TAS6421-Q1 [TI]

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器;
TAS6421-Q1
型号: TAS6421-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器

放大器 音频放大器
文件: 总63页 (文件大小:2920K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
具有负载突降保护和 I2C 诊断功能的 TAS6421-Q1 75W2MHz 数字输入  
单通道汽车用 D Burr-Brown™ 音频放大器  
1 特性  
2 应用  
1
高级负载诊断功能  
汽车音响主机和外部放大器  
紧急呼叫 (eCall)  
直流诊断功能,无需输入时钟即可执行  
虚拟引擎声浪系统 (VESS)  
交流诊断功能,可通过阻抗和相位响应实现高频  
扬声器检测  
3 说明  
可轻松满足 CISPR25-L5 EMC 规范  
符合面向汽车 应用的 AEC-Q100 标准  
TAS6421-Q1 器件是一款单通道数字输入 D Burr-  
Brown™音频放大器,采用了 2.1MHz PWM 开关频  
率,能以非常小的 PCB 尺寸实现成本优化的解决方  
案,可针对启停事件在低至 4.5V 的电压下全面运行,  
并可在高达 40kHz 的音频带宽下提供出色的音质。  
TAS6421-Q1 的尺寸和引脚与 TAS642x-Q1 系列器件  
兼容,实现了灵活性,只需进行极少的重新设计即可轻  
松支持多种系统配置。  
温度等级:-40°C +125°C  
音频输入  
I2S 4/8 通道 TDM 输入  
输入采样率:44.1kHz48kHz96kHz  
输入格式:16 位至 32 I2S TDM  
音频输出  
单通道桥接式负载 (BTL)  
最高可达 2.1MHz 的输出开关频率  
输出开关频率既可以设置为高于调幅 (AM) 频带,以消  
AM 频带干扰并降低输出滤波需求及成本;也可以  
设置为低于 AM 频带,以优化器件效率。该器件具有  
内置负载诊断功能,用于检测和诊断误接的输出,以及  
检测交流耦合的高频扬声器。  
4负载、14.4V BTL 条件下,输出功率为  
27WTHD 10%  
2负载、14.4V BTL 条件下,输出功率为  
45WTHD 10%  
4负载、14.4V BTL 条件下的音频性能  
器件信息(1)  
输出功率为 1W 时,THD+N < 0.02%  
42µVRMS 输出噪声  
器件型号  
封装  
封装尺寸(标称值)  
TAS6421-Q1  
HSSOP (56)  
18.41mm × 7.49mm  
–90dB 串扰  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
负载诊断,独立于主机运行  
开路和短路输出负载  
输出至电池短路或接地短路  
线路输出检测高达 6kΩ  
功能方框图  
VDD  
VCOM VREG  
VBAT  
GVDD  
PVDD  
保护  
MUTE  
STANDBY  
WARN  
Gate Drive  
Regulator  
Reference  
Regulators  
Digital Core  
输出电流限制和短路保护  
Closed Loop Class D Amplifier  
FAULT  
40V 负载突降  
Digital to PWM  
MCLK  
SCLK  
可承受接地开路和电源开路  
过热警告和关断  
Volume  
Serial  
Audio  
Port  
OUT_P  
OUT_M  
Control -100  
to +24 dB,  
0.5 dB steps  
Gate  
Driver  
Powerstage  
FSYNC  
SDIN1  
Clip  
Detection  
欠压和过压,直流偏移  
PLL and Clock  
Management  
常规运行  
Protection  
DC Load Diagnostics  
Short to GND  
Short to Power  
Open Load  
Overcurrent Limit  
Overcurrent  
SCL  
SDA  
4.5V 26.4V 电源电压  
2
I
I2C 控制,具有 4 个地址选项  
C Control  
Overtemperature  
I2C_ADDR0  
I2C_ADDR1  
Overvoltage and Undervoltage  
DC Detection  
Shorted Load  
AC Load Diagnostics  
削波检测(自锁或非自锁)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE32  
 
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
10.3 Feature Description............................................... 19  
10.4 Device Functional Modes...................................... 29  
10.5 Programming......................................................... 30  
10.6 Register Maps....................................................... 33  
11 Application and Implementation........................ 47  
11.1 Application Information.......................................... 47  
11.2 Typical Applications .............................................. 48  
12 Power Supply Recommendations ..................... 51  
13 Layout................................................................... 51  
13.1 Layout Guidelines ................................................. 51  
13.2 Layout Example .................................................... 52  
13.3 Thermal Considerations........................................ 52  
14 器件和文档支持 ..................................................... 54  
14.1 文档支持................................................................ 54  
14.2 接收文档更新通知 ................................................. 54  
14.3 社区资源................................................................ 54  
14.4 ....................................................................... 54  
14.5 静电放电警告......................................................... 54  
14.6 Glossary................................................................ 54  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Device Options....................................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
8.1 Absolute Maximum Ratings ...................................... 7  
8.2 ESD Ratings.............................................................. 7  
8.3 Recommended Operating Conditions....................... 8  
8.4 Thermal Information.................................................. 8  
8.5 Electrical Characteristics........................................... 9  
8.6 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 17  
9
10 Detailed description............................................ 18  
10.1 Overview ............................................................... 18  
10.2 Functional Block Diagram ..................................... 18  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2019) to Revision A  
Page  
将器件状态从预告信息 更改为生产 数据................................................................................................................................. 1  
2
版权 © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
5 说明(续)  
14.4V 电源电压条件下,当负载为 4THD+N 10% 时,TAS6421-Q1 可提供单通道的 27W 输出功率;当  
负载为 2THD+N 10% 时,可提供 45W 的输出功率。在 25V 电源电压条件下,当负载为 4THD+N 为  
10% 时,此器件可提供 75W 的输出功率。  
有关兼容引脚的双通道和四通道器件,请参阅 TAS6422-Q1TAS6424L-Q1TAS6424M-Q1 TAS6424-Q1。  
Copyright © 2019, Texas Instruments Incorporated  
3
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6 Device Options  
Output Power per channel / 10% THD  
Channel  
Current  
Limit (Typ)  
Channel Power-Supply  
Part Number  
4 Ω / BTL  
14.4 V  
4 Ω / BTL  
2 Ω / BTL  
2 Ω / PBTL  
Max Voltage  
Count  
Voltage Range  
Max Voltage  
14.4 V  
TAS6424-Q1  
TAS6424M-Q1  
TAS6424L-Q1  
TAS6422-Q1  
TAS6421-Q1  
4
4
4
2
1
4.5 V to 26.4 V  
4.5 V to 18 V  
4.5 V to 18 V  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
6.5 A  
6.5 A  
4.8 A  
6.5 A  
6.5 A  
27 W  
27 W  
27 W  
27 W  
27 W  
75 W at 25 V  
45 W at 18 V  
45 W at 18 V  
75 W at 25 V  
75 W at 25 V  
45 W  
45 W  
27 W  
45 W  
45 W  
150 W at 25 V  
80 W at 18 V  
80 W at 18 V  
150 W at 25 V  
N/A  
4
Copyright © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
7 Pin Configuration and Functions  
DKQ Package  
56-Pin HSSOP With Exposed Thermal Pad  
Top View  
GND  
PVDD  
VBAT  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PVDD  
PVDD  
NC  
2
3
AREF  
4
NC  
VREG  
VCOM  
AVSS  
5
NC  
6
NC  
7
NC  
AVDD  
GVDD  
NC  
8
NC  
9
BST_P  
OUT_P  
GND  
OUT_M  
BST_M  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
GND  
MCLK  
SCLK  
FSYNC  
SDIN1  
GND  
Thermal  
Pad  
NC  
NC  
GND  
NC  
GND  
NC  
VDD  
NC  
SCL  
NC  
SDA  
NC  
I2C_ADDR0  
I2C_ADDR1  
STANDBY  
MUTE  
FAULT  
WARN  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
5
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AREF  
NO.  
4
PWR  
PWR  
PWR  
PWR  
PWR  
DO  
VREG and VCOM bypass capacitor return  
AVDD  
AVSS  
8
Voltage regulator bypass. Connect 1 µF capacitor from AVDD to AVSS  
AVDD bypass capacitor return  
7
BST_M  
BST_P  
FAULT  
FSYNC  
44  
48  
26  
14  
Bootstrap capacitor connection pin for high-side gate driver  
Bootstrap capacitor connection pin for high-side gate driver  
Reports a fault (active low, open drain), 100 kΩ internal pull-up resistor  
Audio frame clock input  
DI  
1, 11, 16, 17,  
18, 28, 46  
GND  
GND  
PWR  
Ground  
GVDD  
9
Gate drive voltage regulator derived from VBAT input pin. Connect 2.2 µF capacitor to GND  
I2C address pins. Refer to 7  
I2C_ADDR0  
I2C_ADDR1  
MCLK  
22  
23  
12  
DI  
DI  
DI  
Audio master clock input  
Mutes the device outputs (active low) while keeping output FETs switching at 50%, 100 kΩ  
internal pull-down resistor  
MUTE  
NC  
25  
10, 29-43,  
49-54  
NC  
Not connected or pulled to ground  
OUT_M  
OUT_P  
45  
47  
NO  
PO  
Negative output for the channel  
Positive output for the channel  
PVDD voltage input (can be connected to battery). Bulk capacitor and bypass capacitor  
required  
PVDD  
2, 55, 56  
PWR  
SCL  
20  
13  
21  
15  
24  
3
DI  
DI  
I2C clock input  
SCLK  
SDA  
Audio bit and serial clock input  
I2C data input and output  
TDM data input and audio I2S data input  
DI/DO  
DI  
SDIN1  
STANDBY  
VBAT  
VCOM  
VDD  
DI  
Enables low power standby state (active Low), 100 kΩ internal pull-down resistor  
PWR  
PWR  
PWR  
PWR  
DO  
Battery voltage input  
6
Bias voltage  
19  
5
3.3 V external supply voltage  
VREG  
WARN  
Voltage regulator bypass  
27  
Clip and overtemperature warning (active low, open drain), 100 kΩ internal pull-up resistor  
Provides both electrical and thermal connection for the device. Heatsink must be connected to  
GND.  
Thermal Pad  
GND  
(1) GND = ground, PWR = power, PO = positive output, NO = negative output, DI = digital input, DO = digital output, DI/DO = digital input  
and output, NC = no connection  
6
Copyright © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-1  
MAX  
30  
UNIT  
PVDD, VBAT  
VMAX  
DC supply voltage relative to GND  
Transient supply voltage: PVDD, VBAT  
Supply-voltage ramp rate: PVDD, VBAT  
DC supply voltage relative to GND  
V
V
t 400 ms exposure  
40  
VRAMP  
75  
V/ms  
V
VDD  
-0.3  
3.5  
8
IMAX  
Maximum current per pin (PVDD, VBAT, OUT_P, OUT_M, GND)  
Pulsed supply current per PVDD pin (one shot) t < 100 ms  
A
IMAX_PULSED  
12  
A
Input voltage for logic pins (SCL, SDA, SDIN1, FSYNC, MCLK, BCLK, SCLK,  
MUTE, STANDBY, I2C_ADDRx)  
VLOGIC  
-0.3  
VDD + 0.5  
V
VGND  
TJ  
Maximum voltage between GND pins  
Maximum operating junction temperature  
Storage temperature  
-0.3  
-55  
-55  
0.3  
150  
150  
V
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
V
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±3000  
V(ESD)  
Electrostatic discharge  
All pins  
±500  
±750  
Charged-device model (CDM), per AEC Q100–011  
CDM ESD Classification Level C4B  
Corner pins (1, 28, 29 and 56)  
V
(1) (1) AEC Q100–002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS–001 specification.  
Copyright © 2019, Texas Instruments Incorporated  
7
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3 Recommended Operating Conditions  
MIN  
4.5  
TYP  
MAX  
26.4  
18  
UNIT  
PVDD  
VBAT  
VDD  
TA  
Output FET Supply Voltage Range  
Battery Supply Voltage Input  
DC Logic supply  
Relative to GND  
Relative to GND  
Relative to GND  
4.5  
14.4  
3.3  
V
3.0  
3.5  
Ambient temperature  
–40  
125  
°C  
An adequate thermal design is  
required  
TJ  
Junction temperature  
–40  
150  
10  
RL  
Minimum speaker load impedance  
BTL Mode  
2
1
4
4.7  
1
I2C pullup resistance on SDA and SCL pins  
External capacitance on bypass pins  
External capacitance on GVDD pin  
External capacitance to GND on OUT pins  
RPU_I2C  
CBypass  
CGVDD  
COUT  
k  
µF  
µF  
µF  
Pin 2, 3, 5, 6, 8, 19  
Pin 9  
2.2  
1
Limit set by DC-diagnostic timing  
3.3  
Minimum inductance at ISD current  
levels  
LO  
Output filter inductance at 2.1MHz  
1
µH  
8.4 Thermal Information  
TAS6421-Q1(2)  
THERMAL METRIC(1)  
DKQ (HSSOP)  
56 PINS  
42.8  
0.9  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
21.2  
0.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
20.2  
-
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) JEDEC Standard 4 Layer PCB.  
8
Copyright © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
8.5 Electrical Characteristics  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, fIN = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
OPERATING CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IPVDD_IDLE  
IVBAT_IDLE  
IPVDD_STBY  
IVBAT_STBY  
IVDD  
PVDD idle current  
Channel playing, no audio input  
Channel playing, no audio input  
STANDBY Active, VDD = 0 V  
STANDBY Active, VDD = 0 V  
Channel playing, –60-dB signal  
17  
28  
0.5  
4
23  
32  
1
mA  
mA  
µA  
VBAT idle current  
PVDD standby current  
VBAT standby current  
VDD supply current  
6
µA  
15  
18  
mA  
OUTPUT POWER  
4 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
20  
25  
38  
42  
22  
27  
40  
45  
4 Ω, PVDD = 14.4 V, THD+N = 10%, TC =  
75°C  
2 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
PO_BTL  
Output power per channel, BTL  
W
2 Ω, PVDD = 14.4 V, THD+N = 10%, TC =  
75°C  
4 Ω, PVDD = 25 V, THD+N = 1%, TC = 75°C  
4 Ω, PVDD = 25 V, THD+N = 10%, TC = 75°C  
50  
70  
55  
75  
1 channel operating at 25-W output power, 4 Ω  
load, PVDD = 14.4 V, TC = 25°C, including  
inductor losses  
EFFP  
Power efficiency  
86%  
AUDIO PERFORMANCE  
Zero input, A-weighting, gain level 1, PVDD =  
14.4 V  
42  
55  
67  
85  
Zero input, A-weighting, gain level 2, PVDD =  
14.4 V  
Vn  
Output noise voltage  
µV  
Zero input, A-weighting, gain level 3, PVDD =  
18 V  
Zero input, A-weighting, gain level 4, PVDD =  
25 V  
gain level 1, Register 0x01, bit 1-0 = 00  
gain level 2, Register 0x01, bit 1-0 = 01  
gain level 3, Register 0x01, bit 1-0 = 10  
gain level 4, Register 0x01, bit 1-0 = 11  
PVDD = 14.4 Vdc + 1 VRMS, f = 1 kHz  
7.5  
15  
GAIN  
Peak Output Voltage/dBFS  
V/FS  
dB  
21  
29  
PSRR  
Power-supply rejection ratio  
75  
THD+N  
Total harmonic distortion + noise  
0.02%  
LINE OUTPUT PERFORMANCE  
Zero input, A-weighting, channel set to LINE  
MODE  
Vn_LINEOUT  
VO_LINEOUT  
THD+N  
LINE output noise voltage  
42  
5.5  
µV  
LINE output voltage  
0dB input, channel set to LINE MODE  
VRMS  
Line output total harmonic distortion +  
noise  
VO = 2 VRMS, channel set to LINE MODE  
0.01%  
DIGITAL INPUT PINS  
VIH  
VIL  
IIH  
Input logic level high  
70  
%VDD  
Input logic level low  
30 %VDD  
Input logic current, high  
Input logic current, low  
VI = VDD  
VI = 0  
15  
µA  
µA  
IIL  
-15  
PWM OUTPUT STAGE  
Not including bond wire and package  
resistance  
RDS(on)  
FET drain-to-source resistance  
90  
mΩ  
OVERVOLTAGE (OV) PROTECTION  
VPVDD_OV  
PVDD overvoltage shutdown  
27.0  
27.8  
28.8  
V
Copyright © 2019, Texas Instruments Incorporated  
9
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, fIN = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PVDD overvoltage shutdown  
hysteresis  
VPVDD_OV_HYS  
VVBAT_OV  
0.8  
V
VBAT overvoltage shutdown  
20  
21.5  
0.6  
23  
V
V
VVBAT_OV_HYS VBAT overvoltage shutdown hysteresis  
UNDERVOLTAGE (UV) PROTECTION  
VBATUV  
VBAT undervoltage shutdown  
4
0.2  
4
4.5  
4.5  
V
V
V
V
VBAT undervoltage shutdown  
hysteresis  
VBATUV_HYS  
PVDDUV  
PVDD undervoltage shutdown  
PVDD undervoltage shutdown  
hysteresis  
PVDDUV_HYS  
0.2  
BYPASS VOLTAGES  
VGVDD  
VAVDD  
VVCOM  
VVREG  
Gate drive bypass pin voltage  
7
6
V
V
V
V
Analog bypass pin voltage  
Common bypass pin voltage  
Regulator bypass pin voltage  
2.5  
5.5  
POWER-ON RESET (POR)  
VPOR  
VDD voltage for POR  
VDD POR recovery hysteresis voltage  
2.1  
0.5  
2.7  
V
V
VPOR_HYS  
OVERTEMPERATURE (OT) PROTECTION  
OTW(i)  
Channel overtemperature warning  
Channel overtemperature shutdown  
150  
175  
°C  
°C  
OTSD(i)  
Global junction overtemperature  
warning  
OTW  
130  
°C  
Global junction overtemperature  
shutdown  
OTSD  
OTHYS  
160  
15  
°C  
°C  
Overtemperature hysteresis  
LOAD OVERCURRENT PROTECTION  
OC Level 1  
OC Level 2  
4.0  
6.0  
4.8  
6.5  
A
A
ILIM Overcurrent cycle-by-cycle limit  
OC Level 1, Any short to supply, ground, or  
other channels  
7
9
A
A
ISD  
Overcurrent shutdown  
OC Level 2, Any short to supply, ground, or  
other channels  
MUTE MODE  
GMUTE  
Output attenuation  
100  
7
dB  
CLICK AND POP  
ITU-R 2k filter, High-Z/MUTE to Play, Play to  
Mute/High-Z  
VCP  
Output click and pop voltage  
mV  
DC OFFSET  
VOFFSET  
Output offset voltage  
2
2
5
mV  
V
DC DETECT  
DCFAULT  
Output DC fault protection  
2.5  
DIGITAL OUTPUT PINS  
VOH  
VOL  
Output voltage for logic level high  
I = ±2 mA  
I = ±2 mA  
90  
%VDD  
Output voltage for logic level low  
10 %VDD  
Signal delay when output clipping  
detected  
tDELAY_CLIPDET  
20 µs  
10  
Copyright © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, fIN = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
LOAD DIAGNOSTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resistance to detect a short from OUT  
pin(s) to PVDD  
S2P  
S2G  
500  
Ω
Ω
Resistance to detect a short from OUT  
pin(s) to ground  
200  
SL  
Shorted load detection tolerance  
Open load  
±0.5  
Ω
Ω
OL  
40  
70  
TDC_DIAG  
LO  
TLINE_DIAG  
ACIMP  
DC diagnostic time  
100  
ms  
kΩ  
ms  
Line output diagnostic detection  
Line output diagnostic time  
AC impedance accuracy  
AC impedance accuracy  
AC diagnostic time  
6
Not including the preceeding DC_DIAG time  
Gain linearity, ƒ = 19 kHz, RL = 2 Ω to 16 Ω  
Offset  
40  
25%  
±0.5  
ACIMP  
Ω
TAC_DIAG  
I2C_ADDR PINS  
170  
300  
ms  
Time delay needed for I2C address  
set-up  
tI2C_ADDR  
µs  
Copyright © 2019, Texas Instruments Incorporated  
11  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, fIN = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
I2C CONTROL PORT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Bus free time between a STOP and  
START condition  
tBUS  
1.3  
µs  
th1  
th2  
Hold time, SCL to SDA  
0
ns  
µs  
Hold time, start condition to SCL  
0.6  
I2C startup time after VDD power on  
reset  
tSTART  
12  
ms  
tRISE  
tFALL  
tSU1  
tSU2  
tSU3  
tW(H)  
tW(L)  
Rise time, SCL and SDA  
300  
300  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Fall time, SCL and SDA  
Setup, SDA to SCL  
100  
0.6  
0.6  
0.6  
1.3  
Setup, SCL to start condition  
Setup, SCL to stop condition  
Required pulse duration SCL High  
Required pulse duration SCL Low  
SERIAL AUDIO PORT  
DMCLK, DSCLK  
fMCLK  
fMCLK_Max  
tSCY  
Allowable input clock duty cycle  
45%  
128  
50%  
55%  
Supported MCLK frequencies  
Maximum frequency  
128, 256, or 512  
512 xFS  
25 MHz  
SCLK pulse cycle time  
SCLK pulse-with LOW  
SCLK pulse-with HIGH  
Rise and fall time  
40  
16  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCL  
tSCH  
tRISE/FALL  
tSF  
<5  
SCLK rising edge to FSYNC edge  
FSYNC rising edge to SCLK edge  
DATA set-up time  
8
8
8
8
tFS  
tDS  
tDH  
DATA hold time  
Input capacitance, pins MCLK, SCLK,  
FSYNC, SDIN1  
ci  
10  
pf  
FSYNC = 44.1 kHz or 48 kHz  
FSYNC = 96 kHz  
30  
12  
Latency from input to output measured  
in FSYNC sample count  
TLA  
12  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
8.6 Typical Characteristics  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 66 (unless otherwise noted)  
0
-20  
0
-20  
PVDD = 14.4 V  
PVDD = 24 V  
PVDD = 14.4 V  
PVDD = 24 V  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
20  
100  
1k  
Frequency  
10k 20k  
20  
100  
1k  
Frequency  
10k 20k  
PO = 1 W  
PO = 1 W  
1. PVDD PSRR vs Frequency  
2. VBAT PSRR vs Frequency  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
PO = 1 W  
fSW = 384 kHz  
PO = 1 W  
fSW = 2.1 MHz  
3. THD+N vs Frequency  
4. THD+N vs Frequency  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
PO = 1 W  
24 V  
fSW = 384 kHz  
PO = 1 W  
24 V  
fSW = 2.1 MHz  
5. THD+N vs Frequency  
6. THD+N vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
13  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 66 (unless otherwise noted)  
10  
10  
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
Output Power (W)  
10  
100  
10m  
100m  
1
Output Power (W)  
10  
100  
fSW = 384 kHz  
fSW = 2.1 MHz  
7. THD+N vs Power  
8. THD+N vs Power  
10  
1
10  
1
4 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
Output Power (W)  
10  
100  
10m  
100m  
1
Output Power (W)  
10  
100  
24 V  
fSW = 384 kHz  
24 V  
fSW = 2.1 MHz  
9. THD+N vs Power  
10. THD+N vs Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2 W Load  
4 W Load  
2 W Load  
4 W Load  
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
10% THD  
fSW = 384 kHz  
10% THD  
fSW = 2.1 MHz  
11. Output Power vs Supply Voltage  
12. Output Power vs Supply Voltage  
14  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 66 (unless otherwise noted)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
Gain Level 1  
Gain Level 2  
Gain Level 3  
Gain Level 4  
Gain Level 1  
Gain Level 2  
Gain Level 3  
Gain Level 4  
60  
60  
40  
40  
20  
20  
0
0
5
10  
15  
Supply Voltage (V)  
20  
25 26  
5
10  
15  
Supply Voltage (V)  
20  
25  
D014  
A-weighted Noise  
fSW = 384 kHz  
A-weighted Noise  
fSW = 2.1 MHz  
13. Noise vs Supply voltage  
14. Noise vs Supply voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 14.4 V  
PVDD = 24 V  
PVDD = 14.4 V  
PVDD = 24 V  
0
10  
20  
30  
Output Power (W)  
40  
50  
60  
70  
80  
0
10  
20  
30  
Output Power (W)  
40  
50  
60  
70  
80  
4 Ω  
fSW = 384 kHz  
4 Ω  
fSW = 2.1 MHz  
15. PVDD Efficiency vs Output Power  
16. PVDD Efficiency vs Total Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 14.4 V  
40 50  
PVDD = 14.4 V  
40 50  
0
10  
20 30  
Output Power (W)  
0
10  
20 30  
Output Power (W)  
2 Ω  
fSW = 384 kHz  
2 Ω  
fSW = 2.1 MHz  
17. PVDD Efficiency vs Total Output Power  
18. PVDD Efficiency vs Total Output Power  
版权 © 2019, Texas Instruments Incorporated  
15  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 66 (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
6
4
FPWM = 384 kHz  
FPWM = 2.1 MHz  
FPWM = 384 kHz  
FPWM = 2.1 MHz  
2
0
0
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
5
10  
Supply Voltage (V)  
15  
18  
D020  
19. PVDD Idle Current vs Voltage  
20. VBAT Idle Current vs Voltage  
6
5
4
3
2
1
0
10  
PVDD = 14.4 V 2 W Load  
PVDD = 14.4 V 4 W Load  
PVDD = 24 V 4 W Load  
8
6
4
2
0
5
7
9
11  
13 15 17 19 21 23 25 26  
Supply Voltage (V)  
0
10  
20  
30  
40  
Total Output Power (W)  
50  
60  
70  
80  
fSW = 384 kHz  
21. PVDD + VBAT Standby Current vs Voltage  
22. Power Dissipation vs Output Power  
12  
10  
8
6
4
PVDD = 14.4 V 2 W Load  
PVDD = 14.4 V 4 W Load  
PVDD = 24 V 4 W Load  
2
0
0
10  
20  
30  
40  
50  
Total Output Power (W)  
60  
70  
80  
fSW = 2.1 MHz  
23. Power Dissipation vs Output Power  
16  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
9 Parameter Measurement Information  
The parameters for the TAS6421-Q1 device were measured using the circuit in 66.  
For measurements with 2.1 MHz switching frequency the 3.3 µH inductor from the TAS6421-Q1 EVM is used.  
版权 © 2019, Texas Instruments Incorporated  
17  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10 Detailed description  
10.1 Overview  
The TAS6421-Q1 device is a single-channel digital-input Class-D audio amplifier specifically tailored for use in  
the automotive industry. The device is designed for vehicle battery operation or boosted voltage systems. This  
efficient Class-D technology allows for reduced power consumption, reduced PCB area and reduced heat. The  
device realizes an audio sound-system design with smaller size and lower weight than traditional Class-AB  
solutions.  
The core design blocks are as follows:  
Serial audio port  
Clock management  
High-pass filter and volume control  
Pulse width modulator (PWM) with output stage feedback  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
10.2 Functional Block Diagram  
VDD  
VCOM VREG  
VBAT  
GVDD  
PVDD  
MUTE  
Gate Drive  
Regulator  
Reference  
Regulators  
STANDBY  
Digital Core  
WARN  
Closed Loop Class D Amplifier  
FAULT  
Digital to PWM  
MCLK  
Volume  
Serial  
SCLK  
Audio  
OUT_P  
OUT_M  
Gate  
Driver  
Control -100  
to +24 dB,  
0.5 dB steps  
Powerstage  
Port  
FSYNC  
SDIN1  
Clip  
Detection  
PLL and Clock  
Management  
Protection  
DC Load Diagnostics  
Short to GND  
Short to Power  
Open Load  
Overcurrent Limit  
Overcurrent  
SCL  
SDA  
2
I C Control  
Overtemperature  
I2C_ADDR0  
I2C_ADDR1  
Overvoltage and Undervoltage  
DC Detection  
Shorted Load  
AC Load Diagnostics  
18  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.3 Feature Description  
10.3.1 Serial Audio Port  
The serial audio port (SAP) receives audio in either I2S, left justified, right justified, or TDM formats.  
Settings for the serial audio port are programmed in the SAP Control (Serial Audio-Port Control) Register  
(address = 0x03) [default = 0x04] and Miscellaneous Control 3 Register (address = 0x21) [default = 0x00].  
24 shows the digital audio data connections for I2S and TDM8 mode for a five channel system using TAS6424  
four-channel Class-D amplifier and a TAS6421-Q1 single-channel Class-D amplifier.  
I2S  
TDM8  
SOC  
MCLK  
SOC  
MCLK  
TAS6424  
MCLK  
TAS6424  
MCLK  
SCLK  
FSYNC  
DATA1  
DATA2  
DATA3  
SCLK  
SCLK  
FSYNC  
DATA  
SCLK  
FSYNC  
SDIN1  
SDIN2  
FSYNC  
SDIN1  
SDIN2  
TAS6421  
TAS6421  
MCLK  
SCLK  
MCLK  
SCLK  
FSYNC  
SDIN1  
FSYNC  
SDIN1  
24. Digital-Audio Data Connection  
10.3.1.1 I2S Mode  
I2S timing uses the FSYNC pin to define when the data being transmitted is for the left channel and when the  
data is for the right channel. The FSYNC pin is low for the left channel and high for the right channel. The bit  
clock, SCLK, runs at 32 × fS or 64 × fS and is used to clock in the data. A delay of one bit clock occurs from the  
time the FSYNC signal changes state to the first bit of data on the data lines. The data is presented in 2s-  
complement form (MSB-first). The data is valid on the rising edge of the bit clock and is used to clock in the data.  
The SAP Control Register Bits 3-5 allows to select if I2S Channel 1 or Channel 2 is amplified.  
10.3.1.2 Left-Justified Timing  
Left-justified (LJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left channel  
and when the data is for the right channel. The FSYNC pin is high for the left channel and low for the right  
channel. A bit clock running at 32 × fS or 64 × fS is used to clock in the data. The first bit of data appears on the  
data lines at the same time FSYNC toggles. The data is written MSB-first and is valid on the rising edge of the bit  
clock. Digital words can be 16-bits or 24-bits wide and pad any unused trailing data-bit positions in the left-right  
(L/R) frame with zeros.  
10.3.1.3 Right-Justified Timing  
Right-justified (RJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left  
channel and when the data is for the right channel. The FSYNC pin is high for the left channel and low for the  
right channel. A bit clock running at 32 × fS or 64 × fS is used to clock in the data. The first bit of data appears on  
the data 8-bit clock periods (for 24-bit data) after the FSYNC pin toggles. In RJ mode the LSB of data is always  
clocked by the last bit clock before the FSYNC pin transitions. The data is written MSB-first and is valid on the  
rising edge of bit clock. The device pads the unused leading data-bit positions in the L/R frame with zeros.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
10.3.1.4 TDM Mode  
TDM mode supports 4 or 8 channels of audio data. The TDM mode is automatically selected when the TDM  
clocks are present. The device can be configured through I2C to select which TDM channel slot is amplified. The  
TDM mode supports 16-bit, 24-bit, and 32-bit input data lengths.  
In TDM mode, SCLK must be 128 x fs or 256 x fs, depending on the TDM slot size. In TDM mode SCLK and  
MCLK can be connected together. If SCLK and MCLK are connected together or the frequency of SCLK and  
MCLK is equal, FSYNC should be minimum 2 MCLK pulses long.  
In TDM mode, the SDIN1 pin (pin 15) is used for digital audio data. 1 lists register settings for the TDM  
channel selection.  
1. Channel Selection  
REGISTER SETTING  
AMPLIFIED CHANNEL  
0x03  
0x03  
0x03  
BIT 5  
BIT 4  
BIT 3  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Slot 1 in TDM8/4 or Left Channel in I2S mode  
Slot 2 in TDM8/4 or Right Channel in I2S mode  
Slot 3 in TDM8/4  
Slot 4 in TDM8/4  
Slot 5 in TDM8  
Slot 6 in TDM8  
Slot 7 in TDM8  
Slot 8 in TDM8  
10.3.1.5 Supported Clock Rates  
The device supports MCLK rates of 128 × fS, 256 × fS, or 512 × fS.  
The device supports SCLK rates of 32 × fS or 64 × fS in I2S, LJ or RJ modes or 128 × fS, or 256 × fS in TDM  
mode.  
The device supports FSYNC rates of 44.1 kHz, 48 kHz, or 96 kHz.  
The maximum clock frequency is 25 MHz. Therefore, for a 96 kHz FSYNC rate, the maximum MCLK rate is  
256 × fS.  
Duty cycle of 50% is required for 128x FSYNC, for 256x and 512x 50% duty cycle is not required.  
10.3.1.6 Audio-Clock Error Handling  
When any kind of clock error, MCLK-FSYNC or SCLK-FSYNC ratio, or clock halt is detected, the device puts all  
channels into the Hi-Z state. When all audio clocks are within the expected range, the device automatically  
returns to the state it was in. See the Electrical Characteristics table for timing requirements.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
FSYNC  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
t
FS  
SCH  
SCL  
SCLK  
(Input)  
t
t
SF  
SCY  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
DS  
25. Serial Audio Timing  
1/f  
S
FSYNC  
SCLK  
L-channel  
R-channel  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
LSB  
SDIN  
MSB  
LSB  
MSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
LSB  
SDIN  
MSB  
LSB  
MSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
0
1
30 31  
LSB  
SDIN  
MSB  
LSB  
MSB  
26. Left-Justified Audio Data Format  
版权 © 2019, Texas Instruments Incorporated  
21  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
1/f  
S
FSYNC  
L-channel  
R-channel  
SCLK  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
LSB  
0
1
30 31  
SDIN  
MSB  
MSB  
LSB  
27. I2S Audio Data Format  
1/Fs (256 sbclks)  
FSYNC  
SCLK  
SDIN (I2S mode)  
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
32 SCLK  
32 SCLK  
8 blocks of 32 SCLK  
Audio Data Format: TDM8 mode  
28. TDM8 Audio Data Format  
10.3.2 DC Blocking  
Direct-current (DC) content in the audio signal can damage speakers. The data path has a high-pass filter to  
remove any DC from the input signal. The corner frequency is selectable from 4 Hz, 8 Hz,15 Hz, 30 Hz and  
several more options up to 463 Hz with bits 0 through 2 in register 0x26. The default value of –3 dB is  
approximately 4 Hz for 44.1 kHz or 48 kHz and approximately 8 Hz for 96 kHz sampling rates.  
22  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.3.3 Volume Control and Gain  
The output channel has a digital-volume control with a range from –100 dB to +24 dB with 0.5-dB steps. The  
volume control is set through I2C. The gain-ramp rate is programmable through I2C to take one step every 1, 2,  
4, or 8 FSYNC cycles.  
The peak output-voltage swing is also configurable in the gain control register through I2C. The four full-scale  
voltage settings are 7.5 V, 15 V, 21 V, and 29 V. TI recommends selecting the lowest possible for the expected  
PVDD operation to optimize output noise and dynamic range performance.  
10.3.4 High-Frequency Pulse-Width Modulator (PWM)  
The PWM converts the PCM input data into a switched signal of varying duty cycle. The PWM modulator is an  
advanced design with high bandwidth, low noise, low distortion, and excellent stability. The output switching rate  
is synchronous to the serial audio-clock input and is programmed through I2C to be between 8× and 48× the  
input-sample rate. The option to switch at high frequency allows the use of smaller and lower cost external  
filtering components. 2 lists the switch frequency options for bits 4 through 6 in the Miscellaneous Control 2  
register (address 0x02).  
2. Output Switch Frequency Option  
INPUT SAMPLE RATE  
BIT 6:4 SETTINGS  
010 to 100  
000  
001  
101  
110  
111  
44.1 kHz  
48 kHz  
96 kHz  
352.8 kHz  
384 kHz  
384 kHz  
441 kHz  
480 kHz  
480 kHz  
RESERVED  
RESERVED  
RESERVED  
1.68 MHz  
1.82 MHz  
1.82 MHz  
1.94 MHz  
2.11 MHz  
2.11 MHz  
2.12 MHz  
Not supported  
Not supported  
10.3.5 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level shifts it to drive a high-current, full-bridge, power-  
FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
The gate-driver power-supply voltage, GVDD, is internally generated and a decoupling capacitor is connected at  
pin 9.  
The full H-bridge output stages use only NMOS transistors. Therefore, bootstrap capacitors are required for the  
proper operation of the high side NMOS transistors. A 1-µF ceramic capacitor of quality X7R or better, rated for  
at least 16 V, must be connected from each output to the corresponding bootstrap input. The bootstrap  
capacitors connected between the BST pins and corresponding output function as a floating power supply for the  
high-side N-channel power MOSFET gate drive circuitry. During each high-side switching cycle, the bootstrap  
capacitors hold the gate-to-source voltage high keeping the high-side MOSFETs turned on.  
10.3.6 Power FETs  
The BTL output channel comprises four N-channel 90-mFETs for high efficiency and maximum power transfer  
to the load. These FETs are designed to handle the fast switching frequency and large voltage transients during  
load dump.  
10.3.7 Load Diagnostics  
The device incorporates both DC-load and AC-load diagnostics, which are used to determine the status of the  
load. The DC diagnostics are turned on by default, but if a fast startup without diagnostics is required, the DC  
diagnostics can be bypassed through I2C. The DC diagnostics run when the output channel is directed to leave  
the Hi-Z state and enter the MUTE or PLAY state. The DC diagnostics can also be enabled manually. DC  
Diagnostics can be started from any operating condition, but if the channel is in PLAY state, then the time to  
complete the diagnostic is longer because the device must ramp down the audio signal of that channel before  
transitioning to the Hi-Z state. The DC diagnostics are available as soon as the device supplies are within the  
recommended operating range. The DC diagnostics do not rely on the audio input clocks to be available to  
function. DC Diagnostic results are reported through I2C registers.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.3.7.1 DC Load Diagnostics  
The DC load diagnostics are used to verify the load is connected. The DC diagnostics consists of four tests:  
short-to-power (S2P), short-to-ground (S2G), open-load (OL), and shorted-load (SL). The S2P and S2G tests  
trigger if the impedance to GND or a power rail is below that specified in the Specifications section. The  
diagnostic detects a short to vehicle battery, even when the supply is boosted. The SL test has an I2C-  
configurable threshold depending on the expected load to be connected. The OL test reports if the select  
channel has a load impedance greater than the limits in the Specifications section.  
Open Load  
Open Load Detected  
OL Maximum  
Open Load (OL)  
Detection Threshold  
Normal or Open Load  
May Be Detected  
OL Minimum  
SL Maximum  
SL Minimum  
Normal Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Shorted Load Detected  
29. DC Load Diagnostic Reporting Thresholds  
10.3.7.2 Line Output Diagnostics  
The device also includes an optional test to detect a line-output load. A line-output load is a high-impedance load  
that is above the open-load (OL) threshold such that the DC-load diagnostics report an OL condition. After an OL  
condition is detected, if the line output detection bit is also set, the channel checks if a line-output load is present  
as well. This test is not pop free, so if an external amplifier is connected it should be muted.  
10.3.7.3 AC Load Diagnostics  
The AC load diagnostic is used to determine the proper connection of a capacitively-coupled speaker or tweeter  
when used with a passive crossover. The AC load diagnostic is controlled through I2C. The AC diagnostics  
requires an external input signal and reports the approximate load impedance and phase. The selected signal  
frequency should create current flow through the desired speaker for proper detection. The AC load-diagnostic  
test procedure is as follows.  
10.3.7.3.1 Impedance Magnitude Measurement  
For load-impedance detection, use the following test procedure:  
1. Set the output channel into the Hi-Z state.  
2. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0.  
3. Apply a full-scale input signal from the DSP for the tested channel with the desired frequency (recommended  
10 kHz to 20 kHz).  
The device ramps the signal up and down automatically to prevent pops and clicks.  
4. Set the device into the AC diagnostic mode (set bit 3 in register 0x15 to 1).  
5. Read back the AC impedance (register 0x17).  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
24  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
The hexadecimal register value must be converted to decimal and used to calculate the impedance magnitude  
using 公式 1:  
Impedance _ CHxì2.371mV  
(Gain)(I mA)  
Channelx Impedance =  
(Ohms)  
(1)  
10.3.7.3.2 Impedance Phase Reference Measurement  
The first stage to determine the AC phase is to utilize the built-in loopback mode to determine the reference  
value for the phase measurement. This reference nullifies any phase offset in the device and measure only the  
phase of the load.  
For loopback delay detection, use the following test procedure:  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode.  
2. Apply a 0-dBFS 19 kHz signal and enable AC load diagnostics (set bit 3 in register 0x15 to 1).  
3. Read back the 16bit hexadecimal, AC_LDG_PHASE1 value. Register 0x1B holds the MSB and register  
0x1C holds the LSB.  
4. Set bit 3 in register 0x15 to 0.  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
10.3.7.3.3 Impedance Phase Measurement  
After performing the phase reference measurements, measure the phase of the speaker load. This is performed  
in the same manner as the reference measurements, except the loopback is disabled in register 0x16, bit 7.  
For loopback delay detection, use the following test procedure:  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0 to disable AC loopback mode.  
2. Apply a 0-dBFS 19 kHz signal and enable AC load diagnostics by setting bit 3 in register 0x15 to 1.  
3. Read back the 16-bit hexadecimal, AC_LDG_PHASE1 value. Register 0x1B holds the MSB and register  
0x1C holds the LSB.  
4. Read back the hexadecimal stimulus value, STI. Register 0x1D holds the MSB and register 0x1E holds the  
LSB.  
5. Set bit 3 in register 0x15 to 0.  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
The AC phase in degrees is calculated using 公式 2:  
:
;
2D=OA_%*T .$- F 2D=OA_%*T(.&/)  
2D=OA_%*T = 360(  
)
56+_%*T(.&/)  
(2)  
Where:  
Phase_CHx(LBK) is the reference phase measurement. LBK stands for loopback mode  
Phase_CHx(LDM) is the phase measure of the load. LDM stands for load mode  
STI_CHx(LDM) is the stimulus value  
3. AC Impedance Code to Magnitude  
MAPPING FROM CODE TO  
MAGNITUDE (Ω/Code)  
SETTING  
GAIN AT 19 kHz  
I(A)  
MEASUREMENT RANGE (Ω)  
Gain = 4, I = 10 mA  
(recommended)  
4.28  
4.28  
1
0.01  
0.019  
0.01  
12  
6
0.05832  
Gain = 4, I = 19 mA  
0.0307  
Gain = 1, I = 10 mA  
(recommended)  
48  
24  
0.2496  
Gain = 1, I = 19 mA  
1
0.019  
0.1314  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.3.8 Protection and Monitoring  
10.3.8.1 Overcurrent Limit (ILIMIT  
)
The overcurrent limit terminates each PWM pulse to limit the output current flow when the current limit (ILIMIT) is  
exceeded. Power is limited, but operation continues without disruption and prevents undesired shutdown for  
transient music events. ILIMIT is not reported as fault condition to registers or the FAULT pin but as warning  
condition to the WARN pin and ILIMIT Status Register (address = 0x25) [default = 0x00]. The two programmable  
levels can be set by bit 4 in the Miscellaneous Control 1 register (address 0x01).  
10.3.8.2 Overcurrent Shutdown (ISD  
)
If the output load current reaches ISD, such as an output short to GND, then a peak current limit occurs, which  
shuts down the channel. The time to shutdown the channel varies depending on the severity of the short  
condition. The channel is placed into the Hi-Z state, the fault is reported to the register, and the FAULT pin is  
asserted. The device remains in this state until the CLEAR FAULT bit is set in Miscellaneous Control 3 Register,  
0x21 bit 7. After clearing this bit and if the diagnostics are enabled, the device automatically starts diagnostics on  
the channel and, if no load failure is found, the device restarts. If a load fault is found the device continues to  
rerun the diagnostics once per second. Because this hiccup mode uses the diagnostics, no high current is  
created. If the diagnostics are disabled, the device sets the state for the channel to Hi-Z and requires the MCU to  
take the appropriate action, setting the CLEAR FAULT bit after the fault was removed, in order to return to Play  
state. The two programmable levels can be set by bit 4 in the Miscellaneous Control 1 register (address 0x01).  
10.3.8.3 DC Detect  
This circuit checks the DC offset continuously during normal operation at the output of the amplifier. If the DC  
offset exceeds the threshold, the channel is placed in the Hi-Z state, the fault is reported to the I2C register, and  
the FAULT pin is asserted. A register bit can be used to mask reporting to the FAULT pin if required.  
10.3.8.4 Clip Detect  
The Clip Detect is reported on the WARN pin if 100% duty-cycle PWM is reached for a minimum number of  
PWM cycles set by the Clip Window Register (address = 0x23). The default is 20 PWM cycles. The Clip Detect is  
latched and can be cleared by I2C. Masking the clip reporting to the pin is possible through I2C. If desired, the  
Clip Detect can be configured to be non-latching through I2C. In non-latching mode, Clip Detect is reported when  
the PWM duty cycle reaches 100%, and deasserted once the PWM duty cycle falls below 100%.  
10.3.8.5 Global Overtemperature Warning (OTW), Overtemperature Shutdown (OTSD)  
Four overtemperature warning levels are available in the device (see the Register Maps section for thresholds).  
When the junction temperature exceeds the warning level, the WARN pin is asserted, unless the mask bit has  
been set to disable reporting. The device functions until the OTSD value is reached, at which point the channels  
are placed in the Hi-Z state and the FAULT pin is asserted. By default, the device remains shut down after the  
temperature drops to normal levels. This configuration can be changed in bit 3 of the Miscellaneous Control 3  
Register (address = 0x21) [default = 0x00] to auto-recovery: When the junction temperature returns to normal  
levels, the device automatically recovers and places the channel into the state indicated by the state control  
register. Note that even in auto-recovery configuration the FAULT pin remains asserted until the CLEAR FAULT  
bit (bit 7) is set in register 0x21.  
10.3.8.6 Channel Overtemperature Warning [OTW(i)] and Shutdown [OTSD(i)]  
In addition to the global OTW, the output channel also has an individual overtemperature warning and shutdown.  
If the channel exceeds the OTW(i) threshold, the warning register bit is set as the WARN pin is asserted, unless  
the mask bit has been set to disable reporting. If the channel temperature exceeds the OTSD(i) threshold then  
the channel goes to the Hi-Z state and either remains there or auto-recovers to the state indicated by the state  
control register when the temperature drops below the OTW(i) threshold, depending on the setting of bit 3 of the  
Miscellaneous Control 3 Register (address = 0x21) [default = 0x00].  
26  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.3.8.7 Undervoltage (UV) and Power-On-Reset (POR)  
The undervoltage (UV) protection detects low voltages on the PVDD and VBAT pins. In the event of an UV  
condition, the FAULT pin is asserted, and the I2C register is updated. A power-on reset (POR) on the VDD pin  
causes the I2C to goes to the high-impedance (Hi-Z) state, and all registers are reset to default values. At power-  
on or after a POR event, the POR warning bit and WARN pin are asserted.  
10.3.8.8 Overvoltage (OV) and Load Dump  
The overvoltage (OV) protection detects high voltages on the PVDD pin. If the PVDD pin reaches the OV  
threshold, the FAULT pin is asserted and the I2C register is updated. The device can withstand 40 V load-dump  
voltage spikes.  
10.3.9 Power Supply  
The device has three power supply inputs, VDD, PVDD, and VBAT, which are described as follows:  
VDD  
This pin is a 3.3V supply pin that provides power to the low voltage circuitry.  
VBAT  
This pin is a higher voltage supply that can be connected to the vehicle battery or the regulated  
voltage rail in a boosted system within the recommended limits. For best performance, this rail  
should be 10 V or higher. See the Recommended Operating Conditions table for the maximum  
supply voltage. This supply rail is used for higher voltage analog circuits but not the output FETs.  
PVDD  
This pin is a high-voltage supply that can either be connected to the vehicle battery or to another  
voltage rail in a boosted system. The PVDD pin supplies the power to the output FETs and can be  
within the recommended operating limits, even if that is below the VBAT supply, to allow for  
dynamic voltage systems.  
Several on-chip regulators are included for generating the voltages necessary for the internal circuitry. The  
external pins are provided only for bypass capacitors to filter the supply and should not be used to power other  
circuits.  
The device can withstand fortuitous open ground and power conditions within the absolute maximum ratings for  
the device. Fortuitous open ground usually occurs when a speaker wire is shorted to ground, allowing for a  
second ground path through the body diode in the output FETs.  
10.3.9.1 Vehicle-Battery Power-Supply Sequence  
The device can accept any sequence of the VBAT, PVDD and VDD supply.  
10.3.9.1.1 Power-Up Sequence  
In a typical system, the VBAT and PVDD supplies are both connected to the vehicle battery and power up at the  
same time. The VDD supply should be applied after the VBAT and PVDD supplies are within the recommended  
operating range.  
10.3.9.1.2 Power-Down Sequence  
To power-down the device, first set the STANDBY pin low for at least 15ms before removing PVDD, VBAT or  
VDD. After 15ms, the power supplies can be removed.  
10.3.9.2 Boosted Power-Supply Sequence  
In this case, the VBAT and PVDD inputs are not connected to the same supply.  
When powering up, apply the VBAT supply first, the VDD supply second, and the PVDD supply last.  
When powering down, first set the STANDBY pin low for at least 15ms before removing PVDD, VBAT or VDD.  
After 15 ms, the power supplies can be removed.  
10.3.10 Hardware Control Pins  
The device has four pins for control and device status: FAULT, MUTE, WARN, and STANDBY.  
版权 © 2019, Texas Instruments Incorporated  
27  
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.3.10.1 FAULT  
The FAULT pin reports faults and is active low under any of the following conditions:  
Channel faults (overcurrent or DC detection)  
Overtemperature shutdown  
Overvoltage or undervoltage conditions on the VBAT or PVDD pins  
Clock errors  
For all listed faults, the FAULT pin remains asserted after the fault condition is rectified. Deassert the FAULT pin  
by writing the CLEAR FAULT bit (bit 7) in register 0x21. The only exception is the fault report caused by  
Overtemperature shutdown, for which the FAULT pin deasserts automatically when the junction temperature  
returns to normal levels and the device automatically recovers.  
The register reports for all fault reports remain asserted until they are cleared by writing the CLEAR FAULT bit  
(bit 7) in register 0x21.  
Register bits are available to mask fault categories from reporting to the FAULT pin. These bits only mask the  
setting of the pin and do not affect the register reporting or protection of the device. By default all faults are  
reported to the pin. See the Register Maps section for a description of the mask settings.  
This pin is an open-drain output with an internal 100 kΩ pull-up resistor to VDD.  
10.3.10.2 WARN  
This active-low output pin reports audio clipping, overtemperature warnings, overcurrent limit warnings and POR  
events.  
Clipping is reported if any channel is at the maximum modulation for 20 consecutive PWM clocks (default value)  
which results in a 10-µs delay to report the onset of clipping. Changing the number of required consecutive PWM  
clocks in the Clip Window Register (address = 0x23) impacts the report delay time. The Clip Detect warning bit is  
sticky in latching mode and can be cleared by the CLEAR FAULT bit (bit 7) in register 0x21.  
An overtemperature warning (OTW) is reported if the general temperature or the channel temperature warnings  
are set. The warning temperature can be set through bits 5 and 6 in register 0x01.  
Register bits are available to mask either clipping, OTW or ILIMIT reporting to the pin. These bits only mask the  
setting of the pin and do not affect the register reporting. By default clipping, ILIMIT and OTW are reported.  
The WARN pin is latched and can be cleared by writing the CLEAR FAULT bit (bit 7) in register 0x21.  
This pin is an open-drain output with an internal 100 kΩ pull-up resistor to VDD.  
10.3.10.3 MUTE  
This active-low input pin is used for hardware control of the mute and unmute function.  
This pin has a 100 kΩ internal pull-down resistor.  
10.3.10.4 STANDBY  
When this active-low input pin is asserted, the device goes into shutdown and current draw is limited. This pin  
can be used to shut down the device rapidly. The outputs are ramped down in less than 5 ms if the device is not  
already in the Hi-Z state.  
This pin has a 100 kΩ internal pull-down resistor.  
28  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.4 Device Functional Modes  
10.4.1 Operating Modes and Faults  
The operating modes and faults are listed in the following tables.  
Global Faults affect the entire device while the effect and management of Channel Faults is limited to the Output  
Stage. Although the system effects of a Global Fault and a Channel Fault can be identical in a 1-channel device  
such as TAS6421-Q1, this split and naming convention was selected to remain compatible with the multi-channel  
TAS642x-Q1 family devices.  
4. Operating Modes  
STATE NAME  
STANDBY  
Hi-Z  
OUTPUT FETS  
Hi-Z  
OSCILLATOR  
Stopped  
Active  
I2C  
Active  
Active  
Active  
Active  
Hi-Z  
MUTE  
Switching at 50%  
Switching with audio  
Active  
PLAY  
Active  
5. Global Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
RESULT  
POR  
VBAT UV  
PVDD UV  
VBAT or PVDD OV  
OTW  
All  
I2C + WARN pin  
Standby  
Voltage fault  
Hi-Z, mute, normal  
I2C + FAULT pin  
Hi-Z  
Thermal warning  
Hi-Z, mute, normal  
Hi-Z, mute, normal  
I2C + WARN pin  
I2C + FAULT pin  
None  
Hi-Z  
OTSD  
Thermal shutdown  
6. Channel Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
TYPE  
I2C + WARN or FAULT  
pin  
Clipping  
Warning  
None  
Overcurrent limiting  
Overcurrent fault  
DC detect  
Protection  
I2C + WARN pin  
Current limit  
Mute and play  
Output channel fault  
I2C + FAULT pin  
Hi-Z  
版权 © 2019, Texas Instruments Incorporated  
29  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.5 Programming  
10.5.1 I2C Serial Communication Bus  
The device communicates with the system processor through the I2C serial communication bus as an I2C slave-  
only device. The processor can poll the device through I2C to determine the operating status, configure settings,  
or run diagnostics. For a complete list and description of all I2C controls, see the Register Maps section.  
The device includes two I2C address pins, so up to four devices can be used together in a system with no  
additional bus switching hardware. The I2C ADDRx pins set the slave address of the device as listed in 7.  
7. I2C Addresses  
DESCRIPTION  
I2C ADDR1  
I2C ADDR0  
I2C Write  
0xD4  
I2C Read  
0xD5  
Device 0  
Device 1  
Device 2  
Device 3  
0
0
1
1
0
1
0
1
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
10.5.2 I2C Bus Protocol  
The device has a bidirectional serial-control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 100 kbps and 400 kbps data transfer rates for random and sequential write and read operations. The  
TAS6421-Q1 device is a slave-only device that does not support a multimaster bus environment or wait-state  
insertion. The control interface is used to program the registers of the device and to read device status.  
The I2C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in byte (8-  
bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and stop  
conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop.  
Normal data bit transitions must occur within the low time of the clock period. The master generates the 7-bit  
slave address and the read/write (R/W) bit to open communication with another device and then wait for an  
acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate an  
acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is  
addressed by a unique 7-bit slave address plus a R/W bit (1 byte). All compatible devices share the same signals  
via a bidirectional bus using a wired-AND connection. An external pull-up resistor must be used for the SDA and  
SCL signals to set the HIGH level for the bus. The number of bytes that can be transmitted between start and  
stop conditions is unlimited. When the last word transfers, the master generates a stop condition to release the  
bus.  
R/  
W
8-Bit Register Data for  
Address (N)  
8-Bit Register Data for  
Address (N)  
7-Bit Slave Address  
A
8-Bit Register Address (N)  
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
30. Typical I2C Sequence  
30  
版权 © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
t
t
t
r
t
f
w(H)  
w(L)  
SCL  
t
t
h1  
su1  
SDA  
31. SCL and SDA Timing  
Use the I2C ADDRx pins to program the device slave address. Read and write data can be transmitted using  
single-byte or multiple-byte data transfers.  
10.5.3 Random Write  
As shown in 32, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. The R/W bit determines the direction of the data transfer.  
For a write data transfer, the R/W bit is a 0. After receiving the correct I2C device address and the R/W bit, the  
device responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to  
the internal memory address being accessed. After receiving the address byte, the device again responds with  
an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being  
accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the master  
device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
32. Random Write Transfer  
10.5.4 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in 33. After receiving each data byte, the device responds  
with an acknowledge bit and the I2C subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
A4 A3  
A0  
ACK  
A1  
R/W ACK  
A6 A5  
ACK  
ACK  
ACK  
D0  
A6  
A7  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
33. Sequential Write Transfer  
10.5.5 Random Read  
As shown in 34, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. For the data-read transfer, both a write followed by a read  
occur. Initially, a write occurs to transfer the address byte or bytes of the internal memory address to be read. As  
a result, the R/W bit is a 0. After receiving the address and the R/W bit, the device responds with an  
acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device  
版权 © 2019, Texas Instruments Incorporated  
31  
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
transmits another start condition followed by the address and the R/W bit again. This time the R/W bit is a 1,  
indicating a read transfer. After receiving the address and the R/W bit, the device again responds with an  
acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving  
the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the  
single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
34. Random Read Transfer  
10.5.6 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in 35. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge bit followed  
by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
35. Sequential Read Transfer  
32  
版权 © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.6 Register Maps  
8. I2C Address Register Definitions  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Register Description  
Section  
Go  
Mode Control  
Miscellaneous Control 1  
Miscellaneous Control 2  
Go  
Go  
SAP Control (Serial Audio-Port Control)  
Channel State Control  
Channel 1 Volume Control  
RESERVED  
Go  
Go  
Go  
R
RESERVED  
R
RESERVED  
R/W  
R/W  
R
DC Diagnostic Control 1  
DC Diagnostic Control 2  
RESERVED  
Go  
Go  
R
DC Load Diagnostic Report 1  
RESERVED  
Go  
R
R
DC Load Diagnostic Report 3 - Line Output  
Channel State Reporting  
Channel Faults (Overcurrent, DC Detection)  
Global Faults 1  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
R
R
R
R
Global Faults 2  
R
Warnings  
R/W  
R/W  
R/W  
R
Pin Control  
AC Load Diagnostic Control 1  
AC Load Diagnostic Control 2  
AC Load Diagnostic Report Channel 1  
RESERVED  
R
R
RESERVED  
R
RESERVED  
R
AC Load Diagnostic Phase Report High  
AC Load Diagnostic Phase Report Low  
AC Load Diagnostic STI Report High  
AC Load Diagnostic STI Report Low  
RESERVED  
Go  
Go  
Go  
Go  
R
R
R
R
R
RESERVED  
R/W  
R/W  
R/W  
R
Miscellaneous Control 3  
Clip Control  
Go  
Go  
Go  
Go  
Go  
Go  
Clip Window  
Clip Warning  
R
ILIMIT Status  
R/W  
R
Miscellaneous Control 4  
RESERVED  
R
RESERVED  
版权 © 2019, Texas Instruments Incorporated  
33  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.6.1 Mode Control Register (address = 0x00) [default = 0x00]  
The Mode Control register is shown in 36 and described in 9.  
36. Mode Control Register  
7
6
5
4
3
2
1
0
RESET  
R/W-0  
RESERVED  
CH1 LO MODE  
R/W-0  
RESERVED  
9. Mode Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0
0: Normal operation  
1: Resets the device. Self-clearing, reads back 0.  
RESERVED  
6-4  
3
RESERVED  
R/W  
R/W  
000  
0
CH1 LO MODE  
0: Channel 1 is in normal/speaker mode  
1: Channel 1 is in line output mode  
RESERVED  
2-0  
RESERVED  
R/W  
000  
10.6.2 Miscellaneous Control 1 Register (address = 0x01) [default = 0x32]  
The Miscellaneous Control 1 register is shown in 37 and described in 10.  
37. Miscellaneous Control 1 Register  
7
6
5
4
3
2
1
0
HPF BYPASS  
R/W-0  
OTW CONTROL  
R/W-01  
OC CONTROL  
R/W-1  
VOLUME RATE  
R/W-00  
GAIN  
R/W-10  
10. Misc Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HPF BYPASS  
R/W  
0
0: High pass filter enabled  
1: High pass filter disabled  
6–5  
OTW CONTROL  
R/W  
01  
00: Global overtemperature warning set to 140°C  
01: Global overtemperature warning set to 130C  
10: Global overtemperature warning set to 120°C  
11: Global overtemperature warning set to 110°C  
4
OC CONTROL  
VOLUME RATE  
R/W  
R/W  
1
0: Overcurrent is level 1  
1: Overcurrent is level 2  
3–2  
00  
00: Volume update rate is 1 step / FSYNC  
01: Volume update rate is 1 step / 2 FSYNCs  
10: Volume update rate is 1 step / 4 FSYNCs  
11: Volume update rate is 1 step / 8 FSYNCs  
1–0  
GAIN  
R/W  
10  
00: Gain level 1 = 7.5 V peak output voltage  
01: Gain Level 2 = 15 V peak output voltage  
10: Gain Level 3 = 21 V peak output voltage  
11: Gain Level 4 = 29 V peak output voltage  
10.6.3 Miscellaneous Control 2 Register (address = 0x02) [default = 0x62]  
The Miscellaneous Control 2 register is shown in 38 and described in 11.  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
38. Miscellaneous Control 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
PWM FREQUENCY  
R/W-110  
RESERVED  
SDM_OSR  
R/W-0  
RESERVED  
11. Misc Control 2 Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
0
Description  
RESERVED  
6–4  
PWM FREQUENCY  
110  
000: 8 × fS (352.8 kHz / 384 kHz)  
001: 10 × fS (441 kHz / 480 kHz)  
010: RESERVED  
011: RESERVED  
100: RESERVED  
101: 38 × fS (1.68 MHz / 1.82 MHz)  
110: 44 × fS (1.94 MHz / 2.11 MHz)  
111: 48 × fS (2.12 MHz / not supported)  
RESERVED  
3
2
RESERVED  
SDM_OSR  
R/W  
R/W  
0
0
0: 64x Oversampling rate  
1: 128x Oversampling rate  
RESERVED  
1–0  
RESERVED  
R/W  
10  
10.6.4 SAP Control (Serial Audio-Port Control) Register (address = 0x03) [default = 0x04]  
The SAP Control (serial audio-port control) register is shown in 39 and described in 12.  
39. SAP Control Register  
7
6
5
4
3
2
1
0
INPUT SAMPLING RATE  
R/W-00  
TDM SLOT SELECT  
R/W-000  
INPUT FORMAT  
R/W-100  
12. SAP Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
INPUT SAMPLING RATE  
R/W  
00  
00: 44.1 kHz  
01: 48 kHz  
10: 96 kHz  
11: RESERVED  
000: Select slot 1 in TDM8/4 or channel 1 in I2S mode  
001: Select slot 2 in TDM8/4 or channel 2 in I2S mode  
010: Select slot 3 in TDM8/4  
5–3  
TDM SLOT SELECT  
R/W  
000  
011: Select slot 4 in TDM8/4  
100: Select slot 5 in TDM8  
101: Select slot 6 in TDM8  
110: Select slot 7 in TDM8  
111: Select slot 8 in TDM8  
2–0  
INPUT FORMAT  
R/W  
100  
000: 24-bit right justified  
001: 20-bit right justified  
010: 18-bit right justified  
011: 16-bit right justified  
100: I2S (16-bit or 24-bit)  
101: Left justified (16-bit or 24-bit)  
110: DSP mode (16-bit or 24-bit)  
111: RESERVED  
版权 © 2019, Texas Instruments Incorporated  
35  
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.6.5 Channel State Control Register (address = 0x04) [default = 0x55]  
The Channel State Control register is shown in 40 and described in 13.  
40. Channel State Control Register  
7
6
5
4
3
2
1
0
CH1 STATE CONTROL  
R/W-01  
RESERVED  
13. Channel State Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
CH1 STATE CONTROL  
R/W  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
RESERVED  
5–0  
RESERVED  
R/W  
010101  
36  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.6.6 Channel 1 Volume Control Register (address = 0x05) [default = 0xCF]  
The Channel 1 Volume Control registers is shown in 41 and described in 14.  
41. Channel 1 Volume Control Register  
7
6
5
4
3
2
1
0
CH 1 VOLUME  
R/W-11001111  
14. Ch 1 Volume Control Field Descriptions  
Bit  
Field  
CH 1 VOLUME  
Type  
Reset  
Description  
7–0  
R/W  
11001111  
8-Bit Volume Control for the output channel, 0.5 dB/step:  
0xFF: 24 dB  
0xCF: 0 dB  
0x07: –100 dB  
< 0x07: MUTE  
10.6.7 DC Load Diagnostic Control 1 Register (address = 0x09) [default = 0x00]  
The DC Diagnostic Control 1 register is shown in 42 and described in 15.  
42. DC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
DC LDG  
ABORT  
2x_RAMP  
2x_SETTLE  
RESERVED  
LDG LO  
ENABLE  
LDG BYPASS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
15. DC Load Diagnostics Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DC LDG ABORT  
R/W  
0
0: Default state, clear after abort  
1: Aborts the load diagnostics in progress  
6
5
2x_RAMP  
R/W  
R/W  
0
0
0: Normal ramp time  
1: Double ramp time  
2x_SETTLE  
0: Normal Settle time  
1: Double settling time  
RESERVED  
4–2  
1
RESERVED  
R/W  
R/W  
000  
0
LDG LO ENABLE  
0: Line output diagnostics are disabled  
1: Line output diagnostics are enabled  
0
LDG BYPASS  
R/W  
0
0: Automatic diagnostics when leaving Hi-Z and after  
channel fault  
1: Diagnostics are not run automatically  
10.6.8 DC Load Diagnostic Control 2 Register (address = 0x0A) [default = 0x11]  
The DC Diagnostic Control 2 register is shown in 43 and described in 16.  
43. DC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
CH1 DC LDG SL  
R/W-0001  
RESERVED  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
16. DC Load Diagnostics Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–4  
CH1 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
RESERVED  
3–0  
RESERVED  
R/W  
0001  
10.6.9 DC Load Diagnostic Report 1 Register (address = 0x0C) [default = 0x00]  
DC Load Diagnostic Report 1 register is shown in 44 and described in 17.  
44. DC Load Diagnostic Report 1 Register  
7
6
5
4
3
2
1
0
CH1 S2G  
R-0  
CH1 S2P  
R-0  
CH1 OL  
R-0  
CH1 SL  
R-0  
RESERVED  
17. DC Load Diagnostics Report 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 S2G  
CH1 S2P  
CH1 OL  
R
0
0: No short-to-GND detected  
1: Short-To-GND Detected  
6
5
R
R
R
R
0
0: No short-to-power detected  
1: Short-to-power detected  
0
0: No open load detected  
1: Open load detected  
4
CH1 SL  
0
0: No shorted load detected  
1: Shorted load detected  
RESERVED  
3–0  
RESERVED  
0000  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.6.10 DC Load Diagnostics Report 3 Line Output Register (address = 0x0E) [default = 0x00]  
The DC Load Diagnostic Report, Line Output, register is shown in 45 and described in 18.  
45. DC Load Diagnostics Report 3 Line Output Register  
7
6
5
4
3
2
1
0
RESERVED  
CH1 LO LDG  
R-0  
RESERVED  
18. DC Load Diagnostics Report 3 Line Output Field Descriptions  
Bit  
7–4  
3
Field  
Type  
R
Reset  
0000  
0
Description  
RESERVED  
CH1 LO LDG  
RESERVED  
R
0: No line output detected on channel 1  
1: Line output detected on channel 1  
RESERVED  
2–0  
RESERVED  
R
000  
10.6.11 Channel State Reporting Register (address = 0x0F) [default = 0x40]  
The Channel State Reporting register is shown in 46 and described in 19.  
46. Channel State-Reporting Register  
7
6
5
4
3
2
1
0
CH1 STATE REPORT  
R-01  
RESERVED  
19. State-Reporting Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
CH1 STATE REPORT  
R
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
RESERVED  
5–0  
RESERVED  
R
000000  
10.6.12 Channel Faults (Overcurrent, DC Detection) Register (address = 0x10) [default = 0x00]  
The Channel Faults (overcurrent, DC detection) register is shown in 47 and described in 20.  
47. Channel Faults Register  
7
6
5
4
3
2
1
0
CH1 OC  
R-0  
RESERVED  
CH1 DC  
R-0  
RESERVED  
20. Channel Faults Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 OC  
R
0
0: No overcurrent fault detected  
1: Overcurrent fault detected  
RESERVED  
6–4  
3
RESERVED  
CH1 DC  
R
R
000  
0
0: No DC fault detected  
1: DC fault detected  
RESERVED  
2–0  
RESERVED  
R
000  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
 
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.6.13 Global Faults 1 Register (address = 0x11) [default = 0x00]  
The Global Faults 1 register is shown in 48 and described in 21.  
48. Global Faults 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
INVALID  
CLOCK  
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
R-0  
R-0  
R-0  
R-0  
R-0  
21. Global Faults 1 Field Descriptions  
Bit  
7–5  
4
Field  
Type  
R
Reset  
000  
0
Description  
RESERVED  
RESERVED  
INVALID CLOCK  
R
0: No clock fault detected  
1: Clock fault detected  
3
2
1
0
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
R
R
R
R
0
0
0
0
0: No PVDD overvoltage fault detected  
1: PVDD overvoltage fault detected  
0: No VBAT overvoltage fault detected  
1: VBAT overvoltage fault detected  
0: No PVDD undervoltage fault detected  
1: PVDD undervoltage fault detected  
0: No VBAT undervoltage fault detected  
1: VBAT undervoltage fault detected  
10.6.14 Global Faults 2 Register (address = 0x12) [default = 0x00]  
The Global Faults 2 register is shown in 49 and described in 22.  
49. Global Faults 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
OTSD  
R-0  
CH1 OTSD  
R-0  
RESERVED  
22. Global Faults 2 Field Descriptions  
Bit  
7–5  
4
Field  
Type  
R
Reset  
000  
0
Description  
RESERVED  
OTSD  
RESERVED  
R
0: No global overtemperature shutdown  
1: Global overtemperature shutdown  
3
CH1 OTSD  
RESERVED  
R
R
0
0: No overtemperature shutdown on Ch1  
1: Overtemperature shutdown on Ch1  
RESERVED  
2–0  
000  
10.6.15 Warnings Register (address = 0x13) [default = 0x20]  
The Warnings register is shown in 50 and described in 23.  
50. Warnings Register  
7
6
5
4
3
2
1
0
RESERVED  
VDD POR  
R-1  
OTW  
R-0  
OTW CH1  
R-0  
RESERVED  
40  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
23. Warnings Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
00  
Description  
RESERVED  
VDD POR  
RESERVED  
R
1
0: No VDD POR has occurred  
1: VDD POR occurred  
4
3
OTW  
R
R
R
0
0: No global overtemperature warning  
1: Global overtemperature warning  
OTW CH1  
RESERVED  
0
0: No overtemperature warning on channel 1  
1: Overtemperature warning on channel 1  
RESERVED  
2–0  
000  
10.6.16 Pin Control Register (address = 0x14) [default = 0x00]  
The Pin Control register is shown in 51 and described in 24.  
51. Pin Control Register  
7
6
5
4
3
2
1
0
MASK OC  
R/W-0  
MASK OTSD  
R/W-0  
MASK UV  
R/W-0  
MASK OV  
R/W-0  
MASK DC  
R/W-0  
RESERVED  
MASK CLIP  
R/W-0  
MASK OTW  
R/W-0  
24. Pin Control Field Descriptions  
Bit  
Field  
MASK OC  
Type  
Reset  
Description  
7
R/W  
0
0: Report overcurrent faults on the FAULT pin  
1: Do not report overcurrent faults on the FAULT Pin  
6
5
4
3
MASK OTSD  
MASK UV  
MASK OV  
MASK DC  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: Report overtemperature faults on the FAULT pin  
1: Do not report overtemperature faults on the FAULT pin  
0: Report undervoltage faults on the FAULT pin  
1: Do not report undervoltage faults on the FAULT pin  
0: Report overvoltage faults on the FAULT pin  
1: Do not report overvoltage faults on the FAULT pin  
0: Report DC faults on the FAULT pin  
1: Do not report DC faults on the FAULT pin  
RESERVED  
2
1
RESERVED  
MASK CLIP  
R/W  
R/W  
0
0
0: Report clipping on the configured pin (WARN or FAULT)  
1: Do not report clipping on the configured pin (WARN or  
FAULT)  
0
MASK OTW  
R/W  
0
0: Report overtemperature warnings on the WARN pin  
1: Do not report overtemperature warnings on the WARN pin  
10.6.17 AC Load Diagnostic Control 1 Register (address = 0x15) [default = 0x00]  
The AC Load Diagnostic Control 1 register is shown in 52 and described in 25.  
52. AC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
CH1 GAIN  
R/W-0  
RESERVED  
CH1 ENABLE  
R/W-0  
RESERVED  
版权 © 2019, Texas Instruments Incorporated  
41  
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
25. AC Load Diagnostic Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1: GAIN  
R/W  
0
0: Gain 1  
1: Gain 4  
6–4  
3
RESERVED  
R/W  
R/W  
000  
0
RESERVED  
CH1 ENABLE  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
RESERVED  
2–0  
RESERVED  
R/W  
000  
10.6.18 AC Load Diagnostic Control 2 Register (address = 0x16) [default = 0x00]  
The AC Load Diagnostic Control 2 register is shown in 53 and described in 26.  
53. AC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
AC_DIAGS_LO  
OPBACK  
RESERVED  
AC TIMING  
AC CURRENT  
RESERVED  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
26. AC Load Diagnostic Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AC_DIAGS_LOOPBACK  
R/W  
0
0: Disable AC Diag loopback  
1: Enable AC Diag loopback  
RESERVED  
6-5  
4
RESERVED  
AC TIMING  
R/W  
R/W  
00  
0
0: 32 Cycles  
1: 64 Cycles  
3-2  
AC CURRENT  
R/W  
00  
00: 10mA  
01: 19 mA  
10: RESERVED  
11: RESERVED  
RESERVED  
1-0  
RESERVED  
R/W  
00  
10.6.19 AC Load Diagnostic Impedance Report Ch1 Register (address = 0x17) [default = 0x00]  
The AC Load Diagnostic Report Ch1 registers is shown in 54 and described in 27.  
54. AC Load Diagnostic Impedance Report Ch1 Register  
7
6
5
4
3
2
1
0
CH1 IMPEDANCE  
R-00000000  
27. Ch1 AC LDG Impedance Report Field Descriptions  
Bit  
Field  
CH1 IMPEDANCE  
Type  
Reset  
Description  
7–0  
R
00000000  
8-bit AC-load diagnostic report for each channel with a step size  
of 0.2496 Ω/bit (control by register 0x15 and register 0x16)  
0x00000000: 0 Ω  
0x00000001: 0.2496 Ω  
...  
0x11111111: 63.65 Ω  
42  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
10.6.20 AC Load Diagnostic Phase Report High Register (address = 0x1B) [default = 0x00]  
The AC Load Diagnostic Phase High value registers is shown in 55 and described in 28.  
55. AC Load Diagnostic (LDG) Phase High Report Register  
7
6
5
4
3
2
1
0
AC Phase High  
R-00000000  
28. AC LDG Phase High Report Field Descriptions  
Bit  
Field  
AC Phase High  
Type  
Reset  
Description  
7–0  
R
00000000 Bit 15:8  
10.6.21 AC Load Diagnostic Phase Report Low Register (address = 0x1C) [default = 0x00]  
The AC Load Diagnostic Phase Low value registers is shown in 56 and described in 29.  
56. AC Load Diagnostic (LDG) Phase Low Report Register  
7
6
5
4
3
2
1
0
AC Phase Low  
R-00000000  
29. AC LDG Phase Low Report Field Descriptions  
Bit  
Field  
AC Phase Low  
Type  
Reset  
Description  
7–0  
R
00000000 Bit 7:0  
10.6.22 AC Load Diagnostic STI Report High Register (address = 0x1D) [default = 0x00]  
The AC Load Diagnostic STI High value registers is shown in 57 and described in 30.  
57. AC Load Diagnostic (LDG) STI High Report Register  
7
6
5
4
3
2
1
0
AC STI High  
R-00000000  
30. AC LDG STI High Report Field Descriptions  
Bit  
Field  
AC STI High  
Type  
Reset  
Description  
7–0  
R
00000000 Bit 15:8  
版权 © 2019, Texas Instruments Incorporated  
43  
 
 
 
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.6.23 AC Load Diagnostic STI Report Low Register (address = 0x1E) [default = 0x00]  
The AC Load Diagnostic STI Low value registers is shown in 58 and described in 31.  
58. AC Load Diagnostic (LDG) STI Low Report Register  
7
6
5
4
3
2
1
0
AC STI Low  
R-00000000  
31. Ch1 AC LDG STI Low Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
AC STI Low  
R
00000000 Bit 7:0  
10.6.24 Miscellaneous Control 3 Register (address = 0x21) [default = 0x00]  
The Miscellaneous Control 3 register is shown in 59 and described in 32.  
59. Miscellaneous Control 3 Register  
7
6
5
4
3
2
1
0
CLEAR FAULT  
TDM SLOT  
SIZE  
MASK ILIMIT  
WARNING  
RESERVED  
OTSD AUTO  
RECOVERY  
RESERVED  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
32. Misc Control 3 Field Descriptions  
Bit  
Field  
CLEAR FAULT  
Type  
Reset  
Description  
7
R/W  
0
0: Normal operation  
1: Clear fault  
6
5
TDM SLOT SIZE  
R/W  
R/W  
0
0
0: TDM slot size is 24-bit or 32-bit  
1: TDM slot size is 16-bit  
MASK ILIMIT WARNING  
0: Report ILIMIT on the WARN pin  
1: Do not report ILIMIT on the WARN pin  
RESERVED  
4
3
RESERVED  
R/W  
R/W  
0
0
OTSD AUTO RECOVERY  
0: OTSD is latched  
1: OTSD is auto-recovery  
RESERVED  
2–0  
RESERVED  
R/W  
000  
10.6.25 Clip Control Register (address = 0x22) [default = 0x01]  
The Clip Detect register is shown in 60 and described in 33. To ensure the Clip Detect Warning is  
operating according to the expectation, the related bit values in the Clip Window Register (address = 0x23)  
[default = 0x14] and Clip Warning Register must be set accordingly.  
60. Clip Control Register  
7
6
5
4
3
2
1
0
RESERVED  
CLIP_PIN  
R/W-0  
CLIP_LATCH  
R/W-0  
CLIPDET_EN  
R/W-1  
33. Clip Control Field Descriptions  
Bit  
7–3  
2
Field  
Type  
R/W  
R/W  
Reset  
00000  
0
Description  
RESERVED  
CLIP_PIN  
RESERVED  
0: CH1 Clip Detect reports to WARN pin  
1: CH1 Clip Detect reports to FAULT pin  
44  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
33. Clip Control Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1
CLIP_LATCH  
R/W  
0
0: Pin latching  
1: Pin non-latching  
0
CLIPDET_EN  
R/W  
1
0: Clip detect disable  
1: Clip Detect Enable  
10.6.26 Clip Window Register (address = 0x23) [default = 0x14]  
The Clip Window register is shown in 61 and described in 34. The register value represents the minimum  
number of 100% duty-cycle PWM cycles in hexadecimal notation before Clip Detect is reported. A register value  
of 0 is not permitted. If Clip Detect is set to non-latching, the register value has no function.  
61. Clip Window Register  
7
6
5
4
3
2
1
0
CLIP_WINDOW_SEL[7:1]  
R/W-00010100  
34. Clip Window Field Descriptions  
Bit  
Field  
CLIP_WINDOW_SEL[7:1]  
Type  
Reset  
Description  
7–0  
R/W  
00010100  
00010100: 20 100% duty-cycle PWM cycles before Clip  
Detect is triggered  
10.6.27 Clip Warning Register (address = 0x24) [default = 0x00]  
The Clip Window register is shown in 62 and described in 35.  
62. Clip Warning Register  
7
6
5
4
3
2
1
0
RESERVED  
CH1_CLIP  
R-0  
35. Clip Warning Field Descriptions  
Bit  
7–1  
0
Field  
Type  
R
Reset  
0000000  
0
Description  
RESERVED  
CH1_CLIP  
RESERVED  
R
0: No Clip Detect  
1: Clip Detect  
10.6.28 ILIMIT Status Register (address = 0x25) [default = 0x00]  
The ILIMIT Status register is shown in 63 and described in 36.  
63. ILIMIT Status Register  
7
6
5
4
3
2
1
0
RESERVED  
CH1_ILIMIT_W  
ARN  
R-0  
36. ILIMIT Status Field Descriptions  
Bit  
7–1  
0
Field  
Type  
R
Reset  
0000000  
0
Description  
RESERVED  
RESERVED  
CH1_ILIMIT_WARN  
R
0: No ILIMIT  
1: ILIMIT Warning  
版权 © 2019, Texas Instruments Incorporated  
45  
 
 
 
 
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10.6.29 Miscellaneous Control 4 Register (address = 0x26) [default = 0x40]  
The Miscellaneous Control 4 register is shown in and described in 37.  
64. Miscellaneous Control 4 Register  
7
6
5
4
3
2
1
0
RESERVED  
BCLK_INV  
R/W-0  
HPF_CORNER[2:0]  
R/W-000  
37. Misc Control 4 Field Descriptions  
Bit  
7–4  
3
Field  
Type  
R/W  
R/W  
Reset  
0100  
0
Description  
RESERVED  
BCLK_INV  
RESERVED  
0: All other MCLK/BCLK frequency / phase use cases  
1: Inverted MCLK/BCLK phase relationship when MCLK/BCLK  
run at the same frequency  
2–0  
HPF_CORNER[2:0]  
R/W  
000  
000: 3.7 Hz  
001: 7.4 Hz  
010: 15 Hz  
011: 30 Hz  
100: 59 Hz  
101: 118 Hz  
110: 235 Hz  
111: 463 Hz  
46  
版权 © 2019, Texas Instruments Incorporated  
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
11 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The TAS6421-Q1 is a mono-channel class-D digital-input audio-amplifier design for use in automotive head units  
and external amplifier modules. The TAS6421-Q1 incorporates the necessary functionality to perform in  
demanding OEM applications.  
11.1.1 AM-Radio Band Avoidance  
AM-radio frequency interference can be avoided by setting the switching frequency of the device above the AM  
band. The switching frequency options available are 38 × fS, 44 × fS, and 48 × fS. If the switch frequency cannot  
be set above the AM band, then use the two options of 8 × fS and 10 × fS. These options should be changed to  
avoid AM active channels.  
11.1.2 Demodulation Filter Design  
The amplifier outputs are driven by high-current LDMOS transistors in an H-bridge configuration. These  
transistors are either fully off or fully on. The result is a square-wave output signal with a duty cycle that is  
proportional to the amplitude of the audio signal. An LC demodulation filter is used to recover the audio signal.  
The filter attenuates the high-frequency components of the output signals that are out of the audio band. The  
design of the demodulation filter significantly affects the audio performance of the power amplifier. Therefore, to  
meet the system THD+N requirements, the selection of the inductors used in the output filter should be carefully  
considered.  
11.1.3 Line Driver Applications  
In many automotive audio applications, the same head unit must drive either a speaker (with several ohms of  
impedance) or an external amplifier input (with several kiloohms of impedance). The design is capable of  
supporting both applications and has special line-drive gain and diagnostics. Coupled with the high switching  
frequency, the device is well suited for this type of application. Set the output channel in line driver mode through  
I2C register 0x00, the externally connected amplifier must have a differential impedance from 600 Ω to 4.7 kΩ for  
the DC line diagnostic to detect the connected external amplifier. 65 shows the recommended external  
amplifier input configuration.  
Output Filter  
External Amplifier  
3.3 µH  
1 F  
1 F  
1 nF  
600  
to  
1 F  
4.7 kꢀ  
1 nF  
3.3 µH  
1 F  
100 kꢀ  
100 kꢀ  
65. External Amplifier Input Configuration for Line Driver  
版权 © 2019, Texas Instruments Incorporated  
47  
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
11.2 Typical Applications  
11.2.1 BTL Application  
66 shows the schematic of a typical mono-channel solution in a typical use case.  
PVDD  
Input  
PVDD  
1 F  
1 nF  
100 F  
Chassis GND  
56  
PVDD  
PVDD  
PVDD  
1
GND  
0.1 F  
10 F  
1 F  
55  
2
3
4
5
PVDD  
VBAT  
AREF  
VREG  
PVDD  
54  
53  
52  
51  
NC  
NC  
NC  
NC  
1 F  
1 F  
6
VCOM  
50  
49  
7
8
NC  
NC  
AVSS  
AVDD  
1 F  
48  
47  
46  
45  
9
1 F  
BST_P  
OUT_P  
GND  
GVDD  
3.3 H  
2.2 F  
10  
11  
1 F  
1 F  
1 nF  
1 nF  
NC  
4 ꢁ  
GND  
3.3 H  
OUT_M  
BST_M  
NC  
12  
13  
14  
15  
16  
MCLK  
SCLK  
FSYNC  
SDIN1  
GND  
44  
43  
1 F  
DSP  
42  
41  
40  
39  
38  
NC  
NC  
NC  
NC  
NC  
17  
18  
GND  
GND  
1 uF  
19  
VDD  
SCL  
VDD  
2 kꢁ  
2 kꢁ  
20  
21  
37  
36  
NC  
NC  
SDA  
22  
23  
I2C ADDR0  
35  
34  
33  
32  
31  
30  
29  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I2C ADDR1  
STANDBY  
Micro  
24  
25  
MUTE  
FAULT  
WARN  
26  
27  
28  
GND  
66. TAS6421-Q1 Typical Mono-Channel BTL Application Schematic  
48  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
Typical Applications (接下页)  
11.2.1.1 Design Requirements  
Use the following requirements for this design:  
This example is focused on the smallest solution size for 1× 25 W output power into 4 Ω with a battery supply  
of 14.4 V.  
The switching frequency is set above the AM-band with 44 times the input sample rate of 48 kHz which  
results in a frequency of 2.11 MHz.  
The selection of a 2.11 MHz switching frequency enables the use of a small output inductor value of 3.3 µH  
which leads to a very small solution size.  
11.2.1.1.1 Communication  
All communications to the TAS6421-Q1 are through the I2C protocol. A system controller can communicate with  
the device through the SDA pins and SCL pins. The TAS6421-Q1 is an I2C slave device and requires a master.  
The device cannot generate an I2C clock or initiate a transaction. The maximum clock speed accepted by the  
device is 400 kHz. If multiple TAS6421-Q1 devices are on the same I2C bus, the I2C address must be different  
for each device. Up to four TAS6421-Q1 devices can be on the same I2C bus.  
The I2C bus is shared internally.  
Complete any internal operations, such as load diagnostics, before reading the registers  
for the results.  
11.2.1.2 Detailed Design Procedure  
11.2.1.2.1 Hardware Design  
Use the following procedure for the hardware design:  
Determine the input format. The input format can be either I2S or TDM mode. The mode determines the  
correct pin connections and the I2C register settings.  
Determine the power output that is required into the load. The power requirement determines the required  
power-supply voltage and current. The output reconstruction-filter components that are required are also  
driven by the output power.  
With the requirements, adjust the typical application schematic in 66 for the input connections.  
11.2.1.2.2 Digital Input and the Serial Audio Port  
The TAS6421-Q1 device supports four different digital input formats which are: I2S, Right Justified, Left Justified,  
and TDM mode. Depending on the format, the device can support 16, 18, 20, 24, and 32 bit data. The supported  
frequencies are 96 kHz, 48 kHz, and 44.1 kHz. Please see SAP Control (Serial Audio-Port Control) Register  
(address = 0x03) [default = 0x04] for the complete matrix to set up the serial audio port.  
Bits 3, 4, and 5 in this register are ignored in all input formats except for TDM. Setting up  
all the control registers to the system requirements should be done before the device is  
placed in Mute mode or Play mode. After the registers are setup, use bit 7 in register 0x21  
to clear any faults. Then read the fault registers to make sure no faults are present. When  
no faults are present, use register 0x04 to place the device properly into play mode.  
11.2.1.2.3 Bootstrap Capacitors  
The bootstrap capacitors provide the gate-drive voltage of the upper N-channel FET. These capacitors must be  
sized appropriately for the system specification. A special condition can occur where the bootstrap may sag if the  
capacitor is not sized accordingly. The special condition is just below clipping where the PWM is slightly less  
than 100% duty cycle with sustained low-frequency signals. Changing the bootstrap capacitor value to 2.2 µF for  
driving subwoofers that require frequencies below 30 Hz may be necessary.  
版权 © 2019, Texas Instruments Incorporated  
49  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
11.2.1.2.4 Output Reconstruction Filter  
The output FETs drive the amplifier outputs in an H-Bridge configuration. These transistors are either fully off or  
fully on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the  
audio signal. The amplifier outputs require a reconstruction filter that comprises a series inductor and a capacitor  
to ground on each output, generally called an LC filter. The LC filter attenuates the PWM frequency and reduces  
electromagnetic emissions, allowing the reconstructed audio signal to pass to the speakers. Refer to the Class-D  
LC Filter Design Application Report for a detailed description of proper component description and design of the  
LC filter based upon the specified load and frequency response. The recommended low-pass cutoff frequency of  
the LC filter is dependent on the selected switching frequency. The low-pass cutoff frequency can be as high as  
100 kHz for a PWM frequency of 2.1 MHz. At a PWM frequency of 384 kHz the low-pass cutoff frequency should  
be less than 40 kHz. Certain specifications must be understood for a proper inductor. The inductance value is  
given at zero current, but the TAS6421-Q1 device has current. Use the inductance versus current curve for the  
inductor to make sure the inductance does not drop below 1 µH (for fSW = 2.1 MHz) at the maximum current  
provided by the system design. The DCR of the inductor directly affects the output power of the system design.  
The lower the DCR, the more power is provided to the speakers. The typical inductor DCR for a 4 Ω system is 40  
to 50 mΩ and for a 2 Ω system is 20 to 25 mΩ. Further guidance is provided in the Inductor Selection Guide for  
2.1 MHz Class-D Amplifiers.  
11.2.2 Application Curves  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
0.1  
0.01  
0.001  
10m  
100m  
1
Output Power (W)  
10  
100  
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
fSW = 2.1 MHz  
10% THD  
fSW = 2.1 MHz  
67. THD+N vs Power  
68. Output Power vs Supply Voltage  
50  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
12 Power Supply Recommendations  
The TAS6421-Q1 requires three power supplies. The PVDD supply is the high-current supply in the  
recommended supply range. The VBAT supply is a lower current supply that must be in the recommended  
supply range. The PVDD and VBAT pins can be connected to the same supply if the recommended supply range  
for VBAT is maintained. The VDD supply is the 3.3 Vdc logic supply and must be maintained in the tolerance as  
shown in the Recommended Operating Conditions table.  
For best device performance and to avoid unexpected device behavior follow the recommendations in the  
Vehicle-Battery Power-Supply Sequence section.  
13 Layout  
13.1 Layout Guidelines  
The pinout of the TAS6421-Q1 was selected to provide flowthrough layout with all high-power connections on the  
right side, and all low-power signals and supply decoupling on the left side.  
69 shows the area for the components in the application example (see the Typical Applications section).  
The TAS6421-Q1 EVM uses a four-layer PCB. The copper thickness was selected as 70 µm to optimize power  
loss.  
The small value of the output filter provides a small size and, in this case, the low height of the inductor enables  
double-sided mounting.  
The EVM PCB shown in 69 is the basis for the layout guidelines.  
13.1.1 Electrical Connection of Thermal pad and Heat Sink  
For the DKQ package, the heat sink connected to the thermal pad of the device should be connected to GND.  
The thermal pad must not be connected to any other electrical node.  
13.1.2 EMI Considerations  
Automotive-level EMI performance depends on both careful integrated circuit design and good system-level  
design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the  
design. The design has minimal parasitic inductances because of the short leads on the package which reduces  
the EMI that results from current passing from the die to the system PCB. Each channel also operates at a  
different phase. The design also incorporates circuitry that optimizes output transitions that cause EMI.  
For optimizing the EMI a solid ground layer plane is recommended, for a PCB design that fulfills the CISPR25  
level 5 requirements, see the TAS6421-Q1 EVM layout.  
13.1.3 General Guidelines  
The EVM layout is optimized for low noise and EMC performance.  
The TAS6421-Q1 has an exposed thermal pad that is up, away from the PCB. The layout must consider an  
external heat sink.  
Refer to 69 for the following guidelines:  
A ground plane, A, on the same side as the device pins helps reduce EMI by providing a very-low loop  
impedance for the high-frequency switching current.  
The decoupling capacitors on PVDD, B, are very close to the device with the ground return close to the  
ground pins.  
The ground connections for the capacitors in the LC filter, C, have a direct path back to the device and also  
the ground return for each channel is the shared. This direct path allows for improved common mode EMI  
rejection.  
The traces from the output pins to the inductors, D, should have the shortest trace possible to allow for the  
smallest loop of large switching currents.  
Heat-sink mounting screws, E, should be close to the device to keep the loop short from the package to  
ground.  
版权 © 2019, Texas Instruments Incorporated  
51  
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
Many vias, F, stitching together the ground planes can create a shield to isolate the amplifier and power  
supply.  
13.2 Layout Example  
69. Mono Channel EVM Layout  
13.3 Thermal Considerations  
The thermally enhanced PowerPAD package has an exposed pad up for connection to a heat sink. The output  
power of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on  
it by the system, such as the ambient operating temperature. The heat sink absorbs heat from the TAS6421-Q1  
and transfers it to the air. With proper thermal management this process can reach equilibrium and heat can be  
continually transferred from the device. Heat sinks can be smaller than that of classic linear amplifier design  
because of the excellent efficiency of class-D amplifiers. This device is intended for use with a heat sink,  
therefore, RθJC is used as the thermal resistance from junction to the exposed metal package. This resistance  
dominates the thermal management, so other thermal transfers are not considered. The thermal resistance of  
RθJA (junction to ambient) is required to determine the full thermal solution. The thermal resistance is comprised  
of the following components:  
RθJC of the TAS6421-Q1  
Thermal resistance of the thermal interface material  
Thermal resistance of the heat sink  
52  
版权 © 2019, Texas Instruments Incorporated  
TAS6421-Q1  
www.ti.com.cn  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
Thermal Considerations (接下页)  
The thermal resistance of the thermal interface material can be determined from the manufacturer’s value for the  
area thermal resistance (expressed in °Cmm2/W) and the area of the exposed metal package. For example, a  
typical, white, thermal grease with a 0.0254 mm (0.001 inch) thick layer is approximately 4.52°C mm2/W. The  
TAS6421-Q1 in the DKQ package has an exposed area of 47.6 mm2. By dividing the area thermal resistance by  
the exposed metal area determines the thermal resistance for the thermal grease. The thermal resistance of the  
thermal grease is 0.094°C/W  
38 lists the modeling parameters for one device on a heat sink. The junction temperature is assumed to be  
115°C while delivering and average power of 10 watts per channel into a 4 Ω load. The thermal-grease example  
previously described is used for the thermal interface material. Use 公式 3 to design the thermal system.  
RθJA = RθJC + thermal interface resistance + heat sink resistance  
(3)  
38. Thermal Modeling  
Description  
Ambient Temperature  
Value  
25°C  
Average Power to load  
10W  
Power dissipation  
2W  
115°C  
Junction Temperature  
ΔT inside package  
1.8°C (0.9°C/W × 2W)  
0.188°C (0.094°C/W × 2W)  
44.0°C/W ([115°C – 25°C – 1.8°C – 0.188°C] / 2W)  
45.1°C/W  
ΔT through thermal interface material  
Required heat sink thermal resistance  
System thermal resistance to ambient RθJA  
版权 © 2019, Texas Instruments Incorporated  
53  
 
 
TAS6421-Q1  
ZHCSJM6A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
请参阅如下相关文档:  
PurePath™ Console 3 图形开发套件  
TAS6421-Q1 EVM 用户指南》(文献编号:SLOU415)  
14.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
14.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 中文在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2echina.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
E2E 音频放大器论坛 TI 的音频放大器工程师对工程师 (E2E) 社区此社区的创建目的在于促进工程师之间的协作。  
用户可进行实时问答。  
14.4 商标  
Burr-Brown, PurePath, E2E are trademarks of Texas Instruments.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
54  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS6421QDKQRQ1  
ACTIVE  
HSSOP  
DKQ  
56  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TAS6421  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Oct-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS6421QDKQRQ1  
HSSOP  
DKQ  
56  
1000  
330.0  
32.4  
11.35 18.67  
3.1  
16.0  
32.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Oct-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HSSOP DKQ 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
TAS6421QDKQRQ1  
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
10.67  
10.03  
TYP  
SEATING PLANE  
A
PIN 1 ID AREA  
0.1 C  
54X 0.635  
56  
1
EXPOSED  
THERMAL PAD  
18.54  
18.29  
NOTE 3  
8.661  
8.611  
2X  
17.15  
5.533  
5.483  
28  
29  
0.37  
56X  
0.17  
0.13  
(2.29)  
7.59  
7.39  
B
C A B  
NOTE 4  
0.25  
0.13  
2.29 0.05  
TYP  
2.475  
2.240  
NOTE 6  
0.25  
GAGE PLANE  
SEE DETAIL A  
0.08  
0.00  
1.02  
0.51  
0 - 8  
DETAIL A  
TYPICAL  
4221870/D 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. For clamped heatsink design, refer to overall package height above the seating plane as 2.325 +/- 0.075 and molded body  
thickness dimension.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SEE DETAILS  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221870/D 01/2019  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE:6X  
4221870/D 01/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS6421QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422-Q1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6422E-Q1

汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6422EQDKQRQ1

汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424-Q1

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6424E-Q1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6424EQDKQRQ1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424L-Q1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424LQDKQRQ1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424M-Q1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424MQDKQRQ1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI