2  
High-level output voltage  
V
OH  
V
V
V
2.5  
CC2  
CC2  
0.15  
0.3  
0.5  
1.5  
V
V
Low-level output voltage  
V
= 15 V to 24 V,  
V
IH  
OL  
CC2  
= 40 mA  
0.25  
I
OL  
V = 0,  
Output clamp-diode forward voltage  
I
F
= 20 mA  
V
F
I
Input current at maximum input  
voltage  
I
I
I
V = 5.5 V  
1
mA  
I
I
Any A  
40  
80  
High-level input current  
Low-level input current  
V = 2.4 V  
I
µA  
IH  
IL  
Any E  
Any A  
Any E  
–1  
–2  
1.6  
3.2  
V = 0.4 V  
I
mA  
Supply current from V  
outputs high  
, both  
, both  
, both  
, both  
CC1  
CC2  
CC1  
CC2  
CC2  
I
I
I
I
I
2
4
0.5  
24  
mA  
mA  
mA  
mA  
mA  
CC1(H)  
CC2(H)  
CC1(L)  
CC2(L)  
CC2(S)  
V
= 5.25 V,  
V
= 24 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
Supply current from V  
outputs high  
Supply current from V  
outputs low  
16  
7
V
= 5.25 V,  
V
= 24 V,  
CC1  
All inputs at 5 V,  
CC2  
No load  
Supply current from V  
outputs low  
13  
Supply current from V  
condition  
, standby  
V
= 0,  
V
= 24 V,  
CC1  
All inputs at 5 V,  
CC2  
No load  
0.5  
All typical values are at V  
= 5 V, V  
= 20 V, and T = 25°C.  
CC2 A  
CC1  
switching characteristics, V  
= 5 V, V  
= 20 V, T = 25°C  
CC1  
CC2  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
35  
UNIT  
ns  
t
t
t
t
t
t
Delay time, low-to-high-level output  
Delay time, high-to-low-level output  
20  
10  
20  
20  
40  
30  
DLH  
DHL  
TLH  
THL  
PLH  
PHL  
20  
ns  
Transition time, low-to-high-level output  
30  
ns  
C
= 390 pF,  
R
= 10 ,  
D
See Figure 1  
L
Transition time, high-to-low-level output  
30  
ns  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
10  
10  
65  
ns  
50  
ns  
3–3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
PARAMETER MEASUREMENT INFORMATION  
10 ns  
10 ns  
3 V  
0 V  
5 V  
20 V  
Input  
90%  
1.5 V  
90%  
1.5 V  
10%  
10%  
DHL  
V
CC1  
V
CC2  
0.5 µs  
Input  
t
t
PHL  
PHL  
Pulse  
Generator  
(see Note A)  
R
t
t
D
TLH  
Output  
t
THL  
C
= 390 pF  
(see Note B)  
L
V
OH  
–3 V  
t
DLH  
GND  
V
V
CC2  
–3V  
CC2  
Output  
2.4 V  
2 V  
2 V  
V
OL  
VOLTAGE WAVEFORMS  
TEST CIRCUIT  
NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, Z 50 .  
O
B.  
C includes probe and jig capacitance.  
L
Figure 1. Test Circuit and Voltage Waveforms, Each Driver  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
V
0.5  
0.4  
0.3  
CC2  
V
V
= 5 V  
= 20 V  
V
V
= 5 V  
= 20 V  
CC1  
CC2  
CC1  
CC2  
V = 2 V  
I
V = 0.8 V  
I
V
0.5  
CC2  
T
A
= 70°C  
V
–1  
CC2  
T
A
= 25°C  
T
= 70°C  
= 0°C  
A
T
= 0°C  
A
V
1.5  
CC2  
0.2  
0.1  
0
V
–2  
CC2  
T
A
V
2.5  
CC2  
V
–3  
– 0.01  
CC2  
–1  
–10  
–100  
– 0.1  
0
20  
40  
60  
80  
100  
I
– High-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OH  
OL  
Figure 2  
Figure 3  
3–4  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
TYPICAL CHARACTERISTICS  
POWER DISSIPATION (BOTH DRIVERS)  
vs  
VOLTAGE TRANSFER CHARACTERISTICS  
FREQUENCY  
1200  
1000  
800  
24  
20  
16  
12  
8
V
V
= 5 V  
V
V
= 5 V  
= 20 V  
CC1  
CC1  
CC2  
= 20 V  
CC2  
No Load  
T
A
Input: 3-V Square Wave  
50% Duty Cycle  
= 25°C  
T
A
= 25°C  
C
= 600 pF  
L
C
= 1000 pF  
L
600  
400  
C
= 2000 pF  
L
C
= 4000 pF  
L
200  
0
4
C
= 400 pF  
L
Allowable in P Package Only  
0
0
0.5  
1
1.5  
2
2.5  
10  
20  
40 100 200  
400  
1000  
f – Frequency – kHz  
V – Input Voltage – V  
I
Figure 4  
Figure 5  
PROPAGATION DELAY TIME,  
LOW-TO-HIGH-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME,  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
200  
180  
160  
140  
200  
180  
160  
140  
V
V
R
= 5 V  
= 20 V  
= 10 Ω  
CC1  
CC2  
D
C
= 4000 pF  
L
See Figure 1  
C
= 4000 pF  
L
V
V
R
= 5 V  
= 20 V  
= 10 Ω  
CC1  
CC2  
D
120  
100  
120  
100  
See Figure 1  
C
= 2000 pF  
L
C
C
C
= 2000 pF  
= 1000 pF  
= 390 pF  
L
L
L
80  
80  
C
C
= 1000 pF  
= 390 pF  
L
L
60  
40  
20  
0
60  
40  
20  
0
C
= 200 pF  
C = 200 pF  
L
L
C
= 50 pF  
L
C
= 50 pF  
60  
L
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
70  
80  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 6  
Figure 7  
3–5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME,  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME,  
LOW-TO-HIGH-LEVEL OUTPUT  
vs  
V
SUPPLY VOLTAGE  
V
SUPPLY VOLTAGE  
CC2  
CC2  
200  
180  
160  
140  
200  
180  
160  
140  
V
R
= 5 V  
= 10 Ω  
= 25°C  
CC1  
D
V
R
= 5 V  
= 10 Ω  
= 25°C  
CC1  
D
C
= 4000 pF  
L
T
A
T
A
See Figure 1  
See Figure 1  
C
= 4000 pF  
L
120  
100  
120  
100  
C
= 2000 pF  
L
C
= 2000 pF  
L
80  
80  
C
= 1000 pF  
= 390 pF  
L
C = 1000 pF  
L
60  
40  
20  
0
60  
40  
20  
0
C
= 200 pF  
C
L
L
C = 390 pF  
L
C
= 200 pF  
L
C
= 50 pF  
20  
C
= 50 pF  
20  
L
L
0
5
10  
15  
25  
0
5
10  
15  
25  
V
CC2  
– Supply Voltage – V  
V
CC2  
– Supply Voltage – V  
Figure 8  
Figure 9  
PROPAGATION DELAY TIME,  
LOW-TO-HIGH-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME,  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
200  
200  
180  
160  
140  
V
V
= 5 V  
= 20 V  
= 25°C  
V
V
= 5 V  
= 20 V  
= 25°C  
CC1  
CC2  
CC1  
CC2  
180  
160  
140  
T
T
A
A
See Figure 1  
See Figure 1  
R
= 24 Ω  
R = 24 Ω  
D
D
R
= 10 Ω  
120  
100  
120  
100  
D
R
= 10 Ω  
D
80  
80  
R
= 0  
D
60  
40  
20  
0
60  
40  
R
= 0  
D
20  
0
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
C
– Load Capacitance – pF  
C – Load Capacitance – pF  
L
L
Figure 10  
Figure 11  
NOTE: For R = 0, operation with C > 2000 pF violates absolute maximum current rating.  
D
L
3–6  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
THERMAL INFORMATION  
power dissipation precautions  
Significant power may be dissipated in the SN75372 driver when charging and discharging high-capacitance  
loads over a wide voltage range at high frequencies. Figure 5 shows the power dissipated in a typical SN75372  
as a function of load capacitance and frequency. Average power dissipated by this driver is derived from the  
equation  
P
= P  
+ P  
= P  
C(AV) S(AV)  
T(AV)  
DC(AV)  
where P  
is the steady-state power dissipation with the output high or low, P  
is the power level during  
DC(AV)  
C(AV)  
charging or discharging of the load capacitance, and P  
is the power dissipation during switching between  
S(AV)  
the low and high levels. None of these include energy transferred to the load, and all are averaged over a full  
cycle.  
The power components per driver channel are  
t
HL  
t
LH  
P
t
+ P t  
L L  
H H  
P
P
=
DC(AV)  
T
2
C V  
P
f
C(AV)  
C
t
H
t
+ P  
T
t
HL HL  
t
L
LH LH  
P
S(AV)  
=
T = 1/f  
where the times are as defined in Figure 14.  
Figure 12. Output Voltage Waveform  
P , P , P , and P are the respective instantaneous levels of power dissipation, C is the load capacitance.  
L
H
LH  
HL  
V is the voltage across the load capacitance during the charge cycle shown by the equation  
C
V = V  
– V  
OL  
C
OH  
P
may be ignored for power calculations at low frequencies.  
S(AV)  
In the following power calculation, both channels are operating under identical conditions:  
=19.2 V and V = 0.15 V with V = 5 V, V = 20 V, V = 19.05 V, C = 1000 pF, and the  
V
OH  
OL  
CC1  
CC2  
C
duty cycle = 60%. At 0.5 MHz, P  
is negligible and can be ignored.  
is negligible and can be ignored. When the output voltage is high, I  
S(AV)  
CC2  
On a per-channel basis using data sheet values,  
0 mA  
2
16 mA  
2
2 mA  
2
7 mA  
2
P
(5 V)  
(20 V)  
(0.6)  
(5 V)  
(20 V)  
(0.4)  
DC(AV)  
P
= 47 mW per channel  
DC(AV)  
Power during the charging time of the load capacitance is  
2
P
= (1000 pF) (19.05 V) (0.5 MHz) = 182 mW per channel  
C(AV)  
Total power for each driver is  
= 47 mW + 182 mW = 229 mW  
P
T(AV)  
and total package power is  
= (229) (2) = 458 mW.  
P
T(AV)  
3–7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
APPLICATION INFORMATION  
driving power MOSFETs  
The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The  
input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance  
in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pullup  
resistor is not satisfactory for high-speed applications. In Figure 12(a), an IRF151 power MOSFET switching  
an inductive load is driven by an open-collector transistor driver with a 470-pullup resistor. The input  
capacitance (C ) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the  
iss  
combination of C and the pullup resistor is shown in Figure 12(b).  
iss  
48 V  
M
5 V  
4
3
470 Ω  
4
8
1
7
6
1/2 SN75447  
2
1
0
IRF151  
3
5
TLC555P  
0
0.5  
1
1.5  
2
2.5  
3
2
t – Time – µs  
(b)  
(a)  
Figure 13. Power MOSFET Drive Using SN75447  
3–8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75372  
DUAL MOSFET DRIVER  
SLLS025A – JULY 1986  
APPLICATION INFORMATION  
A faster, more efficient drive circuit uses an active pullup as well as an active pulldown output configuration,  
referred to as a totem-pole output. The SN75372 driver provides the high speed, totem-pole drive desired in  
an application of this type, see Figure 13(a). The resulting faster switching speeds are shown in Figure 13(b).  
48 V  
5 V  
M
4
4
8
3
2
1
0
7
6
3
5
TLC555P  
IRF151  
1/2 SN75372  
2
1
0
0.5  
1
1.5  
2
2.5  
3
t – Time – µs  
(b)  
(a)  
Figure 14. Power MOSFET Drive Using SN75372  
Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as  
shown by the equation  
VC  
I
pk  
t
r
where C is the capacitive load, and t is the desired drive time. V is the voltage that the capacitance is charged  
r
to. In the circuit shown in Figure 13(a), V is found by the equation  
V = V  
– V  
OL  
OH  
Peak current required to maintain a rise time of 100 ns in the circuit of Figure 13(a) is  
9
(3 0)4(10  
)
I
120 mA  
PK  
9
100(10  
)
Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151.  
With a V of 5 V, and assuming worst-cast conditions, the gate drive voltage is 3 V.  
CC  
For applications in which the full voltage of V  
MOSFET driver should be used.  
must be supplied to the MOSFET gate, the SN75374 quad  
CC2  
3–9  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
3–10  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current and complete.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SN75372P-00

0.5A 2 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDIP8
TI

SN75372P3

IC,DUAL MOSFET DRIVER,BIPOLAR,DIP,8PIN,PLASTIC
TI

SN75372PE4

双路 MOSFET 驱动器 | P | 8 | 0 to 70
TI

SN75372PSR

Dual MOSFET Drivers 8-SO 0 to 70
TI

SN75374

QUADRUPLE MOSFET DRIVER
TI

SN75374D

QUADRUPLE MOSFET DRIVER
TI

SN75374D-00R

0.5A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16
TI

SN75374DE4

QUADRUPLE MOSFET DRIVER
TI

SN75374DG4

Quadruple MOSFET Drivers 16-SOIC 0 to 70
TI

SN75374DR

QUADRUPLE MOSFET DRIVER
TI

SN75374DRE4

QUADRUPLE MOSFET DRIVER
TI

SN75374DRG4

四路 MOSFET 驱动器 | D | 16 | 0 to 70
TI