THS5651AIDWR [TI]

10 位、125MSPS 数模转换器 (DAC) | DW | 28 | -40 to 85;
THS5651AIDWR
型号: THS5651AIDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10 位、125MSPS 数模转换器 (DAC) | DW | 28 | -40 to 85

光电二极管 转换器 数模转换器
文件: 总30页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
SOIC (DW) OR TSSOP (PW) PACKAGE  
(TOP VIEW)  
Member of the Pin-Compatible  
CommsDAC Product Family  
125 MSPS Update Rate  
10-Bit Resolution  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NC  
NC  
NC  
NC  
CLK  
DV  
DGND  
2
DD  
3
Superior Spurious Free Dynamic Range  
Performance (SFDR) to Nyquist at 40 MHz  
Output: 62 dBc  
4
MODE  
5
AV  
DD  
6
COMP2  
IOUT1  
IOUT2  
AGND  
COMP1  
BIASJ  
EXTIO  
EXTLO  
SLEEP  
1 ns Setup/Hold Time  
7
8
Differential Scalable Current Outputs: 2 mA  
to 20 mA  
9
10  
11  
12  
13  
14  
On-Chip 1.2-V Reference  
3 V and 5 V CMOS-Compatible Digital  
Interface  
Straight Binary or Twos Complement Input  
Power Dissipation: 175 mW at 5 V, Sleep  
Mode: 25 mW at 5 V  
NC – No internal connection  
Package: 28-Pin SOIC and TSSOP  
description  
The THS5651A is a 10-bit resolution digital-to-analog converter (DAC) specifically optimized for digital data  
transmission in wired and wireless communication systems. The 10-bit DAC is a member of the CommsDAC  
series of high-speed, low-power CMOS digital-to-analog converters. The CommsDAC family consists of pin  
compatible 14-, 12-, 10-, and 8-bit DACs. All devices offer identical interface options, small outline package and  
pinout. The THS5651A offers superior ac and dc performance while supporting update rates up to 125 MSPS.  
The THS5651A operates from an analog supply of 4.5 V to 5.5 V. Its inherent low power dissipation of 175 mW  
ensures that the device is well suited for portable and low-power applications. Lowering the full-scale current  
output reduces the power dissipation without significantly degrading performance. The device features a  
SLEEP mode, which reduces the standby power to approximately 25 mW, thereby optimizing the power  
consumption for system needs.  
The THS5651A is manufactured in Texas Instruments advanced high-speed mixed-signal CMOS process. A  
current-source-array architecture combined with simultaneous switching shows excellent dynamic  
performance. On-chip edge-triggered input latches and a 1.2 V temperature compensated bandgap reference  
provide a complete monolithic DAC solution. The digital supply range of 3 V to 5.5 V supports 3 V and 5 V CMOS  
logic families. Minimum data input setup and hold times allow for easy interfacing with external logic. The  
THS5651Asupports both a straight binary and twos complement input word format, enabling flexible interfacing  
with digital signal processors.  
The THS5651A provides a nominal full-scale differential output current of 20 mA and >300 koutput  
impedance, supporting both single-ended and differential applications. The output current can be directly fed  
to the load (e.g., external resistor load or transformer), with no additional external output buffer required. An  
accurate on-chip reference and control amplifier allows the user to adjust this output current from 20 mA down  
to 2 mA, with no significant degradation of performance. This reduces power consumption and provides 20 dB  
gain range control capabilities. Alternatively, an external reference voltage and control amplifier may be applied  
in applications using a multiplying DAC. The output voltage compliance range is 1.25 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
CommsDAC is a trademark of Texas Instruments Incorporated.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
description (continued)  
The THS5651A is available in both a 28-pin SOIC and TSSOP package. The device is characterized for  
operation over the industrial temperature range of –40°C to 85°C.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
28-TSSOP  
(PW)  
28-SOIC  
(DW)  
40°C to 85°C  
THS5651AIPW  
THS5651AIDW  
functional block diagram  
AV  
DD  
C
1
SLEEP  
COMP1  
0.1 µF  
0.1 µF  
COMP2  
EXTLO  
EXTIO  
1.2 V  
REF  
IOUT1  
1 nF  
+
R
R
Output  
Current  
Switches  
50 Ω  
LOAD  
LOAD  
Current  
Source  
Array  
C
EXT  
BIASJ  
Control  
AMP  
0.1 µF  
I
IOUT2  
BIAS  
R
BIAS  
2 kΩ  
DV  
DD  
50 Ω  
Logic  
D[9:0]  
Control  
MODE  
CLK  
DGND  
AGND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
AV  
NO.  
20  
I
I
Analog ground return for the internal analog circuitry  
Positive analog supply voltage (4.5 V to 5.5 V)  
Full-scale output current bias  
24  
DD  
BIASJ  
CLK  
18  
O
I
28  
External clock input. Input data latched on rising edge of the clock.  
Compensation and decoupling node, requires a 0.1 µF capacitor to AV  
Internal bias node, requires a 0.1 µF decoupling capacitor to AGND.  
Data bits 0 through 9.  
COMP1  
COMP2  
D[9:0]  
19  
I
.
DD  
23  
I
[1:10]  
I
D9 is most significant data bit (MSB), D0 is least significant data bit (LSB).  
Digital ground return for the internal digital logic circuitry  
Positive digital supply voltage (3 V to 5.5 V)  
DGND  
26  
27  
17  
I
I
DV  
DD  
EXTIO  
I/O Used as external reference input when internal reference is disabled (i.e., EXTLO = AV ). Used as internal  
DD  
reference output when EXTLO = AGND, requires a 0.1 µF decoupling capacitor to AGND when used as reference  
output  
EXTLO  
IOUT1  
IOUT2  
MODE  
16  
22  
21  
25  
O
O
O
I
Internal reference ground. Connect to AV to disable the internal reference source  
DD  
DAC current output. Full scale when all input bits are set 1  
Complementary DAC current output. Full scale when all input bits are 0  
Mode select. Internal pulldown. Mode 0 is selected if this pin is left floating or connected to DGND. See  
timing diagram.  
NC  
[11:14]  
15  
N
I
No connection  
SLEEP  
Asynchronous hardware power down input. Active High. Internal pulldown. Requires 5 µs to power down but 3 ms  
to power up.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
DD  
DD  
DV  
Voltage between AGND and DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.5 V  
Supply voltage range, AV to DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6.5 V to 6.5 V  
DD  
DD  
CLK, SLEEP, MODE (see Note 2) . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Digital input D9–D0 (see Note 2) . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
IOUT1, IOUT2 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1 V to AV  
COMP1, COMP2 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AV  
EXTIO, BIASJ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
DD  
DD  
EXTLO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.3 V  
Peak input current (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30 mA  
Operating free-air temperature range, T : THS5651AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Measured with respect to AGND.  
2. Measured with respect to DGND.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA (unless otherwise noted)  
DD  
FS  
dc specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
DC accuracy  
INL  
Integral nonlinearity  
–1  
±0.5  
±0.25  
1
LSB  
LSB  
T
A
= –40°C to 85°C  
DNL  
Differential nonlinearity  
–0.5  
0.5  
Monotonicity  
Analog output  
Monotonic  
Offset error  
0.02  
2.3  
%FSR  
%FSR  
Without internal reference  
With internal reference  
Gain error  
1.3  
Full scale output current  
2
20  
mA  
V
Output compliance range  
Output resistance  
AV  
DD  
= 5 V, IOUT  
= 20 mA  
–1  
1.25  
FS  
300  
5
kΩ  
pF  
Output capacitance  
Reference output  
Reference voltage  
1.18  
0.1  
1.22  
100  
1.32  
1.25  
V
§
Reference output current  
nA  
Reference input  
V
Input voltage range  
Input resistance  
V
EXTIO  
1
1.3  
MΩ  
MHz  
pF  
Small signal bandwidth  
Input capacitance  
Without C  
COMP1  
100  
Temperature coefficients  
Offset drift  
0
±40  
Without internal reference  
With internal reference  
ppm of  
FSR/°C  
Gain drift  
±120  
±35  
Reference voltage drift  
Power supply  
AV  
Analog supply voltage  
Digital supply voltage  
Analog supply current  
4.5  
3
5
5.5  
5.5  
30  
5
V
DD  
DV  
V
DD  
AVDD  
DVDD  
25  
3
mA  
mA  
mA  
I
I
Sleep mode supply current  
Sleep mode  
#
Digital supply current  
5
6
||  
Power dissipation  
AV  
DD  
= 5 V, DV  
= 5 V, IOUT  
= 20 mA  
FS  
175  
±0.4  
mW  
%FSR/V  
°C  
DD  
AV  
DD  
Power supply rejection ratio  
DV  
±0.025  
DD  
Operating range  
–40  
85  
§
#
||  
Measured at IOUT1 in virtual ground configuration.  
Nominal full-scale current IOUT equals 32X the IBIAS current.  
Use an external buffer amplifier with high impedance input to drive any external load.  
Reference bandwidth is a function of external cap at COMP1 pin and signal level.  
FS  
Measured at f  
= 50 MSPS and f  
= 1 MHz.  
at IOUT1 and IOUT2, f  
CLK  
Measured for 50 R  
OUT  
= 50 MSPS and f  
CLK OUT  
= 20 MHz.  
LOAD  
Specifications subject to change  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA, differential transformer coupled output, 50 doubly terminated load  
DD  
FS  
(unless otherwise noted)  
ac specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog output  
DV  
DV  
= 4.5 V to 5.5 V  
100  
70  
125  
100  
35  
1
DD  
DD  
f
Maximum output update rate  
MSPS  
CLK  
= 3 V to 3.6 V  
t
t
Output settling time to 0.1%  
ns  
ns  
s(DAC)  
Output propagation delay  
pd  
GE  
Glitch energy  
Worst case LSB transition (code 511 – code 512)  
5
pV–s  
ns  
t
t
Output rise time 10% to 90%  
1
r(IOUT)  
Output fall time 90% to 10%  
1
ns  
f(IOUT)  
IOUT  
IOUT  
= 20 mA  
= 2 mA  
15  
10  
FS  
Output noise  
pA/HZ  
FS  
§
AC linearity  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 25 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C  
–72  
–72  
–70  
–70  
79  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
OUT  
A
= 1 MHz, T = –40°C to 85°C  
–64  
A
THD  
Total harmonic distortion  
dBc  
= 2 MHz, T = 25°C  
A
= 100 MSPS, f  
= 2 MHz, T = 25°C  
A
OUT  
= 25 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C  
A
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1 MHz, T = –40°C to 85°C  
66  
A
= 1 MHz, T = 25°C  
77  
75  
71  
58  
69  
61  
62  
82  
81  
78  
A
= 2.51 MHz, T = 25°C  
A
Spurious free dynamic range to  
Nyquist  
= 5.02 MHz, T = 25°C  
dBc  
A
= 20.2 MHz, T = 25°C  
A
SFDR  
= 100 MSPS, f  
= 100 MSPS, f  
= 100 MSPS, f  
= 5.04 MHz, T = 25°C  
A
OUT  
OUT  
OUT  
= 20.2 MHz, T = 25°C  
A
= 40.4 MHz, T = 25°C  
A
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C,1 MHz span  
OUT  
OUT  
A
Spurious free dynamic range  
within a window  
= 5.02 MHz, 2 MHz span  
dBc  
= 100 MSPS, f  
= 5.04 MHz, 4 MHz span  
OUT  
§
Measured single ended into 50 load at IOUT1.  
Single-ended output IOUT1, 50 doubly terminated load.  
Measured with a 50%/50% duty cycle (high/low percentage of the clock). Optimum ac linearity is obtained when limiting the duty cycle to a range  
from 45%/55% to 55%/45%.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA (unless otherwise noted)  
DD  
FS  
digital specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Interface  
DV  
DV  
DV  
DV  
DV  
DV  
= 5 V  
3.5  
2.1  
5
3.3  
0
DD  
DD  
DD  
DD  
DD  
DD  
V
High-level input voltage  
V
V
IH  
IL  
= 3.3 V  
= 5 V  
1.3  
0.9  
10  
10  
5
V
Low-level input voltage  
= 3.3 V  
0
I
I
High-level input current  
Low-level input current  
Input capacitance  
= 3 V to 5.5 V  
= 3 V to 5.5 V  
–10  
–10  
1
µA  
µA  
pF  
IH  
IL  
Timing  
t
t
t
t
Input setup time  
1
1
4
ns  
ns  
ns  
clk  
su(D)  
Input hold time  
h(D)  
Input latch pulse high time  
Digital delay time  
w(LPH)  
d(D)  
1
Specifications subject to change  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 0 dBFS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 5 MSPS  
90  
84  
78  
72  
66  
60  
54  
48  
90  
84  
78  
72  
66  
60  
DV  
= 5 V  
DD  
DV  
= 5 V  
DD  
0 dBFS  
f
= 5 MSPS  
CLK  
f
= 50 MSPS  
CLK  
–6 dBFS  
f
= 100 MSPS  
CLK  
f
= 70 MSPS  
CLK  
–12 dBFS  
f
= 125 MSPS  
CLK  
f
= 25 MSPS  
CLK  
0
10  
20  
30  
40  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
F
out  
– Output Frequency – MHz  
F
out  
– Output Frequency – MHz  
Figure 1  
Figure 2  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 25 MSPS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 50 MSPS  
90  
84  
78  
72  
66  
60  
78  
72  
66  
60  
54  
48  
DV  
= 5 V  
DD  
DV  
= 5 V  
–6 dBFS  
DD  
0 dBFS  
–12 dBFS  
–6 dBFS  
0 dBFS  
–12 dBFS  
0
2
4
6
8
10  
12  
0
5
F
10  
15  
20  
25  
F
out  
– Output Frequency – MHz  
– Output Frequency – MHz  
out  
Figure 3  
Figure 4  
† AV  
DD  
= 5 V, IOUT  
noted.)  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
FS  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 70 MSPS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 100 MSPS  
78  
72  
66  
60  
54  
48  
78  
72  
66  
60  
54  
48  
DV  
= 5 V  
DV  
= 5 V  
DD  
DD  
–6 dBFS  
–12 dBFS  
–6 dBFS  
–12 dBFS  
0 dBFS  
0 dBFS  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
F
out  
– Output Frequency – MHz  
F
out  
– Output Frequency – MHz  
Figure 5  
Figure 6  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 0 dBFS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 125 MSPS  
90  
84  
78  
72  
66  
60  
54  
48  
42  
78  
72  
66  
60  
54  
48  
DV  
= 3.3 V  
DD  
DV  
= 5 V  
DD  
f
= 5 MSPS  
CLK  
f
= 50 MSPS  
CLK  
–6 dBFS  
–12 dBFS  
f
= 70 MSPS  
CLK  
0 dBFS  
f
= 25 MSPS  
CLK  
f
= 100 MSPS  
CLK  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
F
out  
– Output Frequency – MHz  
F
out  
– Output Frequency – MHz  
Figure 7  
Figure 8  
† AV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
FS  
A
noted.)  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 5 MSPS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 25 MSPS  
90  
84  
78  
72  
66  
60  
84.00  
78.00  
72.00  
66.00  
60.00  
54.00  
DV  
= 3.3 V  
DD  
DV  
= 3.3 V  
DD  
–6 dBFS  
0 dBFS  
–6 dBFS  
–12 dBFS  
–12 dBFS  
0 dBFS  
0
0.5  
1.0  
1.5  
2.0  
0
2
4
6
8
10  
F
out  
– Output Frequency – MHz  
F
out  
– Output Frequency – MHz  
Figure 9  
Figure 10  
SPURIOUS FREE DYNAMIC RANGE  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 70 MSPS  
OUTPUT FREQUENCY AT 50 MSPS  
78  
72  
66  
60  
54  
48  
78  
72  
66  
60  
54  
48  
DV  
= 3.3 V  
DV  
= 3.3 V  
DD  
DD  
–6 dBFS  
–12 dBFS  
–6 dBFS  
–12 dBFS  
0 dBFS  
0 dBFS  
0
10  
20  
30  
40  
0
5
F
10  
15  
20  
25  
F
out  
– Output Frequency – MHz  
– Output Frequency – MHz  
out  
Figure 11  
Figure 12  
† AV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
FS  
A
noted.)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
A
AT F  
= F  
/11  
OUT  
OUT  
CLOCK  
A
AT F  
= F  
5
OUT  
OUT  
CLOCK/  
84  
78  
72  
66  
60  
54  
48  
84  
78  
72  
66  
60  
54  
48  
DV  
= 5 V  
DD  
DV  
= 5 V  
DD  
5 MHz @ 25 MSPS  
2.27 MHz @ 25 MSPS  
14 MHz @ 70 MSPS  
9.1 MHz @  
100 MSPS  
6.36 MHz @  
70 MSPS  
10 MHz @ 50 MSPS  
4.55 MHz @  
50 MSPS  
20 MHz @ 100 MSPS  
–27 –24 –21 –18 –15 –12 –9 –6 –3  
0
–27 –24 –21 –18 –15 –12 –9 –6 –3  
0
A
– dBFS  
out  
A
– dBFS  
out  
Figure 13  
Figure 14  
DUAL TONE SPURIOUS FREE DYNAMIC RANGE  
vs  
TOTAL HARMONIC DISTORTION  
vs  
A
AT F  
= F  
7
CLOCK FREQUENCY AT F  
= 2 MHZ  
OUT  
OUT  
CLOCK/  
OUT  
84  
78  
72  
66  
60  
54  
48  
9
–66  
DV  
= 5 V  
DD  
DV  
= 5 V  
DD  
0.675/0.725 MHz @ 5 MSPS  
3.38/3.63 MHz @ 25 MSPS  
6.75/7.25 MHz @ 50 MSPS  
8
–72  
4th Harmonic  
3rd Harmonic  
2nd Harmonic  
8
–78  
9.67/10.43 MHz @  
7
–84  
70 MSPS  
13.5/14.5 MHz @ 100 MSPS  
7
–90  
–27 –24 –21 –18 –15 –12 –9 –6 –3  
0
0
20  
F
40  
60  
80  
100  
120  
A
– dBFS  
– Clock Frequency – MSPS  
out  
clock  
Figure 15  
Figure 16  
† AV  
DD  
= 5 V, IOUT  
noted.)  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
FS  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
SPURIOUS FREE DYNAMIC RANGE  
vs  
vs  
FULL-SCALE OUTPUT CURRENT AT 100 MSPS  
OUTPUT FREQUENCY AT 100 MSPS  
84  
78  
72  
66  
60  
54  
48  
42  
84.00  
78.00  
72.00  
66.00  
60.00  
54.00  
48.00  
42.00  
DV  
= 5 V  
DD  
DV  
= 5 V  
DD  
F
= 2.5 MHz  
DIFF @ –6 dBFS  
out  
F
= 10 MHz  
out  
DIFF @ 0 dBFS  
F
out  
= 40 MHz  
F
= 28.6 MHz  
out  
IOUT1 @ 0 dBFS  
IOUT1 @ –6 dBFS  
0
5
10 15 20 25 30 35 40 45 50  
2
4
6
8
10 12 14 16 18 20  
F
out  
– Output Frequency – MHz  
IOUT  
– Full-Scale Output Current – mA  
FS  
Figure 17  
Figure 18  
SPURIOUS FREE DYNAMIC RANGE  
vs  
TEMPERATURE AT 70 MSPS  
84  
78  
72  
66  
60  
54  
48  
DV  
= 5 V  
DD  
F
= 2 MHz  
out  
F
= 10 MHz  
out  
F
= 25 MHz  
60  
out  
–40  
–20  
0
20  
40  
80  
T
A
– Temperature – °C  
Figure 19  
† AV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
FS  
A
noted.)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
0.1  
–0.0  
–0.1  
–0.2  
–0.3  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Code  
Figure 20  
DIFFERENTIAL NONLINEARITY  
0.2  
0.1  
0.0  
–0.1  
–0.2  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Code  
Figure 21  
SINGLE-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
F
F
DV  
= 5 MHz at  
out  
= 50 MSPS,  
= 5 V  
clock  
DD  
0
5
10  
15  
20  
25  
f – Frequency – MHz  
Figure 22  
† AV  
DD  
= 5 V, IOUT  
noted.)  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
FS  
A
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SINGLE-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
F
F
DV  
= 10 MHz at  
out  
= 100 MSPS,  
= 5 V  
clock  
DD  
0
10  
20  
30  
40  
50  
f – Frequency – MHz  
Figure 23  
DUAL-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
F
F
F
= 100 MSPS  
clock  
out1  
out2  
= 13.2 MHz,  
= 14.2 MHz,  
= 5 V  
DV  
DD  
0
10  
20  
30  
40  
50  
f – Frequency – MHz  
Figure 24  
FOUR-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
F
F
F
F
F
= 50 MSPS  
clock  
= 6.25 MHz,  
= 6.75 MHz,  
= 7.25 MHz,  
= 7.75 MHz,  
= 5 V  
out1  
out2  
out3  
out4  
DV  
DD  
0
5
10  
15  
20  
25  
f – Frequency – MHz  
Figure 25  
† AV  
DD  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise noted.)  
FS  
A
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FULL-SCALE OUTPUT CURRENT  
DIGITAL SUPPLY CURRENT  
vs  
RATIO (Fclock/Fout) AT DV  
= 5 V  
DD  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
DV  
= 5 V  
100 MSPS  
DD  
70 MSPS  
50 MSPS  
25 MSPS  
5 MSPS  
0
0
2
4
6
8
10 12 14 16 18 20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
IOUT  
FS  
– Full-Scale Output Current – mA  
Ratio – (Fclock/Fout)  
Figure 26  
Figure 27  
DIGITAL SUPPLY CURRENT  
vs  
RATIO (Fclock/Fout) AT DV  
= 3.3 V  
DD  
10  
8
70 MSPS  
50 MSPS  
6
4
25 MSPS  
5 MSPS  
0.4  
2
0
0
0.1  
0.2  
0.3  
0.5  
Ratio – (Fclock/Fout)  
Figure 28  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
The THS5651A architecture is based on current steering, combining high update rates with low power  
consumption. The CMOS device consists of a segmented array of PMOS transistor current sources, which are  
capable of delivering a full-scale current up to 20 mA. High-speed differential current switches direct the current  
of each current source to either one of the output nodes, IOUT1 or IOUT2. The complementary output currents  
thus enable differential operation, canceling out common mode noise sources (on-chip and PCB noise), dc  
offsets, even order distortion components, and increase signal output power by a factor of two. Major  
advantages of the segmented architecture are minimum glitch energy, excellent DNL, and very good dynamic  
performance. The DAC’s high output impedance of >300 kand fast switching result in excellent dynamic  
linearity (spurious free dynamic range SFDR).  
The full-scale output current is set using an external resistor R  
voltage reference source (1.2 V) and control amplifier. The current I  
internally to provide a full-scale output current equal to 32 times I  
from 20 mA down to 2 mA.  
in combination with an on-chip bandgap  
BIAS  
through resistor R  
. The full-scale current can be adjusted  
is mirrored  
BIAS  
BIAS  
BIAS  
data interface and timing  
TheTHS5651Acomprisesseparateanaloganddigitalsupplies, i.e. AV and DV . The digital supplyvoltage  
DD  
DD  
can be set from 5.5 V down to 3 V, thus enabling flexible interfacing with external logic. The THS5651A provides  
two operating modes, as shown in Table 1. Mode 0 (mode pin connected to DGND) supports a straight binary  
input data word format, whereas mode 1 (mode pin connected to DV ) sets a twos complement input  
DD  
configuration.  
Figure 29 shows the timing diagram. Internal edge-triggered flip-flops latch the input word on the rising edge  
of the input clock. The THS5651A provides for minimum setup and hold times (> 1 ns), allowing for noncritical  
external interface timing. Conversion latency is one clock cycle for both modes. The clock duty cycle can be  
chosenarbitrarilyunderthetimingconstraintslistedinthedigitalspecificationstable. However, a50%dutycycle  
will give optimum dynamic performance. Figure 30 shows a schematic of the equivalent digital inputs of the  
THS5651A, valid for pins D9–D0, SLEEP, and CLK. The digital inputs are CMOS-compatible with logic  
thresholds of DV /2 ±20%. Since the THS5651A is capable of being updated up to 100 MSPS, the quality of  
DD  
the clock and data input signals are important in achieving the optimum performance. The drivers of the digital  
data interface circuitry should be specified to meet the minimum setup and hold times of the THS5651A, as well  
as its required min/max input logic level thresholds. Typically, the selection of the slowest logic family that  
satisfies the above conditions will result in the lowest data feed-through and noise. Additionally, operating the  
THS5651A with reduced logic swings and a corresponding digital supply (DV ) will reduce data feed-through.  
DD  
Note that the update rate is limited to 70 MSPS for a digital supply voltage DV  
of 3 V to 3.6 V.  
DD  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
D[9:0]  
Valid Data  
t
s(DAC)  
t
pd  
0.1%  
50%  
DAC  
90%  
10%  
Output  
0.1%  
r(IOUT)  
(IOUT1 or  
IOUT2)  
t
t
h(D)  
t
su(D)  
t
d(D)  
1/f  
CLK  
CLK  
50%  
50%  
50%  
50%  
50%  
50%  
t
w(LPH)  
Figure 29. Timing Diagram  
Table 1. Input Interface Modes  
MODE 0  
MODE 1  
MODE PIN CONNECTED TO  
DV  
FUNCTION/MODE  
MODE PIN CONNECTED TO  
DGND  
DD  
Input code format  
Binary  
Twos complement  
DV  
DD  
External  
Digital in  
Internal  
Digital in  
Figure 30. Digital Equivalent Input  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
DAC transfer function  
The THS5651A delivers complementary output currents IOUT1 and IOUT2. Output current IOUT1 equals the  
approximate full-scale output current when all input bits are set high in mode 0 (straight binary input), i.e. the  
binaryinputwordhasthedecimalrepresentation1023. Formode1, theMSBisinverted(twoscomplementinput  
format). Full-scale output current will flow through terminal IOUT2 when all input bits are set low (mode 0,  
straight binary input). The relation between IOUT1 and IOUT2 can thus be expressed as:  
IOUT1  
IOUT  
IOUT2  
FS  
where IOUT is the full-scale output current. The output currents can be expressed as:  
FS  
CODE  
1024  
IOUT1  
IOUT  
FS  
(1023 CODE)  
1024  
IOUT2  
IOUT  
FS  
where CODE is the decimal representation of the DAC data input word. Output currents IOUT1 and IOUT2 drive  
resistor loads R or a transformer with equivalent input load resistance R . This would translate into  
LOAD  
LOAD  
single-ended voltages VOUT1 and VOUT2 at terminal IOUT1 and IOUT2, respectively, of:  
CODE  
1024  
VOUT1  
VOUT2  
IOUT1  
IOUT2  
R
R
IOUT  
R
LOAD  
LOAD  
FS  
(1023–CODE)  
1024  
IOUT  
R
LOAD  
LOAD  
FS  
The differential output voltage VOUT  
can thus be expressed as:  
DIFF  
(2CODE–1023)  
VOUT  
VOUT1–VOUT2  
IOUT  
R
DIFF  
FS  
LOAD  
1024  
The latter equation shows that applying the differential output will result in doubling of the signal power delivered  
to the load. Since the output currents of IOUT1 and IOUT2 are complementary, they become additive when  
processed differentially. Care should be taken not to exceed the compliance voltages at node IOUT1 and  
IOUT2, which would lead to increased signal distortion.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
reference operation  
The THS5651A comprises a bandgap reference and control amplifier for biasing the full-scale output current.  
Thefull-scaleoutputcurrentissetbyapplyinganexternalresistorR  
. ThebiascurrentI  
throughresistor  
BIAS  
BIAS  
R
is defined by the on-chip bandgap reference voltage and control amplifier. The full-scale output current  
BIAS  
equals 32 times this bias current. The full-scale output current IOUT can thus be expressed as:  
FS  
32  
V
EXTIO  
BIAS  
IOUT  
32  
I
BIAS  
FS  
R
where V  
is the voltage at terminal EXTIO. The bandgap reference voltage delivers an accurate voltage  
EXTIO  
of 1.2 V. This reference is active when terminal EXTLO is connected to AGND. An external decoupling capacitor  
C
of 0.1 µF should be connected externally to terminal EXTIO for compensation. The bandgap reference  
EXT  
can additionally be used for external reference operation. In that case, an external buffer with high impedance  
input should be applied in order to limit the bandgap load current to a maximum of 100 nA. The internal reference  
can be disabled and overridden by an external reference by connecting EXTLO to AV . Capacitor C  
hence be omitted. Terminal EXTIO thus serves as either input or output node.  
may  
DD  
EXT  
The full-scale output current can be adjusted from 20 mA down to 2 mA by varying resistor R  
or changing  
BIAS  
the externally applied reference voltage. The internal control amplifier has a wide input range, supporting the  
full-scale output current range of 20 dB. The bandwidth of the internal control amplifier is defined by the internal  
1 nF compensation capacitor at pin COMP1 and the external compensation capacitor C1. The relatively weak  
internal control amplifier may be overridden by an externally applied amplifier with sufficient drive for the internal  
1 nF load, as shown in Figure 31. This provides the user with more flexibility and higher bandwidths, which are  
specifically attractive for gain control and multiplying DAC applications. Pin SLEEP should be connected to  
AGND or left disconnected when an external control amplifier is used.  
EXT Reference  
Voltage  
External  
Control AMP  
THS4041  
+
AGND  
SLEEP  
1 nF  
AV  
DD  
COMP1  
AV  
DD  
AVDD  
1.2 V  
REF  
Current Source Array  
EXTLO  
EXTIO  
BIASJ  
REF AMP  
+
Internal  
Control AMP  
R
EXT  
IOUT1 or IOUT2  
Figure 31. Bypassing the Internal Reference and Control Amplifier  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
analog current outputs  
Figure 32 shows a simplified schematic of the current source array output with corresponding switches.  
Differential PMOS switches direct the current of each individual PMOS current source to either the positive  
output node IOUT1 or its complementary negative output node IOUT2. The output impedance is determined  
by the stack of the current sources and differential switches, and is typically >300 kin parallel with an output  
capacitance of 5 pF.  
OutputnodesIOUT1andIOUT2haveanegativecompliancevoltageof1V, determinedbytheCMOSprocess.  
Beyondthis value, transistor breakdown may occur, resulting in reduced reliability of the THS5651A device. The  
positive output compliance depends on the full-scale output current IOUT and positive supply voltage AV  
.
FS  
DD  
The positive output compliance equals 1.25 V for AV  
= 5 V and IOUT = 20 mA. Exceeding the positive  
DD  
FS  
compliance voltage adversely affects distortion performance and integral nonlinearity. The optimum distortion  
performance for a single-ended or differential output is achieved when the maximum full-scale signal at IOUT1  
and IOUT2 does not exceed 0.5 V (e.g. when applying a 50-doubly terminated load for 20 mA full-scale output  
current). Applications requiring the THS5651A output (i.e., OUT1 and/or OUT2) to extend its output compliance  
should size R  
accordingly.  
LOAD  
AV  
DD  
Current  
Sources  
Switches  
IOUT1  
IOUT2  
Current Source Array  
R
R
LOAD  
LOAD  
Figure 32. Equivalent Analog Current Output  
Figure 33(a) shows the typical differential output configuration with two external matched resistor loads. The  
nominalresistorloadof50willgiveadifferentialoutputswingof2V whenapplyinga20-mAfull-scaleoutput  
PP  
current. The output impedance of the THS5651A depends slightly on the output voltage at nodes IOUT1 and  
IOUT2. Consequently, for optimum dc integral nonlinearity, the configuration of Figure 33(b) should be chosen.  
In this I–V configuration, terminal IOUT1 is kept at virtual ground by the inverting operational amplifier. The  
complementary output should be connected to ground to provide a dc current path for the current sources  
switched to IOUT2. Note that the INL/DNL specifications for the THS5651A are measured with IOUT1  
maintained at virtual ground. The amplifier’s maximum output swing and the DAC’s full-scale output current  
determinethevalueofthefeedbackresistorR .CapacitorC filtersthesteepedgesoftheTHS5651Acurrent  
FB  
FB  
output, thereby reducing the operational amplifier slew-rate requirements. In this configuration, the op amp  
should operate on a dual supply voltage due to its positive and negative output swing. Node IOUT1 should be  
selected if a single-ended unipolar output is desirable.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
C
FB  
R
FB  
50 Ω  
+)  
100 Ω  
+
IOUT1  
IOUT2  
IOUT1  
IOUT2  
+)  
VOUT  
–)  
VOUT  
–)  
THS4001  
THS4011  
50 Ω  
(a)  
(b)  
Figure 33. Differential and Single-Ended Output Configuration  
The THS5651A can be easily configured to drive a doubly terminated 50-cable. Figure 34(a) shows the  
single-ended output configuration, where the output current IOUT1 flows into an equivalent load resistance of  
25 . Node IOUT2 should be connected to ground or terminated with a resistor of 25 . Differential-to-single  
conversion (e.g., for measurement purposes) can be performed using a properly selected RF transformer, as  
shown in Figure 34(b). This configuration provides maximum rejection of common-mode noise sources and  
even order distortion components, thereby doubling the power to the output. The center tap on the primary side  
of the transformer is connected to AGND, enabling a dc current flow for both IOUT1 and IOUT2. Note that the  
ac performance of the THS5651A is optimum and specified using this differential transformer coupled output,  
limiting the voltage swing at IOUT1 and IOUT2 to ±0.5 V.  
50 Ω  
1:1  
50 Ω  
VOUT  
VOUT  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
100 Ω  
50 Ω  
50 Ω  
50 Ω  
25 Ω  
(a)  
(b)  
Figure 34. Driving a Doubly Terminated 50 Cable  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
sleep mode  
The THS5651A features a power-down mode that turns off the output current and reduces the supply current  
to less than 5 mA over the analog supply range of 4.5 V to 5.5 V and temperature range. The power-down mode  
is activated by applying a logic level 1 to the SLEEP pin (e.g., by connecting pin SLEEP to AVDD). An internal  
pulldown circuit at node SLEEP ensures that the THS5651A is enabled if the input is left disconnected.  
Power-up and power-down activation times depend on the value of external capacitor at node SLEEP. For a  
nominal capacitor value of 0.1 µF power down takes less than 5 µs, and approximately 3 ms to power back up.  
The SLEEP mode should not be used when an external control amplifier is used, as shown in Figure 22.  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
offset error  
Offset error is defined as the deviation of the output current from the ideal of zero at a digital input value of 0.  
gain error  
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D or SINAD)  
S/N+D or SINAD is the ratio of the rms value of the output signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in  
decibels.  
spurious free dynamic range (SFDR)  
SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious  
signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
total harmonic distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal  
and is expressed in decibels.  
output compliance range  
The maximum and minimum allowable voltage of the output of the DAC, beyond which either saturation of the  
output stage or breakdown may occur.  
settling time  
The time required for the output to settle within a specified error band.  
glitch energy  
The time integral of the analog value of the glitch transient.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
offset drift  
The change in offset error versus temperature from the ambient temperature (T = 25°C) in ppm of full-scale  
A
range per °C.  
gain drift  
The change in gain error versus temperature from the ambient temperature (T = 25°C) in ppm of full-scale  
A
range per °C.  
reference voltage drift  
The change in reference voltage error versus temperature from the ambient temperature (T = 25°C) in ppm  
A
of full-scale range per °C.  
THS5651A evaluation board  
An evaluation module (EVM) board for the THS5651A digital-to-analog converter is available for evaluation.  
This board allows the user the flexibility to operate the THS5651A in various configurations. Possible output  
configurations include transformer coupled, resistor terminated, and inverting/noninverting amplifier outputs.  
The digital inputs are designed to interface with the TMS320 C5000 or C6000 family of DSPs or to be driven  
directly from various pattern generators with the onboard option to add a resistor network for proper load  
termination.  
See the THS56x1 Evaluation Module User’s Guide for more details (SLAU032).  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-Bit, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
Figure 36. Board Layout, Layer 1  
Figure 37. Board Layout, Layer 2  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
Figure 38. Board Layout, Layer 3  
Figure 39. Board Layout, Layer 4  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
Figure 40. Board Layout, Layer 5  
Table 2. Bill of Materials  
QTY  
3
REF. DES  
C1, C22, C31  
PART NUMBER  
1206ZC105KAT2A  
DESCRIPTION  
MFG.  
Ceramic, 1 µF, 10 V, X7R, 10%  
6.3 V, 4.7 µF, tantalum  
AVX  
4
C18, C19, C28, C35  
C15, C24, C4  
C25, C32  
ECSTOJY475  
ECSTOJY106  
Panasonic  
Panasonic  
3
6.3 V, 10 µF, tantalum  
0
Ceramic, not installed, 50 V, X7R, 10%  
Ceramic, 0.01 µF, 50 V, X7R, 10%  
Ceramic, 0.1 µF, 50 V, X7R, 10%  
6
C14, C2, C20, C26, C29, C33 12065C103KAT2A  
AVX  
AVX  
17  
C10, C11, C12, C13, C16,  
C17, C21, C23, C27, C3, C30,  
C34, C5, C6, C7, C8, C9  
12065C104KAT2A  
2
4
1
1
D1, D2  
AND/AND5GA or equivalent  
27-43-037447  
Green LED, 1206 size SM chip LED  
Fair-Rite SM beads #27-037447  
34-Pin header for IDC  
FB1, FB2, FB3, FB4  
FairRite  
Samtec  
Lumberg  
J1  
J2  
TSW-117-07-L-D or equivalent  
KRMZ2 or equivalent  
2 Terminal screw connector,  
2TERM_CON  
1
1
3
0
3
1
4
J3  
TSW-112-07-L-S or equivalent  
KRMZ3 or equivalent  
142-0701-206 or equivalent  
142-0701-206 or equivalent  
DO1608C-472  
Single row 12-pin header  
Samtec  
J4  
3 Terminal screw connector  
Lumberg  
J5, J6, J7  
J8, J9  
PCB Mount SMA jack, SMA_PCB_MT  
PCB Mount SMA jack, not installed  
DO1608C-series, DS1608C-472  
1206 Chip resistor, 1.5K, 1/4 W, 1%  
Johnson Components  
Johnson Components  
Coil Craft  
L1, L2, L3  
R1  
1206  
R10, R11, R4, R5  
CTS/CTS766-163-(R)330-G-TR 8 Element isolated resistor pack, 33 Ω  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
APPLICATION INFORMATION  
Table 2. Bill of Materials (Continued)  
QTY  
4
REF. DES  
R12, R19, R7, R9  
PART NUMBER  
DESCRIPTION  
MFG.  
1206  
1206  
1206 Chip resistor, 33 , 1/4 W, 1%  
1206 Chip resistor, 0 , 1/4 W, 1%  
4 mm SM Pot, 5K  
5
R13, R17. R2, R21, R8  
1
R14  
3214W-1-502 E or equivalent  
Bourns  
1
R15  
1206  
1206 Chip resistor, 2.94K, 1/4 W, 1%  
1206 Chip resistor, 3K, 1/4 W, 1%  
1206 Chip resistor, 49.94K, 1/4 W, 1%  
1206 Chip resistor, 10K, 1/4 W, 1%  
1206 Chip resistor, 10K, 1/4 W, 1%  
1206 Chip resistor, 100K, 1/4 W, 1%  
1206 Chip resistor, TBD, 1/4 W, 1%  
1206 Chip resistor, 750K, 1/4 W, 1%  
RF Transformer, T1-1T-KK81  
1
R16  
1206  
3
R18, R24, R29  
1206  
3
R20, R3, R6  
1206  
1
R22  
1206  
1
R23  
1206  
1
R25  
1206  
4
R26, R27, R28, R30  
1206  
1
T1  
T1-1T-KK81  
SN74LVT245BDW  
MiniCircuits  
TI  
2
U1, U2  
Octal bus transceiver, 3-state,  
SN74LVT245B  
1
1
U3  
U4  
SN74AHCT1G00DBVR/  
SN74AHC1G00DBVR  
Single gate NAND, SN74AHC1G00  
TI  
TI  
SN74AHCT1G32DBVR/  
SN74AHCC1G32DBVR  
Single 2 input positive or gate,  
SN74AHC1G32  
THS5641A  
THS5651A  
THS5661A  
THS5671A  
SN74ALVC08  
LT1004D  
THS5641AIDW  
DAC, 3–5.5 V, 8 Bit, 100 MSPS  
DAC, 3–5.5 V, 10 Bit, 125 MSPS  
DAC, 3–5.5 V, 12 Bit, 125 MSPS  
DAC, 3–5.5 V, 14 Bit, 125 MSPS  
Quad AND gate  
TI  
TI  
TI  
TI  
TI  
TI  
THS5651AIDW  
THS5661AIDW  
THS5647AIDW  
1
1
0
1
4
3
2
SN74ALVC08D  
LT1004CD-1-2/LT1004ID-1-2  
AD1580BRT  
Precision 1.2 V reference  
NOT INSTALLED  
THS3001  
Precision voltage reference, not installed  
THS3001 high-speed op amp  
2 position jumper_.1’’ spacing, W2  
3 position jumper_.1’’ spacing, W3  
THS3001CD/THS2001ID  
TSW-102-07-L-S or equivalent  
TSW-102-07-L-S or equivalent  
TSW-102-07-L-S or equivalent  
TI  
W2  
Samtec  
Samtec  
Samtec  
W3  
2X3_JUMPER  
6-Pin header dual row, 0.025×0.1,  
2X3_JUMPER  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651A  
10-BIT, 125 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS260 – FEBRUARY 2000  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

THS5651AIDWRG4

10-Bit, 125MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-SOIC -40 to 85
TI

THS5651AIPW

10-BIT, 125 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651AIPWG4

10-Bit, 125-MSPS Digital-to-Analog Converter (DAC) 28-TSSOP -40 to 85
TI

THS5651AIPWR

10-Bit, 125-MSPS Digital-to-Analog Converter (DAC) 28-TSSOP -40 to 85
TI

THS5651AIPWRG4

10-Bit, 125-MSPS Digital-to-Analog Converter (DAC) 28-TSSOP -40 to 85
TI

THS5651DW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651IDW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651IDWR

10-Bit, 100MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-SOIC -40 to 85
TI

THS5651IPW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651IPWLE

PARALLEL, WORD INPUT LOADING, 0.035us SETTLING TIME, 10-BIT DAC, PDSO28, PLASTIC, TSSOP-28
TI

THS5651IPWR

10-Bit, 100MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-TSSOP -40 to 85
TI

THS5651PW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI