THVD1454 [TI]

具有集成式 120Ω 可切换终端的 3V 至 5.5V 半双工 RS-485 收发器;
THVD1454
型号: THVD1454
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 120Ω 可切换终端的 3V 至 5.5V 半双工 RS-485 收发器

文件: 总29页 (文件大小:1985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THVD1454  
ZHCSQ45 JANUARY 2023  
THVD1454 具有集成  
120Ω 可切换终端和压摆率控制功能3V 5.5V 半双RS-485 收发器  
1 特性  
3 说明  
• 符合或超TIA/EIA-485A 标准要求  
3V 5.5V 电源电压  
• 差分输出超2.1V5V 电源下PROFIBUS  
兼容  
• 半双RS-422/RS-485  
• 总线引脚之间的引脚控制片120Ω接电阻  
• 最大数据速率可配置  
THVD1454 是一款适用于工业应用的灵活半双工  
RS-485 收发器。该器件具有片120Ω接电阻器和  
驱动器输出压摆率控制等功能。这两个特性均由引脚控  
制。这使得该器件可以在任何网络中的任何节点位置  
末端节点或中间节点使用无论是慢速还是快速。  
终端设备设计人员现在可以设计通用印刷电路板  
(PCB)并使用软件配PCB 来满足各种应用需求。  
这可以为客户节省设计和鉴定时间。  
SLR = 500kbps  
SLR = 低电平或悬空20Mbps  
• 总线I/O 保护  
这些总线引脚可耐受高级别的 IEC 接触放电 ESD 事  
因此无需使用其他系统级保护元件。这些器件由  
3V 5.5V 单电源供电。总线引脚具备宽共模电压范  
围和低输入泄漏从而使这些器件适用于长线缆上的多  
点应用。  
±16kV HBM ESD  
±8kV IEC 61000-4-2 接触放电  
±15kV IEC 61000-4-2 空气间隙放电  
±4kV IEC 61000-4-4 快速瞬变脉冲  
±16V 总线故障保护总线引脚上的绝对最大电  
)  
THVD1454 采用节省空间的高效散热10 VSON  
(3mm x 3mm)。该器件的额定温度范围为 –40°C  
125°C。  
• 工业级工作温度范围:  
-40°C 125°C  
• 低功耗  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
THVD1454  
VSON (10)  
3.00mm x 3.00mm  
– 关断电源电< 5µA  
– 运行期间静态电< 3mA  
• 适用于热插拔功能的无干扰上电/断电  
• 开路、短路和空闲总线失效防护  
1/8 单位负载256 个总线节点)  
• 节省空间的小型高效散热10 VSON 封装  
(3mm x 3mm)  
(1) 如需完整的器件型号请参阅数据表末尾的可订购产品附录。  
SLR  
VCC  
A
B
R
RE  
DE  
2 应用  
I/O  
and  
control  
工厂自动化与控制  
楼宇自动化  
电机驱动  
120  
D
电力输送  
工业运输  
HVAC 系统  
智能电表  
TERM  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFQ5  
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagrams....................................... 12  
8.3 Feature Description...................................................12  
8.4 Device Functional Modes..........................................12  
9 Application Information Disclaimer.............................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
9.3 Power Supply Recommendations.............................20  
9.4 Layout....................................................................... 20  
10 Device and Documentation Support..........................21  
10.1 Device Support....................................................... 21  
10.2 接收文档更新通知................................................... 21  
10.3 支持资源..................................................................21  
10.4 Trademarks.............................................................21  
10.5 静电放电警告.......................................................... 21  
10.6 术语表..................................................................... 21  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings .............................................................. 4  
6.3 ESD Ratings [IEC]...................................................... 4  
6.4 Recommended Operating Conditions.........................5  
6.5 Thermal Information....................................................5  
6.6 Power Dissipation....................................................... 5  
6.7 Electrical Characteristics.............................................6  
6.8 Switching Characteristics_500 kbps........................... 8  
6.9 Switching Characteristics_20 Mbps............................9  
6.10 Switching Characteristics_Termination resistor........ 9  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
Information.................................................................... 21  
11.1 Tape and Reel Information......................................22  
11.2 Mechanical Data..................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
January 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
R
RE  
1
2
3
4
5
10  
9
V
B
A
CC  
Thermal  
Pad  
DE  
8
D
7
SLR  
GND  
TERM  
6
Not to scale  
5-1. VSON (DRC) Package, 10-Pins  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
R
NO.  
1
Digital output  
Digital input  
Digital input  
Logic output RS-485 data  
RE  
2
Receiver enable/disable. Internal pull-up. Receiver disabled by default  
Driver enable/disable. Internal pull-down. Driver disabled by default  
DE  
3
Logic input RS485 data. Internal pull-up. Drives the bus high by default if driver is  
enabled  
D
4
Digital input  
120 Ωon-chip termination control for A/B pins. Internal pull-down. Termination across  
A/B is disabled by default  
TERM  
GND  
SLR  
5
6
7
Digital input  
GND  
Ground  
Slew rate control. Internal pull-down, default 20 Mbps operation. Logic high SLR  
enables slow speed (500 kbps)  
Digital input  
A
8
9
Bus input/output  
Bus input/output  
Power  
RS-485 bus pin. This pin is non-inverting driver output or non-inverting receiver input  
RS-485 bus pin. This pin is inverting driver output or inverting receiver input  
3 V to 5.5 V supply  
B
VCC  
10  
Thermal  
Pad  
--  
Connect to GND for optimal thermal and electrical performance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
0.5  
16  
-6  
MAX  
7
UNIT  
V
Supply voltage  
VCC  
Bus voltage  
Voltage at any bus pin (A or B) with respect to GND  
16  
V
Differential bus voltage  
Input voltage  
(A-B) or (B-A) with termination enabled  
6
V
Range at any logic pin (D, DE, SLR, TERM, or RE)  
5.7  
24  
V
0.3  
24  
65  
Receiver output current  
Storage temperature  
IO  
mA  
°C  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Bus terminals (A, B) and GND  
±16,000  
V
Human-body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
All pins except bus terminals  
and GND  
V(ESD)  
Electrostatic discharge  
±4,000  
±1,500  
V
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 ESD Ratings [IEC]  
VALUE  
UNIT  
V
Contact discharge, per IEC 61000-4-2  
Air-gap discharge, per IEC 61000-4-2  
Per IEC 61000-4-4  
Bus terminals and GND  
Bus terminals and GND  
Bus terminals  
±8,000  
±15,000  
±4,000  
Electrostatic discharge, on chip  
termination ON or OFF  
V(ESD)  
V(EFT)  
Electrical fast transient  
V
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
 
 
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
5.5  
12  
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage at any bus terminal (separately or common mode)(1)  
High-level input voltage (D, DE, RE, TERM, SLR inputs)  
Low-level input voltage (D, DE, RE, TERM, SLR inputs)  
Output current, driver  
V
7  
2
VIH  
VIL  
IO  
5.5  
0.8  
60  
V
0
V
mA  
mA  
60  
8  
54  
IOR  
RL  
Output current, receiver  
8
Differential load resistance  
60  
Ω
kbps  
Mbps  
°C  
SLR = VIO  
Signaling rate  
500  
20  
1/tUI  
SLR = GND or floating  
(2)  
TA  
TJ  
Operating ambient temperature  
Junction temperature  
-40  
-40  
125  
150  
(2)  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) Operation is specified for internal (junction) temperatures upto 150°C. Self-heating due to internal power dissipation should be  
considered for each application. Maximum junction temperature is internally limited by the thermal shut-down (TSD) circuit which  
disables the driver outputs when the junction temperature reaches typical 170°C.  
6.5 Thermal Information  
THVD1454  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
48.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
54  
21.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.1  
ψJT  
21.9  
ψJB  
RθJC(bot)  
6.7  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
6.6 Power Dissipation  
PARAMETER  
TEST CONDITIONS  
Typical  
185  
Max  
UNIT  
SLR = H  
500 kbps  
20Mbps  
500 kbps  
20Mbps  
210  
340  
360  
430  
Unterminated, TERM = L  
mW  
Driver and receiver enabled,  
VCC = 5.5 V, TA = 125 °C,  
D = square wave 50% duty  
SLR = L  
SLR = H  
SLR = L  
310  
316  
396  
PD  
TERM = H, With 120 Ωload between  
mW  
A/B inputs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THVD1454  
 
 
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
= 5 V , unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Driver  
1.5  
2.1  
2
3.3  
3.3  
4
V
V
V
V
V
RL = 60 Ω, 7 V Vtest 12 V (See 7-1 )  
RL = 60 Ω, 7 V Vtest 12 V, 4.5 V VCC 5.5 V (See 7-1 )  
RL = 100 Ω(See 7-2 )  
Driver differential output  
voltage magnitude  
|VOD  
|
2.1  
1.5  
3.3  
3.3  
RL = 54 Ω, 4.5 V VCC 5.5 V (See 7-2 )  
RL = 54 Ω(See 7-2 )  
Change in magnitude of  
differential output voltage  
50  
3
mV  
V
Δ|VOD  
|
RL = 54 Ωor 100 Ω(See 7-2 )  
RL = 54 Ωor 100 Ω(See 7-2 )  
50  
Common-mode output  
voltage  
VOC  
VCC/2  
Change in steady-state  
common-mode output  
voltage  
50  
mV  
mA  
ΔVOC(SS)  
RL = 54 Ωor 100 Ω(See 7-2 )  
50  
IOS  
Short-circuit output current  
250  
DE = VIO, -7 V (VA or VB) 12 V, or A shorted to B  
250  
Receiver  
VI = 12 V  
85  
100  
μA  
μA  
Bus input current  
(termination disabled)  
II  
DE = 0 V, VCC = 0 V or 5.5 V  
VI = 7 V  
100  
70  
Receiver bus input leakage  
current with termination  
enabled  
IRXT  
DE = 0 V, VCC = 5.5 V, TERM = VCC  
VI = - 7 to 12 V  
-300  
300  
- 45  
μA  
Positive-going input  
threshold voltage(1)  
VTH+  
- 85  
mV  
Negative-going input  
threshold voltage(1)  
Over common-mode range of - 7 V to 12 V  
Measured between A and B, f = 1 MHz  
VTH-  
VHYS  
CA,B  
mV  
mV  
pF  
200  
150  
50  
Input hysteresis  
30  
Input differential  
capacitance  
20  
VCC  
VCC –  
VOH  
VOL  
IOZ  
Output high voltage  
Output low voltage  
V
V
IOH = 8 mA  
0.4  
0.2  
IOL = 8 mA  
0.2  
0.4  
2
Output high-impedance  
current, R pin  
VO = 0 V or VCC, RE = VCC  
µA  
2  
Logic  
IIN  
Input current (D, RE, DE ,  
SLR, TERM)  
-5  
5
µA  
3 V VCC 5.5 V, 0 V VIN VCC  
Thermal Protection  
Thermal shutdown  
threshold  
TSHDN  
Temperature rising  
150  
170  
15  
°C  
°C  
Thermal shutdown  
hysteresis  
THYS  
Supply  
UVVCC  
Rising under-voltage  
threshold on VCC  
2.5  
2.1  
2.7  
V
V
(rising)  
UVVCC  
Falling under-voltage  
threshold on VCC  
2
(falling)  
UVVCC(hys Hysteresis on under-voltage  
400  
mV  
of VCC  
)
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
= 5 V , unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RE = 0 V, DE = VCC  
No load  
,
Driver and receiver enabled  
1.5  
3
2.5  
1.2  
4
mA  
mA  
mA  
µA  
RE = VCC, DE = VCC  
No load  
,
Driver enabled, receiver disabled  
Driver disabled, receiver enabled  
Driver and receiver disabled  
Driver and receiver enabled  
1.3  
0.8  
0.2  
1.4  
1
Supply current (quiescent),  
VCC = 4.5 V to 5.5 V, TERM  
= Floating or low, SLR = X  
ICC  
RE = 0 V, DE = 0 V,  
No load  
RE = VCC, DE = 0 V,  
D = open, No load  
RE = 0 V, DE = VCC  
,
2
mA  
mA  
mA  
µA  
No load  
RE = VCC, DE = VCC  
No load  
,
Driver enabled, receiver disabled  
Driver disabled, receiver enabled  
Driver and receiver disabled  
1.5  
1
Supply current (quiescent),  
VCC = 3 V to 3.6 V, TERM =  
Floating or low, SLR = X  
ICC  
RE = 0 V, DE = 0 V,  
No load  
0.7  
0.2  
39  
1
RE = VCC, DE = 0 V,  
D = open, No load  
4
Supply current in driver  
termination mode  
Driver enabled, receiver disabled with termination  
ON  
RE = VCC, DE= VIO  
,
ICCDT  
ICCRT  
48  
1.3  
mA  
mA  
TERM = VCC  
Supply current in receiver  
termination mode  
Receiver enabled and driver disabled, with  
termination ON  
RE = GND, DE = 0 V,  
TERM = VCC  
Supply current in device  
disabled, termination  
enabled mode  
RE = VCC, DE = 0 V,  
TERM = VCC  
ICCT  
Driver and Receiver disabled, termination ON  
200  
120  
310  
138  
µA  
On-Chip termination resistor  
120 termination across  
receiver output A/B  
terminals  
DE = GND, TERM = VCC, VAB = 2 V, VB = -7 V, 0 V, 10 V  
RTERM  
102  
See 7-9  
(1) VTH+ is specified to be at least VHYS higher than VTH–  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6.8 Switching Characteristics_500 kbps  
500-kbps (with SLR = VCC) over recommended operating conditions. All typical values are at 25°C and supply voltage of VCC  
= 5 V, unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
200  
220  
250  
270  
260  
260  
2
600  
600  
500  
450  
15  
ns  
ns  
ns  
ns  
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
2
15  
tPHZ, tPLZ  
tPZH, tPZL  
Disable time  
Enable time  
RE = X  
80  
200  
6
200  
650  
11  
ns  
ns  
µs  
RE = 0 V  
RE = VCC  
See 7-4 and 7-5  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
Pulse skew, |tPHL tPLH  
Disable time  
5
620  
10  
20  
1200  
40  
ns  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
tPHZ, tPLZ  
tPZH(1)  
CL = 15 pF  
See 7-6  
|
DE = X  
20  
60  
Enable time  
DE = VCC  
DE = VCC  
80  
155  
1250  
See 7-7  
See 7-8  
tPZL(1)  
Enable time  
650  
tPZH(2)  
,
Enable time  
DE = 0 V  
7
12  
μs  
tPZL(2)  
(1)  
A, B are RX input, Y/Z are driver output terminals in Full duplex mode  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
6.9 Switching Characteristics_20 Mbps  
20-Mbps (SLR = GND) over recommended operating conditions. All typical values are at 25°C and supply voltage of VCC = 5  
V. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
5
4.5  
14  
9
9
8
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
22  
20  
1
50  
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
40  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
3.5  
3.5  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
1
tPHZ, tPLZ  
tPZH, tPZL  
Disable time  
Enable time  
RE = X  
25  
30  
6
50  
70  
11  
ns  
ns  
RE = 0 V  
RE = VCC  
See 7-4 and 7-5  
μs  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
Pulse skew, |tPHL tPLH  
Disable time  
5
10  
55  
4
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
30  
CL = 15 pF  
See 7-6  
|
tPHZ, tPLZ  
DE = X  
20  
80  
58  
See 7-7  
See 7-8  
tPZH(1)  
,
Enable time  
Enable time  
DE = VCC  
155  
11  
ns  
tPZL(1)  
tPZH(2)  
tPZL(2)  
,
DE = 0 V  
6
μs  
(1) A, B are RX input, Y/Z are driver output terminals in Full duplex mode.  
6.10 Switching Characteristics_Termination resistor  
Parameters over recommended operating conditions. All typical values are at 25°C and supply voltage of VCC = 5 V , unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Termination resistor turn-on  
time  
tTEN  
tTZ  
1.5  
4
µs  
µs  
RE = VCC, VAB = 2 V, VB = 0 V; See 7-9  
Termination resistor turn-off  
time  
4.6  
7.2  
RE = VCC, VAB = 2 V, VB = 0 V; See 7-9  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THVD1454  
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
Vcc  
375  
DE  
D
A
B
V
test  
VOD  
R
0V or V  
cc  
L
375 Ω  
7-1. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A
V
A
A
B
R /2  
L
B
V
D
V
B
0V or V  
cc  
V
OD  
V
OC(PP)  
R /2  
L
ûV  
OC(SS)  
V
OC  
C
L
OC  
7-2. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
V
cc  
0 V  
Vcc  
DE  
50%  
V
I
A
B
t
t
R =  
L
54 Ω  
PHL  
PLH  
D
~
V
2 V  
~
C = 50 pF  
L
OD  
90%  
Input  
50 Ω  
V
50%  
10%  
I
Generator  
V
OD  
~ œ 2 V  
~
t
r
t
f
7-3. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A
V
cc  
S1  
V
O
D
50%  
V
I
0 V  
B
R
=
DE  
50  
L
t
PZH  
=
C
L
50 pF  
110 Ω  
V
Input  
Generator  
OH  
90%  
V
I
50%  
V
O
~
~ 0V  
t
PHZ  
7-4. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
Vcc  
Vcc  
50%  
RL= 110 Ω  
VI  
tPZL  
VO  
A
B
0 V  
S1  
VO  
tPLZ  
D
Vcc  
DE  
CL=  
50 pF  
Input  
50%  
10%  
VOL  
VI  
Generator  
50 Ω  
7-5. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
3 V  
50%  
V
I
A
B
0 V  
R
VO  
t
tPHL  
Input  
Generator  
PLH  
50  
V
1.5V  
0 V  
VOH  
I
90%  
CL=15 pF  
50%  
10%  
RE  
V
OD  
V
tr  
OL  
t
f
7-6. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
cc  
Vcc  
DE  
Vcc  
V
50%  
I
0V  
V
A
B
tPZH(1)  
1 kΩ  
tPHZ  
D
V
O
R
D at Vcc  
S1 to GND  
0V or Vcc  
S1  
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
Generator  
D at 0V  
S1 to Vcc  
V
CC  
50 Ω  
V
I
V
50%  
O
10%  
V
OL  
7-7. Measurement of Receiver Enable/Disable Times With Driver Enabled  
Vcc  
0V  
Vcc  
VI  
50%  
A
B
1 kΩ  
tPZH(2)  
V or 1.5V  
VO  
R
S1  
VOH  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0V  
50%  
VO  
CL=15 pF  
RE  
0V  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
VCC  
50 Ω  
VI  
VO  
50%  
VOL  
7-8. Measurement of Receiver Enable Times With Driver Disabled  
VIO  
RTERM_RX = VAB / IA  
50%  
TERM  
IA  
A
0 V  
R
VAB  
VB  
tRTEN  
tRTZ  
90%  
50%  
10%  
B
TERM  
IA  
7-9. Measurement of enable and disable times of bus terminal termination resistor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THVD1454  
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The THVD1454 is a flexible half duplex RS-485 transceiver. The device has slew rate control pin SLR which can  
be used to set the device in maximum 20 Mbps mode or slew rate limited 500 kbps mode. THVD1454 also has  
on-chip 120 Ωtermination resistor across bus terminals A/B which is controlled using TERM pin.  
8.2 Functional Block Diagrams  
VCC  
GND  
A
Transmit Data = D  
DE  
TX  
TERM  
B
Control  
Logic  
RE  
SLR  
RX  
Receive Data = R  
8.3 Feature Description  
The THVD1454 operates from 3 V to 5.5 V bus supply. Internal ESD protection circuits on bus pins protect the  
transceiver against Electrostatic Discharges (ESD) according to IEC 61000-4-2 of up to ±8 kV (Contact  
Discharge), ±15 kV (Air Gap Discharge) and against electrical fast transients (EFT) according to IEC 61000-4-4  
of up to ±4 kV.  
8.4 Device Functional Modes  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this condition, the differential output voltage  
defined as VOD = VA VB is positive. When D is low, the output states reverse, B turns high, A becomes low,  
and VOD is negative.  
When DE is low, both outputs turn high-impedance. In this condition, the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground; thus, when left open, the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
8-1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA VB is positive and higher than the positive input threshold, VTH+, the receiver output, R,  
turns high. When VID is negative and lower than the negative input threshold, VTH-, the receiver output, R, turns  
low. If VID is between VTH+ and VTH- the output is indeterminate.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go fail safe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven  
(idle bus).  
8-2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
8.4.1 On-Chip Switchable Termination  
THVD1454 has integrated termination resistor of nominal 120 Ω across A/B bus terminals. Termination resistor  
is enabled or disabled using the TERM pin described in 8-3.  
8-3. On-chip termination function table  
Signal state  
Function  
Comments  
TERM = VCC  
120 Ωenabled between A and B  
120 Ωdisabled between A and B  
TERM = GND or floating  
Termination is disabled by default  
On-chip 120 termination resistor variation with temperature and across common mode voltage is shown in 图  
8-1 and 8-2.  
117  
116.5  
116  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
115.5  
115  
114.5  
114  
113.5  
113  
112.5  
112  
111.5  
111  
110.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-9  
-6  
-3  
0
3
6
9
12  
Temperature (°C)  
Bus Common Mode Voltage (V)  
8-1. Termination Resistor vs Temperature  
8-2. Termination Resistor vs Bus Common Mode  
voltage  
THVD1454 on-chip termination resistor has been designed so the termination block offers a resistive load to the  
bus, and does not alter the magnitude or phase of the bus signals from DC to 20Mbps signaling. See 8-3 and  
8-4 with the bus voltage swept from -6 V to +6 V. Current into the bus changes linearly in both conditions of  
termination ON or OFF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THVD1454  
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
40  
20  
60  
40  
VCC = 3.3 V  
VCC = 5 V  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
0
2
4
6
Voltage Across Bus Terminals VAB (V)  
Voltage Across Bus Terminals VAB (V)  
8-3. Voltage vs Current Across AB Bus Pins  
8-4. Voltage vs Current Across AB Bus Pins  
with Termination OFF  
with Termination ON  
8.4.2 Operational Data rate  
THVD1454 can be used in slow speed or fast speed RS-485 networks by configuring Slew rate control (SLR)  
pin. 8-4 describes slew rate control function.  
8-4. Slew rate control function table  
Signal state  
Driver  
Receiver  
Comment  
Active high slew rate limiting applied on driver  
output and glitch filter in receiver path  
enabled  
Maximum speed of operation Maximum speed of operation  
= 500kbps = 500kbps  
SLR = VCC  
Maximum speed of operation Maximum speed of operation Slew rate limiting on driver output disabled  
= 20Mbps = 20Mbps and glitch filter in receiver path disabled  
SLR = GND or floating  
Receiver path in the slow speed mode (500kbps) provides additional noise filtering. To attenuate noise  
frequency noise pulses from the bus which can be wrongly interpreted as valid data, SLR = VCC enables a low  
pass filter to filter out pulses with frequency higher than typical 800 kHz.  
8.4.3 Protection Features  
THVD1454 has in-built protection features such as supply undervoltage, bus short circuit and thermal shutdown.  
Supply undervoltage protection is present on VCC supply. This maintains the bus output and receiver logic output  
in known driven state when the supply is above the rising undervoltage threshold. 8-5 describes the device  
behavior in various scenarios of supply levels.  
8-5. Supply Function Table  
VCC  
Driver Output  
Receiver Output  
Termination across bus pins  
AB  
> UVVCC(rising)  
< UVVCC(falling)  
Determined by DE and D inputs  
High impedance  
Determined by RE and A-B  
Undetermined  
Determined by TERM pin  
OFF  
Bus terminals are protected against high voltage short circuit events up to ± 16 V. Additionally, bus short circuit  
current is limited to 250 mA. In events like bus contention when multiple drivers are driving the bus  
simultaneously, the current through the bus terminals is internally limited. If the power dissipation makes the  
junction temperature cross 150°C, thermal shutdown is activated which disables the driver and receiver and  
reduces the on-chip power dissipation. The device is enabled once the junction temperature falls by the thermal  
shutdown hysteresis as specified in electrical parameter section of the data sheet.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
9 Application Information Disclaimer  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The THVD1454 is a flexible RS-485 transceiver used for asynchronous data transmissions. The driver and  
receiver enable pins, slew rate control, and termination control pins allow the device to be applicable for various  
point-to-point, multipoint or multidrop network configurations.  
9.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer  
cable length. 9-1 shows two end nodes terminated, while remaining nodes unterminated. THVD1454 can be  
designed in all node designs. TERM pin allows configuring the nodes for end nodes and middle nodes in the  
network.  
A
A
A
B
R
RE  
DE  
R
R
R
RE  
DE  
A
B
A
B
120  
THVD1454  
THVD1454  
120  
120  
120  
B
B
D
D
D
D
TERM  
R
R
THVD1454  
R
R
THVD1454  
D
D
D
D
TERM  
TERM  
V
V
CC  
CC  
RE  
RE  
DE  
DE  
9-1. Typical Half Duplex RS-485 Network With all Nodes Using THVD1454  
9.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
9.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
shorter the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 300 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5% or  
10%.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THVD1454  
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
9.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of  
a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as  
shown in 方程1.  
L(STUB) 0.1 × tr × v × c  
(1)  
where:  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
THVD1454 can be used in both slow speed and high speed networks with SLR pin configurability. Slew rate  
limiting makes the driver output rise or fall time slower so that stub lengths can be increased.  
9.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit  
load represents a load impedance of approximately 12 k. Because the THVD1454 consists of 1/8 UL  
transceivers, connecting up to 256 transceivers to the bus is possible.  
9.2.1.4 Receiver Failsafe  
The differential receiver of the THVD1454 is failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver outputs a failsafe logic high state so that the output of the receiver  
is not indeterminate.  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. To comply with the RS-422 and RS-485 standards, the receiver output  
must output a high when the differential input VID is more positive than 200 mV, and must output a low when VID  
is more negative than 200 mV. The receiver parameters which determine the failsafe performance are VTH+  
,
VTH, and VHYS (the separation between VTH+ and VTH). As shown in the 8-2, differential signals more  
negative than 200 mV always causes a low receiver output, and differential signals more positive than 200 mV  
always causes a high receiver output.  
When the differential input signal is close to zero, it is still above the VTH+ threshold, and the receiver output is  
high. Only when the differential input is more than VHYS below VTH+ does the receiver output transition to a low  
state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver  
hysteresis value, VHYS, as well as the value of VTH+  
.
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
9.2.1.5 Transient Protection  
The bus pins of the THVD1454 transceiver family include on-chip ESD protection against ±16-kV HBM and ±8-  
kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more  
severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance,  
R(D), of the IEC model produce significantly higher discharge currents than the HBM model.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
9-2. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment.  
Common discharge events occur because of human contact with connectors and cables. Designers may choose  
to implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
9-3 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left side of the diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which exceed the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients  
are representative of events that may occur in factory environments in industrial and process automation.  
The right side of the diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients may occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
9-3. Power Comparison of ESD, EFT, and Surge Transients  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
For surge transients, high-energy content is characterized by long pulse duration and slow decaying pulse  
power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver is  
converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver. 图  
9-4 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse  
train that is commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
9-4. Comparison of Transient Energies  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To protect bus nodes against high-energy transients, the implementation of external transient protection devices  
is necessary. 9-5 suggests a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 9-1 shows  
the associated bill of materials.  
3 V to 5.5 V  
1 µF  
V
10 k  
CC  
R1  
R
RxD  
TVS  
RE  
DE  
D
A
B
MCU/  
UART  
DIR  
TxD  
R2  
10 k  
TERM  
GND SLR  
9-5. Transient Protection Against Surge Transients for THVD1454  
9-1. Bill of Materials  
DEVICE  
XCVR  
R1  
FUNCTION  
ORDER NUMBER  
MANUFACTURER(1)  
RS-485 transceiver  
THVD1454  
TI  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
Vishay  
Bourns  
10-Ω, pulse-proof thick-film resistor  
R2  
TVS  
Bidirectional 400-W transient suppressor  
(1) See the Device Support.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THVD1454  
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
For reliable operation at all data rates and supply voltages, VCC supply should be decoupled with a 1 μF  
ceramic capacitor located as close to the supply pin as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
9.4 Layout  
9.4.1 Layout Guidelines  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across  
the board.  
2. Use VCC and ground planes to provide low inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply atleast 1 μF decoupling capacitors as close as possible to the VCC pin of the transceiver, UART  
and/or controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩto 10-kΩpull-up and pull-down resistors for logic lines to limit noise currents in these lines during  
transient events.  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
9.4.2 Layout Example  
Via to ground  
Via to VCC  
C
R
VCC  
1
2
3
4
5
10  
9
R
TVS  
TVS  
RE  
B
A
R
MCU  
8
DE  
VIO  
7
SLR  
D
GND  
GND  
6
TERM  
9-6. Layout Example for THVD1454 in VSON-10 Package  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THVD1454  
 
 
 
 
 
 
 
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTHVD1454DRCR  
PTHVD1454DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
VSON  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
PTHVD1454DRCR  
PTHVD1454DRCT  
DRC  
DRC  
10  
10  
356.0  
210.0  
356.0  
185.0  
VSON  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THVD1454  
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
11.2 Mechanical Data  
PACKAGE OUTLINE  
DRC0010V  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
2X (0.5)  
4X (0.25)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
5
6
2X  
2
11  
SYMM  
2.4  
2.2  
10  
1
8X 0.5  
0.3  
0.2  
10X  
SYMM  
10X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
4226575/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THVD1454  
 
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DRC0010V  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
SYMM  
11  
(3.4)  
(2.3)  
(0.9)  
8X (0.5)  
6
5
(R0.05) TYP  
(0.2) TYP  
VIA  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226575/A 02/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THVD1454  
THVD1454  
ZHCSQ45 JANUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DRC0010V  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.51)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
10X (0.6)  
1
10  
(1.53)  
2X  
10X (0.24)  
(1.02)  
11  
SYMM  
(0.61)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226575/A 02/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THVD1454  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTHVD1454DRCR  
ACTIVE  
VSON  
DRC  
10  
5000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THVD14X9X

THVD14x9x 3-V to 5.5-V RS-485 Transceivers With 4-kV Surge Protection and 1.8-V VIO Capability
TI

THVD1500

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器
TI

THVD1500D

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1500DR

具有 ±8-kV IEC ESD 保护功能且速率高达 500kbps 的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1505

总线极性借助 IEC-ESD 保护校正 RS-485 收发器
TI

THVD1505DR

总线极性借助 IEC-ESD 保护校正 RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1510

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1510D

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1510DGK

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DGKR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1512

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI