THVD1451DRBR [TI]

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | DRB | 8 | -40 to 125;
THVD1451DRBR
型号: THVD1451DRBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | DRB | 8 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总49页 (文件大小:1944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
具有 ±18kV IEC ESD 保护功能的 THVD14xx 3.3V 5V RS-485 收发器  
1 特性  
其中的每个型号均是通过 3V 5.5V 的单电源供电运  
行。该系列中的器件具有扩展共模电压范围,因此这些  
器件适用于长电缆上的 应用 长线缆。  
1
满足或超过 TIA/EIA-485A 标准的要求  
3V 5.5V 电源电压  
差分输出超过 2.1V,实现 PROFIBUS 5V 电源  
兼容  
THVD14xx 系列器件可提供小型 VSON VSSOP 封  
装,适用于空间受限的 应用。这些器件在自然通风环  
境下的额定温度范围为 –40°C 125°C。  
总线 I/O ESD 保护  
±30kV HBM  
器件信息(1)  
±18kV IEC 61000-4-2 接触放电  
±25kV IEC 61000-4-2 气隙放电  
±4kV IEC 61000-4-4 快速瞬变脉冲  
器件型号  
THVD1410  
封装  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
SOIC (8)  
扩展级运行共模  
范围:±15V  
VSON (8)  
VSSOP (8)  
SOIC (8)  
THVD1450  
EMI 500kbps 50Mbps 数据速率  
用于噪声抑制的大接收器滞后  
低功耗  
VSON (8)  
SOIC (8)  
THVD1451  
THVD1452  
待机电源电流:< 1µA  
VSSOP (10)  
SOIC (14)  
运行期间的电流:< 3mA  
扩展环境温度  
范围:–40°C 125°C  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
适用于热插拔功能的无干扰加电/断电  
开路、短路和空闲总线失效防护  
THVD1410 THVD1450 简化原理图  
1/8 单位负载(多达 256 个总线节点)  
1
R
小尺寸 VSON VSSOP 封装(可节省布板空间)  
SOIC 封装(可实现快插兼容性)  
2
7
6
RE  
B
A
3
4
DE  
D
2 应用  
电机驱动器  
THVD1451 简化原理图  
工厂自动化和控制  
电网基础设施  
楼宇自动化  
HVAC 系统  
视频监控  
8
A
B
2
R
7
6
5
Z
Y
3
D
过程分析  
无线基础设施  
THVD1452 简化原理图  
(9)12  
A
B
2(1)  
3(2)  
3 说明  
R
(8)11  
RE  
THVD14xx 是一系列抗噪 RS-485/RS-422 收发器,专  
用于在恶劣的工业环境中运行。这些器件的总线引脚可  
耐受高级别的 IEC 电气快速瞬变 (EFT) IEC 静电放  
(ESD) 事件,从而无需使用其他系统级保护组件。  
4(3)  
5(4)  
DE  
D
(7)10  
Z
Y
( )9  
6
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEY3  
 
 
 
 
 
 
 
