THVD1500 [TI]

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器;
THVD1500
型号: THVD1500
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器

文件: 总31页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
具有 ±8kV IEC ESD 保护功能的 THVD1500 500kbps RS-485 收发器  
1 特性  
2 应用  
1
达到或超出 TIA/EIA-485A 标准和中国国家电网公  
(SGCC) 11 部分串行通信协议 RS-485 标准  
的要求  
电量计  
逆变器  
HVAC 系统  
视频监控系统  
4.5V 5.5V 电源电压  
半双工 RS-422/RS-485  
总线 I/O 保护  
3 说明  
±16kV HBM ESD  
THVD1500 是适用于工业应用的强大半双工 RS-485  
收发器。这些总线引脚可耐受高级别的 IEC 接触放电  
ESD 事件,从而无需使用其他系统级保护组件。  
±8kV IEC 61000-4-2 接触放电  
±10kV IEC 61000-4-2 空气间隙放电  
±2kV IEC 61000-4-4 快速瞬变脉冲  
该器件由 5V 单电源供电。总线引脚具备宽共模电压范  
围和低输入泄漏,因此 THVD1500 适用于长电缆上的  
多点 应用。  
扩展的工业温度范围:-40°C 125°C  
用于噪声抑制的大接收器滞后  
低功耗  
THVD1500 采用可实现简易兼容性的工业标准 8 引脚  
SOIC 封装。该器件的温度范围是 -40°C 125°C。  
低待机电源电流:小于 1µA  
运行静态电流:小于 660µA  
适用于热插拔功能的无干扰加电/断电  
开路、短路和空闲总线失效防护  
1/8 单位负载选项(多达 256 个总线节点)  
EMI 500kbps  
器件信息(1)  
器件编号  
THVD1500  
封装  
SOIC (8)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
空白  
空白  
简化原理图  
1
2
R
7
6
RE  
B
A
3
4
DE  
D
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEY4  
 
 
 
 
 
