TCA6408A-Q1 [TI]

具有中断输出、复位和配置寄存器的汽车类 8 位转换 I2C 和 SMBus I/O 扩展器;
TCA6408A-Q1
型号: TCA6408A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断输出、复位和配置寄存器的汽车类 8 位转换 I2C 和 SMBus I/O 扩展器

文件: 总41页 (文件大小:1518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
TCA6408A-Q1 具有中断输出的低电8 I2C SMBus I/O 扩展器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
汽车信息娱乐系统  
高级驾驶员辅助系(ADAS)  
汽车车身电子设备  
HEVEV 和动力总成  
工业、工厂楼宇自动化  
测试与测量  
– 温度等140°C +125°CTA  
功能安全型  
可提供用于功能安全系统设计的文档  
I2C 至并行端口扩展器  
• 工作电源电压范围1.65 V 3.6 V  
• 支1.8V2.5V3.3V I2C 总线P 端口之间进  
行双向电平转换GPIO 扩展  
• 低待机电流消耗  
400kHz I2C 总线  
• 硬件地址引脚允许在同I2C/SMBus 总线上支持  
TCA6408A-Q1 器件  
EPOS  
3 说明  
TCA6408A-Q1 是一款 16 引脚器件可为两线双向  
I2C 总线SMBus协议提供 8 位通用并行输入/输  
(I/O) 扩展。在器件运行过程中I2C 总线侧 (VCCI  
)
P 端口侧 (VCCP) 均可由电压介于 1.65V 3.6V 之  
间的电源供电。这使得 TCA6408A-Q1 够在  
SDA/SCL 电源电平在此逐渐降低以节省功率与  
下一代微处理器和微控制器相连。与微处理器和微控制  
器的降压电源相比部分 PCB 组件例如 LED仍由  
高电压电源供电。  
• 低电平有效复(RESET) 输入  
• 开漏低电平有效中(INT) 输出  
• 输入和输出配置寄存器  
• 极性反转寄存器  
• 内部上电复位  
• 加电时所有通道均被配置为输入  
• 加电时无干扰  
SCL SDA 输入端装有噪声滤波器  
• 具有最大高电流驱动能力的锁存输出适用于直接  
LED  
该器件支持 100kHz标准模式400kHz快速模  
时钟频率。当开关、传感器、按钮、LED、风扇等  
设备需要额外使I/O I/O 扩展器TCA6408A-  
Q1可提供简易解决方案。  
• 锁断性能100mAAEC Q100-004  
• 施密特触发操作支持SCL SDA 输入端实现缓  
慢输入转换并提升开关噪声抗扰度  
ESD 保护  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TCA6408A-Q1  
TSSOP (16)  
5.00mm × 4.40mm  
2000V 人体放电模(Q100-002)  
1000V 带电器件模(Q100-011)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VCCI  
VCCP  
Peripheral  
Devices  
SDA  
SCL  
P0  
P1  
P2  
P3  
I2C or SMBus Controller  
ꢀꢁRESET, EN or  
INT  
(e.g. Processor)  
RESET  
Control Inputs  
ꢀꢁINT or status  
outputs  
ꢀꢁLEDs  
ꢀꢁKeypad  
TCA6408A-Q1  
P4  
P5  
P6  
P7  
ADDR  
GND  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCPS234  
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagrams....................................... 17  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
8.5 Programming............................................................ 20  
8.6 Register Map.............................................................24  
9 Application and Implementation..................................26  
9.1 Application Information............................................. 26  
9.2 Typical Application.................................................... 27  
9.3 Power Supply Recommendations.............................30  
9.4 Layout....................................................................... 31  
10 Device and Documentation Support..........................33  
10.1 Receiving Notification of Documentation Updates..33  
10.2 商标.........................................................................33  
10.3 静电放电警告.......................................................... 33  
10.4 术语表..................................................................... 33  
11 支持资源........................................................................ 33  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 I2C Interface Timing Requirements.............................6  
6.7 Reset Timing Requirements........................................7  
6.8 Switching Characteristics............................................8  
6.9 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................12  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
Information.................................................................... 33  
4 Revision History  
Changes from Revision * (September 2016) to Revision A (February 2023)  
Page  
• 将提I2C 的旧术语实例通篇更改为控制器和目标.............................................................................................1  
• 添加了特性符合面向汽车应用AEC-Q100 标准........................................................................................... 1  
Added the HBM and CDM ESD classification levels.......................................................................................... 4  
Added paragraph: "Ramping up the device VCCP" to Power-On Reset Requirements ....................................30  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CCI  
CCP  
ADDR  
RESET  
P0  
SDA  
SCL  
INT  
P7  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
Not to scale  
5-1. PW Package, 16-Pin TSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ADDR  
NO.  
2
I
Address input. Connect directly to VCCP or ground  
Ground  
GND  
INT  
8
13  
O
Interrupt output. Connect to VCCI through a pull-up resistor  
P-port input-output (push-pull design structure).  
At power on, P0 is configured as an input  
P0  
4
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P-port input-output (push-pull design structure).  
At power on, P1 is configured as an input  
P1  
P-port input-output (push-pull design structure).  
At power on, P2 is configured as an input  
P2  
6
P-port input-output (push-pull design structure).  
At power on, P3 is configured as an input  
P3  
7
P-port input-output (push-pull design structure).  
At power on, P4 is configured as an input  
P4  
9
P-port input-output (push-pull design structure).  
At power on, P5 is configured as an input  
P5  
10  
11  
12  
3
P-port input-output (push-pull design structure).  
At power on, P6 is configured as an input  
P6  
P-port input-output (push-pull design structure).  
At power on, P7 is configured as an input  
P7  
Active-low reset input. Connect to VCCI through a pull-up resistor, if no active  
connection is used  
RESET  
SCL  
SDA  
14  
15  
I
Serial clock bus. Connect to VCCI through a pull-up resistor  
Serial data bus. Connect to VCCI through a pull-up resistor  
I/O  
Supply voltage of I2C bus. Connect directly to the VCC of the external I2C  
controller. Provides voltage level translation  
VCCI  
1
VCCP  
16  
Supply voltage of TCA6408A-Q1 for P-ports  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (see (1)  
)
MIN  
MAX  
UNIT  
V
VCCI  
VCCP  
VI  
Supply voltage for I2C pins  
Supply voltage for P-ports  
Input voltage(2)  
3.6  
3.6  
3.6  
3.6  
±20  
±20  
±20  
±20  
50  
0.5  
0.5  
0.5  
0.5  
V
V
VO  
Output voltage(2)  
V
IIK  
Input clamp current  
Output clamp current  
ADDR, RESET, SCL  
VI < 0  
mA  
mA  
IOK  
INT  
VO < 0  
P-port  
SDA  
VO < 0 or VO > VCCP  
VO < 0 or VO > VCCI  
VO = 0 to VCCP  
VO = 0 to VCCI  
VO = 0 to VCCP  
IIOK  
Input/output clamp current  
mA  
Continuous output low current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCCP  
Continuous current through VCCI  
Maximum junction temperature  
Storage temperature  
P-port  
SDA, INT  
P-port  
IOL  
IOH  
mA  
mA  
25  
50  
200  
160  
10  
ICC  
mA  
Tj(MAX)  
Tstg  
135  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 1C  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
(1)  
VCCI  
Supply voltage for I2C pins  
Supply voltage for P-ports  
SCL, SDA, INT  
P-ports, ADDR, RESET  
SCL, SDA  
1.65  
1.65  
3.6  
3.6  
V
V
VCCP  
0.7 × VCCI  
0.7 × VCCI  
0.7 × VCCP  
VCCI  
RESET  
3.6  
VIH  
High-level input voltage  
V
3.6  
ADDR, P7P0  
SCL, SDA, RESET  
0.3 × VCCI  
0.3 × VCCP  
10  
0.5  
0.5  
VIL  
IOH  
Low-level input voltage  
High-level output current  
V
ADDR, P7P0  
P00-P07  
mA  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Tj = 65°C  
Tj = 85°C  
Tj = 105°C  
Tj = 125°C  
Tj = 135°C  
Tj = 85°C  
Tj = 105°C  
Tj = 125°C  
Tj = 135°C  
25  
18  
9
P00-P07  
4.5  
(2)  
IOL  
Low-level output current  
3.5  
6
mA  
3
INT, SDA  
1.8  
1.5  
125  
Operating free-air temperature  
TA  
°C  
40  
(1) For voltages applied above VCCI, and increase in ICC will result.  
(2) The values shown apply to specific junction temperature. See the 9.2.1.1 section on how to calculate the junction temperature.  
6.4 Thermal Information  
TCA6408A-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
122  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
56.4  
67.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
10.8  
66.5  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range, VCCI = 1.65 V to 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCCP  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
1.65 V  
MIN TYP(1)  
MAX UNIT  
VIK  
Input diode clamp voltage  
V
II = 18 mA  
1.2  
VPORR  
VPORF  
Power-on reset voltage, VCCP rising(2)  
Power-on reset voltage, VCCP falling(2)  
VI = VCCP or GND, IO = 0  
VI = VCCP or GND, IO = 0  
1.2  
1.5  
V
V
0.6  
1.2  
1.8  
2.6  
3.3  
1.0  
1.7  
2.5  
3.2  
1
2.3 V  
IOH = 8 mA  
3 V  
3.6 V  
VOH  
P-port high-level output voltage  
V
1.65 V  
2.3 V  
IOH = 10 mA  
3 V  
3.6 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCA6408A-Q1  
 
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended operating free-air temperature range, VCCI = 1.65 V to 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCCP  
1.65 V  
2.3 V  
3 V  
MIN TYP(1)  
MAX UNIT  
0.45  
0.25  
IOL = 8 mA  
0.25  
3.6 V  
1.65 V  
2.3 V  
3 V  
0.23  
V
VOL  
P-port low-level output voltage  
0.6  
0.3  
0.25  
0.23  
IOL = 10 mA  
VOL = 0.4 V  
3.6 V  
SDA  
3
IOL  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
mA  
INT  
3
15  
SCL, SDA, RESET  
ADDR  
VI = VCCI or GND  
VI = VCCP or GND  
VI = VCCP  
±0.1  
μA  
II  
±0.1  
IIH  
IIL  
P-port  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
2.3 V to 3.6 V  
1
1
μA  
μA  
P-port  
VI = GND  
SDA,  
9
5
36  
VI = VCC or GND, I/O =  
inputs,  
fSCL = 400 kHz, No load  
P-port,  
Operating mode  
ADDR,  
1.65 V to 2.3 V  
2.3 V to 3.6 V  
1.65 V to 2.3 V  
33  
10  
7
RESET  
ICC  
(ICCI + ICCP  
μA  
μA  
)
SCL, SDA,  
1.2  
0.6  
VI = VCC or GND, I/O =  
inputs,  
fSCL = 0 kHz, No load  
P-port,  
ADDR,  
Standby mode  
RESET  
One input at VCCI 0.6 V,  
Other inputs at VCCI or GND  
SCL, SDA  
6
6
6
10  
55  
80  
1.65 V to 3.6 V  
ΔICCI  
Additional current  
RESET  
RESET at VCCI 0.6 V,  
Other inputs at VCCI or GND  
in standby mode  
One input at VCCP 0.6 V,  
Other inputs at VCCP or GND  
P-port, ADDR  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
ΔICCP  
μA  
Ci  
SCL  
VI = VCCI or GND  
VIO = VCCI or GND  
VIO = VCCP or GND  
7
8
7
9
10.5  
8
pF  
SDA  
P-port  
Cio  
1.65 V to 3.6 V  
pF  
(1) All typical values are at nominal supply voltage (1.8-V, 2.5-V, or 3.3-V VCC) and TA = 25°C.  
(2) When power (from 0 V) is applied to VCCP, an internal power-on reset holds the TCA6408A-Q1 in a reset condition until VCCP has  
reached VPORR. At that time, the reset condition is released, and the TCA6408A-Q1 registers and I2C/SMBus state machine initialize to  
their default states. After that, VCCP must be lowered to below VPORF and back up to the operating voltage for a power-reset cycle.  
6.6 I2C Interface Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
MIN  
MAX  
UNIT  
I2C BUSSTANDARD MODE  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
0
4
100  
50  
kHz  
μs  
μs  
ns  
4.7  
0
tsds  
tsdh  
ticr  
I2C serial data setup time  
I2C serial data hold time  
I2C input rise time  
250  
0
ns  
ns  
1000  
ns  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.6 I2C Interface Timing Requirements (continued)  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
MIN  
MAX  
UNIT  
ns  
ticf  
I2C input fall time  
300  
300  
tocf  
I2C output fall time, 10-pF to 400-pF bus  
I2C bus free time between Stop and Start  
I2C Start or repeater Start condition setup time  
I2C Start or repeater Start condition hold time  
I2C Stop condition setup time  
ns  
tbuf  
4.7  
4.7  
4
μs  
μs  
μs  
μs  
μs  
μs  
tsts  
tsth  
tsps  
4
tvd(data)  
tvd(ack)  
I2C BUSFAST MODE  
Valid data time, SCL low to SDA output valid  
1
1
Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
0
0.6  
1.3  
0
400  
50  
kHz  
μs  
μs  
ns  
I2C clock high time  
I2C clock low time  
I2C spike time  
tsds  
tsdh  
ticr  
I2C serial data setup time  
I2C serial data hold time  
I2C input rise time  
100  
0
ns  
ns  
20  
300  
300  
ns  
20 x (Vcc/  
5.5 V)  
ticf  
I2C input fall time  
ns  
ns  
20 x (Vcc/  
5.5 V)  
tocf  
I2C output fall time, 10-pF to 400-pF bus  
300  
tbuf  
I2C bus free time between Stop and Start  
1.3  
0.6  
0.6  
0.6  
μs  
μs  
μs  
μs  
μs  
μs  
tsts  
I2C Start or repeater Start condition setup time  
I2C Start or repeater Start condition hold time  
I2C Stop condition setup time  
tsth  
tsps  
tvd(data)  
tvd(ack)  
Valid data time, SCL low to SDA output valid  
Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low  
1
1
6.7 Reset Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-4)  
MIN  
MAX  
UNIT  
I2C BUSSTANDARD and FAST MODE  
tW  
Reset pulse duration  
Reset recovery time  
Time to reset  
40  
0
ns  
ns  
ns  
tREC  
tRESET  
600  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.8 Switching Characteristics  
over recommended operating free-air temperature range, CL 100 pF (unless otherwise noted) (see 7-1)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
I2C BUSSTANDARD and FAST MODE  
tiv  
Interrupt valid time  
Interrupt reset delay time  
Output data valid  
P-Port  
SCL  
INT  
INT  
4
4
μs  
μs  
ns  
tir  
tpv  
tps  
tph  
SCL  
400  
P7P0  
SCL  
Input data setup time  
Input data hold time  
P-Port  
P-Port  
0
ns  
SCL  
300  
ns  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
12  
2
1.8  
1.6  
1.4  
1.2  
1
1.65 V  
1.8 V  
2.5 V  
3.3 V  
3.6 V  
1.65 V  
1.8 V  
2.5 V  
3.3 V  
3.6 V  
10  
8
6
0.8  
0.6  
0.4  
4
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature, TA (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature, TA (°C)  
D001  
D002  
6-1. Supply Current vs Temperature  
6-2. Standby Supply Current vs Temperature  
10  
8
16  
1.8 V (-40èC)  
1.8 V (125èC)  
2.5 V (-40èC)  
2.5 V (125èC)  
3.3 V (-40èC)  
3.3 V (125èC)  
tr = 3 ns  
tr = 150 ns  
tr = 300 ns  
14  
12  
10  
8
6
6
4
4
2
2
0
30  
60  
90 120 150 180 210 240 270 300  
tr - Rise and fall time (ns)  
1.6 1.8  
2
2.2 2.4 2.6 2.8  
VCCP - Supply Voltage(V)  
3
3.2 3.4 3.6  
D003  
D004  
6-3. Supply Current vs Rise and Fall Times (tr)  
6-4. Supply Current vs Supply Voltage  
25  
25  
20  
15  
10  
5
-40èC  
25èC  
-40èC  
25èC  
85èC  
125èC  
85èC  
20  
125èC  
15  
10  
5
VCCP = 1.65 V  
VCCP = 1.8 V  
0
0
0
0.1  
0.2  
VOL - Output Low Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
VOL - Output Low Voltage (V)  
0.3  
0.4  
0.5  
0.6  
D005  
D006  
6-5. I/O Sink Current vs Output Low Voltage (VCCP = 1.65 V)  
6-6. I/O Sink Current vs Output Low Voltage (VCCP = 1.8 V)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
25  
25  
20  
15  
10  
5
-40èC  
25èC  
-40èC  
25èC  
85èC  
125èC  
85èC  
20  
125èC  
15  
10  
5
VCCP = 2.5 V  
VCCP = 3.3 V  
0
0
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
VOL - Output Low Voltage (V)  
0
0.05  
0.1  
0.15  
0.2  
0.25  
VOL - Output Low Voltage (V)  
0.3  
0.35  
0.4  
D007  
D008  
6-7. I/O Sink Current vs Output Low Voltage (VCCP = 2.5 V)  
6-8. I/O Sink Current vs Output Low Voltage (VCCP = 3.3 V)  
25  
0.3  
-40èC  
25èC  
VCC = 1.8 V, IOL = 1 mA VCC = 1.8 V, IOL = 10 mA  
VCC = 5 V, IOL = 10 mA  
VCC = 5 V, IOL = 1 mA  
0.25  
0.2  
85èC  
20  
125èC  
15  
10  
5
VCCP = 3.6 V  
0.15  
0.1  
0.05  
0
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
VOL - Output Low Voltage (V)  
0.3  
0.35  
0.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (èC)  
D009  
D010  
6-9. I/O Sink Current vs Temperature (VCCP = 3.6 V)  
6-10. I/O Low Voltage vs Temperature  
18  
21  
18  
15  
12  
9
-40èC  
-40èC  
25èC  
85èC  
125èC  
16  
25èC  
85èC  
125èC  
14  
12  
VCCP = 1.65 V  
10  
VCCP = 1.8 V  
8
6
4
2
0
6
3
0
0
0.1  
0.2  
Output High Voltage VCCP - VOH (V)  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
Output High Voltage VCCP - VOH (V)  
0.3  
0.4  
0.5  
0.6  
D011  
D012  
6-11. I/O Source Current vs Output High Voltage (VCCP = 1.65  
6-12. I/O Source Current vs Output High Voltage (VCCP = 1.8  
V)  
V)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
35  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40èC  
-40èC  
25èC  
85èC  
125èC  
25èC  
30  
85èC  
125èC  
25  
VCCP = 2.5 V  
VCCP = 3.3 V  
20  
15  
10  
5
0
0
0
0.1  
0.2  
Output High Voltage VCCP - VOH (V)  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
Output High Voltage VCCP - VOH (V)  
0.3  
0.4  
0.5  
0.6  
D013  
D014  
6-13. I/O Source Current vs Output High Voltage (VCCP = 2.5  
6-14. I/O Source Current vs Output High Voltage (VCCP = 3.3  
V)  
V)  
50  
40  
-40èC  
VCCP = 1.8 V  
VCCP = 5 V  
45  
25èC  
35  
85èC  
125èC  
40  
ISOURCE = -10 mA  
35  
30  
30  
VCCP = 3.6 V  
25  
20  
15  
10  
5
25  
20  
15  
10  
0
0
0.1  
0.2  
0.3  
0.4  
Output High Voltage VCCP - VOH (V)  
0.5  
0.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (°C)  
D015  
D015  
6-15. I/O Source Current vs Output High Voltage (VCCP = 3.6  
6-16. I/O High Voltage vs Temperature  
V)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCA6408A-Q1  
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CCI  
R
= 1 kW  
L
SDA  
DUT  
C
= 50 pF  
L
(see Note A)  
SDA LOAD CONFIGURATION  
Two Bytes for READ Input Port Register  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
Data  
Bit 7  
(MSB)  
Data  
Bit 0  
(LSB)  
Stop  
Condition  
(P)  
R/W  
Bit 0  
(LSB)  
ACK  
(A)  
Address  
Bit 1  
t
t
sch  
scl  
0.7 ´ V  
CCI  
SCL  
SDA  
0.3 ´ V  
CCI  
t
t
icr  
vd  
t
t
sts  
sp  
t
t
icf  
t
buf  
vd  
t
t
sps  
ocf  
0.7 ´ V  
CCI  
0.3 ´ V  
CCI  
t
t
vd(ack)  
icr  
t
sdh  
t
t
icf  
sds  
t
sth  
Repeat Start  
Condition  
Stop  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
DESCRIPTION  
I2C address  
1
2
Input register port data  
A. CL includes probe and jig capacitance. tocf is measured with CL of 10 pF or 400 pF.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
7-1. I2C Interface Load Circuit and Voltage Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
V
CCI  
R
= 4.7 kW  
L
INT  
DUT  
C
= 100 pF  
L
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Target  
ACK  
From Target  
Start  
Condition  
8 Bits  
(One Data Byte)  
From Port  
R/W  
1
Target Address  
Data From Port  
Data 2  
AD  
DR  
Data 1  
A
1
P
S
0
1
0
3
0
4
0
0
6
A
A
1
2
5
7
8
A
t
B
B
ir  
t
ir  
INT  
A
t
t
iv  
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 ´ V  
0.3 ´ V  
CCI  
CCI  
0.5 ´ V  
SCL  
INT  
Pn  
CCI  
R/W  
A
t
t
iv  
ir  
0.5 ´ V  
INT  
0.5 ´ V  
CCI  
CCP  
View AA  
A. CL includes probe and jig capacitance.  
View BB  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
7-2. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCA6408A-Q1  
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
Pn  
500 W  
DUT  
2 ´ V  
CCP  
C
= 50 pF  
L
500 W  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 ´ V  
0.3 ´ V  
CCP  
CCI  
SCL  
P0  
A
P3  
Target  
ACK  
SDA  
Pn  
t
pv  
(see Note B)  
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 ´ V  
0.3 ´ V  
CCI  
CCI  
SCL  
P0  
A
P3  
t
ph  
t
ps  
Pn  
0.5 ´ V  
CCP  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
7-3. P-Port Load Circuit and Timing Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
V
CCI  
R
= 1 kW  
L
Pn  
500 W  
SDA  
DUT  
2 ´ V  
CCP  
DUT  
C = 50 pF  
L
(see Note A)  
C
= 50 pF  
500 W  
L
(see Note A)  
SDA LOAD CONFIGURATION  
P-PORT LOAD CONFIGURATION  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3 ´ V  
CCI  
t
RESET  
V
/2  
/2  
RESET  
CCP  
t
t
REC  
REC  
t
W
V
Pn  
CCP  
t
RESET  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. I/Os are configured as inputs.  
7-4. Reset Load Circuits and Voltage Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bidirectional voltage-level translation in the TCA6408A-Q1 is provided through VCCI. VCCI must be  
connected to the VCC of the external SCL/SDA lines. This indicates the VCC level of the I2C bus to the  
TCA6408A-Q1. The voltage level on the P-port of the TCA6408A-Q1 is determined by VCCP  
.
The TCA6408A-Q1 consists of one 8-bit Configuration (input or output selection), Input, Output, and Polarity  
Inversion (active high) Register. At power on, the I/Os are configured as inputs. However, the system controller  
can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or  
output is kept in the corresponding Input or Output Register. The polarity of the Input Port Register can be  
inverted with the Polarity Inversion Register. All registers can be read by the system controller.  
The system controller can reset the TCA6408A-Q1 in the event of a timeout or other improper operation by  
asserting a low in the RESET input. The power-on reset puts the registers in their default state and initializes the  
I2C/SMBus state machine. The RESET pin causes the same reset/initialization to occur without depowering the  
part.  
The TCA6408A-Q1 open-drain interrupt ( INT) output is activated when any input state differs from its  
corresponding Input Port Register state and is used to indicate to the system controller that an input state has  
changed.  
INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the  
remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via  
the I2C bus. Thus, the TCA6408A-Q1 can remain a simple target device.  
The device P-port outputs have high-current sink capabilities for directly driving LEDs while consuming low  
device current.  
One hardware pin (ADDR) can be used to program and vary the fixed I2C address and allow up to two devices  
to share the same I2C bus or SMBus.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.2 Functional Block Diagrams  
Interrupt  
Logic  
13  
INT  
LP Filter  
2
ADDR  
14  
15  
SCL  
SDA  
Input  
Filter  
I2C Bus  
Control  
Shift  
P7œP0  
8 Bits  
I/O Port  
Register  
1
VCCI  
Write Pulse  
Read Pulse  
16  
3
VCCP  
Power-On  
Reset  
RESET  
8
GND  
Copyright © 2016, Texas Instruments Incorporated  
All pin numbers shown are for the PW package.  
All I/Os are set to inputs at reset.  
8-1. Logic Diagram (Positive Logic)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
Data From  
Shift Register  
Configuration  
Output Port  
Register Data  
Register  
VCCP  
Data From  
D
Q
Q1  
Shift Register  
FF  
CK  
Write Configuration  
Pulse  
D
Q
Q
Q
FF  
CK  
P0 to P7  
Write Pulse  
Q2  
ESD Protection Diode  
Output  
Port  
Input  
Port  
Register  
GND  
Register  
Input Port  
D
Q
Q
Register Data  
FF  
CK  
Read Pulse  
To INT  
Data From  
Polarity  
D
Q
Q
Shift Register  
Register Data  
FF  
CK  
Write Polarity Pulse  
Polarity  
Inversion  
Register  
Copyright © 2016, Texas Instruments Incorporated  
On power up or reset, all registers return to default values.  
8-2. Simplified Schematic of P0 to P7  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Voltage Translation  
8-1 shows some common supply voltage options for voltage translation between the I2C bus and the P-ports  
of the TCA6408A-Q1.  
8-1. Voltage Translation  
VCCI  
VCCP  
(P-PORT)  
(SCL AND SDA OF I2C  
CONTROLLER)  
(V)  
(V)  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
8.3.2 I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The  
input voltage may be raised above VCC to a maximum of 3.6 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the output port register. In  
this case, there are low-impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin must not exceed the recommended levels for proper operation.  
8.3.3 Interrupt Output ( INT)  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time tiv, the signal  
INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or  
when data is read from the port that generated the interrupt. Resetting occurs in the read mode at the  
acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur  
during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this  
pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register.  
The INT output has an open-drain structure and requires pull-up resistor to VCCP or VCCI, depending on the  
application. INT must be connected to the voltage source of the device that requires the interrupt information.  
8.3.4 Reset Input ( RESET)  
The RESET input can be asserted to initialize the system while keeping the VCCP at its operating level. A reset  
can be accomplished by holding the RESET pin low for a minimum of tW. The TCA6408A-Q1 registers and I2C/  
SMBus state machine are changed to their default state when RESET is low (0). When RESET is high (1), the  
I/O levels at the P-port can be changed externally or through the controller. This input requires a pull-up resistor  
to VCCI, if no active connection is used. It is not recommended to assert the RESET pin during communication  
with the TCA6408A-Q1. Assertion of RESET during communication can result in data corruption.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Power-On Reset (POR)  
When power (from 0 V) is applied to VCCP, an internal power-on reset holds the TCA6408A-Q1 in a reset  
condition until VCCP has reached VPORR. At that time, the reset condition is released, and the TCA6408A-Q1  
registers and I2C/SMBus state machine initialize to their default states. After that, VCCP must be lowered to  
below VPORF and back up to the operating voltage for a power-reset cycle.  
8.4.2 Powered-Up  
When power has been applied to both VCCP and VCCI and a POR has taken place, the device is in a functioning  
mode. The device is always ready to receive new requests via the I2C bus.  
8.5 Programming  
8.5.1 I2C Interface  
The TCA6408A-Q1 has a standard bidirectional I2C interface that is controlled by a controller device in order to  
be configured or read the status of this device. Each target on the I2C bus has a specific device address to  
differentiate between other target devices that are on the same I2C bus. Many target devices require  
configuration upon startup to set the behavior of the device. This is typically done when the controller accesses  
internal register maps of the target, which have unique register addresses. A device can have one or multiple  
registers where data is stored, written, or read.  
The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines  
must be connected to VCC through a pull-up resistor. The size of the pull-up resistor is determined by the amount  
of capacitance on the I2C lines. (For further details, see the application report, I2C Pull-up Resistor Calculation  
(SLVA689)). Data transfer may be initiated only when the bus is idle. A bus is considered idle if both SDA and  
SCL lines are high after a STOP condition. See 8-3 and 8-4.  
The following is the general procedure for a controller to access a target device:  
1. If a controller wants to send data to a target:  
Controller-transmitter sends a START condition and addresses the target-receiver.  
Controller-transmitter sends data to target-receiver.  
Controller-transmitter terminates the transfer with a STOP condition.  
2. If a controller wants to receive or read data from a target:  
Controller-receiver sends a START condition and addresses the target-transmitter.  
Controller-receiver sends the requested register to read to target-transmitter.  
Controller-receiver receives data from the target-transmitter.  
Controller-receiver terminates the transfer with a STOP condition.  
SCL  
SDA  
Data Transfer  
START  
Condition  
STOP  
Condition  
8-3. Definition of Start and Stop Conditions  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
SDA line stable while SCL line is high  
SCL  
1
0
1
1
1
ACK  
0
0
0
SDA  
MSB  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
LSB  
ACK  
Byte: 1010 1010 ( 0xAAh )  
8-4. Bit Transfer  
8-2 shows the interface definition for the TCA6408A-Q1 device.  
8-2. Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
H
5
L
4
L
3
L
2
L
1
0 (LSB)  
I2C target address  
I/O data bus  
L
ADDR  
P1  
R/ W  
P0  
P7  
P6  
P5  
P4  
P3  
P2  
8.5.2 Bus Transactions  
Data must be sent to and received from the target devices, and this is accomplished by reading from or writing to  
registers in the target device.  
Registers are locations in the memory of the target which contain information, whether it be the configuration  
information or some sampled data to send back to the controller. The controller must write information to these  
registers in order to instruct the target device to perform a task.  
While it is common to have registers in I2C targets, note that not all target devices will have registers. Some  
devices are simple and contain only 1 register, which may be written to directly by sending the register data  
immediately after the target address, instead of addressing a register. An example of a single-register device is  
an 8-bit I2C switch, which is controlled via I2C commands. Since it has 1 bit to enable or disable a channel, there  
is only 1 register needed, and the controller merely writes the register data after the target address, skipping the  
register number.  
8.5.2.1 Writes  
To write on the I2C bus, the controller sends a START condition on the bus with the address of the target, as well  
as the last bit (the R/ W bit) set to 0, which signifies a write. After the target sends the acknowledge bit, the  
controller then sends the register address of the register to which it wishes to write. The target will acknowledge  
again, letting the controller know it is ready. After this, the controller starts sending the register data to the target  
until the controller has sent all the data necessary (which is sometimes only a single byte), and the controller  
terminates the transmission with a STOP condition.  
8-5 and 8-6 show an example of writing a single byte to a target register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
Controller controls SDA line  
Target controls SDA line  
Write to one register in a device  
Register Address N (8 bits)  
Data Byte to Register N (8 bits)  
Device (Target) Address (7 bits)  
AD  
DR  
S
0
1
0
0
0
0
0
A
B7 B6 B5 B4 B3 B2 B1 B0  
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
START  
R/W=0 ACK  
ACK  
ACK STOP  
8-5. Write to Register  
<br/>  
Controller controls SDA line  
Target controls SDA line  
Register Address 0x02 (8 bits)  
Data Byte to Register 0x02 (8 bits)  
Device (Target) Address (7 bits)  
AD  
DR  
S
0
1
0
0
0
0
0
A
0
0
0
0
0
0
1
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
START  
R/W=0 ACK  
ACK  
ACK STOP  
8-6. Write to the Polarity Inversion Register  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.5.2.2 Reads  
Reading from a target is very similar to writing, but requires some additional steps. In order to read from a target,  
the controller must first instruct the target which register it wishes to read from. This is done by the controller  
starting off the transmission in a similar fashion as the write, by sending the address with the R/ W bit equal to 0  
(signifying a write), followed by the register address it wishes to read from. When the target acknowledges this  
register address, the controller sends a START condition again, followed by the target address with the R/ W bit  
set to 1 (signifying a read). This time, the target acknowledges the read request, and the controller releases the  
SDA bus but continues supplying the clock to the target. During this part of the transaction, the controller  
becomes the controller-receiver, and the target becomes the target-transmitter.  
The controller continues to send out the clock pulses, but releases the SDA line so that the target can transmit  
data. At the end of every byte of data, the controller sends an ACK to the target, letting the target know that it is  
ready for more data. When the controller has received the number of bytes it is expecting, it sends a NACK,  
signaling to the target to halt communications and release the bus. The controller follows this up with a STOP  
condition.  
Read transactions that are performed without writing to the address of the device and simply supply the  
command byte will result in a NACK.  
8-7 and 8-8 show an example of reading a single byte from a target register.  
Controller controls SDA line  
Target controls SDA line  
Read from one register in a device  
Device (Target) Address (7 bits)  
Register Address N (8 bits)  
Device (Target) Address (7 bits)  
Data Byte from Register N (8 bits)  
D7 D6 D5 D4 D3 D2 D1 D0 NA  
AD  
AD  
S
0
1
0
0
0
0
0
A
B7 B6 B5 B4  
B2 B1 B0  
A
Sr  
0
1
0
0
0
0
1
A
P
B3  
DR  
DR  
R/W=1  
START  
ACK  
ACK Repeated START  
ACK  
NACK STOP  
R/W=0  
8-7. Read from Register  
1
2
3
4
5
6
7
R
1
9
SCL  
SDA  
Data From Port  
Data 1  
Target Address  
Data From Port  
Data 4  
AD  
DR  
S
0
1
0
0
0
A
A
NA P  
0
Start  
Condition  
NACK From  
Controller  
ACK From  
Target  
ACK From  
Controller  
Stop  
Condition  
R/W  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
t
ps  
ph  
INT is cleared  
by Read from Port  
INT  
t
Stop not needed  
to clear INT  
t
iv  
ir  
A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is  
valid (output mode). It is assumed that the command byte previously has been set to 00 (read Input Port Register).  
B. This figure eliminates the command byte transfer, a restart, and target address call between the initial target address call and actual  
data transfer from P-port (see 8-7).  
8-8. Read from Input Port Register  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.6 Register Map  
8.6.1 Device Address  
The address of the TCA6408A-Q1 is shown in 8-9.  
Target Address  
AD  
0
1
0
0
0
0
DR  
R/W  
Fixed  
Programmable  
8-9. TCA6408A-Q1 Address  
8-3 shows the TCA6408A-Q1 address reference.  
8-3. Address Reference  
I2C BUS TARGET ADDRESS  
32 (decimal), 20 (hexadecimal)  
33 (decimal), 21 (hexadecimal)  
ADDR  
L
H
The last bit of the target address defines the operation (read or write) to be performed. A high (1) selects a read  
operation, while a low (0) selects a write operation.  
8.6.2 Control Register and Command Byte  
Following the successful acknowledgment of the address byte, the bus controller sends a command byte (see 表  
8-4), which is stored in the Control Register in the TCA6408A-Q1. Two bits of this data byte state both the  
operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that is  
affected. This register can be written or read through the I2C bus. The command byte is sent only during a write  
transmission. See 8-10.  
B7 B6  
B5 B4 B3 B2 B1 B0  
8-10. Control Register Bits  
8-4. Command Byte  
CONTROL REGISTER BITS  
COMMAND BYTE  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
(HEX)  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
00  
01  
02  
03  
Input Port  
Output Port  
Read byte  
xxxx xxxx  
1111 1111  
0000 0000  
1111 1111  
0
0
0
0
0
0
0
1
Read/write byte  
Read/write byte  
Read/write byte  
0
0
0
0
0
0
1
0
Polarity Inversion  
Configuration  
0
0
0
0
0
0
1
1
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.6.3 Register Descriptions  
The Input Port Register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by the Configuration Register. They act only on read operation. Writes to this  
register have no effect. The default value (X) is determined by the externally applied logic level. Before a read  
operation, a write transmission is sent with the command byte to indicate to the I2C device that the Input Port  
Register will be accessed next. See 8-5.  
8-5. Register 0 (Input Port Register)  
BIT  
I-7  
I-6  
I-5  
I-4  
I-3  
I-2  
I-1  
I-0  
DEFAULT  
X
X
X
X
X
X
X
X
The Output Port Register (register 1) shows the outgoing logic levels of the pins defined as outputs by the  
Configuration Register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value. See 表  
8-6.  
8-6. Register 1 (Output Port Register)  
BIT  
O-7  
O-6  
O-5  
O-4  
O-3  
O-2  
O-1  
O-0  
DEFAULT  
1
1
1
1
1
1
1
1
The Polarity Inversion Register (register 2) allows polarity inversion of pins defined as inputs by the  
Configuration Register. If a bit in this register is set (written with 1), the polarity of the corresponding port pin is  
inverted. If a bit in this register is cleared (written with a 0), the original polarity of the corresponding port pin is  
retained. See 8-7.  
8-7. Register 2 (Polarity Inversion Register)  
BIT  
N-7  
N-6  
N-5  
N-4  
N-3  
N-2  
N-1  
N-0  
DEFAULT  
0
0
0
0
0
0
0
0
The Configuration Register (register 3) configures the direction of the I/O pins. If a bit in this register is set to 1,  
the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is  
cleared to 0, the corresponding port pin is enabled as an output. See 8-8.  
8-8. Register 3 (Configuration Register)  
BIT  
C-7  
C-6  
C-5  
C-4  
C-3  
C-2  
C-1  
C-0  
DEFAULT  
1
1
1
1
1
1
1
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
Applications of the TCA6408A-Q1 has this device connected as a target to an I2C controller (processor), and the  
I2C bus may contain any number of other target devices. The TCA6408A-Q1 is in a remote location from the  
controller, placed close to the GPIOs to which the controller needs to monitor or control.  
A typical application of the TCA6408A-Q1 operates with a lower voltage on the controller side (VCCI), and a  
higher voltage on the P-port side (VCCP). The P-ports can be configured as outputs connected to inputs of  
devices such as enable, reset, power select, the gate of a switch, and LEDs. The P-ports can also be configured  
as inputs to receive data from interrupts, alarms, status outputs, or push buttons.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2 Typical Application  
9-1 shows an application in which the TCA6408A-Q1 can be used.  
VCCI  
VCCP  
(1.8 V)  
(3.3 V)  
Subsystem 1  
(e.g., Alarm)  
10 k  
(x 4)  
100 k  
(x 3)  
VCC  
VCCI  
VCCP  
ALARM  
(see Note D)  
SCL  
P0  
SCL  
SDA  
INT  
Controller  
SDA  
INT  
RESET  
RESET  
GND  
P1  
ENABLE  
TCA6408A-Q1  
P2  
P3  
P4  
P5  
P6  
Keypad  
ADDR  
GND  
P7  
A. Device address configured as 0100000 for this example.  
B. P0 and P2P4 are configured as inputs.  
C. P1 and P5P7 are configured as outputs.  
D. Resistors are required for inputs (on P-port) that may float. If a driver to an input will never let the input float, a resistor is not needed.  
Outputs (in the P-port) do not need pull-up resistors.  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
9.2.1.1 Calculating Junction Temperature and Power Dissipation  
When designing with the TCA6408A-Q1, it is important that the 6.3 not be violated. Many of the parameters of  
this device are rated based on junction temperature. So junction temperature must be calculated in order to  
verify that safe operation of the device is met. The basic equation for junction temperature is shown in 方程1.  
Tj = TA + q ´ P  
(
)
JA  
d
(1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
θJA is the standard junction to ambient thermal resistance measurement of the package, as seen in 6.4 table.  
Pd is the total power dissipation of the device, and the approximation is shown in 方程2.  
P » ICC_STATIC ´ VCC  
(
+
Pd_PORT _L  
+
Pd_PORT _H  
)
d
å
å
(2)  
方程式 2 is the approximation of power dissipation in the device. The equation is the static power plus the  
summation of power dissipated by each port (with a different equation based on if the port is outputting high, or  
outputting low. If the port is set as an input, then power dissipation is the input leakage of the pin multiplied by  
the voltage on the pin). Note that this ignores power dissipation in the INT and SDA pins, assuming these  
transients to be small. They can easily be included in the power dissipation calculation by using 方程式 3 to  
calculate the power dissipation in INT or SDA while they are pulling low, and this gives maximum power  
dissipation.  
Pd_PORT _L = I ´ VOL  
(
OL  
)
(3)  
方程式 3 shows the power dissipation for a single port which is set to output low. The power dissipated by the  
port is the VOL of the port multiplied by the current it is sinking.  
Pd_PORT _H = I  
(
´ V - VOH  
(
CC  
)
)
OH  
(4)  
方程式 4 shows the power dissipation for a single port which is set to output high. The power dissipated by the  
port is the current sourced by the port multiplied by the voltage drop across the device (difference between VCC  
and the output voltage).  
9.2.1.2 Minimizing ICC When I/O is Used to Control LEDs  
When the I/Os are used to control LEDs, normally they are connected to VCC through a resistor as shown in 图  
9-1. The LED acts as a diode, so when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ΔICC  
parameter in the 6.5 table shows how ICC increases as VIN becomes lower than VCC. Designs that must  
minimize current consumption, such as battery power applications, must consider maintaining the I/O pins  
greater than or equal to VCC when the LED is off.  
9-2 shows a high-value resistor in parallel with the LED. 9-3 shows VCC less than the LED supply voltage  
by at least 1.2 V. Both of these methods maintain the I/O VIN at or above VCC and prevent additional supply  
current consumption when the LED is off.  
VCC  
LED  
100 k  
VCC  
Px  
9-2. High-Value Resistor in Parallel With LED  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
3.3 V  
5 V  
LED  
VCC  
Px  
9-3. Device Supplied by a Low Voltage  
9.2.2 Detailed Design Procedure  
The pull-up resistors, RP, for the SCL and SDA lines need to be selected appropriately and take into  
consideration the total capacitance of all targets on the I2C bus. The minimum pull-up resistance is a function of  
V
CC, VOL,(max), and IOL as shown in 方程5.  
VCC - VOL(max)  
Rp(min)  
=
IOL  
(5)  
The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation,  
fSCL = 400 kHz) and bus capacitance, Cb as shown in 方程6.  
tr  
Rp(max)  
=
0.8473´C
b  
(6)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for standard-mode or fast-mode  
operation. The bus capacitance can be approximated by adding the capacitance of the TCA6408A-Q1, Ci for  
SCL or CIO for SDA, the capacitance of wires, connections, traces, and the capacitance of additional targets on  
the bus.  
9.2.3 Application Curves  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
Standard-mode  
Fast-mode  
0.8  
0.6  
0.4  
0.2  
0
VCC > 2V  
VCC <= 2  
0
0
0.5  
1
1.5  
2
2.5 3  
VCC (V)  
3.5  
4
4.5  
5
5.5  
0
50  
100 150 200 250 300 350 400 450  
Cb (pF)  
D009  
D008  
Standard-mode: fSCL= 100 kHz, tr = 1 µs  
Fast-mode: fSCL= 400 kHz, tr= 300 nsb  
VOL = 0.2 × VCC, IOL = 2 mA when VCC 2 V  
VOL = 0.4 V, IOL = 3 mA when VCC > 2 V  
9-4. Maximum Pull-Up Resistance (Rp(max)) vs  
9-5. Minimum Pull-Up Resistance (Rp(min)) vs  
Pull-Up Reference Voltage (VCCI  
Bus Capacitance (C)  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCA6408A-Q1  
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
9.3.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, TCA6408A-Q1 can be reset to its default conditions by using the  
power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset.  
This reset also happens when the device is powered on for the first time in an application.  
Ramping up the device VCCP before VCCI is recommended to prevent SDA from potentially being stuck LOW.  
The two types of power-on reset are shown in 9-6 and 9-7.  
VCCP  
Ramp-Up  
Ramp-Down  
Re-Ramp-Up  
tRR_GND  
Time  
Time to Re-Ramp  
tRT  
tFT  
tRT  
9-6. VCCP is Lowered Below 0.2 V and then Ramped Up to VCCP  
VCCP  
Ramp-Down  
Ramp-Up  
tRR_POR50  
VIN drops below POR levels  
Time  
Time to Re-Ramp  
tFT  
tRT  
9-7. VCCP is Lowered Below the POR Threshold, then Ramped Back Up to VCCP  
9-1 specifies the performance of the power-on reset feature for TCA6408A-Q1 for both types of power-on  
reset.  
9-1. Recommended Supply Sequencing and Ramp Rates at TA = 25°C(1)  
PARAMETER  
MIN TYP  
MAX UNIT  
tFT  
Fall rate  
0.1  
0.1  
1
2000  
2000  
ms  
ms  
μs  
μs  
See 9-6  
See 9-6  
See 9-6  
See 9-7  
tRT  
Rise rate  
tRR_GND  
tRR_POR50  
Time to re-ramp (when VCCP drops to GND)  
1
Time to re-ramp (when VCCP drops to VPOR_MIN 50 mV)  
Level that VCCP can glitch down from VCCP, but not cause a  
functional disruption when tVCCP_GW = 1 μs  
VCCP_GH  
VCCP_MV  
tVCCP_GW  
1.2  
V
V
See 9-8  
See 9-8  
See 9-8  
The minimum voltage that VCC can glitch down to without  
causing a reset (VCC_GH must not be violated)  
1.5  
Glitch width that does not cause a functional disruption when  
tVCCP_GH = 0.5 × VCCx  
10  
μs  
VPORF  
VPORR  
Voltage trip point of POR on falling VCCP  
Voltage trip point of POR on rising VCCP  
0.6  
1
V
V
1.2  
1.5  
(1) Not tested. Specified by design.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(tVCCP_GW) and height (VCCP_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. 9-8 and 9-1 provide more  
information on how to measure these specifications.  
VCCP  
VCCP_GH  
V
CCP_MV  
Time  
tVCCP_GW  
9-8. Glitch Width and Glitch Height  
VPOR is critical to the power-on reset. VPORR / VPORF is the voltage level at which the reset condition is released/  
asserted and all the registers and the I2C/SMBus state machine are initialized to the default states (upon a  
release of a reset condition). The voltage that the device has a reset condition asserted or released differs based  
on whether VCCP is being lowered to or from 0. 9-9 and 9-1 provide more details on this specification.  
VCCP  
VPORR  
VPORF  
Time  
POR  
Time  
9-9. Power On Reset  
9.4 Layout  
9.4.1 Layout Guidelines  
For printed circuit board (PCB) layout of the TCA6408A-Q1, common PCB layout practices must be followed, but  
additional concerns related to high-speed data transfer such as matched impedances and differential pairs are  
not a concern for I2C signal speeds.  
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from  
each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher  
amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors  
are commonly used to control the voltage on the VCCI and VCCP pins, using a larger capacitor to provide  
additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCA6408A-Q1  
 
 
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
ripple. These capacitors must be placed as close to the TCA6408A-Q1 as possible. These best practices are  
shown in 9.4.2.  
For the layout example provided in 9.4.2, it is possible to fabricate a PCB with only 2 layers by using the top  
layer for signal routing and the bottom layer as a split plane for power (VCCI and VCCP) and ground (GND).  
However, a 4-layer board is preferable for boards with higher density signal routing. On a 4-layer PCB, it is  
common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and  
dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and  
ground, vias are placed directly next to the surface mount component pad which needs to attach to VCCI, VCCP  
,
or GND and the via is connected electrically to the internal layer or the other side of the board. Vias are also  
used when a signal trace needs to be routed to the opposite side of the board, but this technique is not  
demonstrated in 9.4.2.  
9.4.2 Layout Example  
= Via to GND Plane  
To CPU/MCU  
V
V
CCP  
CCI  
ADDR  
RST  
P0  
SDA  
SCL  
INT  
P7  
TCA6408A-Q1  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
9-10. Example Layout (PW Package)  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCA6408A-Q1  
 
TCA6408A-Q1  
ZHCSFH3A SEPTEMBER 2016 REVISED FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.2 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.3 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCA6408A-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA6408AQPWRQ1  
ACTIVE  
TSSOP  
PW  
16  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
6408AQ  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TCA6408A-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
Catalog : TCA6408A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA6408AQPWRQ1  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TCA6408AQPWRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCA6408APWR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408AQPWRQ1

具有中断输出、复位和配置寄存器的汽车类 8 位转换 I2C 和 SMBus I/O 扩展器 | PW | 16 | -40 to 125
TI

TCA6408ARGTR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408ARSVR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408PW

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408PWG4

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408PWR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408PWRG4

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408RGTR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408RGTRG4

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408ZXYR

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI

TCA6408_09

LOW-VOLTAGE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT, RESET, AND CONFIGURATION REGISTERS
TI