SN75DPHY440SSRHRR [TI]

工作温度为 0°C 至 70°C 的 MIPI® CSI-2/DSI DPHY 重定时器 | RHR | 28 | 0 to 70;
SN75DPHY440SSRHRR
型号: SN75DPHY440SSRHRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

工作温度为 0°C 至 70°C 的 MIPI® CSI-2/DSI DPHY 重定时器 | RHR | 28 | 0 to 70

商用集成电路
文件: 总36页 (文件大小:1452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
SNx5DPHY440SS CSI-2/DSI DPHY 重计时器  
1 特性  
3 说明  
1
符合 MIPI DPHY 1.1 规范  
DPHY440 是一款 1 4 通道时钟 MIPI DPHY 重定时  
器,用于重新生成 DPHY 信令。该器件符合 MIPI  
DPHY 1.1 标准,可在高达 1.5Gbps 的数据速率下应  
用于 MIPI CSI-2 MIPI DSI 应用。  
实现低成本电缆解决方案  
1.5Gbps 速率时最多支持 4 条通道  
CSI-2/DSI 时钟频率范围为  
100MHz 750MHz  
该器件会补偿 PCB、连接器和电缆相关频率损耗和开  
关相关损耗,以在 CSI2/DSI 源设备和接收设备之间提  
供最佳 DP 电气性能。DPHY440 DPHY 输入端具  
有可配置的均衡器。  
关断状态下的功耗低于 mW  
支持 MIPI DSI 双向 LP 模式  
支持 ULPS LP 功耗状态  
可调输出电压摆幅  
输出引脚会自动补偿在器件输入端口上接收的时钟和数  
据间的不一致偏移。DPHY440 输出电压摆幅和边沿速  
率可分别通过更改 VSADJ_CFG0 引脚和 ERC 引脚的  
状态进行调节。  
可选 TX 预加重电平  
可调 Rx EQ 以补偿 ISI 损耗  
可配置边沿速率控制  
动态数据和时钟偏移补偿  
具有 3kV ESD HBM 保护功能  
DPHY440 针对移动 应用进行了优化,并且在 DPHY  
链路接口上装有活动检测电路,以便在检测到 ULPS  
LP 状态时切换到低功耗模式。  
工业温度范围:-40°C 85°C  
(SN65DPHY440SS)  
商业级温度范围:0°C 70°C  
(SN75DPHY440SS)  
SN65DPHY440SS -40ºC 85ºC 的工业级温度范  
围内额定运行,而 SN75DPHY440SS 0ºC 70ºC  
的商业级温度范围内额定运行。  
1.8V 单电源供电  
2 应用  
器件信息 (1)  
笔记本电脑  
器件型号  
封装  
封装尺寸(标称值)  
翻盖结构  
平板电脑  
摄像机  
SN65DPHY440SS  
SN75DPHY440SS  
WQFN (28)  
3.50mm x 5.50mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
简化原理图  
典型应用  
Camera  
APU  
(CSI-2 Source)  
(CSI-2 Sink)  
DPHY440  
CSI TX  
CSI RX  
DB0P/N  
DB1P/N  
DBCP/N  
DB2P/N  
DB3P/N  
CSI0P/N  
CSI1P/N  
CSICP/N  
CSI2P/N  
CSI3P/N  
DA0P/N  
DA1P/N  
DACP/N  
DA2P/N  
DA3P/N  
CSI0P/N  
CSI1P/N  
CSICP/N  
CSI2P/N  
CSI3P/N  
Vio  
CSI Slave  
SCL  
CSI Master  
SCL  
SDA  
SDA  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEO9  
 
 
 
 
 
 
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 14  
7.5 Register Maps......................................................... 15  
Application and Implementation ........................ 21  
8.1 Application Information, ......................................... 21  
8.2 Typical Application, CSI-2 Implementations ........... 21  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics, Power Supply ................. 7  
6.6 Electrical Characteristics........................................... 7  
6.7 Timing Requirements................................................ 8  
6.8 Switching Characteristics.......................................... 9  
6.9 Typical Characteristics............................................ 10  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 相关链接................................................................ 27  
11.2 社区资源................................................................ 27  
11.3 ....................................................................... 27  
11.4 静电放电警告......................................................... 27  
11.5 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
Changes from Revision B (August 2017) to Revision C  
Page  
Changed F(BR) MAX value From: 1 Gbps To: 1.5 Gbps in the Switching Characteristics table............................................. 9  
Changes from Revision A (April 2016) to Revision B  
Page  
特性 “CSI-2/DSI 时钟频率范围为 100MHz 500MHz”更改为“CSI-2/DSI 时钟频率范围为 100MHz 750MHz”......... 1  
更改了说明 部分的文本,将高达 1Gbps 的数据速率下的 MIPI DSI 应用。更改为高达 1.5Gbps 的数据速率下的  
MIPI DSI 应用。” .................................................................................................................................................................... 1  
Changed VIH = 4 dB To: VIH = 5 dB in the Pin Functions table.............................................................................................. 4  
Added a Test Condition of EQ is at 750 MHz to V(RXEQ1) n the Electrical Characteristics table ............................................ 7  
Changed V(RXEQ2) TYP value From: 4 dB To: 5 dB in the Electrical Characteristics table .................................................... 7  
Changed the MIPI DPHY HS Interface section in the Timing Requirements table................................................................ 8  
Changed F(HSCLK) From 500 µsMHz To: 750 MHz in the Switching Characteristics table ..................................................... 9  
Changed F(DESKEW) from 500 MHz To: 750 MHz. .................................................................................................................. 9  
Changed tR and tF Datarate Test Conditions and values ...................................................................................................... 9  
Changed text From: application at datarates of up to 1 Gbps To: application at datarates of up to 1.5 Gbps in the  
Overview section .................................................................................................................................................................. 11  
Changed Table 1 ................................................................................................................................................................. 12  
Changed 11 – 4 dB To: 11 – 5 dB for RXEQ_CLK in Table 8 ............................................................................................ 17  
Changed 11 – 4 dB To: 11 – 5 dB for RXEQ_DATA in Table 8 ......................................................................................... 17  
Changed From: Data Rate To: Data Rate (200 Mbps to 1.5 Gbps) in Table 15.................................................................. 22  
2
版权 © 2016–2019, Texas Instruments Incorporated  
 
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
Changes from Original (March 2016) to Revision A  
Page  
特性具有 3kV ESD HBM 保护功能更改为具有 2kV ESD HBM 保护功能................................................................... 1  
Changed From: (approx. 100K) To: (100K) in the Pin Functions table for pins 13 and 14.................................................... 4  
Changed From: (approx. 100K) To: (100K) in the Pin Functions table for pins 26, 27, and 28............................................. 5  
Changed ESD Ratings values. HBM From: ±2000 To: ±3000, and CDM Form: ±500 To: ±1000 ........................................ 6  
Changed V(RXEQ2) TYP value From: 5 dB To: 4 dB in the Electrical Characteristics table .................................................... 7  
Added MIN and MAX values to |VOD(VD0)|, |VOD(VD1)|, and |VOD(VD2)| in the Electrical Characteristics table ............................ 7  
Deleted rows ZOS and ΔZOS from the Electrical Characteristics table .................................................................................... 8  
Updated the MIPI DPHY LP Transmitter Interface section of the Switching Characteristics table........................................ 9  
Changed 5 dB to 4 dB in HS Receive Equalization and Table 1 ........................................................................................ 12  
Changed 11 – 4 dB To: 11 – 5 dB in Table 8 ..................................................................................................................... 17  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
RHR Package  
28 Pin (WQFN)  
Top View  
DA0P  
DA0N  
DA1P  
DA1N  
DACP  
DACN  
DA2P  
DA2N  
DA3P  
DA3N  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DB0P  
DB0N  
DB1P  
DB1N  
DBCP  
DBCN  
DB2P  
DB2N  
DB3P  
DB3N  
2
3
4
Thermal  
Pad  
5
6
7
8
9
10  
Pin Functions  
PIN  
INTERNAL  
PULLUP/PULLDOWN  
I/O  
DESCRIPTION  
NAME  
NO.  
CSI-2/DSI Lane 0 Differential positive Input. Supports DSI LP Backchannel.  
If unused, this pin should be tied to GND.  
DA0P  
1
100-  
Differential  
Input  
CSI-2/DSI Lane 0 Differential negative Input. Supports DSI LP Backchannel.  
If unused, this pin should be tied to GND.  
DA0N  
DA1P  
2
3
CSI-2/DSI Lane 1 Differential positive Input. If unused, this pin should be  
tied to GND.  
100-Ω  
Differential  
Input  
CSI-2/DSI Lane 1 Differential negative input. If unused, this pin should be  
tied to GND.  
DA1N  
DACP  
4
5
(Failsafe)  
100-Ω  
Differential  
Input  
CSI-2/DSI Differential Clock positive Input  
DACN  
6
CSI-2/DSI Differential Clock negative Input  
(Failsafe)  
CSI-2/DSI Lane 2 Differential positive Input. If unused, this pin should be  
tied to GND.  
100-Ω  
Differential  
Input  
DA2P  
DA2N  
DA3P  
DA3N  
7
8
CSI-2/DSI Lane 2 Differential negative Input. If unused, this pin should be  
tied to GND.  
(Failsafe)  
CSI-2/DSI Lane 3 Differential positive Input. If unused, this pin should be  
tied to GND.  
100-Ω  
Differential  
Input  
9
CSI-2/DSI Lane 3 Differential negative Input. If unused, this pin should be  
tied to GND.  
10  
(Failsafe)  
VCC  
11  
12  
Power  
Power  
1.8V (±10%) Supply.  
VREG_OUT  
1.2 V Regulator Output. Requires a 0.1 µF capacitor to GND.  
RX Equalization Select. Pin state sampled on rising edge of RSTN. This pin  
also functions as I2C SCL pin.  
VIL = 0 dB  
VIM = 2.5 dB  
I/O  
(3-level)  
PU (100K)  
PD (100K)  
EQ/SCL  
13  
14  
VIH = 5 dB  
Edge Rate Control for DB[4:0]P/N High speed transmitter rise and fall time.  
Pin state sampled on rising edge of RSTN. This pin also functions as I2C  
SDA pin.  
VIL = 200 ps typical  
VIM = 150 ps typical  
VIH = 250 ps typical  
I/O  
(3-level)  
PU (100K)  
PD (100K)  
ERC/SDA  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
Pin Functions (continued)  
PIN  
INTERNAL  
PULLUP/PULLDOWN  
I/O  
DESCRIPTION  
NAME  
NO.  
CSI-2/DSI Lane 3 Differential negative Output. If unused, this pin should be  
left unconnected.  
DB3N  
15  
100-Ω  
Differential  
Output  
CSI-2/DSI Lane 3 Differential positive Output. If unused, this pin should be  
left unconnected.  
DB3P  
DB2N  
DB2P  
16  
17  
18  
CSI-2/DSI Lane 2 Differential negative Output. If unused, this pin should be  
left unconnected.  
100-Ω  
Differential  
Output  
CSI-2/DSI Lane 2 Differential positive Output. If unused, this pin should be  
left unconnected.  
DBCN  
DBCP  
19  
20  
100-Ω  
Differential  
Output  
CSI-2/DSI Differential Clock negative Output  
CSI-2/DSI Differential Clock positive Output  
CSI-2/DSI Lane 1 Differential negative Output. If unused, this pin should be  
left unconnected.  
DB1N  
DB1P  
DB0N  
DB0P  
VDD  
21  
22  
23  
24  
25  
100-Ω  
Differential  
Output  
CSI-2/DSI Lane 1 Differential positive Output. If unused, this pin should be  
left unconnected.  
CSI-2/DSI Lane 0 Differential negative Output. Supports DSI LP Back  
channel. If unused, this pin should be left unconnected.  
100-Ω  
Differential  
Output  
CSI-2/DSI Lane 0 Differential positive Output. Supports DSI LP Back  
channel. If unused, this pin should be left unconnected.  
This pin must be connected to the VREG_OUT pin through at least a 10-mil  
trace and a 0.1 µF capacitor to ground.  
Power  
Controls DPHY TX HS pre-emphasis level and the LP TX rise and fall times.  
Pin state is sampled on the rising edge of RSTN.  
I/O  
(3-level)  
PU (100K)  
PD (100K)  
PRE_CFG1  
26  
27  
VIL = 0 dB  
VIM = 0 dB  
VIH = 2.5 dB  
Controls output voltage swing for DB HS transmitters and the LP TX rise  
and fall times. Pin state is sampled on the rising edge of RSTN. Refer to  
Table 3 for details on voltage swing settings based on this pin and  
PRE_CFG1 sampled state.  
VIL = 200 mV or 220 mV based on PRE_CFG1 sampled state.  
VIM = 200 mV typical  
I
PU (100K)  
PD (100K)  
VSADJ_CFG0  
(3-level)  
VIH = 220 mV typical  
Reset, active low. When low, all internal CSR are reset to default and  
DPHY440 is placed in low power state.  
RSTN  
GND  
28  
I
PU (300K)  
Thermal pad  
GND  
Ground.  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.175  
1.4  
UNIT  
V
Supply voltage range  
Voltage range  
VCC  
DPHY Lane I/O Differential Voltage  
RSTN  
V
2.175  
2.175  
105  
V
All other terminals  
V
Maximum junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
±3000  
V(ESD)  
Electrostatic discharge  
V
±1000  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
–40  
0
NOM  
MAX  
1.98  
85  
UNIT  
VCC  
TA  
Supply voltage  
1.8  
V
Operating free-air temperature [SN65DPHY440SS]  
Operating free-air temperature [SN75DPHY440SS]  
°C  
70  
6.4 Thermal Information  
SNx5DPHY440SS  
(1)  
THERMAL METRIC  
RHR (WQFN)  
12 PINS  
42.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
32.3  
12.8  
ψJT  
0.5  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
12.6  
RθJC(bot)  
5.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
6.5 Electrical Characteristics, Power Supply  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Power under normal operation for 4 data  
lanes + clock.  
DPHY Lanes at 1 Gbps; VCC supply stable,  
VCC = 1.8 V;  
PACTIVE1_SS  
PACTIVE2_SS  
PLP11_SS  
150  
mW  
Power under normal operation for 2 data  
lanes + clock.  
DPHY Lanes 1 Gbps; VCC supply stable,  
VCC = 1.8 V;  
115  
14  
mW  
mW  
mW  
All DPHY lanes in LP11; VCC supply stable;  
VCC = 1.8 V;  
LP11 Power  
RSTN Power  
RSTN held in asserted state (low); VCC  
supply stable; VCC = 1.8 V;  
PRSTN_SS  
0.75  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standard IO (RSTN, ERC, EQ, CFG[1:0])  
VIL  
VIM  
VIH  
VF  
Low-level control signal input voltage  
0.2 x VCC  
V
V
V
V
Mid-level control signal input voltage  
High-level control signal input voltage  
Floating Voltage  
VCC / 2  
VCC / 2  
0.8 x VCC  
VIN = High Impedance  
At IOL max.  
Low level output voltage (open-drain).  
ERC (SDA) only  
VOL  
0.2 x VCC  
V
IOL  
Low Level Output Current  
High level input current  
3
±36  
±36  
mA  
µA  
µA  
kΩ  
kΩ  
kΩ  
IIH  
IIL  
Low level input current  
RPU  
RPD  
R(RSTN)  
Internal pull-up resistance  
Internal pull-down resistance  
RSTN control input pullup resistor  
100  
100  
300  
MIPI Input Leakage (DA1P/N, DA2P/N, DA3P/N, DACP/N)  
VCC = 0 V; VDD = 0 V; MIPI DPHY pulled  
up to 1.35 V  
Ilkg  
Input failsafe leakage current  
–65  
65  
µAV  
MIPI DPHY HS RECIEVER INTERFACE (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N)  
Differential Input Common-mode voltage  
HS Receive mode  
V(CM-RX_DC)  
| VID  
V(CM-RX) = (VA x P + VA x N)/2  
70  
70  
330  
mV  
|
HS Receiver input differential voltage  
Single-ended input high voltage  
Single-ended input low voltage  
Differential input impedance  
| VID | = |VA x P – VA x N  
|
mV  
mV  
mV  
Ω
VIH(HS)  
460  
125  
VIL(HS)  
–40  
80  
R(DIFF-HS)  
V(RXEQ0)  
V(RXEQ1)  
V(RXEQ2)  
100  
0
Rx EQ gain when EQ/SCL pin VIL  
Rx EQ gain when EQ/SCL pin = VIM  
Rx EQ gain when EQ/SCL pin VIH  
dB  
dB  
dB  
At 750 MHz  
At 750 MHz  
2.5  
5
MIPI DPHY LP Receiver Interface (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N, DB0P/N)  
V(LPIH)  
V(LPIL)  
V(HYST)  
LP Logic 1 Input Voltage  
LP Logic 0 Input voltage  
LP Input Hysteresis  
880  
25  
mV  
mV  
mV  
550  
MIPI DPHY HS Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N)  
HS Transmit static common-mode  
voltage  
V(CMTX)  
V(CMTX) = (V(BP) + V(BN)) / 2  
150  
200  
300  
5
mV  
mV  
VCMTX mismatch when output is  
Differential-1 or differential-0.  
|V(CMTX) (1,0)  
|
V(CMTX) (1,0) = (V(CMTX) (1) – V(CMTX) (0)) /2  
HS Transmit differential voltage for  
CFG0 = 2’b00 with TX pre-emphasis  
disabled or for non-transition bit when  
TX pre-emphasis is enabled.  
|VOD(VD0)  
|
|
|VOD| = |V(DP) - V(DN)  
|
140  
160  
180  
200  
220  
250  
mV  
mV  
HS Transmit differential voltage for  
CFG0 = VIM with TX pre-emphasis  
disabled or for non-transition bit when  
TX pre-emphasis is enabled.  
|VOD(VD1)  
|VOD| = |V(DP) - V(DN)| CFG0 = VIM  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
 
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HS Transmit differential voltage for  
CFG0 = VIH with TX pre-emphasis  
disabled or for non-transition bit when  
pre-emphasis is enabled..  
|VOD(VD2)  
|
|VOD| = |V(DP) - V(DN)| CFG0 VIH  
170  
220  
270  
mV  
VOD mismatch when output is  
differential-1 or differential-0.  
|VOD  
|
VOD = |VO(D1)| - |VO(D0)  
|
14  
mV  
mV  
dB  
HS Output high voltage for non-  
transition bit.  
VOH(HS)  
V(PRE1)  
V(PRE2)  
CFG0 VIH HS Pre = 2.5 dB  
430  
Pre-emphasis Level for HSTX_PRE =  
2’b00.. Refer to Figure 3  
PRE = 20 x LOG (VOD(TBx) / VOD(VDX)  
PRE = 20 x LOG (VOD(TBx) / VOD(VDX)  
)
)
1.5  
2.5  
Pre-emphasis level for HSTX_PRE =  
2’b1X. Refer to Figure 3  
dB  
MIPI DPHY LP Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N, DA0P/N)  
V(LPOH)  
V(LPOL)  
VIH(CD)  
VIL(CD)  
ZO(LP)  
LP Output High Level  
1.1  
–50  
450  
1.2  
1.3  
50  
V
LP Output Low Level  
mV  
mV  
mV  
Ω
LP Logic 1 contention threshold  
LP Logc 0 contention threshold  
Output Impedance of LP transmitter  
200  
110  
6.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
I2C (ERC (SDA), EQ (SCL))  
tHD;STA  
tLOW  
Hold Time (repeated) START condition. After this period, the first clock pulse is generated  
Low period of SCL clock  
4
4.7  
4
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tHIGH  
High period of SCL clock  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time for a repeated START condition  
Data hold time  
4.7  
5
Data setup time  
4
Setup time for STOP condition  
4
Bus free time between a STOP and START condition  
4.7  
MIPI DPHY HS Interface  
tHSPD  
Propagation delay from DA to DB.  
4 + 12ns  
–5  
4 + 40ns  
UI  
%
750 MHz clock with 50%-50%  
duty cycle at DAC input.  
tDBC_DCYCLE DAC to DBC output duty cycle distortion percentage  
5
tSKEW-TX-1G  
tSETUP-RX-1G Data to Clock setup time. Refer to Figure 2  
tHOLD-RX-1G Clock to data hold time. Refer to Figure 2  
Data to Clock variation from 0.5UI. Refer to Figure 2  
Datarate 1 Gbps  
Datarate 1 Gbps  
Datarate 1 Gbps  
Datarate > 1 Gbps  
–0.1  
0.1  
0.1  
UI  
UI  
UI  
UI  
0.1  
tSKEW-TX-1P5G Data to Clock variation from 0.5UI. Refer to Figure 2  
–0.15  
0.15  
tSETUP-RX-  
Data to Clock setup time. Refer to Figure 2  
Datarate > 1 Gbps  
Datarate > 1 Gbps  
0.15  
0.15  
UI  
UI  
1P5G  
tHOLD-RX-1P5G Clock to data hold time. Refer to Figure 2  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
6.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C (ERC (SDA), EQ (SCL))  
F(SCL)  
tF_I2C  
I2C Clock Freqency  
100  
300  
kHz  
ns  
Fall time of both SDA and SCL signals  
Load of 350 pF with 2-K pullup  
resistor.  
Measure at 30% - 70%  
tR_I2C  
Rise Time of both SDA and SCL signals  
1000  
ns  
DPHY LINK  
F(BR)  
Bit Rate  
1.5  
750  
750  
Gbps  
MHz  
MHz  
F(HSCLK)  
F(DESKEW)  
HS Clock Input range  
Automatic Deskew range  
100  
220  
MIPI DPHY HS Receiver Interface (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N)  
V(CMRX_HF)  
V(CMRX_LF)  
Common-mode Interface beyond 450 MHz  
100  
50  
mV  
mV  
Common-mode interference 50 MHz – 450 MHz  
–50  
MIPI DPHY HS Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N)  
V(CMRX_HF)  
V(CMRX_LF)  
Common-level variations above 450 MHz  
5
25  
mVrms  
mVpeak  
UI  
Common-level variation between 50 MHz – 450 MHz.  
Datarate 1 Gbps  
Datarate > 1 Gbps  
0.3  
tR and tF  
20% - 80% rise time and fall time  
0.35  
UI  
100  
20  
ps  
MIPI DPHY LP Receiver Interface (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N, DB0P/N)  
eSPIKE  
tMIN(RX)  
V(INT)  
Input Pulse rejection  
300  
200  
V ps  
ns  
Minimum pulse width response  
Peak interference amplitude  
Interference Frequency  
mv  
F(INT)  
450  
42  
Mhz  
First LP XOR clock pulse after Stop  
state or last pulse before Stop  
state.  
ns  
ns  
Pulse Width of the XOR of DAxP and  
DAxN  
t(LP-PULSE-RX)  
All other pulses.  
22  
MIPI DPHY LP Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N, DA0P/N)  
Measured at end of HS  
transmission.  
tREOT  
30% - 85% rise time and fall time  
35  
ns  
ns  
First LP XOR clock pulse after Stop  
state or last pulse before Stop state  
40  
t(LP-PULSE-TX)  
Pulse Width of the LP XOR clock  
All other pulses  
20  
90  
ns  
ns  
t(LP-PER-TX)  
Period of the LP XOR clock  
Slew Rate at CLOAD = 70 pF  
150  
70  
mV/ns  
mV/ns  
mV/ns  
pF  
δV/δtsr  
Slew Rate at CLOAD = 0 pF Fallng edge only  
Slew Rate at CLOAD = 0 pF Rising edge only  
Load Capacitance  
30  
30  
CLOAD  
(1) (1) All typical values are at VCC = 3.3 V, and TA = 25°C.  
SDA  
t
BUF  
t
f
t
HD;STA  
t
t
r
LOW  
t
f
t
SP  
t
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
0.0UI  
1.0UI  
0.5UI  
TSKEW-TX  
THOLD-RX  
TSETUP-RX  
DCLK  
D[3:0]  
Figure 2. DPHY HS RX and TX Timing  
DB*P  
DB*N  
VOD_TBx  
VOD_VDx  
VCMTX  
Pre-Emphasis = 20 LOG ( VOD_TBX  
/
VOD_VDX  
)
Figure 3. DPHY HS TX Pre-emphasis  
6.9 Typical Characteristics  
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
10  
100  
1k  
10k 100k 1M 10M 100M 1G 10G  
Frequency (Hz)  
1
10  
100  
1k  
10k 100k 1M 10M 100M 1G  
Frequency (Hz)  
D003  
D004  
Figure 4. Return Loss (RL), Transmitter  
Figure 5. Return Loss (RL), Receiver  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
7 Detailed Description  
7.1 Overview  
The DPHY440SS is a one to four lane and clock MIPI DPHY re-driver that regenerates the DPHY signaling. The  
device complies with MIPI DPHY 1.1 standard and can be used in either a MIPI CSI-2 or MIPI DSI application at  
datarates of up to 1.5 Gbps.  
The device compensates for PCB, connector, and cable related frequency loss and switching related loss to  
provide the optimum electrical performance from a CSI2/DSI source to sink. The DPHY440 DPHY inputs feature  
configurable equalizers.  
The output pins will automatically compensate for uneven skew between clock and data lanes. The DPHY440  
output swing and edge rate can be adjusted by changing the state of the VSADJ_CFG0 pin and ERC pin  
respectively.  
The DPHY440 is optimized for mobile applications, and contains activity detection circuitry on the DPHY Link  
interface that can transition into a lower power mode when in ULPS and LP states.  
The device is characterized for an extended operational temperature range from –40ºC to 85ºC.  
7.2 Functional Block Diagram  
DB0P  
DB0N  
DA0P  
DA0N  
HS RX  
LP RX/TX  
HS TX  
LP RX/TX  
CHANNEL  
CONTROL  
DB1P  
DB1N  
DA1P  
DA1N  
HS RX  
LP RX  
HS TX  
LP TX  
CHANNEL  
CONTROL  
DBCP  
DBCN  
DACP  
DACN  
HS RX  
LP RX  
HS TX  
LP TX  
CHANNEL  
CONTROL  
DB2P  
DB2N  
DA2P  
DA2N  
HS RX  
LP RX  
HS TX  
LP TX  
CHANNEL  
CONTROL  
DB3P  
DB3N  
DA3P  
DA3N  
HS RX  
LP RX  
HS TX  
LP TX  
CHANNEL  
CONTROL  
I2C  
Slave  
VSADJ_CFG0  
ERC/SDA  
EQ/SCL  
PRE_CFG1  
VCC  
RRST=300k  
VREG_OUT  
CSR  
Space  
VREG  
LDO  
VCore  
VCC  
GND  
RESET/EN  
RSTN  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 HS Receive Equalization  
The DPHY440 supports three levels of receive equalization to compensate for ISI loss in the channel. These  
three levels are 0 dB, 2.5 dB, and 5 dB at 750MHz. The equalization level used by the DPHY440 is determined  
by the state of the EQ/SCL pin at the rising edge of RSTN. If necessary, the receiver equalization level can also  
be set through writing to the RXEQ register via the local I2C interface  
Table 1. EQ/SCL pin Function  
EQ/SCL PIN  
VIL  
HS Rx EQUALIZATION  
0 dB  
VIM  
2.1 dB at 500 MHz / 2.5 dB at 750 MHz  
4 dB at 500 MHz / 5 dB at 750 MHz  
VIH  
7.3.2 HS TX Edge Rate Control  
The DPHY440 supports control of the rise and fall time for the DB[3:0]P/N and DBCP/N High Speed (HS)  
transmitters. Depending on system operating datarate, the HS edge rate may need to be adjusted to help  
improve EMI performance. The HS edge rate setting is determined through the sampled state of ERC/SDA pin at  
the rising edge of RSTN. If necessary, the HS edge rate can be adjusted by writing to the HS_ERC register via  
the local I2C interface.  
Table 2. 8.3.2 HS TX Edge Rate Control  
ERC/SDA PIN  
VIL  
HS RISE/FALL TIMES  
200 ps typical  
VIM  
150 ps typical  
VIH  
250 ps typical  
The DPHY440 also supports edge rate control for the LP interface. The adjustment of LP TX edge rate is  
determined by the state of the VSADJ_CFG0 and PRE_CFG1 pins as depicted in Table 3, but can also be  
modified by changing LP_ERC register through the local I2C interface  
7.3.3 TX Voltage Swing and Pre-Emphasis Control  
In some applications, the DPHY440 may be placed at a location in the system where the channel from DPHY440  
DB[3:0]P/N interface to the DPHY Sink (CSI-2 or DSI) is extremely long and the DPHY Sink does not have  
enough receive equalization to compensate for the ISI loss. In this application, the system architect may want to  
use the DPHY440 TX pre-emphasis feature to compensate for the lack of equalization at the DPHY sink. The  
DPHY440 provides two levels of pre-emphasis: 0 dB, and 2.5 dB. The TX Pre-emphasis settings is determined  
through the sampled sate of PRE_CFG[1:0] pins at the rising edge of RSTN. If necessary, the TX Pre-emphasis  
settings can be adjusted by writing to the HSTX_PRE register through the local I2C interface.  
This feature must only be used when the HS pre-emphasis bit (transition bit) is attenuated by the channel.  
Enabling pre-emphasis in a system that has little channel loss (transition bit is not attenuated) may result in  
negative impact to system performance.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
Table 3. HS Voltage Swing, HS Pre-emphasis, LPTX Edge Rate Controls  
DB[3:0] LP TX RISE/FALL  
TIME  
VSADJ_CFG0  
PRE_CFG1  
HS TX VOD  
HS TX PRE-EMPHASIS  
VIL  
VIM  
VIL  
VIL  
VIL  
VIM  
200 mV  
200 mV  
220 mV  
200 mV  
200 mV  
220 mV  
220 mV  
200 mV  
220 mV  
0 dB  
0 dB  
18 ns  
27 ns  
18 ns  
27 ns  
21 ns  
21 ns  
27 ns  
21 ns  
21 ns  
VIH  
VIL  
VIM  
0 dB  
0 dB  
VIM  
0 dB  
VIH  
VIL  
VIM  
VIM  
0 dB  
VIH  
VIH  
VIH  
2.5 dB  
2.5 dB  
2.5 dB  
VIH  
7.3.4 Dynamic De-skew  
The DPHY440 implements a dynamic de-skew feature which will continuously de-skew the HS data received on  
the DA[3:0]P/N interface and provide a retimed version on the DB[3:0]P/N interface. The retimed version is  
centered within the DBCP/N clock.  
Lanes are skewed at Input  
Lanes Deskewed at Output.  
DACP  
DACN  
DBCP  
DBCN  
DA0P  
DA0N  
DB0P  
DB0N  
DA1P  
DA1N  
DB1P  
DB1N  
DA2P  
DA2N  
DB2P  
DB2N  
DA3P  
DA3N  
DB3P  
DB3N  
Data centered within clock  
Data Delayed by  
2 Clocks (4UI)  
Figure 6. Dynamic De-skew  
NOTE  
The dynamic de-skew feature is only enabled in HS mode, and causes a 2 clock (4 UI)  
delay of data while data traverses from DA to DB.  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
 
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
LP MODE  
ULPS Exit  
(LP11)  
RSTN = 1  
ULPS Entry  
RSTN = 0  
RSTN = 0  
ULPS  
HS Exit  
(LP11)  
HS Entry  
SHUTDOWN  
RSTN = 0  
RSTN = 0  
HS MODE  
Figure 7. Functional Modes  
7.4.1 Shutdown Mode  
The DPHY440 can be placed into a low power consumption state by asserting the RSTN pin low while  
maintaining a stable VCC and VDD power supply. While in the Shutdown state, the DPHY440 drives DB[3:0]P/N  
and DBCP/N pins to the LP00 state. The DPHY440 ignores all activity on the DA[3:0]P/N and DACP/N pins while  
in Shutdown mode. The Shutdown mode is exited by de-asserting the RSTN pin high. Upon exiting Shutdown  
mode, the DPHY440 enters LP Mode operation and pass what is received on the DA interface to the DB  
interface.  
7.4.2 LP Mode  
In this mode, the DPHY440 passes LP signals between DA[3:0]P/N and DB[3:0]P/N. The internal terminations for  
the HS receiver and HS transmitter are disabled when operating in this mode.  
The MIPI DSI specification defines bidirectional communication between the host and peripheral. When a  
response is needed by the peripheral, the response is returned using LP signaling from DB0P/N to DA0P/N. The  
DPHY440 only supports this communication over lane 0 (DB0P/N to DA0P/N). The remaining lanes cannot be  
used for LP communications from peripheral to host (reverse direction).  
7.4.3 ULPS Mode  
The DPHY440 is continuously monitoring the DPHY LP protocol for entry into the ULPS state. Upon entry into  
the ULPS state, the DPHY440 keeps active the logic necessary for LP signaling (LP rx, LPtx, LP state machine,  
so forth). All logic needed for HS operation are disabled. This allows for a lower power state than can be  
achieved when in operating other LP power states.  
NOTE  
ULPS mode can only be entered from LP Mode.  
7.4.4 HS Mode  
The HS mode is entered when the required sequence of LP signals is detected by the LP state machine. In this  
mode, the internal termination for both the HS receiver and HS transmitter is enabled and the dynamic de-skew  
feature is enabled. The DPHY440 remains in this mode until a HS exit is detected by the LP state machine.  
Upon detecting the HS exit, the DPHY440 immediately transitions to LP Mode.  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
7.5 Register Maps  
The DPHY440 local I2C interface is enabled when RSTN is input high. Access to the CSR registers is supported  
during ultra-low power state (ULPS). The EQ/SCL and ERC/SDA terminals are used for I2C clock and I2C data  
respectively. The DPHY440 I2C interface conforms to the two-wire serial interface defined by the I2C Bus  
Specification, Version 2.1 (January 2000) and supports up to 100 kHz.  
The device address byte is the first byte received following the START condition from the master device. The 7  
bit device address for DPHY440 is factory preset to 1101100.  
Table 4. DPHY440 I2C Target Address Description  
Bit 7 (MSB)  
1
Bit 6  
1
Bit 5  
0
Bit 4  
1
Bit 3  
1
Bit 2  
0
Bit 1  
0
Bit 0 (W/R)  
0/1  
Address Cycle is 0xD8 (Write) and 0xD9 (Read)  
The following procedure should be followed to write to the DPHY440 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the DPHY440 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The DPHY440 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within DPHY440) to be written, consisting of one byte of  
data, MSB-first  
4. The DPHY440 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The DPHY440 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the DPHY440.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the DPHY440 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the DPHY440 7-bit  
address and a one-value “W/R” bit to indicate a read cycle  
2. The DPHY440 acknowledges the address cycle.  
3. The DPHY440 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
sub-address+1. If a write to the DPHY440 I2C register occurred prior to the read, then the DPHY440 starts at  
the sub-address specified in the write.  
4. The DPHY440 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after  
each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the DPHY440 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the DPHY440 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The DPHY440 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within DPHY440) to be written, consisting of one byte of  
data, MSB-first.  
4. The DPHY440 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
NOTE  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C write occurred prior to the read, then the reads start at the sub-  
address specified by the write.  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
7.5.1 BIT Access Tag Conventions  
A table of bit descriptions is typically included for each register description that indicates the bit field name, field  
description, and the field access tags. The field access tags are described in Table 5.  
Table 5. Tag Conventions  
ACCESS TAG  
NAME  
Read  
DEFINITION  
The field may be read by software.  
R
W
S
Write  
The field may be written by software  
Set  
The field may be set by a write of one. Writes of zero to the field have no effect.  
The field may be cleared by a write of one. Write of zero to the field have no effect.  
Hardware may autonomously update this field  
C
Clear  
U
Update  
No Access  
N/A  
Not accessible or not applicable  
7.5.2 Standard CSR Registers (address = 0x000 - 0x07)  
Figure 8. Standard CSR Registers (0x000 - 0x07)  
7
6
5
4
3
2
1
0
DEVICE_ID  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. Standard CSR Registers (0x000 - 0x07)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
0
For the DPHY440 these fields return a string of ASCII characters  
returning “DPHY100”.  
Addresses 0x07 - 0x00 = {0x20, 0x30, 0x30, 0x31, 0x59, 0x48,  
0x50, 0x44}  
7.5.3 Standard CSR Register (address = 0x08)  
Figure 9. Standard CSR Register (0x08)  
7
6
5
4
3
2
1
0
DEVICE_REV  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Standard CSR Register (0x08)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_REV  
R
0
Device revision.  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
7.5.4 Standard CSR Register (address = 0x09)  
Figure 10. Standard CSR Register(0x09)  
7
6
5
4
3
2
1
0
Reserved  
RXEQ_CLK.  
RXEQ_DATA  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Standard CSR Register (0x09)  
Bit  
7:4  
3:2  
Field  
Type  
R
Reset  
Description  
Reserved  
RXEQ_CLK  
0
0
Reserved  
RW  
This field selects the EQ level of the DACP/N. The value in this  
field will match the sampled state of EQ/SCL pin at the rising  
edge of RSTN. Software can change the value of this field at a  
later time.  
00 – 0 dB (EQ/SCL pin = VIL)  
01 – 2.5 dB (EQ/SCL pin = VIM  
)
10 – Reserved.  
11 – 5 dB (EQ/SCL pin = VIH  
)
1:0  
RXEQ_DATA  
RW  
0
This field selects the EQ level of the DA[3:0]P/N . The value in  
this field will match the sampled state of EQ/SCL pin at the  
rising edge of RSTN. Software can change the value of this field  
at a later time.  
00 – 0 dB. (EQ/SCL pin = VIL)  
01 – 2.5 dB (EQ/SCL pin = VIM  
)
10 – Reserved.  
11 – 5 dB. (EQ/SCL pin = VIH  
)
7.5.5 Standard CSR Register (address = 0x0A)  
Figure 11. Standard CSR Register (0x0A)  
7
6
5
4
3
2
1
0
LPTXDA_ERC  
LPTXDB_ERC  
Reserved  
HSC_ERC  
RW  
RW  
RW  
RW  
R
R
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Standard CSR Register (0x0A)  
Bit  
Field  
Type  
Reset  
Description  
7:6  
LPTXDA_ERC  
RW  
0
This field controls the edge rate of the DA0P/N LP transmitters.  
00 – 18 ns at 70 pF (Default)  
01 – 21 ns at 70 pF  
10 – 15 ns at 70 pF  
11 – 27 ns at 70 pF  
5:4  
LPTXDB_ERC  
RW  
0
This field controls the edge rate of the DB[3:0]P/N LP  
transmitters. The value in this field will be updated by hardware  
based on the state of the CFG[1:0] pin. Refer to Table 3 for  
settings based on sampled state of CFG[1:0] Software can  
change the value of this field at a later time.  
00 – 18 ns at 70 pF  
01 – 21 ns at 70 pF  
10 – 15 ns at 70 pF  
11 – 27 ns at 70 pF  
3:2  
1:0  
Reserved  
R
Reserved  
HSC_ERC  
RW  
0
This field controls the edge rate of the DBCP/N high speed  
transmitter. The value of this field will match the sampled state  
of the ERC pin. Software can change the value of this field at a  
later time.  
00 – 200 ps at 1 Gbps. (ERC pin = VIL)  
01 – 150 ps at 1 Gbps. (ERC pin = VIM  
)
10 – 250 ps at 1 Gbps. (ERC pin = VIH  
)
11 – 300 ps at 1 Gbps  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
7.5.6 Standard CSR Register (address = 0x0B)  
Figure 12. Standard CSR Register (0x0B)  
7
6
5
4
3
2
1
0
HSDB3_ERC  
HSDB2_ERC  
RHSDB1_ERC  
HSDB0_ERC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. Standard CSR Register (0x0B)  
Bit  
Field  
Type  
Reset  
Description  
7:6  
HSDB3_ERC  
RW  
0
This field controls the edge rate of the DB3P/N high speed  
transmitter. The value of this field will match the sampled state  
of the ERC pin. Software can change the value of this field at a  
later time.  
00 – 200 ps at 1 Gbps. (ERC pin = VIL)  
01 – 150 ps at 1 Gbps. (ERC pin = VIM  
)
10 – 250 ps at 1 Gbps. (ERC pin = VIH  
)
11 – 300 ps at 1 Gbps  
5:4  
3:2  
1:0  
HSDB2_ERC  
RHSDB1_ERC  
HSDB0_ERC  
RW  
RW  
RW  
0
0
0
This field controls the edge rate of the DB2P/N high speed  
transmitter. The value of this field will match the sampled state  
of the ERC pin. Software can change the value of this field at a  
later time.  
00 – 200 ps at 1 Gbps. (ERC pin = VIL)  
01 – 150 ps at 1 Gbps. (ERC pin = VIM  
)
10 – 250 ps at 1 Gbps. (ERC pin = VIH  
)
11 – 300 ps at 1 Gbps  
This field controls the edge rate of the DB1P/N high speed  
transmitter. The value of this field will match the sampled state  
of the ERC pin. Software can change the value of this field at a  
later time.  
00 – 200 ps at 1 Gbps. (ERC pin = VIL)  
01 – 150 ps at 1 Gbps. (ERC pin = VIM  
)
10 – 250 ps at 1 Gbps. (ERC pin = VIH  
)
11 – 300 ps at 1 Gbps  
This field controls the edge rate of the DB0P/N high speed  
transmitter. The value of this field will match the sampled state  
of the ERC pin. Software can change the value of this field at a  
later time.  
00 – 200 ps at 1 Gbps. (ERC pin = VIL)  
01 – 150 ps at 1 Gbps. (ERC pin = VIM  
)
10 – 250 ps at 1 Gbps. (ERC pin = VIH  
)
11 – 300 ps at 1 Gbps  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
7.5.7 Standard CSR Register (address = 0x0D)  
Figure 13. Standard CSR Register (0x0D)  
7
6
5
4
3
2
1
0
Reserved.  
CDB0N_STATUS  
R
CDB0P_STATUS  
R
Reserved  
CDA0N_STATUS  
R
CDA0P_STATUS  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Standard CSR Register (0x0D)  
Bit  
7:6  
5
Field  
Type  
R
Reset  
Description  
Reserved.  
CDB0N_STATUS  
Reserved.  
R
0
0
0 – Contention not detected on DB0N interface.(default)  
1 – Contention detected on DB0N interface  
4
CDB0P_STATUS  
R
0 – Contention not detected on DB0P interface.(default)  
1 – Contention detected on DB0P interface  
3:2  
1
Reserved  
R
R
Reserved  
CDA0N_STATUS  
0
0
0 – Contention not detected on DA0N interface.(default)  
1 – Contention detected on DA0N interface  
0
CDA0P_STATUS  
R
0 – Contention not detected on DA0P interface.(default)  
1 – Contention detected on DA0P interface  
7.5.8 Standard CSR Register (address = 0x0E)  
Figure 14. Standard CSR Register (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
HSTX_VSADJ  
Reserved  
HSTX_PRE  
R
R
RW  
RW  
R
R
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Standard CSR Register (0x0E)  
Bit  
7:6  
5:4  
Field  
Type  
R
Reset  
Description  
Reserved  
HSTX_VSADJ  
Reserved  
RWU  
0
This field controls the HS TX voltage swing level. The value of  
this field will match the sampled state of the CFG[1:0] pins.  
Software can change the value of this field at a later time.  
00 – 180 mV  
01 – 200 mV (CFG0 = VIM or (CFG0 = VIL and !CFG1 = VIH))  
1X – 220mV (CFG0 = VIH or (CFG0 = VIL and CFG1 = VIH))  
3:2  
1:0  
Reserved  
R
Reserved  
HSTX_PRE  
RWU  
0
This field controls the HS TX pre-emphasis level. The value of  
this field will match the sampled state of CFG1 pin. Software can  
change the value of this field at a later time.  
00 – 1.5 dB  
01 – 0 dB (CFG1 = VIM or VIL)  
1X – 2.5 dB (CFG1 = VIH  
)
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
7.5.9 Standard CSR Register (address = 0x10) [reset = 0xFF]  
Figure 15. Standard CSR Register (0x10)  
7
6
5
4
3
2
1
0
LPTXDA_ERC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Standard CSR Register (0x10)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
LPTXDA_ERC  
RW  
0xFF  
This field represents the lower 8-bits of the 16-bit  
BTA_TIMEOUT register. Timer is reset to default state when  
BTA request is detected and is stopped when BTA is  
acknowledged. If BTA is not acknowledged before this timer  
expires, then DPHY440 will terminate BTA operation. This  
counter operates on the LPTX clock. Defaults to 0xFF.  
7.5.10 Standard CSR Register (address = 0x11) [reset = 0xFF]  
Figure 16. Standard CSR Register (0x11)  
7
6
5
4
3
2
1
0
BTA_TIMEOUT_HI  
RW RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Standard CSR Register (0x11)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
BTA_TIMEOUT_HI  
RW  
0xFF  
This field represents the upper 8-bits of the 16-bit  
BTA_TIMEOUT register. Timer is reset to default state when  
BTA request is detected and is stopped when BTA is  
acknowledged. If BTA is not acknowledged before this timer  
expires, then DPHY440 will terminate BTA operation. This  
counter operates on the LPTX clock. Defaults to 0xFF.  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information,  
The DPHY440 supports up to 4 DSI DPHY lanes and a clock lane. One of the four lanes is used for back  
channel communications between GPU and DSI panel. DPHY440’s lane 0 is the only lane that supports the back  
channel. For this reason, DPHY440 lane 0 must always be connected to lane 0 of GPU and panel.  
Other combinations, like 1 and 3 lane, examples are not shown, but are fully supported by the DPHY440. For all  
DSI implementations, the polarity must be maintained between the DSI Source and DSI Sink. The DPHY440  
does not support polarity inversion.  
8.2 Typical Application, CSI-2 Implementations  
The DPHY440 supports 4 CSI-2 DPHY lanes plus a clock. Unlike DSI, CSI-2 does not have a back channel path.  
Because of this, there is no requirement on lane ordering. Because there is no lane ordering requirement, there  
are more combinations which can be implemented. All possible combinations are supported by the DPHY440.  
For all CSI-2 implementations, the polarity must be maintained between the CSI-2 Source and CSI-2 Sink. The  
DPHY440 does not support polarity inversion.  
12 inch FR-4,  
10 mil  
1 inch FR-4,  
10 mil  
SNx5D  
PHY44  
0SS  
Camera  
APU  
Output  
trace  
Input trace  
Figure 17. CSI-2 Example: Typical SNx5DPHY440SS Placement in the System  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
 
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application, CSI-2 Implementations (continued)  
VCC_1.8V  
DPHY440SS  
VCC  
RSTN  
100nF  
VREG_OUT  
APU  
Camera  
200nF  
(CSI-2 Sink)  
(CSI-2 Source)  
VDD  
100nF  
CSI TX  
CSI RX  
DB0P  
DB0N  
DB1P  
DB1N  
DBCP  
DBCN  
DB2P  
DB2N  
DB3P  
DB3N  
DA0P  
DA0N  
DA1P  
DA1N  
DACP  
DACN  
DA2P  
DA2N  
DA3P  
DA3N  
CSI0P  
CSI0N  
CSICP  
CSICN  
CSI1P  
CSI1N  
CSI0P  
CSI0N  
CSICP  
CSICN  
CSI1P  
CSI1N  
Vio  
2K  
CSI Slave  
SCL  
2K  
CSI Master  
SDA  
SCL  
SDA  
R3  
R2  
R1  
R4  
R6  
R5  
R7 R8  
VCC_1.8V  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. CSI-2 Two Lane Example  
8.2.1 Design Requirements  
Typically, in CSI-2 applications, the system trace length from the Camera (Source) to the DPHY440 device is  
different from that of the trace length from DPHY440 to the APU (Sink). Consequently, different pre-emphasis  
and equalization settings are required on the receiver and transmitter side of the device respectively.  
For this design example, refer to Figure 17 and Figure 18. Shown is a CSI-2 system implementation in which the  
DPHY device is placed close to the Sink (APU). Here, the input trace length is about 12 inch while the output  
trace length is just 1 inch. The input signal characteristics assumed are shown in Table 15.  
Table 15. Design Parameters  
PARAMETER  
Data Rate (200 Mbps to 1.5 Gbps)  
Input trace length  
VALUE  
1 Gbps  
12 inch  
1 inch  
Output trace length  
Trace width  
10 mils  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
8.2.2 Detailed Design Procedure  
The typical example describes how to configure the VSADJ, PRE, EQ and ERC configuration pins of the  
DPHY440 device based on the board trace length between the Source (Camera) and DPHY440 and the  
DPHY440 and Sink (APU). Actual configuration settings might differ due to additional factors such as board  
layout, and connectors used in the signal path.  
Though the data rate in this example is 1 Gbps, device is placed near to the Sink, with a short output trace of 1  
inch. Consequently, the ERC pin can be configured to have a rise/fall time of 250 ps for the edge. Further, due to  
the short output trace, the PRE pin must be configured to a setting of 0 dB and the VSADJ to be 200 mV. The  
Application Curve in Figure 22 shows the FR-4 loss characteristics of a 10 mil wide, 12 inch long trace. From this  
plot, the input signal trace suffers a loss of 1.5 dB at 500 MHz. Thus, the EQ setting can be either 0 dB or 2.5  
dB. All the configuration settings and their corresponding inputs are tabulated in Table 16.  
Table 16. Configuration Pin Settings  
PIN  
VSADJ  
PRE  
EQ  
SETTING  
200 mV  
INPUT VALUE  
VIM  
VIM  
0 dB  
0 dB or 2.5 dB  
250 ps  
VIL or VIM  
VIH  
ERC  
The configuration pins each have internal pull-up and pull-down resistors of 100 kΩ each. Thus, the  
recommendation is an external pull-up/pull-down resistors of about 10 kΩ each, to meet the requirement of the  
threshold levels for the VIL and VIH listed in the Electrical Characteristics table. The external resistors shown in  
Figure 18 should be populated to produce corresponding configuration settings, according to the list given in  
Table 17.  
Table 17. Resistor Parameters  
RESISTOR NAME  
VALUE  
R1  
R2  
R3  
R4  
R5  
Leave unpopulated  
Leave unpopulated  
Leave unpopulated  
Leave unpopulated  
Leave unpopulated  
10 kΩ (EQ = 0 dB) or  
Leave unpopulated (EQ = 2.5 dB)  
R6  
R7  
R8  
10 kΩ  
Leave unpopulated  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
 
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
8.2.2.1 Reset Implementation  
The DPHY440 RSTN input gives control over the device reset and to place the device into low power mode. It is  
critical to reset the digital logic of the DPHY440 after the VCC supply is stable (that is, the power supply has  
reached the minimum recommended operating voltage). This is achieved by transitioning the RSTN input from a  
low level to a high level. A system may provide a control signal to the RSTN signal that transitions low to high  
after the power supply is (or supplies are) stable, or implement an external capacitor connected between RSTN  
and GND, to allow delaying the RSTN signal during power up. Both implementations are shown in Figure 19 and  
Figure 20.  
VCC  
GPO  
RST  
open drain  
output  
RST  
REN=150 k  
C
C
controller  
DPHY440  
DPHY440  
Figure 19. External Capacitor Controlled RSTN  
Figure 20. RSTN Input from Active Controller  
When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of  
the VCC supply, where a slower ramp-up results in a larger value external capacitor.  
Refer to the latest reference schematic for the DPHY440 device and/or consider approximately 200-nF capacitor  
as a reasonable first estimate for the size of the external capacitor.  
When implementing an RSTN input from an active controller, it is recommended to use an open drain driver if the  
RSTN input is driven. This protects the RSTN input from damage of an input voltage greater than VCC  
.
td1  
tsu2  
RSTN  
VCC  
th2  
CFG[1:0], EQ, ERC  
Figure 21. Power-Up Timing Requirements  
Table 18. Timing Requirements  
DESCRIPTION(1)  
MIN  
MAX  
tD1  
VCC stable before de-assertion of RSTN.  
100 µs  
Setup of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin before de-assertion of  
RSTN.  
tsu2  
0
Hold of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin after de-assertion of  
RSTN.  
th2  
250 µs  
0.2 ms  
tVCC_RAMP  
VCC supply ramp requirements  
100 ms  
(1) Unused DAxP/N pins shall be tied to GND.  
24  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
8.2.3 Application Curves  
0
-0.5  
-1  
0
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D001  
D002  
12 inch long, 5 mil wide FR4 trace  
Figure 22. Loss vs Frequency  
12 inch long, 10 mil wide FR4 trace  
Figure 23. Loss vs Frequency  
9 Power Supply Recommendations  
Texas Instruments recommends a 0.1-µF capacitor on each power pin.  
RESETN  
C2  
C1  
0.1uF  
0.2 uF  
U1  
1
2
24  
23  
DPHYOUT_B0P  
DPHYOUT_B0N  
DPHYIN_A0P  
DPHYIN_A0N  
DA0P  
DA0N  
DB0P  
DB0N  
22  
21  
3
4
DPHYOUT_B1P  
DPHYOUT_B1N  
DPHYIN_A1P  
DPHYIN_A1N  
DA1P  
DA1N  
DB1P  
DB1N  
5
6
20  
19  
DPHYOUT_BCP  
DPHYOUT_BCN  
DPHYIN_ACP  
DPHYIN_ACN  
DACP  
DACN  
DBCP  
DBCN  
7
8
18  
17  
DPHYOUT_B2P  
DPHYOUT_B2N  
DPHYIN_A2P  
DPHYIN_A2N  
DA2P  
DA2N  
DB2P  
DB2N  
9
10  
16  
15  
DPHYOUT_B3P  
DPHYOUT_B3N  
DPHYIN_A3P  
DPHYIN_A3N  
DA3P  
DA3N  
DB3P  
DB3N  
VCC_1.8 V  
DPHY440SS  
C3  
0.1 uF  
C4  
0.1 uF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. Supply Implementation  
Copyright © 2016–2019, Texas Instruments Incorporated  
25  
SN65DPHY440SS, SN75DPHY440SS  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
DAxP/N and DB*P/N pairs should be routed with controlled 100-Ω differential impedance (± 15%) or 50-Ω  
single-ended impedance (± 15%).  
Keep away from other high speed signals.  
Keep lengths to within 5 mils of each other.  
Length matching should be near the location of mismatch.  
Each pair should be separated at least by 3 times the signal trace width.  
The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left  
and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This will  
minimize any length mismatch causes by the bends and; therefore, minimize the impact bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points will cause impedance discontinuity and will; therefore, negatively impact signal  
performance. If test points are used, they should be placed in series and symmetrically. They must not be  
placed in a manner that causes a stub on the differential pair.  
10.2 Layout Example  
Figure 25. Example Layout  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
SN65DPHY440SS, SN75DPHY440SS  
www.ti.com.cn  
ZHCSES3C MARCH 2016REVISED AUGUST 2019  
11 器件和文档支持  
11.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
19. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
SN65DPHY440SS  
SN75DPHY440SS  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65DPHY440SSRHRR  
SN65DPHY440SSRHRT  
SN75DPHY440SSRHRR  
SN75DPHY440SSRHRT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RHR  
RHR  
RHR  
RHR  
28  
28  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
0 to 70  
DPHY440  
NIPDAU  
NIPDAU  
NIPDAU  
DPHY440  
DPHY440  
DPHY440  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65DPHY440SSRHRR WQFN  
SN65DPHY440SSRHRT WQFN  
SN75DPHY440SSRHRR WQFN  
SN75DPHY440SSRHRT WQFN  
RHR  
RHR  
RHR  
RHR  
28  
28  
28  
28  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.8  
3.8  
3.8  
3.8  
5.8  
5.8  
5.8  
5.8  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65DPHY440SSRHRR  
SN65DPHY440SSRHRT  
SN75DPHY440SSRHRR  
SN75DPHY440SSRHRT  
WQFN  
WQFN  
WQFN  
WQFN  
RHR  
RHR  
RHR  
RHR  
28  
28  
28  
28  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN75DPHY440SSRHRT

工作温度为 0°C 至 70°C 的 MIPI® CSI-2/DSI DPHY 重定时器 | RHR | 28 | 0 to 70
TI

SN75FC1000

1-GIGABIT FIBRE CHANNEL TRANSCEIVER
TI

SN75FC1000B

1-GIGABIT FIBRE CHANNEL TRANSCEIVER
TI

SN75FC1000BPHD

1-GIGABIT FIBRE CHANNEL TRANSCEIVER
TI

SN75FC1000PHD

1-GIGABIT FIBRE CHANNEL TRANSCEIVER
TI

SN75FC1000PJD

1-GIGABIT FIBRE CHANNEL TRANSCEIVER
TI

SN75HVD05

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN75HVD05D

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN75HVD05DG4

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN75HVD05DR

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN75HVD05DRG4

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN75HVD05P

HIGH OUTPUT RS-485 TRANSCEIVERS
TI