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 15  
9.1 Application Information........................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Power Dissipation ..................................................... 5  
6.6 Electrical Characteristics........................................... 6  
6.7 Switching Characteristics.......................................... 7  
6.8 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagrams ..................................... 13  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 器件支持................................................................ 21  
12.2 第三方产品免责声明.............................................. 21  
12.3 接收文档更新通知 ................................................. 21  
12.4 社区资源................................................................ 21  
12.5 ....................................................................... 21  
12.6 静电放电警告......................................................... 21  
12.7 术语表 ................................................................... 21  
13 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
Changes from Original (July 2018) to Revision A  
Page  
将标题中的“300kbps RS-485”更改成了“500kbps RS-485..................................................................................................... 1  
特性 中的EMI 300kbps”更改成了EMI 500kbps” ...................................................................................................... 1  
Changed Signaling rate From: 300 kbps To: 500 kbps in the Recommended Operating Condition ..................................... 5  
Changed text From: "data transmission up to 300 kbps" To: "data transmission up to 500 kbps" in the Overview  
section .................................................................................................................................................................................. 13  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
A
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
R
NO.  
1
Digital output  
Digital input  
Digital input  
Digital input  
Ground  
Receive data output  
RE  
DE  
D
2
Receiver enable, active low (internal 2-MΩ pull-up)  
Driver enable, active high (internal 2-MΩ pull-down)  
Driver data input  
3
4
GND  
A
5
Local device ground  
6
Bus input/output  
Bus input/output  
Power  
Bus I/O port, A (complementary to B)  
Bus I/O port, B (complementary to A)  
5-V supply  
B
7
VCC  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
3
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–18  
MAX  
7
UNIT  
V
Supply voltage  
Bus voltage  
VCC  
Range at any bus pin (A or B)  
Range at any logic pin (D, DE, or RE)  
18  
V
–0.3  
5.7  
Input voltage  
V
Transient pulse voltage range at any bus pin  
(A or B) through 100 Ω  
–100  
–24  
100  
Receiver output current  
IO  
24  
mA  
°C  
°C  
°C  
Junction temperature  
170  
125  
150  
Absolute ambient temperature, TA  
Storage temperature, Tstg  
–55  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Pins Bus terminals and  
GND  
Contact Discharge, per IEC 61000-4-2  
Air Gap Discharge, per IEC 61000-4-2  
±8,000  
Pins Bus terminals and  
GND  
±10,000  
±16,000  
±4,000  
±1,500  
Pins Bus terminals and  
GND  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
V
All pins except Bus  
terminals and GND  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
Machine model (MM), per JEDEC JESD22-A115-A  
±400  
V(EFT)  
Electrical fast transient  
Per IEC 61000-4-4  
Pins Bus terminals  
±2,000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
-7  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage at any bus terminal(1)  
12  
V
High-level input voltage (Driver, driver enable, and receiver enable  
inputs)  
VIH  
VIL  
2
0
VCC  
0.8  
V
V
Low-level input voltage (Driver, driver enable, and receiver enable  
inputs)  
VID  
IO  
Differential input voltage  
Output current, Driver  
Output current, Receiver  
Differential load resistance  
Signaling rate  
-12  
-60  
-8  
12  
60  
8
V
mA  
mA  
Ω
IOR  
RL  
54  
1/tUI  
TA  
500  
125  
150  
kbps  
°C  
Operating ambient temperature  
Junction temperature  
-40  
-40  
TJ  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
6.4 Thermal Information  
THVD1500  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
130.1  
72.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
Thermal shut-down temperature  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
RθJC(top)  
RθJB  
73.6  
ψJT  
25.0  
ψJB  
72.9  
RθJC(bot)  
TJ(TSD)  
NA  
170  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Dissipation  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Unterminated RL = 300 Ω,  
CL = 50 pF (driver)  
300 kbps  
300 kbps  
300 kbps  
50  
mW  
Driver and receiver enabled,  
VCC = 5.5 V, TJ = 150 °C,  
RS-422 load RL = 100 Ω,  
50% duty cycle square wave at signaling CL = 50 pF (driver)  
PD  
110  
170  
mW  
mW  
rate  
RS-485 load RL = 54 Ω,  
CL = 50 pF (driver)  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
MAX UNIT  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Driver  
RL = 60 Ω, -7 V Vtest 12 (See 8)  
RL = 100 Ω (See 9)  
1.5  
2
2
2.5  
2
V
V
V
Driver differential output  
voltage magnitude  
|VOD  
|
RL = 54 Ω (See 9)  
1.5  
Change in differential  
output voltage  
Δ|VOD  
|
RL = 54 Ω or 100 Ω (See 9)  
RL = 54 Ω or 100 Ω (See 9)  
RL = 54 Ω or 100 Ω (See 9)  
RL = 54 Ω or 100 Ω (See 9)  
–50  
1
50  
3
mV  
V
Common-mode output  
voltage  
VOC  
VCC/2  
450  
Steady-state common-  
mode output voltage  
ΔVOC(SS)  
–50  
50  
mV  
Peak-to-peak common-  
mode output voltage  
VOC(PP)  
mV  
mA  
IOS  
Short-circuit output current DE = VCC, -7 V VO 12 V, or A pin shorted to B pin  
–100  
100  
100  
Receiver  
VI = 12 V  
VI = -7 V  
75  
µA  
µA  
DE = 0 V,  
Bus input current  
II1  
VCC = 0 V or 5.5 V  
-97  
96  
-70  
VA = -7 V, VB = 12 V and  
Bus input impedance  
RA, RB  
VTH+  
kΩ  
VA = 12 V, VB = -7 V (See 14)  
Positive-going input  
threshold voltage  
See(1)  
–70  
–50  
mV  
Negative-going input  
threshold voltage  
VTH-  
VHYS  
VOH  
VOL  
IOZ  
–200  
20  
–150  
50  
See(1)  
mV  
mV  
V
Input hysteresis  
VCC  
-
Output high voltage  
Output low voltage  
IOH = -8 mA  
4
0.3  
IOL = 8 mA  
0.2  
0.4  
1
V
Output high-impedance  
current  
VO = 0 V or VCC, RE = VCC  
-1  
µA  
mA  
IOSR  
Output short-circuit current RE = 0, DE = 0, See 13  
95  
Logic  
Input current  
IIN  
4.5 V VCC 5.5 V  
(D, DE, RE)  
–5  
0
5
µA  
Supply  
RE = 0 V, DE = VCC, No  
load  
Driver and receiver enabled  
440  
295  
275  
0.1  
660  
420  
400  
1
µA  
µA  
µA  
µA  
RE = VCC, DE = VCC  
,
Driver enabled, receiver disabled  
Supply current (quiescent)  
No load  
ICC  
RE = 0 V, DE = 0 V, No  
load  
Driver disabled, receiver enabled  
RE = VCC, DE = 0 V, D  
= open, No load  
Driver and receiver disabled  
(1) Under any specific conditions, VIT+ is assured to be at least VHYS higher than VIT–.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
6.7 Switching Characteristics  
over recommended operating conditions  
PARAMETER  
Driver  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential output rise/fall  
time  
tr, tf  
180  
250  
450  
ns  
RL = 54 Ω, CL = 50 pF  
See 10  
tPHL, tPLH Propagation delay  
tSK(P) Pulse skew, |tPHL – tPLH  
250  
25  
350  
40  
ns  
ns  
ns  
ns  
µs  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
Receiver  
70  
160  
400  
3
RE = 0 V  
RE = VCC  
See 11 and 12  
220  
1.5  
Differential output rise/fall  
time  
tr, tf  
15  
25  
ns  
CL = 15 pF  
See 15  
tPHL, tPLH Propagation delay  
tSK(P) Pulse skew, |tPHL – tPLH  
tPHZ, tPLZ Disable time  
70  
3
100  
7
ns  
ns  
ns  
ns  
|
15  
30  
tPZH(1)  
,
,
,
DE = VCC  
DE = 0 V  
See 16  
See 17  
100  
175  
tPZL(1)  
tPZH(2)  
tPZL(2)  
Enable time  
1
4
μs  
版权 © 2017–2018, Texas Instruments Incorporated  
7
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
6.8 Typical Characteristics  
www.ti.com.cn  
5
4.5  
4
5
4.5  
4
VOL  
VOH  
VOD  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
IO Driver Output Current (mA)  
IO Driver Output Current (mA)  
D001  
D002  
VCC = 5 V  
DE = VCC  
VCC = 5 V  
DE = VCC  
D = 0 V  
1. Driver Output voltage vs Driver Output Current  
2. Driver Differential Output voltage vs Driver Output  
Current  
250  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
245  
240  
235  
230  
225  
220  
215  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
VCC Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
RL = 54 Ω  
DE = VCC  
D = VCC  
TA = 25°C  
3. Driver Output Current vs Supply Voltage  
4. Driver Rise or Fall Time vs Temperature  
160  
158  
156  
154  
152  
150  
48  
47.5  
47  
46.5  
46  
45.5  
45  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
50  
100  
150  
200  
250  
300  
Temperature (èC)  
Signal Rate (Kbps)  
D005  
D006  
RL = 54 Ω  
5. Driver Propagation Delay vs Temperature  
6. Supply Current vs Signal Rate  
8
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
6
5
4
3
2
1
0
VCM=12V  
VCM=0V  
VCM=-7V  
-170  
-150  
-130  
-110  
-90  
-70  
-50  
Differential Input Voltage VID (mV)  
D007  
7. Receiver Output vs Input  
版权 © 2017–2018, Texas Instruments Incorporated  
9
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
375  
Vcc  
DE  
D
A
B
V
test  
VOD  
R
0V or V  
cc  
L
375 Ω  
8. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A
V
A
A
B
R /2  
L
B
D
V
B
0V or V  
cc  
V
OD  
V
OC(PP)  
R /2  
L
ûV  
OC(SS)  
V
OC  
C
L
V
OC  
9. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
V
cc  
Vcc  
DE  
50%  
V
I
0 V  
A
B
t
t
R =  
L
54  
PHL  
PLH  
D
~
V
2 V  
~
C = 50 pF  
L
OD  
90%  
50%  
10%  
Input  
50 Ω  
V
I
Generator  
V
OD  
~ œ 2 V  
~
t
r
t
f
10. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A
V
cc  
S1  
V
O
D
50%  
V
I
0 V  
V
B
R
110  
=
DE  
50 Ω  
L
t
PZH  
=
C
L
Input  
OH  
50 pF  
90%  
Generator  
V
I
50%  
V
O
~
~ 0V  
t
PHZ  
11. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
Vcc  
Vcc  
50%  
RL= 110 Ω  
VI  
tPZL  
VO  
A
B
0 V  
S1  
VO  
tPLZ  
D
Vcc  
DE  
CL=  
50 pF  
Input  
Generator  
50%  
10%  
VOL  
VI  
50 Ω  
12. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
Parameter Measurement Information (接下页)  
VCC  
RE  
DE  
DI  
VCC  
A
B
A
RO  
GND  
RS-485  
GND  
GND  
13. Measurement of Receiver Output Short Circuit Current  
VCC  
RE  
DE  
DI  
VCC  
A
V
12 - (-7)  
| IV |+| IV  
R A , RB  
=
B
V
|
b
a
V
RO  
GND  
RS-485  
GND  
GND  
14. Measurement of Bus Impedance  
3 V  
0 V  
VOH  
50%  
V
I
A
B
R
VO  
t
tPHL  
Input  
Generator  
PLH  
50  
V
1.5V  
0 V  
I
90%  
50%  
10%  
CL=15 pF  
RE  
V
OD  
V
tr  
OL  
t
f
15. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
cc  
Vcc  
DE  
Vcc  
V
50%  
I
0V  
V
A
B
tPZH(1)  
1 kΩ  
tPHZ  
D
V
O
R
D at Vcc  
S1 to GND  
0V or Vcc  
S1  
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
Generator  
D at 0V  
S1 to Vcc  
V
CC  
50 Ω  
V
I
V
50%  
O
10%  
V
OL  
16. Measurement of Receiver Enable/Disable Times With Driver Enabled  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Vcc  
0V  
Vcc  
VI  
50%  
A
B
1 kΩ  
tPZH(2)  
V or 1.5V  
VO  
R
S1  
VOH  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0V  
50%  
VO  
CL=15 pF  
RE  
0V  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
VCC  
50 Ω  
VI  
VO  
50%  
VOL  
17. Measurement of Receiver Enable Times With Driver Disabled  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
8 Detailed Description  
8.1 Overview  
The THVD1500 is a low-power, half-duplex RS-485 transceiver suitable for data transmission up to 500 kbps.  
8.2 Functional Block Diagrams  
VCC  
R
RE  
A
B
DE  
D
GND  
8.3 Feature Description  
Internal ESD protection circuits protect the transceiver against Electrostatic Discharges (ESD) according to IEC  
61000-4-2 of up to ±8 kV (Contact Discharge), ±10 kV (Air Gap Discharge) and against electrical fast transients  
(EFT) according to IEC 61000-4-4 of up to ±2 kV.  
The THVD1500 provides internal biasing of the receiver input thresholds in combination with large input-  
threshold hysteresis. With a positive input threshold of VIT+ = –50 mV and an input hysteresis of VHYS = 50 mV,  
the receiver output remains logic high under a bus-idle or bus-short conditions without the need for external  
failsafe biasing resistors. Device operation is specified over a wide temperature range from –40°C to 125°C.  
8.4 Device Functional Modes  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this case, the differential output voltage defined  
as VOD = VA – VB is positive. When D is low, the output states reverse, B turns high, A becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is positive and higher than the positive input threshold, VIT+, the receiver output, R, turns  
high. When VID is negative and lower than the negative input threshold, VIT-, the receiver output, R, turns low. If  
VID is between VIT+ and VIT- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven  
(idle bus).  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA – VB  
VIT+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VIT- < VID < VIT+  
VID < VIT-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
14  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The THVD1500 is a half-duplex RS-485 transceiver commonly used for asynchronous data transmissions. The  
driver and receiver enable pins allow for the configuration of different operating modes.  
9.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer  
cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
R
T
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
18. Typical RS-485 Network With Half-Duplex Transceivers  
9.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
9.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
shorter the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 300 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of  
a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as  
shown in 公式 1.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
(1)  
9.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit  
load represents a load impedance of approximately 12 k. Because the THVD1500 consists of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible.  
9.2.1.4 Receiver Failsafe  
The differential receivers of the THVD1500 are failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the  
receiver is not indeterminate.  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver  
output must output a high when the differential input VID is more positive than 200 mV, and must output a low  
when VID is more negative than –200 mV. The receiver parameters which determine the failsafe performance are  
VIT+, VIT–, and VHYS (the separation between VIT+ and VIT–). As shown in the Electrical Characteristics table,  
differential signals more negative than –200 mV will always cause a low receiver output, and differential signals  
more positive than 200 mV will always cause a high receiver output.  
When the differential input signal is close to zero, it is still above the VIT+ threshold, and the receiver output will  
be high. Only when the differential input is more than VHYS below VIT+ will the receiver output transition to a low  
state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver  
hysteresis value, VHYS, as well as the value of VIT+  
.
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
Typical Application (接下页)  
9.2.1.5 Transient Protection  
The bus pins of the THVD1500 transceiver family include on-chip ESD protection against ±16-kV HBM and ±8-  
kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more  
severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance,  
R(D), of the IEC model produce significantly higher discharge currents than the HBM model.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
19. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common  
discharge events occur because of human contact with connectors and cables. Designers may choose to  
implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
20 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automations.  
The right hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
20. Power Comparison of ESD, EFT, and Surge Transients  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
In the event of surge transients, high-energy content is characterized by long pulse duration and slow decaying  
pulse power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver  
is converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver.  
21 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse  
train that is commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
21. Comparison of Transient Energies  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
Typical Application (接下页)  
9.2.2 Detailed Design Procedure  
In order to protect bus nodes against high-energy transients, the implementation of external transient protection  
devices is necessary. 22 suggest a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 3  
shows the associated Bill of Materials.  
5V  
100nF  
100nF  
10k  
V
CC  
R1  
R
RxD  
TVS  
RE  
DE  
D
A
B
MCU/  
UART  
DIR  
TxD  
R2  
10k  
GND  
22. Transient Protection Against ESD, EFT, and Surge Transients for Half-Duplex Devices  
3. Bill of Materials  
DEVICE  
XCVR  
R1  
FUNCTION  
ORDER NUMBER  
MANUFACTURER  
RS-485 transceiver  
THVD1500  
TI  
10-Ω, pulse-proof thick-film resistor  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
Vishay  
Bourns  
R2  
TVS  
Bidirectional 400-W transient suppressor  
9.2.3 Application Curves  
Time œ 2 ms/div  
Data Rate = 300 Kbps  
23. TBD  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100  
nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across  
the board.  
2. Use VCC and ground planes to provide low inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF bypass capacitors as close as possible to the VCC pins of transceiver, UART and/or  
controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of bypass capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩ to 10-kΩ pullup and pulldown resistors for enable lines to limit noise currents in theses lines during  
transient events.  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
11.2 Layout Example  
5
Via to ground  
C
Via to VCC  
4
R
6
6
R
R
1
R
MCU  
5
TVS  
THVD1500  
5
24. Layout Example  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。.  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SOIC  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/B 04/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
THVD1500  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/B 04/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1500  
www.ti.com.cn  
ZHCSGF8A JULY 2017REVISED NOVEMBER 2018  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
5
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/B 04/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THVD1500D  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
VD1500  
VD1500  
THVD1500DR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD1500DR  
THVD1500DR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THVD1500DR  
THVD1500DR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
356.0  
340.5  
356.0  
336.1  
35.0  
25.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
THVD1500D  
D
8
75  
507  
7.85  
3750  
2.24  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THVD1500D

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1500DR

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1505

总线极性借助 IEC-ESD 保护校正 RS-485 收发器
TI

THVD1505DR

总线极性借助 IEC-ESD 保护校正 RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1510

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1510D

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1510DGK

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DGKR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1512

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1512DGS

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125
TI

THVD1512DGSR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125
TI