 
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 18  
9.2 Functional Block Diagrams ..................................... 18  
9.3 Feature Description................................................. 19  
9.4 Device Functional Modes........................................ 19  
10 Application and Implementation........................ 22  
10.1 Application Information...................................... 22  
10.2 Typical Application ............................................... 22  
11 Power Supply Recommendations ..................... 28  
12 Layout................................................................... 29  
12.1 Layout Guidelines ................................................. 29  
12.2 Layout Example .................................................... 29  
13 器件和文档支持 ..................................................... 30  
13.1 器件支持................................................................ 30  
13.2 第三方产品免责声明.............................................. 30  
13.3 相关链接................................................................ 30  
13.4 接收文档更新通知 ................................................. 30  
13.5 社区资源................................................................ 30  
13.6 ....................................................................... 30  
13.7 静电放电警告......................................................... 30  
13.8 Glossary................................................................ 30  
14 机械、封装和可订购信息....................................... 30  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 ESD Ratings [IEC] .................................................... 8  
7.4 Recommended Operating Conditions....................... 9  
7.5 Thermal Information.................................................. 9  
7.6 Power Dissipation ..................................................... 9  
7.7 Electrical Characteristics......................................... 10  
7.8 Switching Characteristics........................................ 11  
7.9 Typical Characteristics: All Devices........................ 12  
7.10 Typical Characteristics: THD1450, THVD1451 and  
THVD1452 ............................................................... 14  
7.11 Typical Characteristics: THVD1410 ...................... 15  
Parameter Measurement Information ................ 16  
Detailed Description ............................................ 18  
8
9
4 修订历史记录  
Changes from Revision D (March 2019) to Revision E  
Page  
THVD1451 产品预览 更改为生产 ........................................................................................................................... 1  
Changes from Revision C (February 2019) to Revision D  
Page  
THVD1410 产品预览 更改为生产............................................................................................................................ 1  
Changes from Revision B (December 2018) to Revision C  
Page  
THVD1452 产品预览 更改为生产 ........................................................................................................................... 1  
Changes from Revision A (May 2018) to Revision B  
Page  
添加特性差分输出超过 2.1 V...” ......................................................................................................................................... 1  
更改特性:将“±18kV IEC 61000-4-2 气隙放电更改为:“±25kV IEC 61000-4-2 气隙放电”................................................... 1  
添加 THVD1451 SOIC (8) 封装 ......................................................................................................................................... 1  
Added Thermal Pad to the THVD1450 DRB package ........................................................................................................... 5  
Added Thermal Pad to the THVD1451 DRB package ........................................................................................................... 6  
Changed all pins HBM ESD rating from 4 kV to 8 kV ............................................................................................................ 8  
Changed IEC ESD air-gap discharge rating from 18 kV to 25 kV.......................................................................................... 8  
Changed THVD1410 power dissipation numbers .................................................................................................................. 9  
Changed THVD1410 driver tr, tf TYP from 400 ns to 460 ns and MAX from 600 ns to 680 ns ........................................... 11  
Changed THVD1410 receiver tr, tf TYP from 13 ns to 10 ns................................................................................................ 11  
Changed THVD1410 receiver tPHL, tPLH TYP from 60 ns to 35 ns....................................................................................... 11  
Added Typical Characteristics, THD1450D.......................................................................................................................... 14  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Added condition to 8 to 3 ............................................................................................................................................ 14  
Added Typical Characteristics, THD1410............................................................................................................................. 15  
Changed A to A/Y and B to B/Z in 20 to 24................................................................................................................ 16  
Added 3rd paragraph to the Overview section..................................................................................................................... 18  
Changes from Original (November 2017) to Revision A  
Page  
将文档状态从预告信息 更改为生产数据.................................................................................................................................. 1  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
THVD1410  
THVD1450  
THVD1451  
THVD1452  
DUPLEX  
ENABLES  
DE, RE  
DE, RE  
None  
SIGNALING RATE  
NODES  
Half  
Half  
Full  
Full  
up to 500 kbps  
256  
up to 50 Mbps  
DE, RE  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
6 Pin Configuration and Functions  
THVD1410, THVD1450 Devices  
8-Pin D Package (SOIC)  
Top View  
THVD1410, THVD1450 Devices  
8-Pin DGK Package (VSSOP)  
Top View  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
R
RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
A
A
GND  
GND  
Not to scale  
Not to scale  
THVD1450 Device  
8-Pin DRB Package (VSON)  
Top View  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
Thermal  
Pad  
A
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A
D
6
7
4
3
5
1
8
2
DGK  
DRB  
6
7
4
3
5
1
8
2
6
7
4
3
5
1
8
2
Bus input/output  
Bus input/output  
Digital input  
Digital input  
Ground  
Bus I/O port, A (complementary to B)  
Bus I/O port, B (complementary to A)  
Driver data input  
B
D
DE  
GND  
R
Driver enable, active high (2-MΩ internal pull-down)  
Device ground  
Digital output  
Power  
Receive data output  
VCC  
RE  
3.3-V to 5-V supply  
Digital input  
Receiver enable, active low (2-MΩ internal pull-up)  
Thermal  
Pad  
No electrical connection. Should be connected to GND for optimal  
thermal performance.  
I/O  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
THVD1451 Device  
8-Pin D Package (SOIC)  
Top View  
THVD1451 Device  
8-Pin DRB Package (VSON)  
Top View  
VCC  
R
1
2
3
4
8
7
6
5
A
B
Z
Y
VCC  
R
1
2
3
4
8
7
6
5
A
B
Z
Y
D
Thermal  
Pad  
GND  
D
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
Description  
NAME  
D
DRB  
A
8
7
3
4
8
7
3
4
Bus input Bus input, A (complementary to B)  
Bus input Bus input, B (complementary to A)  
Digital input Driver data input  
B
D
GND  
Ground  
Device ground  
Digital  
output  
R
2
2
Receive data output  
VCC  
Y
1
5
6
1
5
6
Power  
3.3-V to 5-V supply  
Bus output Digital bus output, Y (Complementary to Z)  
Bus output Digital bus output, Z (Complementary to Y)  
Z
Thermal  
Pad  
No electrical connection. Should be connected to GND for optimal thermal  
performance.  
I/O  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
THVD1452 Device  
14-Pin D Package (SOIC)  
Top View  
THVD1452 Device  
10-Pin DGS Package (VSSOP)  
Top View  
NC  
R
1
2
3
4
5
6
7
14  
VCC  
VCC  
A
R
RE  
1
2
3
4
5
10  
9
VCC  
A
13  
12  
11  
10  
9
RE  
DE  
8
B
DE  
B
D
7
Z
D
Z
GND  
6
Y
GND  
GND  
Y
8
NC  
Not to scale  
Not to scale  
NC – No internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A
D
DGS  
9
12  
Bus input  
Bus input  
Digital input  
Digital input  
Ground  
Bus input, A (complementary to B)  
Bus input, B (complementary to A)  
Driver data input  
B
11  
8
D
5
4
DE  
GND  
NC  
R
4
3
Driver enable, active high (2-MΩ internal pull-down)  
Device ground  
6, 7(1)  
5
1, 8  
1
Internally not connected  
2
Digital output  
Power  
Receive data output  
VCC  
Y
13, 14(1)  
10  
6
3.3-V to 5-V supply  
9
10  
3
Bus output  
Bus output  
Digital input  
Digital bus output, Y (Complementary to Z)  
Digital bus output, Z (Complementary to Y)  
Receiver enable, active low (2-MΩ internal pull-up)  
Z
7
RE  
2
(1) These pins are internally connected  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
Bus voltage  
VCC  
-0.5  
7
V
Range at any bus pin (A, B, Y, or Z) as differential  
or common-mode with respect to GND  
-18  
-0.3  
-24  
-65  
18  
5.7  
24  
V
V
Input voltage  
Range at any logic pin (D, DE, or RE)  
Receiver output  
current  
IO  
mA  
Storage temperature range  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±30  
UNIT  
kV  
Bus pins and  
GND  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
All other pins  
±8  
kV  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
JEDEC JESD22-C101(2)  
All pins  
±1.5  
kV  
Machine model (MM), per JEDEC  
JESD22-A115-A  
All pins  
±200  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings [IEC]  
VALUE  
UNIT  
Contact discharge, per IEC 61000-  
4-2  
Bus pins and  
GND  
±18  
±25  
±4  
kV  
V(ESD)  
Electrostatic discharge  
Electrical fast transient  
Air-gap discharge, per IEC 61000-4- Bus pins and  
2
kV  
kV  
GND  
Bus pins and  
GND  
V(EFT)  
Per IEC 61000-4-4  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
5.5  
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage at any bus terminal(1)  
-15  
15  
V
High-level input voltage (driver, driver  
enable, and receiver enable inputs)  
VIH  
VIL  
2
0
VCC  
0.8  
V
V
Low-level input voltage (driver, driver  
enable, and receiver enable inputs)  
VID  
IO  
Differential input voltage  
Output current, driver  
-15  
-60  
-8  
15  
60  
8
V
mA  
mA  
Ω
IOR  
RL  
Output current, receiver  
Differential load resistance  
Signaling rate: THVD1410  
54  
1/tUI  
500  
50  
kbps  
Signaling rate: THVD1450, THVD1451,  
THVD1452  
1/tUI  
Mbps  
TA  
TJ  
Operating ambient temperature  
Junction temperature  
-40  
-40  
125  
150  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
7.5 Thermal Information  
THVD1410  
THVD1450  
THVD1451  
THVD1410  
THVD1450  
THVD1450  
THVD1451  
THVD1452  
THVD1452  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
8 PINS  
D (SOIC)  
14 PINS  
DGK (VSSOP) DGS (VSSOP)  
DRB (VSON)  
8 PINS  
8 PINS  
10 PINS  
Junction-to-ambient thermal  
resistance  
RθJA  
114.3  
56.7  
57.7  
12.8  
57  
86.4  
43.7  
42.5  
10.2  
42.2  
N/A  
155.2  
155.6  
48.6  
49.1  
21.1  
0.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(to Junction-to-case (top) thermal  
47.2  
76.1  
3.9  
49.3  
77.1  
4.5  
resistance  
p)  
Junction-to-board thermal  
resistance  
RθJB  
Junction-to-top characterization  
parameter  
ΨJT  
Junction-to-board  
ΨJB  
74.8  
N/A  
75.7  
N/A  
21.1  
2.7  
characterization parameter  
RθJC(b Junction-to-case (bottom)  
N/A  
thermal resistance  
ot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Power Dissipation  
PARAMETE  
Description  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
Driver and receiver enabled, VCC = 5.5 Unterminated: RL = 300 Ω, CL = 50 pF  
360  
370  
410  
360  
320  
330  
mW  
mW  
mW  
mW  
mW  
mW  
V, TA = 1250C, 50% duty cycle square  
RS-422 load: RL = 100 Ω, CL = 50 pF  
wave at 500kbps signaling rate,  
RS-485 load: RL = 54 Ω, CL = 50 pF  
THVD1410  
PD  
Driver and receiver enabled, VCC = 5.5 Unterminated: RL = 300 Ω, CL = 50 pF  
V, TA = 1250C, 50% duty cycle square  
RS-422 load: RL = 100 Ω, CL = 50 pF  
wave at 50Mbps signaling rate,  
RS-485 load: RL = 54 Ω, CL = 50 pF  
THVD145x devices  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
7.7 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
5 V.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
RL = 60 Ω, -15 V Vtest 15 V (See 20)(1)  
1.5  
2.1  
3.5  
V
V
RL = 60 Ω, -15 V Vtest 15 V, 4.5 V VCC  
5.5 V, (See 20)  
Driver differential output voltage  
magnitude  
|VOD  
|
RL = 100 Ω (See 21)  
RL = 54 Ω (See 21)  
2
4
V
V
1.5  
3.5  
Change in differential output  
voltage  
Δ|VOD  
|
-200  
1
200  
3
mV  
V
VOC  
Common-mode output voltage  
RL = 54 Ω (See 21)  
VCC/2  
Change in steady-state common-  
mode output voltage  
ΔVOC(SS)  
-200  
-250  
200  
250  
mV  
mA  
IOS  
Short-circuit output current  
DE = VCC, -7 V VO 12 V  
Receiver  
VI = 12V  
DE = 0 V, VCC = 0 V or 5.5 V  
VI = -7V  
50  
-65  
125  
125  
µA  
µA  
µA  
µA  
-100  
II  
Bus input current  
VI = 15V  
DE = 0 V, VCC = 0 V or 5.5 V  
VI = -15V  
60  
-200  
-130  
Positive-going input threshold  
voltage  
VTH+  
See(2)  
-100  
-20  
mV  
Negative-going input threshold  
voltage  
Over common-mode range of ± 15 V  
VTH-  
VHYS  
VOH  
-200  
-130 See(2)  
30  
mV  
mV  
V
Input hysteresis  
VCC  
VCC  
Output high voltage  
IOH = -8 mA  
0.4  
0.2  
VOL  
Output low voltage  
IOL = 8 mA  
0.2  
0.4  
1
V
IOZR  
Output high-impedance current  
VO = 0 V or VCC, RE = VCC  
-1  
µA  
Logic  
IIN  
Input current (D, DE, RE)  
3 V VCC 5.5 V, 0 V VIN VCC  
-6.2  
6.2  
µA  
Device  
RE = 0 V ,  
Driver and receiver enabled  
DE = VCC  
No load  
,
2.4  
2
3
2.5  
mA  
mA  
µA  
RE = VCC  
,
Driver enabled, receiver disabled DE = VCC  
No load  
,
ICC  
Supply current (quiescent)  
RE = 0 V,  
Driver disabled, receiver enabled DE = 0 V,  
No load  
700  
960  
RE = VCC  
DE = 0 V, D  
= open, No  
load  
,
Driver and receiver disabled  
0.1  
1
µA  
TSD  
Thermal shutdown temperature  
170  
(1) |VOD| 1.4 V when TA > 85 , Vtest < -7 V and VCC < 3.135 V.  
(2) Under any specific conditions, VTH+ is assured to be at least VHYS higher than VTH–  
.
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
7.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
=
5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver: THVD1410  
tr, tf  
Differential output rise/fall time  
Propagation delay  
250  
460  
250  
680  
500  
10  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF, See 22  
Pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Disable time  
80  
100  
4
200  
600  
11  
RE = 0 V, See 23 and 24  
RE = VCC, See 23 and 24  
tPZH, tPZL  
Enable time  
Receiver: THVD1410  
tr, tf  
Output rise/fall time  
10  
35  
20  
110  
7
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
tPHZ, tPLZ  
tPZH(1), tPZL(1),  
tPZH(2)  
tPZL(2)  
Driver: THVD1450, THVD1451, THVD1452  
Propagation delay  
Pulse skew, |tPHL – tPLH  
Disable time  
CL = 15 pF, See 25  
|
30  
60  
60  
DE = VCC, See 26  
DE = 0 V, See 27  
140  
,
,
Enable time  
6
14  
µs  
tr, tf  
Differential output rise/fall time  
Propagation delay  
1
3
3
6
20  
3.5  
25  
50  
10  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF, See 22  
10  
Pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Disable time  
15  
20  
RE = 0 V, See 23 and 24  
RE = VCC, See 23 and 24  
tPZH, tPZL  
Enable time  
2.5  
Receiver: THVD1450, THVD1451, THVD1452  
tr, tf  
Output rise/fall time  
Propagation delay  
Pulse skew, |tPHL – tPLH  
Disable time  
2
6
40  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
tPHZ, tPLZ  
tPZH(1), tPZL(1),  
tPZH(2)  
tPZL(2)  
CL = 15 pF, See 25  
25  
|
3.5  
28  
14  
50  
DE = VCC, See 26  
DE = 0V, See 27  
110  
,
,
Enable time  
4
14  
µs  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
7.9 Typical Characteristics: All Devices  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VOL  
VOH  
0
10 20 30 40 50 60 70 80 90 100 110  
0
10 20 30 40 50 60 70 80 90 100 110  
IO Driver Output Current (mA)  
IO Driver Output Current (mA)  
D001  
D002  
VCC = 5 V  
DE = VCC  
D = 0 V  
VCC = 5 V  
DE = VCC  
D = 0 V  
1. Driver Output Voltage vs Driver Output Current  
2. Driver Differential Output voltage vs Driver Output  
Current  
6
5
4
3
2
1
0
6
3.2  
VOL  
VOH  
2.8  
2.4  
2
5
4
3
2
1.6  
1.2  
0.8  
0.4  
0
VTH (-7 V)  
VTH (0 V)  
VTH (12 V)  
1
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
IO Driver Output Current (mA)  
-170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50  
VID Differential Input Voltage (mV)  
D007  
D101  
VCC = 5 V  
TA = 25°C  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
3. Receiver Output vs Input  
4. Driver Output Voltage vs Driver Output Current  
3.4  
3.2  
3
3.5  
3
VTH (12V)  
VTH (0V)  
VTH (-7V)  
2.8  
2.6  
2.4  
2.2  
2
2.5  
2
1.5  
1
1.8  
1.6  
1.4  
1.2  
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
IO Driver Output Current (mA)  
-180  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
VID Differential Input Voltage (mV)  
D102  
D106  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
VCC = 3.3 V  
TA = 25°C  
5. Driver Differential Output Voltage vs Driver Output  
6. Receiver Output vs Input  
Current  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Typical Characteristics: All Devices (接下页)  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VCC Supply Voltage (V)  
D003  
TA = 25°C  
DE = VCC  
D = VCC  
RL = 54 Ω  
7. Driver Output Current vs Supply Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
7.10 Typical Characteristics: THD1450, THVD1451 and THVD1452  
7
6
5
4
3
2
1
0
16  
14  
12  
10  
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D004  
D005  
VCC = 5 V  
VCC = 5 V  
8. Driver Rise or Fall Time vs Temperature  
9. Driver Propagation Delay vs Temperature  
4
3.8  
3.6  
3.4  
3.2  
3
120  
100  
80  
60  
40  
20  
2.8  
-40  
0
0
-20  
0
20  
40  
60  
80  
100 120 140  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Temperature (0C)  
SIgnaling Rate (Mbps)  
D103  
D006  
VCC = 3.3 V  
RL = 54 Ω  
VCC = 5 V  
TA = 25°C  
11. Driver Rise or Fall Time vs Temperature  
10. Supply Current vs Signal Rate  
17  
16.5  
16  
85  
82.5  
80  
77.5  
75  
15.5  
15  
72.5  
70  
14.5  
14  
67.5  
65  
13.5  
13  
62.5  
60  
12.5  
-40  
57.5  
-20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Temperature (0C)  
SIgnaling Rate (Mbps)  
D104  
D105  
VCC = 3.3 V  
RL = 54 Ω  
VCC = 3.3 V  
TA = 25°C  
12. Driver Propagation Delay vs Temperature  
13. Supply Current vs Signal Rate  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
7.11 Typical Characteristics: THVD1410  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
276  
273  
270  
267  
264  
261  
258  
255  
252  
249  
246  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (0C)  
Temperature (0C)  
D107  
D108  
VCC = 5 V  
VCC = 5 V  
14. Driver Rise or Fall Time vs Temperature  
15. Driver Propagation Delay vs Temperature  
105  
550  
525  
500  
475  
450  
425  
400  
375  
350  
325  
300  
100  
95  
90  
85  
80  
75  
70  
50  
100 150 200 250 300 350 400 450 500  
Signaling Rate (kbps)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (0C)  
D109  
D110  
RL = 54 Ω  
VCC = 5 V  
TA = 25°C  
VCC = 3.3 V  
16. Supply Current vs Signal Rate  
17. Driver Rise or Fall Time vs Temperature  
345  
340  
335  
330  
325  
320  
315  
310  
305  
300  
295  
290  
58  
56  
54  
52  
50  
48  
46  
44  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
50  
100 150 200 250 300 350 400 450 500  
Signaling Rate (kbps)  
Temperature (0C)  
D111  
D112  
VCC = 3.3 V  
RL = 54 Ω  
VCC = 3.3 V  
TA = 25°C  
18. Driver Propagation Delay vs Temperature  
19. Supply Current vs Signal Rate  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
Vcc  
375 Ω  
DE  
A/Y  
D
Vtest  
R
VOD  
0V or Vcc  
L
B/Z  
375 Ω  
20. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A/Y  
V
A
RL/2  
A/Y  
B/Z  
B/Z  
D
V
B
V
0V or V  
cc  
OD  
RL/2  
VOC(PP)  
ûVOC(SS)  
CL  
VOC  
V
OC  
21. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
Vcc  
Vcc  
50  
%
V
I
DE  
0 V  
A/Y  
B/Z  
tPLH  
tPHL  
RL=  
D
CL= 50 pF  
~
2 V  
~
V
54 Ω  
OD  
Input  
90  
%
%
50 Ω  
V
I
50  
10  
Generator  
V
OD  
%
~
œ 2 V  
~
tr  
tf  
22. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A/Y  
V
cc  
S 1  
V
D
O
V
50 %  
I
0 V  
B/Z  
DE  
tPZH  
RL  
=
CL  
50  
=
110 Ω  
V
pF  
OH  
Input  
Generator  
90  
%
50 Ω  
VI  
50  
%
V
O
~
~ 0V  
tPHZ  
23. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Parameter Measurement Information (接下页)  
Vcc  
Vcc  
0 V  
RL= 110 Ω  
A/Y  
B/Z  
50 %  
VI  
S1  
VO  
D
tPZL  
tPLZ  
Vcc  
VO  
DE  
CL=  
50 pF  
Input  
50%  
50Ω  
VI  
10%  
Generator  
VOL  
24. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
3 V  
50%  
V
I
A
B
0 V  
R
VO  
t
tPHL  
Input  
PLH  
50  
V
1.5V  
0 V  
VOH  
Generator  
I
90%  
50%  
10%  
CL=15 pF  
RE  
V
OD  
V
tr  
OL  
t
f
25. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
cc  
Vcc  
DE  
Vcc  
V
50%  
I
0V  
V
A
B
tPZH(1)  
1 kΩ  
tPHZ  
D
V
O
R
D at Vcc  
S1 to GND  
0V or Vcc  
S1  
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
Generator  
D at 0V  
S1 to Vcc  
V
CC  
50 Ω  
V
I
V
50%  
O
10%  
V
OL  
26. Measurement of Receiver Enable/Disable Times With Driver Enabled  
Vcc  
0V  
Vcc  
VI  
50%  
A
B
1 kΩ  
tPZH(2)  
V or 1.5V  
VO  
R
S1  
VOH  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0V  
50%  
VO  
CL=15 pF  
RE  
0V  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
VCC  
50 Ω  
VI  
VO  
50%  
VOL  
27. Measurement of Receiver Enable Times With Driver Disabled  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
THVD1410 and THVD1450 are low-power, half duplex RS-485 transceivers available in two speed grades  
suitable for data transmission up to 500 kbps and 50 Mbps respectively.  
THVD1451 is fully enabled with no external enabling pins. THVD1452 has active-high driver enable and active-  
low receiver enable. A standby current of less than 1 µA can be achieved by disabling both driver and receiver.  
THVD14xx family of devices have a higher typical differential output voltage (VOD) than traditional transceivers for  
better noise immunity. A minimum differential output voltage of 2.1 V is specified with VCC voltage of 5 V ±10% to  
meet the requirements of PROFIBUS applications.  
9.2 Functional Block Diagrams  
VCC  
R
RE  
A
B
DE  
D
GND  
28. THVD1410 and THVD1450  
VCC  
A
R
D
R
B
VCC  
Z
Y
D
GND  
29. THVD1451  
VCC  
A
R
R
B
RE  
DE  
D
Z
Y
D
GND  
30. THVD1452  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
9.3 Feature Description  
Internal ESD protection circuits protect the transceiver against electrostatic discharges (ESD) according to IEC  
61000-4-2 of up to ±18 kV and against electrical fast transients (EFT) according to IEC 61000-4-4 of up to ±4 kV.  
With careful system design, one could achieve ±4 kV EFT Criterion A (no data loss when transient noise is  
present).  
The THVD14xx device family provides internal biasing of the receiver input thresholds in combination with large  
input-threshold hysteresis. The receiver output remains logic high under a bus-idle or bus-short conditions  
without the need for external failsafe biasing resistors. Device operation is specified over a wide ambient  
temperature range from –40°C to 125°C.  
9.4 Device Functional Modes  
9.4.1 Device Functional Modes for THVD1410 and THVD1450  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as  
VOD = VA – VB is positive. When D is low, the output states reverse: B turns high, A becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
1. Driver Function Table for THVD1410 and THVD1450  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+  
and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
2. Receiver Function Table for THVD1410 and THVD1450  
DIFFERENTIAL INPUT  
VID = VA – VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
版权 © 2018–2019, Texas Instruments Incorporated  
19  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
9.4.2 Device Functional Modes for THVD1451  
For this device, the driver and receiver are fully enabled, thus the differential outputs Y and Z follow the logic  
states at data input D at all times. A logic high at D causes Y to turn high and Z to turn low. In this case, the  
differential output voltage defined as VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns  
high, Y becomes low, and VOD is negative. The D pin has an internal pull-up resistor to VCC, thus, when left  
open while the driver is enabled, output Y turns high and Z turns low.  
3. Driver Function Table for THVD1451  
INPUT  
OUTPUTS  
FUNCTIONS  
D
H
Y
H
L
Z
L
Actively drive bus high  
Actively drive bus low  
L
H
L
OPEN  
H
Actively drive bus High by default  
When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the  
receiver output, R, turns high. When VID is less than the negative input threshold, VTH–, the receiver output, R,  
turns low. If VID is between VTH+ and VTH– the output is indeterminate. Internal biasing of the receiver inputs  
causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus  
lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus).  
4. Receiver Function Table for THVD1451  
DIFFERENTIAL INPUT  
VID = VA – VB  
OUTPUT  
FUNCTION  
R
H
?
VTH+ < VID  
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
VTH- < VID < VTH+  
VID < VTH-  
L
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
H
H
H
20  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
9.4.3 Device Functional Modes for THVD1452  
When the driver enable pin, DE, is logic high, the differential outputs Y and Z follow the logic states at data input  
D. A logic high at D causes Y to turn high and Z to turn low. In this case the differential output voltage defined as  
VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns high, Y becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
Y turns high and Z turns low.  
5. Driver Function Table for THVD1452  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
Y
H
L
Z
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+  
and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
6. Receiver Function Table for THVD1452  
DIFFERENTIAL INPUT  
VID = VA – VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
版权 © 2018–2019, Texas Instruments Incorporated  
21  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The THVD14xx family consists of half-duplex and full-duplex RS-485 transceivers commonly used for  
asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the  
configuration of different operating modes. Full-duplex implementation requires two signal pairs (four wires), and  
allows each node to transmit data on one pair while simultaneously receiving data on the other pair.  
10.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, generally allows for higher data rates  
over longer cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
R
T
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
31. Typical RS-485 Network With Half-Duplex Transceivers  
Y
Z
A
B
R
D
R
R
R
R
R
R
T
T
T
T
DE  
RE  
Master  
R
Slave  
D
RE  
D
DE  
D
B
A
Z
Y
A
B
Z
Y
R
Slave  
D
R RE DE D  
32. Typical RS-485 Network With Full-Duplex Transceivers  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Typical Application (接下页)  
10.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
10.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
short the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
33. Cable Length vs Data Rate Characteristic  
Even higher data rates are achievable (that is, 50 Mbps for the THVD1450, THVD1451 and THVD1452) in cases  
where the interconnect is short enough (or has suitably low attenuation at signal frequencies) to not degrade the  
data.  
10.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections of varying phase as the length of the stub increases. As a general guideline, the electrical length, or  
round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum  
physical stub length as shown in 公式 1.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
(1)  
10.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to drive 32 unit loads (UL), where 1 unit load  
represents a load impedance of approximately 12 k. Because the THVD14xx family consists of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Application (接下页)  
10.2.1.4 Receiver Failsafe  
The differential receivers of the THVD14xx family are failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the  
receiver is not indeterminate.  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver  
output must output a high when the differential input VID is more positive than 200 mV, and must output a Low  
when VID is more negative than –200 mV. The receiver parameters which determine the failsafe performance are  
VTH+, VTH–, and VHYS (the separation between VTH+ and VTH–). As shown in the table, differential signals more  
negative than –200 mV will always cause a low receiver output, and differential signals more positive than 200  
mV will always cause a high receiver output.  
When the differential input signal is close to zero, it is still above the VTH+ threshold, and the receiver output will  
be High. Only when the differential input is more than VHYS below VTH+ will the receiver output transition to a Low  
state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver  
hysteresis value, VHYS, as well as the value of VTH+  
.
24  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Typical Application (接下页)  
10.2.1.5 Transient Protection  
The bus pins of the THVD14xx transceiver family include on-chip ESD protection against ±30-kV HBM and ±18-  
kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more  
severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance,  
R(D), of the IEC model produce significantly higher discharge currents than the HBM model. As stated in the IEC  
61000-4-2 standard, contact discharge is the preferred transient protection test method.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
34. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common  
discharge events occur because of human contact with connectors and cables. Designers may choose to  
implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
35 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automation.  
The right hand diagram shows the pulse power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
35. Power Comparison of ESD, EFT, and Surge Transients  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Application (接下页)  
If the surge transients, high-energy content is characterized by long pulse duration and slow decaying pulse  
power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver is  
converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver. 图  
36 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse  
train that is commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
36. Comparison of Transient Energies  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
Typical Application (接下页)  
10.2.2 Detailed Design Procedure  
37 and 38 suggest a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 7 shows the  
associated bill of materials.  
5V  
100nF  
100nF  
10k  
V
CC  
R1  
R
RxD  
TVS  
RE  
DE  
D
A
B
MCU/  
UART  
DIR  
TxD  
R2  
10k  
GND  
37. Transient Protection Against Surge Transients for Half-Duplex Devices  
5V  
100nF  
R1  
10k  
V
CC  
TVS  
A
B
R
RxD  
DIR  
RE  
R2  
R1  
MCU/  
UART  
DE  
D
DIR  
TxD  
TVS  
Z
Y
10k  
GND  
R2  
38. Transient Protection Against Surge Transients for Full-Duplex Devices  
7. Bill of Materials  
DEVICE  
XCVR  
R1  
FUNCTION  
ORDER NUMBER  
MANUFACTURER  
RS-485 transceiver  
THVD14xx  
TI  
10-Ω, pulse-proof thick-film resistor  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
Vishay  
Bourns  
R2  
TVS  
Bidirectional 400-W transient suppressor  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
 
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
10.2.3 Application Curves  
50 Mbps  
VCC = 5 V  
39. THVD1450 Waveforms with 54-Ω Termination  
11 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100  
nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1410  
THVD1450, THVD1451, THVD1452  
www.ti.com.cn  
ZHCSI82E MAY 2018REVISED MAY 2019  
12 Layout  
12.1 Layout Guidelines  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your  
board.  
2. Use VCC and ground planes to provide low-inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the VCC pins of transceiver, UART  
and/or controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩ to 10-kΩ pull-up and pull-down resistors for enable lines to limit noise currents in theses lines  
during transient events.  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
12.2 Layout Example  
5
Via to ground  
C
Via to VCC  
4
R
6
6
R
R
1
R
MCU  
5
TVS  
THVD14x0  
5
40. Half-Duplex Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
THVD1410  
THVD1450, THVD1451, THVD1452  
ZHCSI82E MAY 2018REVISED MAY 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
8. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
THVD1410  
THVD1450  
THVD1451  
THVD1452  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。.  
13.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THVD1410D  
THVD1410DGK  
THVD1410DGKR  
THVD1410DR  
THVD1450D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
DGK  
DGK  
D
8
8
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
VD1410  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
1410  
8
2500 RoHS & Green  
2500 RoHS & Green  
1410  
8
VD1410  
VD1450  
1450  
SOIC  
D
8
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
THVD1450DGK  
THVD1450DGKR  
THVD1450DR  
THVD1450DRBR  
THVD1450DRBT  
THVD1451D  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
1450  
8
VD1450  
1450  
SON  
DRB  
DRB  
D
8
SN  
SON  
8
250  
75  
RoHS & Green  
RoHS & Green  
SN  
1450  
SOIC  
8
NIPDAU  
VD1451  
VD1451  
1451  
THVD1451DR  
THVD1451DRBR  
THVD1451DRBT  
THVD1452D  
SOIC  
D
8
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
SON  
DRB  
DRB  
D
8
SN  
SON  
8
250  
50  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SN  
1451  
SOIC  
14  
10  
10  
14  
NIPDAU  
1452  
THVD1452DGS  
THVD1452DGSR  
THVD1452DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
80  
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
1452  
2500 RoHS & Green  
2500 RoHS & Green  
1452  
1452  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Mar-2023  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD1410DGKR  
THVD1410DGKR  
THVD1450DGKR  
THVD1450DRBR  
THVD1450DRBT  
THVD1451DRBR  
THVD1451DRBT  
THVD1452DGSR  
VSSOP  
VSSOP  
VSSOP  
SON  
DGK  
DGK  
DGK  
DRB  
DRB  
DRB  
DRB  
DGS  
8
8
2500  
2500  
2500  
3000  
250  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
3.3  
3.3  
3.3  
3.3  
5.3  
3.4  
3.4  
3.4  
3.3  
3.3  
3.3  
3.3  
3.4  
1.4  
1.4  
1.4  
1.0  
1.0  
1.0  
1.0  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q2  
Q2  
Q2  
Q2  
Q1  
8
8
SON  
8
SON  
8
3000  
250  
SON  
8
VSSOP  
10  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THVD1410DGKR  
THVD1410DGKR  
THVD1450DGKR  
THVD1450DRBR  
THVD1450DRBT  
THVD1451DRBR  
THVD1451DRBT  
THVD1452DGSR  
VSSOP  
VSSOP  
VSSOP  
SON  
DGK  
DGK  
DGK  
DRB  
DRB  
DRB  
DRB  
DGS  
8
8
2500  
2500  
2500  
3000  
250  
366.0  
364.0  
364.0  
346.0  
200.0  
346.0  
200.0  
366.0  
364.0  
364.0  
364.0  
346.0  
183.0  
346.0  
183.0  
364.0  
50.0  
27.0  
27.0  
35.0  
25.0  
35.0  
25.0  
50.0  
8
8
SON  
8
SON  
8
3000  
250  
SON  
8
VSSOP  
10  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
THVD1410D  
THVD1410DGK  
THVD1450D  
D
DGK  
D
SOIC  
VSSOP  
SOIC  
8
8
75  
80  
75  
80  
75  
50  
80  
507  
330  
507  
330  
507  
507  
330  
8
6.55  
8
3940  
500  
4.32  
2.88  
4.32  
2.88  
4.32  
4.32  
2.88  
8
3940  
500  
THVD1450DGK  
THVD1451D  
DGK  
D
VSSOP  
SOIC  
8
6.55  
8
8
3940  
3940  
500  
THVD1452D  
D
SOIC  
14  
10  
8
THVD1452DGS  
DGS  
VSSOP  
6.55  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DRB0008F  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.6 0.05  
(0.2) TYP  
4
5
A
A
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.5  
0.3  
0.1  
C A B  
C
8X  
(OPTIONAL)  
0.05  
4222121/C 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.55)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222121/C 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.635)  
SYMM  
(1.07)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222121/C 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THVD1451DRBT

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1452

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1452D

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | D | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1452DGS

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1452DGSR

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1452DR

具有 ±18kV IEC ESD 保护功能的 3.3V 至 5V RS-485 收发器 | D | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1454

具有集成式 120Ω 可切换终端的 3V 至 5.5V 半双工 RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD14X9X

THVD14x9x 3-V to 5.5-V RS-485 Transceivers With 4-kV Surge Protection and 1.8-V VIO Capability

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1500

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

THVD1500D

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI